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ABSTRACT 

Busulfan is a bifunctional alkylating agent used in combination with other 

chemotherapeutics for the ablation of dysfunctional bone marrow prior to haematopoietic 

stem cell transplantation. Busulfan use is complicated by a large inter-individual and inter-

occasion pharmacokinetic variability. Furthermore, the exposure of busulfan (estimated as 

a cumulative area under the curve) has been associated with dose-limiting toxicities such 

as sinusoidal obstruction syndrome, which can lead to multi-organ failure and death if left 

untreated.  

 

The research presented in this thesis retrospectively explores SOS incidence in 337 HSCT  

patients over an eleven-year study period (2006 – 2017) across seven institutions in 

Australia. Out of 344 busulfan-based conditioning occasions, there were 64 cases of SOS 

reported. A population pharmacokinetic analysis was developed to explore the 

pharmacokinetic variability present. Association studies were conducted post hoc and non-

parametric and Cox proportional hazards models were developed to better understand the 

development of SOS post-busulfan use. Lastly, an exploration of the influence of patient 

genotypes on clinical outcome was conducted. 

 

A total of 3241 observations informed the selection of a one-compartment pharmacokinetic 

model. Inter-occasion and inter-individual variability were characterized for both clearance 

and volume. Adjusted-ideal bodyweight (kg) and a sigmoidal Emax, maturation function 

were incorporated as covariates. A post hoc analysis into concomitant medications found a 

significant decrease in busulfan CL for patients co-administered metronidazole (difference 

in median CLNORM = 0.05 L/h/kg, n = 17, P < 0.0001), and a marginal increase with 

dexamethasone (difference in median CLNORM = 0.01 L/h/kg, n = 49, P < 0.01).  



xvi 

Overall, cAUC was not significantly associated with SOS, although median Cmax observed 

on Day 1 of busulfan therapy was higher in patients with SOS (2 μg/mL vs. 2.61 μg/mL, P 

< 3.7 x 10-5). A multivariate Cox proportional hazard model characterized the hazard of 

developing SOS as a combination of risk factors: low AIBW, low pre-transplant albumin, 

younger age and high Cmax.  

 

A linear regression analysis on an ADME panel of 67 SNPs in a sub-cohort (223 patients) 

found found no significant effect of SNPs on busulfan clearance. A logistic regression 

analysis of the same number of patients over the panel of enzyme-related SNPs failed to 

report any significant genetic associations with SOS. A separate analysis of 189 patients 

for polymorphisms of GSTA1 (an enzyme previously associated with busulfan metabolism) 

showed a 14%  – 18% lower clearance (difference in mean CLNORM = 0.03 L/h/kg,  P = 

0.004 and 0.04 L/h/kg, P = 0.0003) in patients heterozygous and homozygous for the *B 

allele, respectively. A further categorisation of GSTA1 polymorphisms into activity-based 

groups was of no additional benefit.  

 

In conclusion, the high degree of inter-occasion and inter-individual variability in busulfan 

pharmacokinetics was reconfirmed through this thesis. Patient specific factors such as 

GSTA1 polymorphisms affected pharmacokinetic variability, but cAUC was not associated 

with risk of SOS.   
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Chapter 1.                            
BUSULFAN USE IN HAEMATOPOIETIC STEM CELL 

TRANSPLANTATION 
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1.1 INTRODUCTION 

Busulfan or 1,4-butanediol-dimethylsulfonate1 is a bifunctional alkylating agent2 of the 

alkylsulfonate class of drugs.3 The main mechanism of action of busulfan involves the 

release of methanesulfonate groups that produce carbonium ions, which can alkylate DNA 

by forming intrastrand cross-links at 5’-GA-3’ and 5’-GG-3’, halt DNA replication and 

induce cellular senescence.4-6 There have also been studies on busulfan activity in forming 

DNA-protein crosslinks.7 Busulfan appears to target haematopoietic stem cells (HSC) 

more selectively than mature lymphocytes, possibly due to a greater action during the  

G0/G1 phase of the cell cycle.3 In the body, busulfan undergoes extensive phase II 

metabolism through glutathione conjugation along with a range of other minor pathways 

producing sulfolane, tetrahydrothiophene-1-oxide and N-acetylcysteine-sulfonium.  

 

 

 

Figure 1-1  Chemical structure of busulfan 

1.2 BUSULFAN THERAPY 

Haematopoietic stem cell transplants (HSCT), including bone marrow transplants (BMT), 

are used  as a curative treatment option in several malignant, haematological and 

immunological conditions and inherited diseases.3 8 9 This form of treatment is used to 

deplete bone-marrow using high-dose chemotherapy with or without total body irradiation, 

followed by a rescue with HSC from the patient or from donor(s) to restore immune 

functionality.3 8 Several chemotherapeutic agents in multiple dose forms and regimens 
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have been successfully utilised to deplete stem cells, thereby conditioning a patient prior to 

transplant. Busulfan is an integral part of many of these conditioning regimens and has 

become a common replacement for total-body irradiation since the first documented use in 

1953 for chronic myeloid leukaemia (CML).10 11 

 

Today, busulfan is primarily administered as an intravenous (IV) infusion in combination 

with other cytotoxic agents such as cyclophosphamide, melphalan or fludarabine. The 

pharmacokinetics (PK) of busulfan are highly variable and for myeloablation, busulfan also 

has a narrow therapeutic window associated with dose-limiting toxicities such as 

sinusoidal-obstruction syndrome (SOS), seizures and gonadal toxicities.12 13 Therefore, 

busulfan administration is accompanied with toxicity prophylaxis through concomitant 

phenytoin, levetiracetam or benzodiazepines for seizures,14 15 and ursodeoxycholic acid 

and, more recently, defibrotide for SOS.16 17 Considerable effort has been made to 

personalise busulfan use for optimum outcomes in transplant patients. However, despite 

the implementation of several interventions, such as therapeutic drug monitoring (TDM), 

PK-guided dosing, and toxicity prophylaxis, optimal busulfan therapy continues to be a 

challenge. Furthermore, there is still no consensus amongst the transplant community with 

regards to either the ideal busulfan dosing regimen, or the most appropriate target ranges 

for PK-guided dosing and TDM.    

 

This chapter explores the developments and present-day challenges of IV busulfan 

therapy, nearly twenty years after FDA approval, including the persistent issues of PK 

variability and SOS. Busulfan TDM is performed routinely in Australian patients, although 

the target ranges can vary according to conditioning regimen, diagnosis and tolerability. 

The appropriateness of a uniform target for PK monitoring has recently been debated and, 

in this review, the changing definition of the PK target range is summarised. A brief history 
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of transplantation and the evolving use of busulfan in HSCTs provides a suitable starting 

point. 

