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immobilizing dissolved polysulfides, and the relationship between the intrinsic properties of the polar
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Abstract Lithium-sulfur batteries are regarded as promising candidates for energy storage 

devices due to their high theoretical energy density. Various approaches have been proposed 

to break through the obstacles that are preventing Li-S batteries from realizing practical 

application. Recently, the importance of the strong chemical interaction between polar 

materials and polysulfides has been recognized by researchers to improve the performance of 

Li-S batteries, especially with respect to the shuttle effect. Polar materials, unlike nonpolar 

materials, exhibit strong interactions with polysulfides without any modification or doping 

because of their intrinsic polarity, absorbing the polar polysulfides and thus suppressing the 

notorious shuttle effect. The recent advances on polar materials for Li-S batteries are 

reviewed here, especially the chemical polar-polar interaction effects towards immobilizing 

dissolved polysulfides, and the relationship between the intrinsic properties of the polar 

materials and the electrochemical performance of the Li-S batteries are discussed. Polar 

materials, including polar inorganics in the cathode and polar organics as binder for Li-S 
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batteries are respectively described. Finally, future directions and prospects for polar materials 

used in Li-S batteries are also proposed. 

1. Introduction 

The rechargeable lithium-sulfur (Li-S) batteries have attracted enormous attention in the last 

several years due to their ultra-high theoretical specific capacity (1675 mAh g-1) and energy 

density (theoretically 2567 Wh kg-1),[1-4] five times higher than for the traditional lithium-ion 

batteries. Sulfur cathodes still suffer, however, from low active material utilization and poor 

cycling stability due to several factors: (i) The low electrical conductivity of sulfur and its 

discharge products limit electron transport in the cathode; (ii) large volume changes in the 

sulfur upon lithiation disrupt the electronic integrity of the electrode; and (iii) high solubility 

of lithium polysulfide (Li2Sn) species in organic electrolytes and the related “shuttle effect” 

lead to severe capacity fading, which is obstructing their practical application.[5-9]  

Tremendous efforts have been devoted to the complex problems listed above. In particular, 

early research was focused on the incorporation of sulfur into nonpolar carbon-based 

materials, including porous carbon, hollow carbon spheres, carbon nanotubes, graphene, and 

graphene oxide.[10-23] The introduction of carbon-based materials serving as sulfur hosts could 

effectively ameliorate the issue of poor electrical conductivity and volume expansion during 

the charge-discharge process. On the other hand, in terms of chemical structure, polarity of 

molecule refers to a separation of electric charge, which results in an electric dipole or 

multipole in a molecule or its chemical groups. Because of the difference in electronegativity 

between the bonded atoms, the polar bonds must exist in the polar molecules. Polar molecules 

could interact through dipole–dipole intermolecular forces and hydrogen bonds. In general, 

the chemical interaction between two kinds of polar molecules is much stronger than that 

between a polar molecule and a nonpolar molecule. The Li2Sn species belong to the class of 

polar molecules, while the carbon hosts are assigned to the nonpolar materials. Therefore, the 

https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Electric_dipole_moment
https://en.wikipedia.org/wiki/Multipole_moments
https://en.wikipedia.org/wiki/Chemical_group
https://en.wikipedia.org/wiki/Electronegativity
https://en.wikipedia.org/wiki/Chemical_bond
https://en.wikipedia.org/wiki/Intermolecular_force
https://en.wikipedia.org/wiki/Hydrogen_bonds
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conjugate nonpolar carbon planes have limited sites to strongly anchor Li2Sn species, resulting 

in weak interaction between the carbon-based materials and the Li2Sn species. The nonpolar 

carbon based materials cannot effectively anchor polar polysulfides during cycling, especially 

over long-term cycling, so the issue of the shuttle effect still has not been solved.  

Following this key point, the chemical affinity in polar-polar interaction is more favorable 

with respect to anchoring Li2Sn species. Extensive work has been done on introducing polar 

sites onto carbon planes by heteroatom doping, such as O, N, S, and B doping, to enhance the 

interaction between Li2Sn species and nonpolar carbon hosts.[24-28] The doped sites and polar 

functional groups induced by heteroatom doping contribute to enhanced interaction between 

the carbon matrix and the polysulfides, effectively anchoring the polar sulfur species. The 

limited amount of doping and the number of polar sites, however, are still inadequate for the 

overall electrochemical performance of the Li-S batteries.   

Recently, recognizing the importance of strong chemical interaction between polar materials 

and polysulfides, another stream of Li-S research has focused on exploring polar materials to 

trap polysulfides. Polar materials, unlike carbon materials, exhibit strong interaction with 

polysulfides without any modification or doping because of their intrinsic polarity, absorbing 

the polar polysulfides and thus suppressing the notorious shuttle effect. Herein, the polar 

materials used in Li-S batteries can be divided into two families. The first polar family mainly 

consists of inorganics, such as metal oxides, sulfides, carbides, and nitrides. Owing to their 

stronger interactions to bind polar polysulfides, many types of polar inorganics serve as 

efficient hosts to trap polysulfides. The second polar family mainly consists of organics, 

especially the newly developed polar binders used in Li-S batteries. 

We summarize the recent advances in polar materials for Li-S batteries, including polar 

inorganic and polar organic materials. This review is organized into the following sections: 
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polar inorganics used in cathodes for Li-S batteries, polar organics used in binders for Li-S 

batteries, and the summary and outlook. 

2. Polar inorganics used in cathodes for Li-S batteries 

Polar inorganics used in cathode materials for Li-S batteries can be divided into two 

categories, additive materials and host materials. These materials shares positive attributes 

that contribute to enhanced electrochemical performance of Li-S batteries. On the one hand, 

the polar inorganic materials possess a strong ability to absorb and trap polysulfides, thus 

avoiding the detachment of lithium polysulfides into the organic electrolyte, which 

significantly suppresses the shuttle effect. On the other hand, several polar materials in these 

inorganics are proven to accelerate the transformation process between lithium polysulfide 

and polysulfide due to their superior reactivity and abundant surface sites. All these features 

of polar inorganics endow Li-S batteries with improved reversibility, better stability, and 

longer lifetimes.  

