A reliability and validity study of the clock dial and the Raubitschek arrow test for astigmatism

Francis M. Meagher

Pacific University
Donald Bettger
Pacific University
Stanley Kurilo
Pacific University

Recommended Citation

Meagher, Francis M.; Bettger, Donald; and Kurilo, Stanley, "A reliability and validity study of the clock dial and the Raubitschek arrow test for astigmatism" (1957). College of Optometry. 199.
https://commons.pacificu.edu/opt/199

This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.

A reliability and validity study of the clock dial and the Raubitschek arrow test for astigmatism

AbstractA reliability and validity study of the clock dial and the Raubitschek arrow test for astigmatism
Degree Type
Thesis
Degree NameMaster of Science in Vision Science
Committee Chair
D.T. Jans
Subject Categories
Optometry

Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the "Rights" section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.).
Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see "Rights" on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209.
Email inquiries may be directed to:.copyright@pacificu.edu

A RELIABILTHY AND VALIDITY STHYY OF THE
 CLOCK DIAL AND THE RAUBITSOHER ARROW TMEGT POR ASTIGMATISM

 A thesis presented to the Optometric

 A thesis presented to the Optometric Faculty of Pacific Univeraity, Faculty of Pacific Univeraity, Collegs of optometry, Collegs of optometry, Ferost Grove, Giegon.

 Ferost Grove, Giegon.}

In Partial Fulfillment
Of the Requirementa For The
Doctorate Degree In Optometry

Frencis M. Feagher
Donala Bettear
Stanley Kurilo

January - 1957

ACKNOLLEDGETENDS

We are grateful for the advice and materalal made availablo to us by Dr. D.T. Jans, Professor of Optometry; for the help In statstatcal computation by Dr. Paul Eskildson, O.D.; and to the subjects who sequed as observore.

Introduction. 1
䇾的poese 2
Frocedure 3
9tntiation Annlydu 9
Dtacussion 10
Ris 11
IIIustration. 12
Date 13

* KKIARLL

 CLOCX DTAL A

THERODEWTIM

The Slock Dial and the teubitschek Dial ape the two charts used In this oxpertiaent. she Cloek Dud 15 so dosigenod wat groups of three linas, spaced at thirty degroe ixtervals, reproment a rull 300 degees; and is so nemed because of its fimilarity to the actual tive pioce of our day. on the other hand, the Raum bitgchek Difl in oorposed of only two lines, "forming a specially
 curve. The parabolio aros forang the aroig contain all the 180 degree meridians in every position of the atwow so tind at leat part of one or both arce will bo colnclant with the priaciule
 of the line or lines in sach case that eids fn the determination of both power ang axis of astigmatism where measuresble.

The clock adel ckart uood in thos exporiment wes a standard बlide dealgnal for aso in on Areriean Optcal projeator. The
 The silide used was the sano as that desoribed in a thesta dutu=
 oi Doctor of Optometry at Eacific Universtty, rowest Grove,

PURPOST

Of the various methods for detewnining abtignatinn subjetivelys many of the methocia mpicgat mice use of line chartag the Innea
 was that visw more Lines unea, the more differat it bopame to make the neocostary oomparisom. For thet reason, the rovolving

The Gloel Dial and the Raubltsoheir Dial are considered intproverants over the multipita itme chate, whereby oyilnder wxis and powei dould be datexminta by xee of the same chart. The purpoae, theresore of the paper is te coternine correlatlon

PROGEDURE

Both the Clock Dial and the Rubitschek Dial tests are performed monoculeply, wne thtle the ey is Blighty forged.
 to file zofo line on Listent Snollan chart, plus power being
 $20 / 3$ ilsue. For the Clock Dial, this is mpproximately the amount of toutty paquisez to distinguish the three lines of one apoke of the digl The sawe control lens wil be used for the Rabitwohek Togt. It shotid closly pproximate the racomonded lens of plwa are ased fer dotcintining power.
I. Clock Dia?

a. Axta Detexnination

The left oyo is oclused and the pritumu hat rapise that as is jut able to claay the

 Dial and is asked the Following gtustlon. Are all of the spokes equally blumed? or $1 s$ on spoke blacker than the othersp (The pationt is previousiy mede ware of the fact that each spoke consiate of thres lines). If all the apokes appear equally blurred, then astileatatism may be ruled out. If one line doen look blacker than the others, the subjeet finforme
the obstaver as to the blacker spoke by giving that spoke number corresponing to numeral. whion on e clock wruld have the sax oorseapondfing position. This number in thon multyiled oy 30 to give in degrees the placmont of the mus çlindow aris. (Extmplat Pationt
 clegreas.)

Detemination:
The pationt heving decided thet on of the agate $100 k$ blacker than all tho otheriz, and

 mima oylindes is addad (axis 60) and the avbjeet instructed to tall the experidenter when the two liatz of segara are seen dqually blaok. Wore minu oflinder is added to get a reverpal. of the lines, and now reduoed unth1 one agmin equal. The mont of minus oylinder whith bringe bout the wetponee that the two

Abstract

Intes are equally black is consicered to be that mount witah ocrroets the astigmatic error.