1.3 BRIEF HISTORY ON THE DEVELOPMENT OF BUSULFAN-BASED TRANSPLANT REGIMENS 

The story of transplantation begins from the first documented, prolonged engraftment of 

allogeneic transplantations that resulted from an opportunistic rescue of six physicists 

exposed to near lethal doses of radiation.18 This serendipitous discovery gave rise to bone 

marrow transplantation, where high doses of radiation were used to annihilate cancer cells 

from the body, followed by HSC rescue from either the patient or a donor to restore 

immune function.19 20 For the first time, a curative treatment option for cancers like 

Hodgkin’s lymphoma and lymphosarcomatosis was offered through BMTs.20  

 

Total body irradiation (TBI), although effective at myeloablation (the process of depleting 

bone-marrow), was severely toxic to patients and not readily available at all institutions.21 22 

Cyclophosphamide, an alkylating agent, was first introduced to the BMT regimen in 1971 

as an alternative to TBI.23 While cyclophosphamide had a safer toxicity profile than TBI, 

relapse was still a major concern. A combination therapy of cyclophosphamide and TBI 

(Cy-TBI) was later shown to successfully reduce the rate of relapse.24  

 

Busulfan was initially introduced as a last-resort treatment option for resistant patients with 

CML due to its myelosupressive properties.25 With longer remission times and markedly 

reduced toxicities, busulfan became a preferred replacement for nitrogen mustards, 

arsenic and urethane in the treatment of myeloproliferative diseases.26 27 In earlier trials, 

busulfan therapy was generally limited to lower doses of between 2 mg and 6 mg per day 

to avoid haematological toxicites such as neutropaenia and thrombocytopaenia, and also 
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pulmonary fibrosis, popularly known as busulfan lung.26 28 29 Depending on disease 

severity, doses of up to 16 mg daily were also used in other myeloproliferative conditions.30  

 

The incorporation of busulfan in preparative regimens for transplantation was first 

suggested by George Santos in the 1970s as an alternative to TBI. Services for TBI were 

not readily available in all institutions prompting research into alternative methods of 

myeloablation.21 An in vivo exploration of busulfan activity on haematopoietic organs in 

rats demonstrated effective myeloablation without affecting lymphoid cells. Further 

investigation by Santos in animal models confirmed these findings31 and later successfully 

demonstrated recovery, after conducting a syngeneic bone marrow infusion in rats 

following a lethal dose of busulfan.32  

 

The use of busulfan in transplants however was limited to syngeneic bone marrow 

infusions, due to the lack of immunosuppressive activity. Cyclophosphamide is a potent 

immunosuppressive, and the combination with busulfan was expected to synergise the 

activity of the preparative regimen in ablating both HSC and mature lymphocytes. This 

combination demonstrated rapid engraftment of allogeneic stem cells in rats, which was 

not observed with cyclophosphamide alone,33 thus proving the concept. The first use of 

busulfan in humans as a combination with cyclophosphamide (busulfan followed by 

cyclophosphamide, Bu-Cy) was reported by Santos et al. for the treatment of acute 

leukaemia.34 Busulfan, at high doses (8 and 20 mg/kg over four to eight days), was 

expected to increase the activity of cyclophosphamide in ablating both HSC and mature 

lymphocytes, whilst being a safer alternative to total body irradiation.35 The Bu-Cy regimen 

resulted in accelerated engraftment and a markedly-reduced relapse rate and was as 

effective as Cy-TBI.35 36  
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Whilst melphalan and busulfan were used independently at lower doses in CML in the 

1950s,10 25 37 the use of a combined busulfan and melphalan (busulfan followed by 

melphalan, Bu-Mel) conditioning regimen was first reported for an autologous transplant in 

1987.38 In subsequent studies, Bu-Mel was also used successfully in BMT for relapsed 

non-Hodgkin’s Lymphoma in children39 and also for autologous transplants in high-risk 

neuroblastoma.40 The combination of Bu-Cy followed by melphalan was also tried 

successfully for haematological malignancies in autologous41 and allogeneic transplants in 

patients with no prior exposure to melphalan.42 43  

 

The introduction of fludarabine, a purine analogue, in the 1990s revolutionised the field of 

HSCTs, as it allowed for successful engraftment of HSC through immunomodulation, 

without the need for complete myeloablation. Since the first documented use in Fanconi’s 

anaemia,44 fludarabine paved the way for new types of transplant regimens that would not 

require the same high doses as myeloablative conditioning regimens. The resultant 

low(er)-dose conditioning regimens, which unlike myeloablative conditioning regimens 

induced reversible cytopaenia, were referred to as non-myeloablative and reduced-

intensity conditioning regimens, although definitions have further evolved as specified in 

other sections of this chapter. Reduced intensity conditioning regimens opened 

transplantation for malignant and immune-related conditions to a range of patients, such 

as the elderly, who were not considered fit for myeloablative conditioning regimens.45-47 

 

Busulfan is most commonly used in combination with fludarabine, cyclophosphamide or 

melphalan, although there are other notable combinations used routinely in practice. The 

addition of thiotepa to busulfan-fludarabine or busulfan-cyclophosphamide improves 

relapse rates and has greater anti-leukaemic effect, at the cost of higher non-relapse 

mortality and risk of infection in a range of haematological malignancies such as acute 
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myeloid leukaemia (AML) and non-Hodgkin’s lymphoma (NHL).48-52 The combination of 

busulfan and etoposide, a topoisomerase II poison, has also been used recently for 

autologous transplantations in AML.53   

 

The use of busulfan has therefore evolved greatly over the past four decades into a range 

of myeloablative and reduced intensity conditioning regimens for a myriad of diagnoses 

and indications. However, therapy is complicated by various dosing and monitoring 

challenges and, therefore, busulfan has been studied extensively over many years. The 

resulting recommendations have been adopted inconsistently at various institutions, as 

highlighted in a large-retrospective analysis of busulfan TDM practices by Bartelink et al. 

Therapeutic concentrations monitored and achieved at the different institutions varied 

significantly and that study indicated the need for a harmonisation of global practices to 

ensure optimal outcomes for all patients.54  

 

1.4 BUSULFAN - CURRENT ISSUES 

In the past 10 years, the IV formulation of busulfan has largely replaced oral 

administration, following evidence of improved survival, lower inter-individual 

pharmacokinetic variability and lower incidence of SOS. 55 56 Neither pharmacokinetic 

variability nor SOS have been completely resolved by the use of IV busulfan, and 

institutions have sought to develop further improvements in busulfan therapy, but without 

any global consistency in approach, as described below:  
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1.4.1 Busulfan dosing - Variability in Practice 

Variation in practice begins from the starting point of determining the first busulfan dose - 

either through a test dose, nomogram or dose-calculator (Bayesian or otherwise). During 

therapy, differing therapeutic drug monitoring practices, using either steady state 

concentrations or area under the curve (AUC, per dose and cumulative) and also, the 

methods of estimating exposure (AUC) can also contribute to significant variability in 

results.  This is illustrated in Figure 1-2, 54 where AUC is shown for three methods of 

estimation: using a pharmacokinetic model or trapezoidal rule (either 0 – τ or 0 – ∞).  