2.1 Polar additives materials  

In early studies, nanosized Mg0.6Ni0.4O, Al2O3, and La2O3 were firstly used as polar additives 

in carbon/sulfur cathode for the absorption of polysulfides, leading to improved coulombic 

efficiency and cycling stability.[29-33] The polar metal oxide additives only can absorb a small 

amount of the polysulfides, however, due to their low surface area and relatively high density. 

To improve the absorption of the polar metal oxide additives, mesoporous α, β, and γ-TiO2 

with different surface areas and pore sizes were investigated by Nazar and coworkers for use 

in cathodes for Li-S batteries.[34] The sulfur cathode fabricated with mesporous carbon 

containing less than 4 wt% α-TiO2 as additive demonstrated the highest capacity retention of 

82% after 100 cycles. The Fourier transform infrared (FTIR) spectra and Raman spectra of α-

TiO2/lithium polysulfide (LiPS) demonstrated the interaction between sulfur and titania (S-Ti-

O bond, Figure 1a), which was the first report to prove the chemical interaction between a 

polar metal oxide and polysulfides. In order to effectively absorb the polysulfides and realize 



  

5 

 

high sulfur loading, a metal oxide additive with higher surface area was introduced into the 

sulfur/carbon cathode. Mesoporous SiO2 with surface area of 850 m2 g-1 was used as an 

effective polysulfide reservoir material in CMK-3/sulfur cathodes to improve the discharge 

capacity and cycling performance of Li-S batteries.[35]  

2.2 Polar host materials 

Apart from additives, polar inorganics with special nanostructures have been considered as 

sulfur hosts to replace the nonpolar carbon matrix. The nanostructured polar inorganics 

featuring strong polar metal-nonmetal bonding not only can absorb the polysulfides from the 

point of view of chemical interactions and physical barriers, but also contribute to the 

volumetric energy density of the Li-S batteries due to their high intrinsic density. Polar 

nanostructured inorganics used as host materials for Li-S batteries can be divided into three 

categories, metal oxides, metal sulfides, and MXene materials (metal carbides or 

carbonitrides) in this section. 

2.2.1 Metal oxide hosts 

Metal oxides contain oxygen anions in the oxidation state of O2- in polar metal-oxygen bonds, 

affording abundant polar active sites to absorb the polysulfides. Some typical polar metal 

oxides (TiO2, MnO2, Ti4O7) will be discussed in this section to demonstrate the potential of 

metal oxide hosts for Li-S batteries.  

TiO2 is the most widely investigated polar metal oxide host for Li-S batteries. A sulfur-TiO2 

yolk-shell nanostructured cathode material for Li-S batteries was reported by Cui’s group 

(Figure 1b) in 2013.[36] Unexpectedly high electrochemical performance could be obtained, 

and the as-designed sulfur cathode delivered an initial capacity of 1030 mAh g-1 at 0.5 C and 

capacity decay as small as 0.033% per cycle after 1000 cycles (Figure 1c). This yolk-shell 

design could supply sufficient space for the volume expansion of sulfur. Although the 

chemical interaction between the polysulfides and the polar TiO2 shell was not directly 

pointed out in this report, the authors claimed that TiO2 possesses hydrophilic Ti-O groups 
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and surface hydroxyl groups, which play a decisive role in strongly binding with polysulfides. 

Many kinds of nanostructured TiO2, such as hollow spheres,[37] mesoporous spheres,[38,39] 

nanowires,[40] nanotubes,[41-43] nanofibers,[44] nanoparticles,[45] and feather duster,[46] were then 

explored to host sulfur in the cathode. 

Nb2O5 is an electronic semi-conductor with orthorhombic phase structure, and its bulk 

electrical conductivity reaches to 3.4 × 10-6 S cm-1.[47] The Li+ intercalation pseudocapacitance 

behavior of Nb2O5 was discovered by Dunn et al.,[48] as the unique Nb-O crystalline structure 

could provide fast two-dimensional transport paths for Li+ between atomic layers, resulting in 

the formation of highly conductive lithiated compounds. Tao et al. designed a new effective 

sulfur host, in which Nb2O5 was dispersed into mesoporous carbon microspheres 

(MCM/Nb2O5) through a wet impregnation method (Figure 2a).[49] With the combination of 

the high conductivity of the MCM and the high polarity of the Nb2O5 nanocrystals, MCM/ 

Nb2O5 cathodes delivered an initial discharge capacity of 1289 mAh g-1 at 0.5 C and excellent 

capacity retention with a fade rate as low as 0.14% per cycle over 200 cycles, as well as good 

rate capacity of 640 mAh g-1 at 5 C. According to the density functional theory (DFT) 

calculations, the binding energy between Li2S6 and Nb2O5 is 65.16 kcal mol-1, while it is only 

9.84 kcal between Li2S6 and sp2 carbon (Figure 2b). Figure 2c displays the conformation of 

the binding system. The shortest distance between Li and O is 0.19 nm, indicating a strong 

ionic Li-O bond, which mainly accounts for the binding energy between Li2S6 and Nb2O5. 