II. Raubitsonek Dis.

a. Axts Determination:

The left eye is ocluced and the subject has replid that he is just able to clear the 20/30. line, the pationt is then dimected to the projected gaubitovioht tivi and asired if both ares of che dinl ape equally blurrea, of if one "wing" of the dial ia blacker thaz the other. (The work pling is used in reference to one of the two parabolic ares meking up the dial.) The dial has risst boen shown with the trrow set at 90 decrees. If both wing are qualiy blurred, the dial is rotated ao than the axis Is at 45 degrees, and the same question fis asked. If in both pos*itions the parabolic arcs were seen qually blurred, then aatimmatism 1s maliad out. If on the cther band, in thes finst position one ring was seen blacker than the other (chis is called "siadow), then the dial is rotated way from the side of tho
 continued until each wing ia seon to exhibit an ecual anount of bhador, mossured from tion
point of the armow down toward the onds of the wings. This position can be chocked easily, for rotating the dial flve to ton degrees to either side increases the amount of shadow on the respective side. By moving the projection slide, the oylinder axis can be read from the accompanying line chart, in degrees for the actual placement of the axis of minus cyinder.

b. Power Determination:

The subject having decided that both wings of the dial exhibit an equal amount of shadow at the tip, the experimenter is now prepared to detemine the amount astigmatism. Note; if the arrow points to 90 degrees when the two wings are equally black, the minus cylinder axis is indicated by the fainter ends of the wings, and is thus 90 degrees away, or at 180 degrees. This axis can be read from the accompanied line dial as mentioned above. The experimenter now employs the PascalRaubitechek technique which makes ust of two angles, a test angle and a rotation angle, usually taken as 20 and 35 degrees Fespectively. The 20 degrees gites the position of the tomporary axis, and the 35
degrees gives the now position of the arrow tip．Both angles are taken withtn the quad－ rant formed between the position of the arrow tip and the actual minus cylinder axis．The temporary axis is 20 degrees away from the axis of the minus cylinder，thus at 160 degrees．This is where the axis of the minus cylinder is placed．Then the aprot of the dial is rotated until it is 35 degrees away from the axis of the minus cylinder，of at 125 degrees．Now，minus cylinder is actually added in the phoropter． As cylinder power is added，the wing nearobt the cylinder axis will be the blackery if too much minus cylinder is added，the line further from the minus cylinder axis will become the darker．Hinus eylinder is then reduced until the two wings look alike．The amount of minus cylinder remaining in the phoropter is the amount needed to correct the astigmatic error．The mount of cylinder found by this method placed at 180 degrees （the original position of the Ilnned wings） ropresented the oye．
right eye, then on the left eje. Ar interval of not less than twenty-four hours took place between ach exampation on a given subjeot.

SPATHTICAL ANALNSIS
 on teat and reteat with the olinicalif accopted Clook Dial
 Gach. Two atatietion whthode were used. the Pearson Produet Correlation and the rank ordar method. The Peareon Product Correlation aofriolant for aylindor power and axis ano a higher correlation than that determined by the waria owdor method.

登elisb121ty

Clogk DLal
艮 Power
.617
b) Axify
.400

Baubittacis
8. Powns.
. 772
3. A초룔
.129

VaILdity

Pearson Product Coprelation
a. Pown
$z=.989$

Therefore it is atetistionlly mbatantleted tinat the
 Glock Dial method mon thin 1d dasimblo.

DISOUSSION

The determination of axts by means of the Clock Dial tost is a more gross measurement than the Raubitschek Arrow test, and therefore, the Clock Dial axis would require further refinementa while the Rabitschek test would not. Perhaps a more comparable correlation would have resulted between axis as determined by the Raubitsohek and Clock Dial, ff fngtead of a Clock Dial a Sunburst had been used.

However, each experimenter found that it was more difficult to explain to the subject mhat they would see and how they shomid interpret the Raubitschek Arrow. The experimenters also found that the Raubitschek test was the more time consuming. The majority of subjects were able to descriminate the Glock Dial test more oasily resulting in a more rapid response.

Those subjects having high degree of astigmatism were able to descriminate more easily on the Raubitschek test than persons having a low degree of astigratism. Those persons who had not proviously wom an astigmatic comection were not as descriminate on the Raubitschok test as they were on the Clock Dial test.

Further 3tudieg:

1. A Raubitsohek study on test-retest of non-corrected and previously corrected astigmatic subjects.
2. A correlation of power on teat-retest of a group of hyperopic and myoplc astigmatie subjects.
3. A comparison of variations on different dioptric levels of manifest oylinder.
4. A correlation of power on test-retest of nondominant eyes vs. dominant oyes of individuals manifesting cylinder.