  

Figure 1-2 The differences in estimating area under the curve using either a 

pharmacokinetic model, trapezoidal rule (0 – t) or trapezoidal rule (0 – inf) as supplied in 

the appendix by Bartelink et al.54  

 

The relationship between busulfan pharmacological effect and exposure in plasma has 

been demonstrated many times, providing an imperative to overcoming inter-individual 

variability so as to optimise outcome and reduce toxicity. Over the years, the target plasma 
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exposures to achieve optimal outcome have also varied between institutions, with some 

hospitals pursuing narrower therapeutic windows than others.57 58 The administration of 

busulfan has shifted from being dose dependent (a cumulative dose of 16 mg/kg) to 

concentration/ exposure dependent (depending on a range of targets to be achieved). 

However, new busulfan-based conditioning regimens periodically emerge for new 

indications, often using the traditional 16 mg/kg dose.59 As a result, there are clear 

differences in global practices for transplantation and conditioning, which have led to 

demands for a harmonised approach for the optimal use of busulfan in HSCT.60 In 

considering the harmonization of the multitude of busulfan-based conditioning regimens 

across the world, certain aspects of busulfan pharmacology must be explored.  

 

1.4.2 Pharmacokinetic Variability 

Busulfan displays variability in pharmacokinetics, which has a direct impact on accurate 

dosing, clinical outcome, and the optimisation of definable targets that can help achieve 

these outcomes. Numerous retrospective investigations have described busulfan PK in the 

past two decades, using a variety of population PK (pop-PK) approaches. Literature is 

divided on the pharmacokinetic structure of the pop-PK models.2 54 61-74 Approved dosing 

methodologies developed for the FDA and EMA use one-compartment models70 75, while 

more recent Bayesian-guided dose calculators have used a two- compartment model.62 

Although pop-PK models have effectively described patient data in both cases, the 

difference in the resulting first dose is a contributor to variability, along with the subsequent 

dose adjustment required to achieve target exposure. Beyond the aforementioned 

differences, however, population pharmacokinetic models have been successful in 

identifying the main causes of variability in busulfan pharmacokinetics, which are 

described below: 
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1.4.2.1 Body-Size 

Differences in body-size between individuals of various ages are often the main underlying 

cause for variability observed in PK parameters, particularly in paediatrics.76 For busulfan, 

the first dose is calculated relative to body-size at a number of institutions, using a dosing 

nomogram relating to either body weight70 75 or body surface area (BSA). Most pop-PK 

models incorporate one measure of body-size on clearance and volume of distribution (V); 

either weight,71 77 adjusted ideal bodyweight63 or BSA.65  

 

The relationship between body-size and metabolic clearance is not proportional, and an 

allometric exponent on increasing body-size is more reflective of the differences 

observed.78 An established scaling exponent of  3
4� for weight and  2

3�  for BSA is 

commonly used to describe the change in clearance of busulfan from children to adults. 

However, the exponents are considered insufficient to describe the changes in clearance 

in preterm and very young children, as they seem to over-predict for infants and under-

predict for neonates.79 This was confirmed for intravenous busulfan, where the allometric 

exponent estimated for children under nine kilos was substantially higher than 3
4� .80 

Several modifications to allometric scaling such as sigmoidal functions of age,81 have been 

attempted to better explain the effect of changes in body-size over the human lifespan, but 

have not been successfully implemented in pop-PK modeling for busulfan. 

 

1.4.2.2 Age and Maturation 

Neonates and infants have variable clearance, which cannot be entirely explained using an 

allometric exponent of 3 4�  on bodyweight. The exponent leads to an overprediction of 

clearance in children under two and an underprediction in neonates82 and hence 

alternative allometric exponents have been proposed to counter this discrepancy.81 
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Beyond allometric exponents, however, there is an underlying difference in the maturation 

of metabolising enzymes in neonates and infants that can affect the CL of drugs. 

Therefore, functions have been developed to describe the maturation of enzymes in 

neonates to explain at least in part the variability in clearance.78  

 

Busulfan is primarily metabolised by the glutathione- S-transferases (GSTs), mainly 

GSTA1, which is known to have a different profile in very young children compared to 

adults. When busulfan was dosed orally, children had a higher apparent oral clearance 

(clearance divided by bioavailability CL/F),83 supposedly due to a higher level of enteric 

activity of GSTA1 enzymes compared to adults.84  

 

Even with the IV formulation, which bypasses metabolism by enterocytes, busulfan 

clearance varies markedly with age.65 After normalising to a measure of body-size, 

significant variation in clearance (mL/min/kg or mL/min/m2) persists. Figure 1-3 illustrates 

changes in clearance over age per a) kg and b) m2.58 Although clearance standardised to 

weight (mL/min/kg), appears to be higher in children for IV busulfan, net CL is lower 

compared to adults, and normalisation of clearance by BSA is better reflective of this. 

Lower clearance in children is attributed to a lower metabolic activity and has been 

characterised by various functions describing the process of maturation. The incorporation 

of a maturation function in populations including infants has also been used effectively 

incorporated in pop-PK analyses for IV busulfan.62 69  
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Figure 1-3 Illustration of the change in busulfan clearance  over age when standardised by 

a) weight (mL/min/kg) and b) BSA (mL/min/m2). A moving average of clearances identified 

as a solid black line describes the change in clearance over age. 58 

a. 

b. 
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1.4.2.3 Metabolism 

1.4.2.3.1 Major and Minor Pathways 

Busulfan undergoes extensive phase two metabolism in the liver through glutathione 

conjugation by the glutathione-S-transferase family of enzymes. Alternative metabolic 

pathways through N-acetylcysteine conjugation by N-acetyl transferase (NAT) have also 

been identified for busulfan. The busulfan glutathione-conjugate is further metabolised to 

tetrahydrothiophene (THT) by cystathionase (CTH) and eventually undergoes metabolism 

by cytochrome P450 enzymes CYP2C9, CYP2C19, and to a lesser extent CYP3A4 and 

CYP3A5 to form sulfolane and other inactive metabolites as described in Figure 1-4. 

 

Figure 1-4 The intracellular site of action and metabolic pathways involved in busulfan 

pharmacology.85  

 

Polymorphisms in the enzymes GSTA1 and GSTM1, and less commonly GSTT1 and 

GSTP1, which conjugate reactive alkylating species, have been associated with higher Bu 

plasma concentrations and lower CL.86-88 8990 91GSTA1 diplotypes may be categorised by 

enzymatic activity into three groups, with some variants  associated with significantly lower 
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clearance of busulfan.92 An analysis in 112 children and adolescents receiving IV busulfan 

found a  difference in CL of between 7% and 12% amongst GSTA1 activity groups and 

reaffirmed the modest impact of GST metabolic pathways on busulfan PK variability.93 

However, studies on these associations are inconsistent, with other studies not finding an 

association between GST enzymes  and busulfan clearance in adults,89 and the 

implementation of GST genotyping in dosing guidelines has been limited.91 Currently, 

specialty organisations such as the American society for BMTs does not recommend 

pharmacogenomics- aided dosing of busulfan.90 

 

Studies reporting on the ontogeny of the GSTA1 enzyme are currently limited to enteric 

activity, which was reflected in oral busulfan administration.84 With increased popularity of 

the  intravenous formulation, the research is still lacking on maturation of GSTA1 in other 

parts of the body and their effect on busulfan CL. 