The distance between Nb and S is 0.24-0.27 nm, which also partially improves the interaction 

between Li2S6 and Nb2O5 due to the van der Waals attraction and weak ionic bonds. The 

distance between Li and C is relatively long (0.24 nm), however, resulting in weaker 

attraction than for the Li-O bond. Additionally, there are four Li-O and four Nb-S pair in the 

Li2S6-Nb2O5 system, while there is only one Li-C pair in the Li2S6-C system. Furthermore, an 

electrochemical kinetic study further revealed that the Nb2O5 nanocrystals serve as an 

electrocatalyst, accelerating the multiple polysulfide transformation.     
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Using MnO2 as an efficient sulfur host materials was first proposed by Liang et al.[50] Ultra-

thin monoclinic birnessite δ-MnO2 nanosheets were synthesized by reducing graphene oxide 

(GO) with KMnO4. In order to demonstrate the ability of the MnO2 nanosheet host to bind 

with polysulfides, 75S/MnO2 and a control sample, 75S/KB (KB = Ketjen Black) were used 

to conduct an in-situ visual-electrochemical experiment. Figure 2d clearly shows that the 

electrolyte in the 75S/KB cell changed from colorless to bright yellow-green on partial 

discharge of the cell over 4 h. In contrast, the electrolyte for the 75S/MnO2 cell exhibited only 

a faint yellow color at 4 h. This indicates that δ-MnO2 nanosheets could effectively trap the 

polysulfides. In addition, the electrolyte was rendered completely colorless on full discharge, 

indicating that the MnO2 nanosheets effectively promoted the conversion from polysulfides to 

insoluble reduced Li2S2/Li2S. In this special chemical interaction mechanism, the sulfur-

MnO2 nanosheet composite with 75 wt% sulfur displayed an initial capacity of 1300 mA hg-1 

at C/20 and a fade rate over 2000 cycles of 0.036% per cycle at 2 C. Subsequently, Chen et al. 

designed a nanocomposite of hollow sulfur spheres decorated by MnO2 nanosheets, and DFT 

calculations were further conducted to analyze the binding energy of Sn
2- species with MnO2 

during lithiation evolution (Figure 2e).[51] The binding energies were in the range of -3.86 to -

5.15 eV (Figure 2f), which is much higher than the binding energies between Sn
2- species and 

nonpolar carbon materials. This result proves theoretically the strong interaction between 

MnO2 and sulfur species. The composite retained a capacity of 1072 mAh g-1 after 200 cycles 

at 0.2 C. Although MnO2 nanosheets can achieve strong chemical binding of polysulfides, the 

open structure of itself cannot supply a physical barrier to confine polysulfides. In addition, 

the insulating properties of MnO2 still lead to poor rate capability. Therefore, more 

sophisticated nanostructures of MnO2 composites combined with highly conductive carbon 

materials were designed to improve the electrochemical performance of Li-S batteries, 

including core-shell sulfur-MnO2 composite,[52-54] hollow carbon nanofibers filled with MnO2 
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nanosheet as host,[55] polypyrrole-MnO2 coaxial nanotube host,[56] and MnO2@carbon hollow 

nanoboxes as host[57] 

Realizing the drawback from the highly insulating nature of these metal oxides mentioned 

above, the nanostructured Magnéli phase oxide Ti4O7 was further developed as a polar host 

for Li-S batteries, because it combines metallic conductivity with strong chemical binding 

ability towards polysulfides. Ti4O7 contains polar O-Ti-O units that have a high affinity for 

polysulfide, and the theoretical bulk conductivity is as high as 2 × 103 S cm-1 at 298 K. Pang 

et al. visually tested the interaction between Ti4O7 and Li2S4.
[58] The Li2S4 solvent with the 

addition of Ti4O7 became light yellow immediately and almost completely colorless after 1 h, 

while the control samples (graphite and carbon in equivalent amounts based on surface area) 

remained intensely yellow-gold (Figure 3a), indicating a strong interaction between Li2S4 and 

polar Ti4O7. The potential mechanism of the chemical interaction was explored by analyzing 

S 2p X-ray photoelectron spectroscopy (XPS) spectra (Figure 3b). The ST
-1 and SB

0 peaks, 

corresponding to the terminal and bridging sulfur atoms, are shifted to higher energies by 2.7 

and 1.7 eV upon contact between Li2S4 and Ti4O7. This indicates interaction of both the 

terminal and bridging sulfur in the lithium polysulfides with the Ti4O7 surface, resulting in the 

polarization of electrons away from the sulfur atoms by the electropositive titanium and/or 

oxygen vacancies at the interface. In addition, the electron transfer to chemically bonded 

lithium polysulfides is enhanced on the metallic surface of Ti4O7, leading to surface-mediated 

deposition of the discharge product Li2S. This was evidenced by an operando X-ray 

absorption near-edge spectroscopy (XANES) study on the Ti4O7/S electrode (Figure 3c). At 

almost the same time, Tao et al. also investigated the Ti4O7 materials as host materials in Li-S 

batteries.[59] The DFT calculation results for the bonding properties of Sx (x = 1, 2, and 4) and 

Li2Sx (x = 1, 2, and 4) on Ti4O7 (1-20) and TiO2 (110) is shown in Figure 3d, which indicates 

that the low coordinated Ti in titanium oxide can stabilize the sulfur clusters, while oxygen-
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rich titanium oxide can stabilize metal clusters because of the formation of strong chemical 

bonding. 

Additionally, many other polar metal oxide composites have been used as sulfur hosts to 

anchor the polysulfides, such as Fe3O4, CeO2, NiFe2O4, Si/SiO2, Co3O4, V2O5, and MoO2, 

which significantly improves the electrochemical performance of the Li-S batteries.[60-69] Due 

to the intrinsic highly insulating property of metal oxides, the high internal resistance may 

lead to sluggish interface redox reaction kinetics, decreasing the sulfur utilization and rate 

capability. Therefore, most polar metal oxide hosts used in the cathode are coupled with 

conductive polymers or carbon materials to improve the overall conductivity to obtain the best 

performance. On the other hand, complicated nanostructured polar metal oxide hosts are 

generally needed in order to obtain abundant interfaces and tunable exposed surfaces.   