PETERENCES

EORISH, I. : Clinleal Refraction.
TUPK AND PRICE: Raubitschek Test For Astigmatism.
FASCAL, J. : The Pascal-Raubitschek rest for Astigmatianf Journal of the AOA, Vol. XXV. no. 9.
RAUBITSCIEE, E. : The Raubitschek Test For Astigmatism; Opt. World, Vol. XLI. no. 9.

RAUBITSOAEK SLIDE

a. stationary dial, 5° interyals
b. moveable dial
c. maricer movet in equal amount and difestion as (b) dial

SUBJJC\% I

Coraparative Hetlgmatre stuay

Comparative Astigmatic Study

Clock Dial
Raubitschek

0.0.	$0 . S$.	$0 . D$	$0 . S_{0}$
Power Axis	Power Axis	Power Axis	Power Axis
$-0.50 \times 150^{\circ}$	$-1.50 \times 20^{\circ}$	$-1.25 \times 152^{\circ}$	$-1.50 \times 21^{\circ}$
$-1.25 \times 150^{\circ}$	$-1.25 \times 25^{\circ}$	$-1.50 \times 149^{\circ}$	$-1.50 \times 18^{\circ}$
$-1.50 \times 150^{\circ}$	$-1.50 \times 20^{\circ}$	$-1.50 \times 152^{\circ}$	$-1.25 \times 17^{\circ}$
$-0.50 \times 150^{\circ}$	$-1.25 \times 20^{\circ}$	$-1.50 \times 150^{\circ}$	$-1.50 \times 13^{\circ}$
$-1.25 \times 150^{\circ}$	$-1.00 \times 20^{\circ}$	$-1.75 \times 151^{\circ}$	$-1.50 \times 13^{\circ}$
$-1.50 \times 150^{\circ}$	$-1.75 \times 16^{\circ}$	$-1.50 \times 152^{\circ}$	$-1.50 \times 19^{\circ}$
$-0.50 \times 150^{\circ}$	$-1.50 \times 19^{\circ}$	$-1.75 \times 153^{\circ}$	$-1.25 \times 21^{\circ}$
$-1.50 \times 150^{\circ}$	$-1.50 \times 20^{\circ}$	$-2.50 \times 152^{\circ}$	$-1.50 \times 15^{\circ}$
$-0.75 \times 150^{\circ}$	$-1.50 \times 20^{\circ}$	$-1.75 \times 152^{\circ}$	$-1.25 \times 18^{\circ}$
$-0.62 \times 150^{\circ}$	$-1.50 \times 30^{\circ}$	$-1.75 \times 151^{\circ}$	$-1.50 \times 20^{\circ}$

Comparative Astigmatic Study

Comparative Astigratio gtudy

Comparative Astignatic Stuly

Clock Dial		Raubitschek	
O.D.	0.S.	O.D.	O.8.
Power Axis	Power Axis	Power Axis	Power Axis
$-0.50 \times 110^{\circ}$	$-0.50 \times 60^{\circ}$	$-0.25 \times 110^{\circ}$	$-0.37 \times 50^{\circ}$
$-0.50 \times 90^{\circ}$	$-0.50 \times 60^{\circ}$	-0.25 $\times 105^{\circ}$	$-0.50 \times 60^{\circ}$
-0.50 $\times 115^{\circ}$	$-0.75 \times 60^{\circ}$	-0.50 $\times 110^{\circ}$	$-0.50 \times 60^{\circ}$
-0.50 $\times 120^{\circ}$	$-0.75 \times 60^{\circ}$	-0.50 $\times 122^{\circ}$	$-0.50 \times 60^{\circ}$
-0.50 $\times 95^{\circ}$	$-0.50 \times 60^{\circ}$	-0.50 $\times 130^{\circ}$	$-0.50 \times 65^{\circ}$
-0.37 $\times 115^{\circ}$	$-0.50 \times 55^{\circ}$	-0.37 x 11.2^{0}	$-0.50 \times 58^{\circ}$
-0.50 $\times 115^{\circ}$	$-0.75 \times 55^{\circ}$	-0.12 $\times 110^{\circ}$	$-0.50 \times 63^{\circ}$
-0.75 $\times 105^{\circ}$	-0.62 $\times 60^{\circ}$	-0.37 $\times 112^{\circ}$	$-0.50 \times 60^{\circ}$
$-0.75 \times 115^{\circ}$	$-2.00 \times 60^{\circ}$	-0.50 $\times 112^{\circ}$	$-0.67 \times 50^{\circ}$
-0.75 $\times 115^{\circ}$	$-0.75 \times 60^{\circ}$	-0.50*215	$-0.50 \times 60^{\circ}$

Comparative Astagme, se guly

SUBJECT VIII

Comparative Astigmatic Study

Clock Dial

SUBJECT IX

Comparative Astigmatic Study