 

1.4.2.4 Concomitant Medications  

There have been few systematic studies investigating the potential drug-drug interactions 

that affect busulfan CL. Anecdotal evidence has been reported on lower busulfan CL 

associated with metronidazole, the iron chelator deferasirox or antifungal use .94-97 A small 

study demonstrated significantly lower CL of busulfan in patients receiving 

metronidazole,98 although no similar study has been repeated with the IV formulation. 

Drugs such as phenytoin and fludarabine affect apparent oral busulfan CL, but there is no 

evidence for similar interactions with the IV formulation.99 100 While the product information 

for busulfan specifies theoretical interactions with paracetamol, due to similar metabolic 

pathways, there is no clinical evidence to suggest such an interaction.55  
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1.4.2.5 Addressing Inter-Occasion Variability 

Inter-occasion variability is a known, yet unexplained, aspect of busulfan PK analysis. 

While models quantify IOV on CL and V as 10-15% between occasions, the mechanism of 

this variation is unknown.101 102 Using a Michaelis-Menten elimination model, clearance 

gradually decreases on successive dosing occasions as concentration increases.103 An 

alternative model implemented a factor for decreasing CL on each occasion after the first 

dose of busulfan, resulting in a further 6% reduction above the 12% IOV on CL.54  

 

1.4.3 Pharmacokinetic Association with Outcome 

The implementation of therapeutic drug monitoring relies on an established relationship 

between a measure of exposure in plasma (usually AUC, Css or Cmax) and clinical 

outcome, either efficacy or toxicity.  To discuss the influence of PK on outcome, it is first 

necessary to consider the most appropriate measure of exposure, based on plasma 

concentrations.  There are differences in the methods of estimating and quantifying this 

exposure. While there has been notable effort made in some reviews to standardise the 

measure of exposure prior to comparison,90 there is still ambiguity as to the relevant cut 

offs for clinical implementation, and how stringently these should be applied. Busulfan 

exposure is typically estimated as either steady state concentration (Css ) or area under the 

curve (AUC) which can be estimated through compartmental or non-compartmental 

analysis. Steady state concentrations take into account dosing intervals of busulfan when 

estimating exposure, which can make comparison simpler amongst the various dosing 

regimens.104  Estimation of Css is more relevant in the context of repeated doses with a 

relatively short dosing interval, and due to increasing popularity of the single-dose daily 

regimen, the concept of a cumulative exposure of busulfan in one transplant occasion 

(measured as cumulative AUC, or cAUC) for comparing outcomes, has become more 

widespread in recent studies.54 Some studies have also reported the use of maximum 
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concentration post infusion (Cmax) and trough concentrations (Cmin) to assess outcomes.105 

106 

 

Although several drugs display high inter-occasion and inter-individual PK variability, the 

short-term yet high-dose administration of busulfan makes overcoming PK variability 

particularly pertinent. Furthermore, there is an accepted relationship between busulfan 

exposure and transplant outcomes such as disease relapse, overall and progression free 

survival (OS and PFS, respectively) and toxicities such as SOS.54 107 The validation of 

these pharmacodynamic  relationships is  however far from consistent.105 

 

1.4.3.1 Association Between Busulfan Exposure and Transplant Success 

The first reported exposure-response relationship for the IV formulation of busulfan found 

a lower OS and PFS in adult patients with busulfan AUCs > 6000 µM.min (per dose, given 

daily over four doses- equivalent to 98.4 mg.h/L). This was attributed to higher non-relapse 

mortality (NRM) with no evidence to suggest a lower rate of relapse in patients with higher 

exposure.108 Product information guidelines from both the EMA and FDA for IV busulfan 

cite exposure- response profiles derived from oral busulfan, where transplant success was 

associated with an AUC > 900 µM.min (per dose of oral busulfan, given Q6H over 16 

doses) and an increased risk of SOS with AUC > 1500 µM.min.109 The guidelines remain 

unchanged for steady-state concentrations between oral and IV busulfan, where Css  < 600 

ng/mL was associated with graft rejection, while Css  > 900 ng/mL results in a greater risk 

of toxicities.110 The cut-offs for these measures of exposure are similar in both children and 

adults.107  
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1.4.3.2 Relationship Between Busulfan and SOS 

Sinusoidal obstruction syndrome can present as a range of symptoms, from a rapid 

increase in weight due to fluid overload, thrombocytopaenia refractory to platelet infusion, 

painful ascites and hepatomegaly, followed by elevated liver function tests and bilirubin.111 

The patterns of presentation can vary between patients, with particular differences 

between children and adults, making SOS difficult to diagnose. Guidelines for diagnosis 

such as Seattle, modified Seattle and Baltimore guidelines incorporate at least two or more 

symptoms for diagnosis and retrospective classification.112 Recent guidelines from the 

European Society for Bone Marrow Transplants (EBMT) have distinct diagnoses between 

children and adults and have constructed a scheme for grading SOS during presentation, 

rather than retrospectively, providing time for treatment.113 114 Prevention is key in SOS 

management. Ursodeoxycholic acid is proven to reduce the severity of SOS and 

defibrotide has been introduced more recently.16 115 Treatment of acute SOS is 

predominantly achieved through symptom control of fluid retention using diuretics, platelet 

and albumin transfusions and defibrotide, although the exact mechanism of action of 

defibrotide in SOS is not fully understood.   

 

Sinusoidal obstruction syndrome is a dose limiting toxicity of busulfan, which was first 

shown to correlate with busulfan exposure in 1989 by Grochow el al.13 For treatment with 

busulfan (dosedQ6H for 16 doses), an AUC > 1500 µM.min or a Css > 900 ng/mL. is 

associated with a higher incidence of SOS.66 116 A prospective evaluation in adult AML 

patients using daily IV busulfan with fludarabine found SOS occurs in all patients who were 

targeted to an overall cumulative AUC of 9000 µM.min (37 mg.h/L), but in only 7% of 

patients targeted to 7500 µM.min (31 mg.h/L).117  
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1.4.4 The Therapeutic Window - Does One Size Fit All? 