2.2.2 Metal sulfide hosts 

Metal sulfides are another class of typical polar inorganics that can accommodate sulfur and 

anchor polysulfides in Li-S batteries. The conductivity of the metal sulfides is much higher 

than that of the metal oxides, and some metal sulfides even have metallic or half-metallic 

phases. As a result, many types of metal sulfides with high conductivity have been explored 

for Li-S batteries. In this section, the advances in the use of typical polar sulfides as host 

materials for Li-S batteries are summarized. 

The conductivity of pyrite-type CoS2 crystal is as high as 6.7 × 103 S cm-1 at 300 K. The half-

metallic CoS2 was introduced into graphene/sulfur cathode by Yuan et al.[70] The binding 

energy of CoS2 and Li2S4 was found to be as high as 1.97 eV (0.34 eV for graphene) based on 

the DFT calculation results (Figure 4a), demonstrating the strong interaction between CoS2 

and polysulfides. The interfaces between CoS2 and the electrolyte also provide strong 

adsorption and activation sites for polar polysulfides, accelerating the redox reactions of 

polysulfides. Effective polarization mitigation and enhanced energy efficiency could be 

guaranteed due to the high reactivity of the polysulfide. The graphene/CoS2 composite 
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containing 75wt % sulfur exhibited a high initial capacity of 1368 mAh g -1 at 0.5 C and a 

small capacity decay rate of 0.034% per cycle at 2.0 C. The existence of CoS2 not only 

anchored the polar polysulfides, but also accelerated the charge transfer at the 

polysulfide/CoS2 interface, as illustrated in Figure 4b, enhancing the electrochemical 

performance of Li-S batteries.  

Co9S8 is another kind of metal sulfide with high conductivity of 290 S cm-1 at room 

temperature. Unique Co9S8-inlaid carbon hollow nanopolyhedra were synthesized and then 

used as an efficient sulfur host for Li-S batteries by Chen et al., as shown in Figure 4c.[71] 

These hollow nanopolyhedra with large void space not only accommodate high sulfur mass 

loading, but also buffer the volume expansion. The highly polar embedded Co9S8 crystals can 

strongly bind polysulfides and therefore restrict their outward diffusion. In order to probe the 

chemisorption capability of Co9S8 nanocrystals towards polysulfides, DFT calculations were 

conducted, as shown in Figure 4d. The (202) planes of Co9S8 were chosen as the 

representative crystalline planes for the simulations, because they are close to the 

stoichiometric Co/S ratio of 5:4. The absorption energies between Co9S8 (202) and the 

different Li2Sn species (Li2S8, Li2S6, Li2S4, Li2S2, Li2S) are -6.08, -4.03, -2.97, -4.52, and -

5.51 eV, respectively. This strong chemical interaction of Li2Sn with Co9S8 resulted from their 

highly polar nature. A visual adsorption experiment was further carried out, as shown in 

Figure 4e. The color of a Li2S4 solution mixed with Co9S8/C hollow nanocrystals turned 

almost colorless after 120 min, confirming that the Co9S8/C hollow nanocrystals had stronger 

adsorption capability towards Li2S4 than common porous carbon. The Co9S8/C-S composite 

cathode still exhibited high discharge capacity of 560 mAh g-1 after 1000 cycles at 2.0 C, 

corresponding to a low capacity decay of 0.041% per cycle. In addition, the improved rate 

performance indicates that Co9S8 can also significantly improve the reaction kinetics of the 

polysulfide redox reactions. 
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TiS2 also has been studied in Li-S batteries due to its high electronic conductivity and the 

polar nature of its surface. Cui and co-workers proposed a Li2S@TiS2 core-shell 

nanostructure synthesized by an in-situ reaction method as cathode for Li-S batteries (Figure 

5a).[72] The TiCl4 precursor reacts directly with some of the Li2S on the surface to form a TiS2 

coating (TiCl4 + 2Li2S = TiS2 + 4LiCl), resulting in the formation of the Li2S@TiS2 core-shell 

nanostructure. On the one hand, the electronic conductivity of the Li2S@TiS2 structures was 

measured to be 5.1 × 10-3 S cm-1, which is 10 orders of magnitude higher than that of bare 

Li2S (10-3 S cm-1), leading to fast electron transport. On the other hand, polar Ti-S groups in 

the TiS2 coating layer can potentially interact strongly with Li2Sn species, as evidenced by the 

DFT calculations (Figure 5b). The binding energy between Li2S and a single layer of TiS2 

was 2.99 eV, while only 0.29 eV was calculated between Li2S and a single layer of carbon-

based graphene.[73] The much stronger interaction between Li2S and TiS2 is attributed to their 

similar polar nature, unlike the nonpolar nature of graphene. In addition, this similar reaction 

mechanism can be extended to the synthesis of Li2S@ZrS2 and Li2S@VS2 core-shell 

nanostructures. The calculated binding energies of Li2S to ZrS2 and VS2 are 2.70 and 2.94 eV, 

respectively (Figure 5b). Compared to the bare Li2S cathodes, the Li2S@TiS2 cathodes 

exhibited a high initial specific capacity of 806 mAh g-1, which was calculated based on Li2S, 

stable cycling performance at 0.2 C, and good rate capability from 0.2 to 4 C (Figure 5c). 

Another study of TiS2 foam supported sulfur cathode with high sulfur loading was conducted 

by Archer and co-workers.[74] The improved performance of the materials was also attributed 

to the high conductivity and strong affinity towards soluble polysulfides of polar TiS2.  

Various other metal sulfides, such as MoS2,
[75,76] SnS2,

[77,78] NiS2,
[79] WS2,

[80] MnS,[81] CuS,[82]  

and FeS2,
[83] have also been investigated as polar hosts in Li-S batteries. Although the 

conductivity of the metal sulfides is much higher than for metal oxides, carbon-based 

materials are still introduced, in order to further decrease the internal resistance and enhance 

the utilization of the active material. In addition, most of the adsorption mechanisms between 
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metal sulfides and polysulfides are not completely clearly yet and need to be deeply 

investigated.  