The therapeutic window to avoid either toxicity or rejection is narrow and difficult to 

achieve as busulfan displays considerable pharmacokinetic variability amongst patients, 

and over different occasions of dosing in a single patient. A therapeutic window for AUC of 

Q6H busulfan administered over 16 doses has commonly been described as 900 to 1500 

µM.min, or 900 to1350 µM.min for each dose of administration.70 75 118 Slight variations of 

the target range, such as 950 to 1520 µM.min, have also been reported.119 Expressing the 

cAUC in alternative units, corresponding to 58 – 86 mg.h/L or 58 – 100 mg.h/L, allows 

comparison to narrower recommended cumulative AUC targets of 74 – 82 mg.h/L and, a 

significantly higher 78 – 101 mg.h/L window which have been proposed recently.54 107 

Steady-state concentration monitoring (estimated as AUC divided by dose frequency)58 is 

still used in many institutions and the target of 600 – 900 ng/mL has been widely 

accepted,120 although a recent investigation has shown a poor correlation between Css and 

AUC in individual patients when comparing cross-institutional practices, the reasons for 

which were not discussed.54 

 

The counter argument to a single-therapeutic window for all busulfan dosing is that the 

intensity of myeloablative conditioning required may vary with the underlying condition, 

and that the combination of cytotoxics may influence the level of exposure to busulfan 

required for successful outcome. But even for each condition, the targets ranges can vary 

significantly, which has the potential to have a direct impact on patient outcomes. The 

choice of target ranges is often institution-dependent and often based on small studies or 

institution experience. Figure 1-5 developed by McCune et al. describes the heterogeneity 

in busulfan target AUC ranges used at 51 institutions in a study on the most common 

indications in 729 children and young adult transplant patients across the United States of 

America.58 Each shaded square indicates the number of children treated with busulfan at a 
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particular target range in acute myeloid leukaemia and myelodysplastic syndrome. The 

targets used by several institutions are overlapping between 900 μMol.min – 1500 

μMol.min, with large numbers of patients targeted between 900 μMol.min – 1300 

μMol.min. Beyond the larger squares, there are many smaller squares indicating tighter 

target ranges for smaller numbers of patients. Analysis of other malignant and non-

malignant conditions studied in the same investigation revealed a similar discrepancy in 

target busulfan therapy amongst all participating institutions in the United states. 

 

 

Figure 1-5 The target AUC (µM.min) plotted against the number of children transplanted 

as shaded rectangles for each of the 51 institutions in the United States of America for 

acute myeloid leukaemia or myelodysplastic syndrome (AML/MDS).58 
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1.4.5 Dosing 

1.4.5.1 The First Dose of Busulfan 

Busulfan dosing for myeloablative conditioning regimens still finds its roots in 16 mg/kg, 

originally identified as the maximum tolerated dose by Santos at al. in 1983.35 Population 

pharmacokinetic modeling has informed the dosing beyond the standard 16 mg/kg total 

dose, with approved dosing regimens developed for the FDA and EMA using one-

compartment models70 75 and more recent Bayesian-guided dose calculators using a two- 

compartment model.62 The change in doses over young age are aimed at allowing for the 

age-related changes in CL (mL/min/kg) as described in section 1.4.1.2. While these dosing 

nomograms were developed to overcome inter-individual variability, there is still 

substantial variation that is not accounted for, and PK- guided dose adjustments are a 

valuable intervention to bring plasma concentrations within the therapeutic window. 

Busulfan dosing is also modified in special groups such as obese patients where adjusted 

ideal body weight is often used.121 122  

 

In terms of AUC, single daily dose regimens (4mg/kg or 150 mg/m2) were not different to 

four times a day dosing of either 1mg/kg (cumulative dose of 16mg/kg) or 37.5 mg/m2 

(cumulative dose of 600 mg/m2)123. A study of once daily IV busulfan showed that large 

inter-individual PK variability continued to be an issue in children124 and a novel dosing 

strategy was introduced whereby the dose was halved and administered as separate 

doses over two days. Exposure (AUC) was assessed on day one, followed by the second 

instalment of the halved-dose and dose-adjustments could be performed for doses two to 

four,  thereby avoiding potentially high exposures from the first full dose.125 
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Other strategies to better target busulfan given as daily dosing include the administration 

of a test dose to estimate individual PK parameters, prior to dose calculation 126. The test 

dose (e.g. 0.8mg/kg) has been used to effectively target a busulfan AUC range as narrow 

as 4800- 5200 µM.min (19.7 - 21.3 mg.h/L) per day of busulfan administration in adult 

patients.127 However, age-dependent pharmacokinetic variability is still a persisting issue 

with test dosing in young children (< 4 years), with six of 18 patients still falling outside the 

target range (3200 – 4800 µM.min (13.1 – 19.7 mg.h/L) for single dose daily IV busulfan 

.128 

 

Bayesian and PK-guided first-dose calculators have been successfully implemented for 

accurate dosing of busulfan.54 62 103 129 With the effort invested in understanding the PK 

variability of busulfan using pop-PK analyses, and the identification of various contributing 

factors to inter-individual PK variability, PK-guided calculators should in principle solve the 

issue of accurate dosing to the target range. These calculators are commercially 

available,129 130 but not used consistently amongst all institutions, with many recent 

pharmacokinetic studies still using body-size as the basis for calculation of first dose.131 , 

as is recommended in the product information.  

 

1.5 BUSULFAN THERAPEUTIC DRUG MONITORING  

The high PK variability, exposure to outcome relationship, and narrow therapeutic window 

makes busulfan a desirable candidate for therapeutic drug monitoring. Overall, PK 

monitoring practices have helped to reduce inter-individual PK variability and bring 

busulfan exposure within target range for patients to optimise transplant outcome and 

avoid toxicity. Several methods, from extensive plasma sampling, to limited sampling to 
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dried blood spot sampling techniques132 have been investigated for optimal therapeutic 

drug monitoring. 

 

The measurement of several busulfan concentrations over time can be used to estimate 

the AUC (through various variations of the trapezoidal-rule). A reliable estimation of AUC 

can require extensive sampling (from as few as four, or up to nine plasma samples per 

patient post infusion). Although laborious, time-consuming and expensive, more extensive 

sampling permits reliable estimation of AUC without the need for prior assumptions or 

knowledge of any patient-relevant factors apart from dose administered. The number of 

samples required and the duration of sampling post infusion can vary, depending on 

dosing interval and mode of administration. For instance, sampling up to six hours after 

start of infusion is adequate for a Q6H dosing regimen of 16 doses. Single dose daily 

regimens, however, require more extensive sampling up to eleven hours from the start of 

infusion,102 despite a log-linear decline that should allow for extrapolation from four 

concentration time points. Extensive sampling with direct estimation of AUC is still one of 

the most commonly-used methods for targeting busulfan exposures in several 

institutions.54  

 

Population PK analyses can be used to develop models that utilise rich sampled data from 

a population, and combine patient specific factors such as genetic traits, body size, and 

age group, to estimate individual PK parameters.133 Institutions such as the American 

Society for BMT (ASBMT) recommend pop-PK guided dosing of busulfan.90 Models can be 

used to predict pharmacokinetic behaviour of the drug in a patient and therefore inform 

limited sampling techniques, which require fewer blood samples (one to two as opposed to 

four or more) at selected time points to estimate exposure.129 Limited- sampling processes, 
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however have not been universally adopted clinically, partially due to the high inter-

individual PK variability in busulfan at any given time.90  

 

Bayesian models can be implemented for both extensive- and limited-sampling strategies 

where pharmacokinetic information from patients can be pooled to better predict the PK 

parameters in future patients.62 134 Several commercially-available busulfan therapeutic 

drug monitoring applications work on Bayesian principles and have successfully 

demonstrated effective AUC control.54 Therapeutic drug monitoring performed on the first 

day of busulfan dosing can help to identify an appropriate dose to achieve the target 

required. Studies on test doses have indicated that a single therapeutic drug monitoring 

occasion may not suffice and follow-up PK analysis is necessary to ensure the target has 

in fact been achieved.135 Variability in practice also persists, as institutions perform 

therapeutic drug-monitoring on a schedule between one day and all days of busulfan 

therapy. Given the high inter-individual PK variability, the estimation of cumulative AUC 

(cAUC) may vary significantly depending on the number of occasions of therapeutic drug 

monitoring. The accuracy and precision of the AUC calculated has clear implications for 

the clinical decisions that need to be made for busulfan therapy. With recent dosing and 

monitoring recommendations suggesting narrower and significantly higher target ranges 

(78 mg.h/L – 101 mg.h/L as opposed to 56 mg.h/L – 86 mg.h/L), the scope for accepting 

variability is substantially reduced and the risk of toxicity increased.  