2.2.3 MXene phase material Hosts 

The MXene phase is a family of transition metal carbides or carbonitrides that was first 

reported by Gogotsi’s group,[84] which are well known for high conductivity in the core and 

abundant functional groups on the surface. The MXenes are produced by selectively etching 

A atoms from layered MAX phases (Mn+1AXn, where M is transition metal, A is one of a 

group of IIIA/IVA elements, and X is C or N), and then delaminating the sheets in polar 

solvent. The delaminated 2D MXene phases possess high conductivity and abundant 

functional groups on the surface. 

Several TixCy-type MXenes have been explored as sulfur hosts for Li-S batteries. Ti2C was 

first reported to be a highly effective cathode host material by Liang et al,[85] which was 

prepared by corroding Al atoms from Ti2AlC. It was found that the unoccupied orbitals of Ti 

atoms in the surfaces of Ti2C nanosheets were bound with either -OH or sulfides after 

exfoliation and delamination treatment (Figure 6a). Although Ti2C nanosheet has neither 

porous structure nor high specific surface area, unexpectedly superior properties still were 

obtained when it was employed as a sulfur host material. This indicates that the chemical 

bonding with polysulfides effectively suppressed the dissolution and diffusion of the 

polysulfides, which is supported by XPS analysis (Figure 6b). The Ti 2p XPS spectrum of 

70S/Ti2C sample exhibited an additional peak at 457.6 eV assigned to the S-Ti-C bonds, 

which is also found in Li2S4-Ti2C and fully discharged 70S/Ti2C electrode. This implies that 

the -OH functional groups were substituted by sulfur species. Therefore, the analysis 

mentioned above proves that there exists a strong chemical interaction between the 

polysulfides and the nanosheets, enhancing the electrochemical stability of the Ti2C/S 

composite. After that, Liang et al. further investigated the MXene phases Ti3C2 and Ti3CN as 

sulfur hosts, with XPS and DFT calculations results also demonstrating the strong interaction 
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between polysulfides and MXene phase Ti3C2.
[86] Recently, Zhang et al. investigated the 

crucial role of the conductivity of the polar host in the electrochemical kinetics of Li-S 

batteries by using conductive TiC as sulfur host.[87] The interfacial electrochemical kinetics 

are determined by two main factors, illustrated in Figure 6c, which include adequate binding 

affinity and efficient charge transfer over the liquid-solid boundary during the redox reactions 

of the adsorbates. As a nonpolar host, carbon is too inert to bind polar polysulfides, leading to 

low coverage of reactive intermediates. A polar insulator such as TiO2 possesses a strong 

affinity towards absorbing the polysulfides on the surface, but its low conductivity hinders 

direct surface conversion on the polar host. Therefore, only polar materials with high 

conductivity can fully meet the demands for both sufficient surface binding and efficient 

charge transport, resulting in enhanced electrochemical kinetics. DFT calculation results 

showed that the binding energies between TiC (100) and Li2S4 and Li2S are -1.89 eV and -

2.75 eV, respectively, which were significantly higher than those on the graphene plane 

(Figure 6d). Highly conductive TiC was proved to promote the liquid-liquid transformation of 

polysulfides as well as the liquid-solid nucleation/growth of Li2S, resulting in enhanced 

electrochemical performance. 

In summary, the polar inorganics, including metal oxides, metal sulfides, and MXene phase 

materials, have been proved to strongly anchor the polar polysulfides (Table 1). The polar-

polar interaction between polar inorganics and polysulfides plays an important role, and 

nanostructures also contribute to the improved electrochemical performance. Even so, the role 

of intrinsic properties and correlation with the electrical conductivity for the polar inorganics 

is not fully understood. Theoretical calculation and prediction may be an effective strategy to 

guide the future development of polar inorganics for Li-S batteries.  

3. Polar organics used in binder for Li-S batteries 

Poly(vinylidene difluoride) (PVDF) is the conventional binder that is used in Li-S batteries, 

although it just provides physical adhesion to link the active materials to the current collector. 
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Due to its linear molecular structure, there is no bonding between the binder and the 

polysulfides, leading to the dissolution of polysulfides in the organic electrolyte. Therefore, 

the design of a polar binder capable of absorbing polar polysulfides would be more desirable 

to advance the application of Li-S batteries. The study of polar binders for Li-S is at an early 

stage, and only a few reported polar binders that have been used as multifunctional binders in 

Li-S batteries are reviewed in this section.   

3.1 Amino functional group binder 

Polar polyethylenimine (PEI) polymer has been used as the binder in Li-S batteries due to its 

abundant amino groups and branched structure, which can provide strong affinity to absorb 

polysulfide.[88] Recently, another multifunctional amino functional group (AFG) polar binder 

was reported by Yan et al.[89] The AFG binder was synthesized by polymerization of 

hexamethylene diisocyanate (HDI) with PEI polymer in dimethyl formamide (DMF) solvent. 

The obtained AFG binder possesses a unique chemical structure with abundant polar amine 

groups and a hyper-branched network (Figure 7a), which can provide strong interaction with 

polysulfide intermediates. The 13C NMR spectrum of AFG clearly shows the polar amide 

groups (N-CH=O, N=C-OH, and C-C-NH2). In addition, the AFG binder exhibits good 

flexibility and the stretchability can be up to over 70% (Figure 7b). According to the DFT 

calculation results, the binding energy between AFG binder and Li2Sn species is significantly 

higher than the binding energy between Li2Sn and PVDF binder (Figure 7c).[90] All these 

features endow the sulfur cathode with AFG binder with good electrochemical properties. The 

as-prepared sulfur cathode showed remarkably enhanced cycling performance with capacity 

retention of 91.3% at 2 C after 600 cycles, which is attributed to the unique polar amine 

molecule of the binder, absorbing the polar polysulfides to suppress the shuttle effect. On the 

other hand, the issue of volume expansion could be solved because of the elastic and 

mechanical properties of the binder. More importantly, the cathode material used in this 
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experiment is commercial sulfur powder without any special engineered properties, so the 

new design of the AFG binder can greatly promote the practical application of Li-S batteries. 

Jiao et al. synthesized another multi-functional binder (AHP), with abundant amide groups as 

an efficient binder for Li-S batteries.[91] The polar AHP binder prepared by polymerization of 

HDI with ethylenediamine (EDA) contains a large amount of amino groups, which can 

strongly anchor the polysulfides, thus suppressing the shuttle effect. Figure 7d shows the 

design concept and a schematic illustration of the synthesis of the polar AHP binder, with a 

series of polar amide groups introduced into the AHP binder during polymerization. 

Compared to the commercial binders, the amide polar groups in the novel binder could 

strongly anchor Li2Sn species to effectively keep them within the cathode region, improving 

the electrochemical stability of the Li-S batteries. A schematic illustration of the evolution of 

AHP and commercial PVDF binder during cycling, as shown in Figure 7e, indicates that the 

AHP binder not only can tolerate the massive volume change of sulfur cathode during the 

discharge process, but also maintains the strong interactions between the polysulfides and the 

binder even during the charge process. All these advantageous features of AHP binder endow 

the C/S composite (60 wt% S) cathodes with excellent capacity stability. 

3.2 Copolymers of vinylidene difluoride (VDF) with different monomers 

Our group used copolymers of VDF with other monomers, e.g. poly(vinylidene difluoride-

trifluoroethylene) (P(VDF-TRFE)), as binders to improve the electrochemical performance of 

Li-S batteries.[92] Figure 8a shows the molecular structure of PVDF and its copolymers with 

other monomers. From the point of view of chemical structure, there are two fluorine atoms in 

the monomer unit of PVDF but five fluorine atoms and one hydrogen in P(VDF-TRFE). For 

P(VDF-co-CTFE), the hydrogen in the trifluoroethylene is replaced by a chloride atom. The 

modification observed in the monomer unit leads to enhanced molecular polarity of the VDF 

based copolymers, which have a strong affinity to lithium polysulfides. In addition, the ab-

initio simulations performed in the framework of density functional theory clearly confirm the 



  

16 

 

strong interactions between Li2S (Li-S species) and the polymer binders (Figure 8b and 8c). 

The strongest interaction with Li2S or Li-S species can be observed in the case where it bonds 

with the -F group in P(VDF-TRFE) binder, with binding energy of 1.05 eV and 0.876 eV, 

respectively, which is higher than for bonds with PVDF binder. The chemical structure and 

theoretical calculation results indicate that the -F group in the P(VDF-TRFE) binder possesses 

a stronger affinity to Li2S and lithium polysulfides than it does in the PVDF binder, leading to 

enhanced electrochemical performance. (Figure 8d). 

In conclusion, these polar organics used as binder greatly enhanced the electrochemical 

performance of Li-S batteries (Table 2) because of their inherent functional polar groups, 

chemically binding the polysulfides. The processing of the new polar organic binders is 

usually complicated, however, and the cost is relatively high. Apart from strong chemical 

polysulfide-trapping capability, future polar organic binders should possess other features, 

low cost and high physical adhesion, to guarantee the high sulfur loading, realizing the 

practical application of Li-S batteries.  

4. Summary and Outlook  

In this mini review, we provide an overview of recent advances in the use of polar materials 

for Li-S batteries. The polar materials discussed here can be divided into two categories, polar 

inorganics used in the cathode and polar organics used in the binder for Li-S batteries.  

On the one hand, the polar inorganics, such as metal oxides, metal sulfides, and MXene phase 

materials, have been proved to strongly anchor the polar polysulfides from both theoretical 

and experimental results, suppressing the shuttle effect and prolonging the lifespan of the Li-S 

batteries. Although the chemical absorption mechanism of these polar inorganics and their 

impact on the electrochemical kinetics has been partly understood by the traditional 

characterization methods, e.g. visual absorption test, XPS measurement, and theoretical 

calculation, some more advanced characterization techniques are further needed to deeply 

understand it, such as in-situ techniques. In terms of theoretical prediction analysis, apart from 
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DFT calculation, other new effective theoretical strategies are very much required to give 

assistance to the selection of suitable sulfur host among thousands of polar inorganics for Li-S 

batteries. Besides, nanostructure is also an influencing factor on the properties of the polar 

materials, such as surface area, pore size, and pore volume, affecting the adsorption capability 

of the polysulfides. For real practical application of Li-S batteries in the near future, general 

principle for the rational design of nanostructured polar inorganic hosts is strongly required to 

maintain the balance among the adsorption capability, sulfur loading mass, and product cost.  

On the other hand, the research on polar organics used in binders for Li-S batteries is in its 

early stages. There are a few research reports on polar organics as binders, demonstrating 

their strong interaction with polysulfides. The ability of polar binders to adsorb polysulfides is 

mainly determined by their intrinsic polarity. Therefore, the quantity and type of the 

introduced functional polar groups should be taken into account in designing and synthesizing 

the novel polar binder, enhancing its polarity as much as possible. In addition to guaranteeing 

the integrity of the whole electrode and uniform distribution of the cathode materials, we 

believe that functional binders in the future should possess the features of low cost and high 

physical adhesion, as well as strong chemical polysulfide-trapping capability. 
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Figure 1. The use of TiO2 for Li-S batteries. a) FTIR spectra (top) of α-TiO2, Li2S4, and α-

TiO2/Li2S4, and Raman spectra (bottom) of α-TiO2 and α-TiO2/Li2S4. Peaks characteristic of 

the material are highlighted with arrows. b) Schematic diagram of the synthetic process (top), 

and SEM and TEM images (bottom) of as-synthesized sulfur-TiO2 yolk-shell nanostructures. 