 

1.6 SUMMARY  

The most recent pop-PK investigations of busulfan combine data from multiple 

conditioning regimens over several diagnoses. As guidelines for myeloablative 

conditioning using busulfan vary in the literature, individual physicians need to decide the 
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appropriate dose and exposure target in the context of the conditioning regimen. The 

resulting plasma concentrations in the individual are subject to variability depending on 

patient-specific factors and transplant outcome may be influenced by busulfan exposure, 

amongst other aspects beyond the scope of this review. The question of whether a single 

target range is appropriate for all patients continues to be a matter of debate.136 137 The 

implementation of Bayesian methods to estimate first dose brings a sound theoretical 

rationale, but is in conflict with institutionalised practices resisting change. Therapeutic 

drug monitoring has found a place in therapy, but interpatient variability and toxicity 

persist, with some evidence for a greater risk of toxicity in patients where pharmacokinetic 

interventions are implemented.138 Clearly, there is still more to be done and more 

proactive strategies that need implementation beyond current practices.  

 

1.7 STUDY AIMS 

While this thesis may not be able to resolve the complete gamut of issues identified above, 

the data and analysis presented address a wide range of concerns associated with 

busulfan therapy. This thesis presents the current practices of busulfan therapeutic drug 

monitoring as observed in hospitals participating in the multi-institutional retrospective 

analysis of Australian transplant patients across New South Wales and Victoria and aims 

to address the most pertinent issues related to busulfan therapy. Currently, research is 

lacking on the impact of various concomitant medications on busulfan clearance. Clinical 

practice informed by theoretical drug-drug interactions or anecdotal case studies, for 

example with paracetamol or metronidazole, also need to be analysed further. The 

retrospective nature of the analysis should also provide an opportunity to observe and 

assess any changes in practice intended to optimise therapy at the various institutions. 

Furthermore, recent analysis of GSTA1 polymorphisms has shown promise in 
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characterising variability in busulfan clearance in paediatrics. However, no similar study 

exists to date for the adult population.   

 

The impact of the pharmacokinetic interventions on toxicity will also be of interest. Given 

the unpredictable nature of SOS incidence post busulfan use (with or without therapeutic 

drug monitoring), and a requirement for timely access to therapy, there is an unmet need 

to identify patient predisposition for SOS beyond the pharmacokinetic cut-off for over-

exposure. Therefore, through a variety of experimental techniques this thesis aims to: 

1. Characterise pharmacokinetic variability in the study population using population 

pharmacokinetic analysis 

2. Analyse the efficacy of current TDM practices in trying to achieve the desired AUC 

targets for busulfan.  

3. Characterise the influence of various transplant-related factors (including 

concomitant medications) on PK variability.  

4. Explore the incidence of SOS in a study population of patients receiving busulfan, 

as a primary outcome of the TDM practices  

5. Identify predictors of SOS and develop a model to predict SOS incidence post 

commencement of busulfan therapy, using non- semi- and parametric time-to-

event analyses 
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Chapter 2.                                          
THE PATIENTS- A DETAILED ANALYSIS OF THE PATIENT 

POPULATION RECRUITED FOR ANALYSIS 
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2.1 INTRODUCTION 

Chapter One described the evolution of busulfan use in BMTs and HSCTs, and described 

pertinent problems of present-day busulfan therapy. Despite the associated challenges in 

overcoming pharmacokinetic variability and adverse effects, busulfan has become an 

integral part of the transplantation process. The research conducted in this thesis aims to 

characterise the present-day situation of busulfan therapy with regards to the role of 

therapeutic drug monitoring in overcoming pharmacokinetic variability, through an 

extensive retrospective analysis of transplant patients in the previous decade. This chapter 

introduces the study, the recruited population and also the types of analyses performed in 

subsequent chapters to investigate the pharmacokinetic, pharmacogenetic and 

pharmacodynamic aspects of busulfan therapy. 

 

2.2 THE STUDY 

2.2.1 Protocol 

The data for this retrospective analysis was collated from three clinical trials over the study 

periods of 2006-2010, 2010-2015 and 2015 to 2020 (the last still ongoing). All studies 

labelled “PK BMT” were intended for the analysis of several common chemotherapeutic 

drugs routinely used in transplants under chief investigator Dr Christa Nath and principal 

investigators Professor Peter Shaw, Professor Andrew Grigg, and Associate Professor 

David Ritchie. This study was planned, performed and evaluated in compliance with GCP-

Guidelines and local regulatory and ethical requirements. The basis of this study is the 

Declaration of Helsinki, 1964 and subsequent amendments. More details can be found on 

www.australianclinicaltrials.gov.au under the trial ID ACTRN12612000544875.  

 

http://www.australianclinicaltrials.gov.au/
https://www.australianclinicaltrials.gov.au/anzctr/trial/ACTRN12612000544875
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The research described in this thesis focused on a sub-population of the PK BMT study 

from seven institutions (Austin Health (AUS), Children’s Hospital at Westmead (CHW), 

Geelong Hospital (GEE), Peter MacCallum Cancer Centre (PMCC), Royal Melbourne 

Hospital (RMH), Royal Prince Alfred Hospital (RPA) and Westmead Hospital (WMD)), 

comprised of patients who received busulfan prior to transplant. Data were collected on 

busulfan concentrations in patient plasma over time analysed for therapeutic drug 

monitoring, along with transplant-related information such as HLA-matching, autologous or 

allogeneic transplant, type of cells and source of stem cells or marrow, and also 

information on concomitant medications during busulfan therapy. Details of toxicity and 

transplant outcome were collected from patient medical records at each institution. 

Information regarding the onset of symptoms leading up to the diagnosis of sinusoidal 

obstruction syndrome were also collected.  

 

2.2.2 Dosing and Sample Collection 

The first dose of busulfan was calculated according to body-size, either bodyweight or 

BSA depending on protocol. In adult patients where actual bodyweight (ABW) was 20% 

greater than ideal body weight (IBW), patients were dosed according to Adjusted Ideal 

Bodyweight (AIBW)122 calculated as: 

 

Equation 2-1  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐼𝐼𝐼𝐼𝐼𝐼 +  0.25 × (𝐴𝐴𝐴𝐴𝐴𝐴 −  𝐼𝐼𝐼𝐼𝐼𝐼)  
 

Institutions collected PK blood and transported them to Dr Nath for therapeutic drug 

monitoring. To make clinically-relevant decisions in time for the patients, a dosing regimen 

of two divided doses for Day 1 was implemented. Blood samples from the first half-dose 

were sent to CHW for therapeutic drug monitoring (TDM) and analysed by the following 
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day (Day 2) when the patient was administered the second half of the Day 1 dose, so 

subsequent doses could be adjusted from Day 3. According to the study, all participants 

required monitoring on Day 1 and a follow up TDM was performed for a full dose 

administered on Days 3, 4 or 5 to ensure that the targeted AUC was achieved.  From 

2012, paediatric patients were monitored on every day of busulfan administration  

 

Busulfan infusion rate was maintained at 3.2 mg/kg over 3 hours. Samples were collected 

in lithium-heparinised tubes from the opposite lumen to where busulfan was administered, 

at the end of infusion and over the following time points and windows specified: 

T = 0 hours  

T = 1 – 2 hours  

T = 3 – 4 hours 

T = 4 – 8 hours 

 

Additional samples at T = 11 hours and pre-transplant samples were also collected for 

paediatric patients after 2012. Busulfan concentrations were analysed immediately upon 

receipt and exposure (estimated as AUC0-inf (µM.min)) was reported to clinicians by Dr 

Nath. Doses were adjusted assuming linear pharmacokinetics using the following 

equation: 

 

Equation 2-2         

 𝑁𝑁𝑁𝑁𝑁𝑁 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑚𝑚𝑚𝑚) =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑚𝑚𝑚𝑚) × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴 (µ𝑀𝑀.𝑚𝑚𝑚𝑚𝑚𝑚)
𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (µ𝑀𝑀.𝑚𝑚𝑚𝑚𝑚𝑚) 
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As busulfan is unstable at room temperature, care was taken to avoid sample degradation 

by immediately placing the samples on ice and storing them at -40 ºC until transportation. 

Remaining plasma was curated and stored at -80 ºC for further research as approved for 

the study.  

 

In a sub-section of patients, blood samples were collected in EDTA tubes prior to the 

commencement of busulfan therapy for genotyping analysis. DNA was extracted from 

fresh blood samples using a MagNA Pure™ Compact Instrument at CHW whenever 

possible or at first thaw upon receipt from other institutions.   

 

2.2.3 Therapeutic Drug Monitoring 

Busulfan concentration was measured in plasma samples by Dr Nath at CHW using gas-

chromatography with electron capture detection (GC-ECD).123 The method has been 

validated and approved by the National Association of Testing Authorities, Australia. All 

plasma concentrations used for busulfan pharmacokinetic analysis in this thesis were 

generated by Dr Nath. All data on plasma concentrations of busulfan for every occasion of 

busulfan TDM were stored on the hospital network, compliant with ethical approval.  

 

Busulfan exposure was estimated as area under the curve (AUC) using the linear 

trapezoidal rule in the pharmacokinetic software Kinetica® (Version 4.0). Dose 

adjustments were recommended assuming linear pharmacokinetics, but left at the 

discretion of the physician.   
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Busulfan AUC was calculated as µM.min, although AUC values calculated with units of 

mg.h/L have also been described, particularly in the case of cAUC. For the purposes of 

this thesis, both AUC and cAUC have been reported in mg.h/L, unless reporting guidelines 

specified units of µM.min. Conversion from µM.min to mg.h/L was performed using the 

following equation: 

 

Equation 2-3           

  𝐴𝐴𝐴𝐴𝐴𝐴 (𝑚𝑚𝑚𝑚 𝐿𝐿⁄ .ℎ) =  𝐴𝐴𝐴𝐴𝐴𝐴 (µ𝑀𝑀.𝑚𝑚𝑚𝑚𝑚𝑚) × 246.31 (𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚⁄ )
60 (𝑚𝑚𝑚𝑚𝑚𝑚 ) × 1000

  

2.3 THE PATIENTS 

2.3.1 The Population Demographics 

The dataset comprised of 344 conditioning episodes of busulfan in 337 individual patients 

aged 44 days to 70.1 years, who received a transplant between February 2006 to June 

2017. Of these, three patients did not progress to transplant due to complications, and four 

patients received a repeat transplant with busulfan-based conditioning following disease 

relapse. 

 

A histogram of post-natal age in the study population revealed a non-normal distribution, 

with a large proportion of infants and children under four years of age.  Median age was 

30.2 years. Post menstrual age (PMA) has been suggested to be a useful measure of 

enzymatic maturation in patients,62 but was not recorded for patients in this study.  
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Figure 2-1 Frequency distribution of patients over the age range, where bins were 

separated per year of age. 

 

Patients were further divided for categorical analysis into four age bands: infants and 

toddlers, children, adolescents and young adults, and adults. A geriatric category was not 

possible due to the small number of patients over the age of sixty-five. Table 2-1 

summarises the number of patients in each age category for the study population.  

 

Table 2-1 Number of patients categorised into infants or toddlers, children, adolescents 

and young adults and adults.   

Age Category n 

Infants and toddlers (1 month to < 2 years) 38 

Children (2 years to <10 years) 68 

Adolescent and Young Adults (AYA, 10 years to <25 years) 50 

Adults (25 years and above) 188 
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Patient weight and height were recorded on the day of hospital admission, and BSA was 

calculated using the Du Bois Formula. Ideal bodyweight (IBW) and AIBW were calculated 

separately for all patients over 152 cm. Table 2-2 summarises patient height, weight, BSA 

and AIBW for all patients.  

 

Table 2-2 Median and range patient characteristics in the study population.   

Characteristics  Median (Range) 

Age (years) 30.2 (0.12 – 70.1) 

Weight (kg) 63.9 (2.9 – 150) 

Height (cm) 163 (48 – 197) 

BSA (m2) 1.96 (0.2 – 2.53) 

BMI (kg/m2) 2.91 (12.6 – 50.1) 

Adjusted Ideal Body weight (kg) 

(Used to adjust dose in 47 patients) 

73 (2.9 – 127.5) 

 

 

2.3.2 Transplant-Related Information  

Busulfan was administered for 263 allogeneic and 78 autologous transplant occasions. 

One patient received a syngeneic transplant. Within the 263 allogeneic transplants, 160 

were HLA-matched and 90 were HLA-mismatched. Information on HLA-matching was not 

available for 13 patients. A total of 35 patients received cord blood transplants (single or 

multiple), 95 patients received stem cells from a related donor and 125 from single or 

multiple, unrelated donors. 
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2.3.3 The Diagnoses 

There was marked heterogeneity in the diagnoses of the study population, with over 50 

different cancer, immunological and haematological diagnoses. Acute Myeloid Leukaemia 

(AML) was the largest subgroup of 115 patients, followed by the grouped Non-Hodgkin’s 

Lymphomas (NHL), consisting of 52 patients.  

 

Table 2-3 Summary of patients transplanted for various types of cancer, with median age 

and range. 