Scale bars, 2 μm and 1 μm for SEM and TEM, respectively. c) Capacity retention of sulfur-

TiO2 yolk-shell nanostructures and control samples cycled at 0.5 C. a) Reproduced with 

permission.[34] Copyright 2012, American Chemical Society. b,c) Reproduced with 

permission.[36] Copyright 2013, Nature Publishing Group. 
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Figure 2. a) Schematic illustration of the synthesis process of the MCM/Nb2O5/S composite. 

b) Binding geometric configurations and energies of a Li2S6 molecule with two-layer 

graphene and Nb2O5, which is derived from ab initio calculations based on DFT. c) 

Conformation of the binding system. d) Visual confirmation of polysulfide entrapment at 

specific discharge depths (75S/KB, top; and 75S/MnO2, bottom). e) Optimized configurations 

for the binding of S, polysulfides, and Li2S to the MnO2. f) The binding energies of lithium 

polysulfides at six different lithiation stages with MnO2. a-c) Reproduced with permission. [49] 

Copyright 2016, Royal Society of Chemistry. d) Reproduced with permission.[50] Copyright 

2015, Nature Publishing Group. e,f) Reproduced with permission. [51] Copyright 2016, Royal 

Scoeity of Chemistry. 
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Figure 3. a) Schematic diagram showing the electron density transfer between Li2S4 and TiOx 

(yellow: S, green: Li, blue: Ti, red: O) (left) and vials of a Li2S4/tetrahydrofuran (THF) 

solution (1), and the same solution immediately upon contact (top) and after 1 h stirring 

contact (bottom) with graphite (2), VULCAN XC72 carbon (VC) (3), and Ti4O7 (4) (right). b) 

High-resolution XPS S 2p spectra of Li2S4, Li2S4 /Ti4O7, and Li2S4/VC. c) Distribution of 

sulfur species for Ti4O7/S-60 and VC carbon/S-60 cathodes upon discharge, as determined by 

operando XANES. d) DFT analysis of the adsorption of S species on Ti4O7 (1-20) and TiO2 

(110) surfaces. a-c) Reproduced with permission.[58] Copyright 2014, Nature Publishing 

Group. d) Reproduced with permission.[59] Copyright 2014, American Chemical Society. 
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Figure 4. a) Binding geometries and energies of a Li2S4 molecule on graphene (left) and the 

(111) plane of CoS2 with a cobalt-terminated surface (right). b) A schematic illustration of the 

discharge process in CoS2-incorporated carbon/sulfur cathode. c) Schematic illustration of the 

synthesis process for Co9S8/C-S nanopolyhedra. d) Calculated adsorption energies (Ea) of S8 

and Li2Sx (x = 1, 2, 4, 6, or 8) species on (202) planes of Co9S8 crystals. e) Adsorption 

capability comparison of activated carbon (left vial) and Co9S8/C hollow nanopolyhedra (right 

vial) within a solution of Li2S4 as a representative polysulfide (in mixed dioxolane 

(DOL)/dimethoxyethane (DME) solvent). a,b) Reproduced with permission. [70] Copyright 

2016, American Chemical Society. c-e) Reproduced with permission.[71] Copyright 2017, 

Elsevier. 
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Figure 5. a) Schematic diagram of the synthesis process for Li2S@TiS2 core-shell 

nanostructures. b) Ab initio simulations showing the most stable binding configuration of 

Li2S with a single layer of (left) TiS2, (middle) ZrS2, and (right) VS2, with calculated binding 

energies of 2.99, 2.70, and 2.94 eV, respectively. c) Cycling performance of Li2S@TiS2 and 

bare Li2S cathodes at 0.2 C (left) and charge–discharge voltage profiles of Li2S@TiS2 

cathodes cycled from 0.2 to 4 C (right). a-c) Reproduced with permission. [72] Copyright 2014, 

Nature Publishing Group.  
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Figure 6. a) Geometry optimization of the interaction between Ti atoms on the surface of Ti2C 

and sulfur species. (b) Ti 2p XPS spectrum (left) of i) Ti2C nanosheets, ii) S/Ti2C composite, 

iii) Li2S4 -Ti2C, and iv) 70S/Ti2C electrodes discharged to 1.8 V; S 2p XPS spectra (right) of 

i) elemental sulfur, ii) 70S/Ti2C composite, and iii) 70S/Ti2C electrode discharged to 1.8 V. c) 

Illustration of the working mechanism of the polar conductor as it meets the demand for both 

adequate binding and charge transfer. d) The binding energies of TiC to Li2S4 and Li2S 

compared to pristine graphene. a,b) Reproduced with permission. [85] Copyright 2015, Wiley-

VCH. c,d) Reproduced with permission.[87] Copyright 2016, Wiley-VCH.  
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Figure 7. a) Synthesis scheme for AFG binder by copolymerization of PEI with HDI in DMF 

solution. b) Digital photographs show that the AFG copolymer has excellent stretchability. c) 

Adsorption binding energies for Li–S composites at six different lithiation stages on a 

reducible molecular structure of PEI. d) Synthesis scheme, in which AHP copolymerizes 

EDA with HDI in DMF solution. e) Schematic illustration of evolution of different binders 

during cycling. a-c) Reproduced with permission. [89] Copyright 2017, Wiley-VCH. d) 

Reproduced with permission.[91] Copyright 2017, Springer. 
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Figure 8. a) Chemical structures of PVDF, P(VDF-TRFE), and P(VDF-co-CTFE) binders; ab 

initio simulations showing the most stable binding configurations of (b) Li2S and (c) Li-S 

species with PVDF (left) and P(VDF-TRFE) (right) binders. d) Long-term cycling 

performance (left) at 0.5 C and rate capability (right) of S@PVDF, S@P(VDF-co-CTFE), and 

S@P(VDF-TRFE) electrodes. a-d) Reproduced with permission.[92] Copyright 2016, Elsevier. 
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Table 1. Recent progress on polar inorganics as host materials in cathodes for lithium-sulfur 

batteries. 

 
Polar 

inorganic 

host 

Nanostructures Sulfur content & 

sulfur loading 

massa) 

Binding energy Cycling datab) Ref. 

TiO2 Yolk-shell 53 & 0.4-0.6 N/A 1030 (690)/1000 

/0.5C 

[36] 

TiO2 Mesoporous spheres 49 & N/A -2.31 (M3-HTSs) and -2.93 

(M4-HTSs) eV between Sn
2- 

with TiO2 (001) surface 

801 (688)/200/0.5C [38] 

Nb2O5 Nanocrystal with 

mesoporous carbon 

sphere 

48 & 1.5 65.16 kcal mol-1 (equal to 

2.82 eV) between Li2S6 and 

Nb2O5 

1289 (913)/200/0.5C [49] 

δ-MnO2 Nanosheet 56 & 0.7-1.0 N/A 1120 (1030)/200/0.2C  [50] 

MnO2 Nanosheet 

decorated hollow 

sulfur spheres 

57 & 1.7-2.1 In the range of -3.86 to -

5.15 eV between Sn
2- 

species and MnO2 (100) 

surface 

1043 (1072)/200/0.2C [51] 

Ti4O7 Nanoparticles 48 & 1.5-1.8 N/A 850 (595)/500/2C [58] 

Co3O4 Ultrathin nanosheets 42 & 0.6-1.0 5.58 eV between Li2S and 

Co3O4 

890 (572)/300/0.6C [63] 

Ti4O7 particles 51 & 0.5-1.5 -4 eV between Li2Sx and 

Ti4O7 (1-20) 

623 (604)/250/0.5C [59] 

Ti6O11 Nanowires 52 & 0.5-1.5 N/A 713 (635)/100/0.1C [59] 

CoS2 Micro-sized cluster 

with 15 wt% 

graphene 

60 & 0.4 1.97 eV between Li2S4 and 

(111) plane of CoS2 

1368 (1005)/150 

/0.5C 

[70] 

Co9S8 Co9S8/C hollow 

nanopolyhedra 

62 & 1.5 and 3.0 -6.08, -4.03, -2.97, -4.52, 

and -5.51 eV between Li2Sx 

(x=8, 6, 4, 2, 1) and Co9S8 

1020 (790)/200/0.5C 

[1.5 mg cm-2] 

840 (680)/300/0.5C 

[3.0 mg cm-2] 

[71] 

TiS2 Core-shell 51 & 1 (based on 

Li2S) 

2.99 eV between Li2S and a 

single layer of TiS2 

956 (736)/400/0.5C [72] 

MoS2 Nanosheet N/A & 2 0.87 eV (2.70 eV, 4.48 eV) 

between Li2S and MoS2 

terrace site (S-, Mo-edge) 

1068(over 800)/300/ 

0.5C 

[75] 

Ti3C2 Nanosheet with 10 

wt% CNT 

63 & 1.5 and 5.5 15.76 eV between Li2S4 and 

Ti3C2 

1216 (450)/1200/ 

0.5C [1.5 mg cm-2] 

916 (500)/250/0.2C 

[5.5 mg cm-2] 

[86] 

TiC Nanosheet with 

amount of graphene 

55 & 3.5 -1.89 eV (-2.75 eV) 

between Li2S4 (Li2S) and 

TiC (100) 

1032 (670)/100/0.2C  [87] 

a) The sulfur content was calculated based on the weight of sulfur in the cathode and the unit is wt %. The unit of sulfur 

loading mass is mg cm-2. 

b) The cycling data are summarized as Initial (final) capacity/corresponding cycle number/corresponding current density. The 

specific capacity was calculated based on the weight of sulfur, and the unit of capacity is mAh g-1. 
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Table 2. Polar organics employed as binders for lithium-sulfur batteries. 

 
Polar 

organics 

Chemical structure Sulfur content 

& sulfur 

loading massa)  

Binding energy Cycling datab) Ref. 

PEI binder 

 

60 & 8.6 N/A 1126 (744)/50/0.05C [88] 

AFG binder 

 

54 & 0.7, 3 

and 8 

1.2889 eV between 

Li2S2 and AFG 

binder 

600 (nearly 600)/600/1C 

[0.7 mg cm-2] 

614 (526)/200/0.5C 

[3 mg cm-2] 

988 (842)/50/0.1C  

[8 mg cm-2] 

[89] 

AHP binder 

 

51 & 0.5 N/A 773 (628)/100/1 C [91] 

P(VDF-

TRFE) 

binder 

 

42 & N/A 1.05 eV (0.876 eV) 

between Li2S 

(Li−S· species) and 

P(VDF-TRFE) 

912 (540)/300/0.5C [92] 

Polyaniline 

 

59.8 & 0.6-0.9 N/A 872 (439)/50/0.07C [93] 

a) The sulfur content was calculated based on the weight of sulfur in the cathode, and the unit is wt %. The unit of sulfur 

loading mass is mg cm-2. 

b) The cycling data are summarized as Initial (final) capacity/corresponding cycle number/corresponding current density. The 

specific capacity was calculated based on the weight of sulfur, and the unit of capacity is mAh g-1.  
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The importance of the strong chemical interaction between polar materials and 

polysulfides has been recognized by researchers to improve the performance of Li-S batteries, 

especially with respect to the shuttle effect. Recent advances in polar materials for Li-S 

batteries are reviewed, including polar inorganic and polar organic materials. Also, future 

directions and prospects for polar materials used in Li-S batteries are proposed. 

 

Keywords: lithium-sulfur batteries; polar inorganics; polar organics; chemical 

interaction. 
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