Cancer Diagnoses n Median Age (range) 

Acute Myeloid Leukaemia 115 36.8 (1.4 – 70.1) 

Non-Hodgkin's Lymphomas 52 54.4 (1.7 – 66.9) 

Myelodysplastic Syndrome 25 41.4 (1.4 – 64.7) 

Acute Lymphocytic Leukaemia 21 10.9 (0.6 – 64.7) 

Neuroblastoma 19 3.2 (1.4 – 8.3) 

Other cancers 14 30.2 (5.1 – 58.4) 

Multiple Myeloma 11 47.2 (30 – 61.8) 

Hodgkin's Lymphoma 9 26.4 (18.7 – 36.6) 

Myelofibrosis 9 47.2 (28.5 – 60.3) 

Chronic Myeloid Leukaemia 7 47 (8.7 – 60.1) 

Juvenile Myelomonocytic Leukaemia 6 2.2 (1.2 – 5.4) 

 

Non-malignant diagnoses accounted for 54 patients, 51 of which were children. Table 2-4 

describes the demographics of all the patients transplanted for non-malignant diagnosis. 

All but three patients from this cohort were paediatric patients. The three adult patients 

were treated for chronic granulomatous disease, pyruvate kinase deficiency and 
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adrenoleukodystrophy. There was large heterogeneity in the non-malignant conditions, 

with the largest category of patients combined as “other”. The other category consisted of 

adreno- and metachromatic leukodystrophy (n = 4 and n = 2, respectively), severe 

combined immune deficiency (n = 4), Omenn syndrome (n = 3), aspartylglucosaminuria (n 

= 3), severe congenital neutropaenia (n =2) and single cases of other haematological and 

immune conditions. No patients in the study population were treated for β-thalassaemia. 

 

Table 2-4 Summary of patients transplanted for various types of non- cancer related 

illnesses, with median age and range. 

Non-Cancer Diagnoses n Median Age (range) 

Mucopolysaccharidoses 10 1.5 (1.1 – 4.1) 

Wiskott-Aldrich Syndrome 7 0.8 (0.3 – 9) 

Chronic Granulomatous Disease 5 14.6 (1.4 – 28) 

Haemophagocytic Lymphohistocytosis 5 2.4 (1.7 – 13.4) 

Other 27 4.7 (0.1 – 4.7) 

 

 

2.3.4 Conditioning Regimens  

Eight principal conditioning regimens were used prior to transplantations. Regimens were 

also separated according to the sequence of chemotherapeutic agents administered, due 

to documented differences in efficacy and toxicity profiles.139 The administration of other 

cytotoxic medicines beyond the core conditioning regimen, such as clofarabine, 

gemcitabine and thiotepa are also notated for the regimens.  
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Table 2-5 Number of patients per conditioning regimen used prior to transplants.  

Conditioning Regimen n  

Bu-Cy 58 

Bu-Mel 74 

Cy-Bu 42 

Flu-Bu§ 80 

Concomitant Flu-Bu-Alkylating agent (either Cy/Mel or 

Thiotepaˠ) 

43 

Complete Flu followed by Bu 17 

Mel-Bu 11 

RIC Flu-Bu× 19 

three patients had concomitant administration of etoposide, one patient had concomitant 

administration of gemcitabine, §concomitant administration of thiotepa in five patients and 

clofarabine in two other patients, ˠone patient was administered concomitant clofarabine, 

×five patients received concomitant thiotepa.  

 

The doses of other chemotherapeutics in the conditioning regimen depended on the type 

of conditioning regimen used. For a fludarabine and busulfan regimen, patients received 

1.6 mg/kg of fludarabine, where as in Flu-Bu-alkylating agent regimens a lower dose of 30 

mg/m2 was used. Cyclophosphamide was dosed at 50 mg/kg and melphalan doses ranged 

from 70 mg/m2 in the Flu-Bu-Mel regimens to 140 mg/m2 in the Mel-Bu or Bu-Mel 

regimens. Protocols have not yet been implemented for individualised fludarabine, 

melphalan or cyclophosphamide doses for transplantation in any of the participating 

institutions.  
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2.3.5 Toxicity Prophylaxis  

All patients were administered either clobazam (0.25mg/kg/day) or clonazepam (0.5 mg 

twice daily) during busulfan therapy for seizure prophylaxis. Mesna (60 mg/kg/day) was 

co-administered for all cyclophosphamide-containing conditioning regimens to reduce the 

risk of haemorrhagic cystitis. Antifungal prophylaxis was provided using fluconazole (8 

mg/kg) and also liposomal amphotericin (Ambisome, 1 mg/kg/day). GvHD prophylaxis was 

provided using methotrexate (dose dependent on diagnosis and graft source) with folic 

acid, mycophenolate mofetil (15 mg/kg) or cyclosporin (trough level monitoring at 300 ± 50 

ng/mL).  

Forty-nine patients from RMH, 40 from WMD, and all patients from CHW were treated with 

ursodeoxycholic acid (12 mg/kg/day) during the transplantation process for SOS 

prophylaxis. Royal Prince Alfred hospital were prescribed enoxaparin as SOS prophylaxis 

between 2010- 2014. This practice has ceased since and no other toxicity prophylaxis has 

been added to the transplant regimen. A small cohort of 14 patients at CHW received 

defibrotide (100 μg/kg/day), along with ursodeoxycholic acid as SOS prophylaxis.  

 

2.3.6 The Institutions 

Patients were transplanted at seven institutions across New South Wales and Victoria. 

Treatment at each institution varied depending on diagnosis, conditioning regimen and 

type of transplant. All patients from AUS and PMCC received autologous transplants for 

various types of non-Hodgkin’s Lymphomas. Fifty-one patients from CHW and only three 

adult patients from RPA and RMH were transplanted for non-cancer related diagnoses.  

 

All patients were administered once daily doses of busulfan, except for a handful of 

paediatric patients from CHW who received  a dosing regimen of Q6H busulfan 
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adminisrered over 16 doses. The choice of conditioning regimen also varied across the 

transplant centres. Institutions AUS and PMCC consistently used the Bu-Mel conditioning 

regimen, except for one PMCC patient who received Bu-Cy. All patients at RMH receiving 

autologous transplants were also conditioned with Bu-Mel, and allogeneic patients mainly 

received Bu-Cy with or without thymoglobulin; two patients received Flu-Bu with 

thymoglobulin. All patients at WMD underwent allogeneic transplantation using Cy-Bu with 

or without thymoglobulin, except for three patients who received a Flu-Bu reduced-

intensity conditioning regimen. Patients at CHW received over 27 different busulfan-

containing protocols for autologous and allogeneic transplantation. 

 

2.3.6.1 Physician Discretionary Factors 
Some trends in clinician practices are worth noting here prior to analysis. The 

implementation of AIBW-calculated doses was highest in AUS and RMH (62% and 33%, 

respectively).  While doses for all adult institutions were aimed to achieve a daily target of 

5000 µM.min (20.5 mg.h/L), there was no consensus amongst institutions of treating the 

target as a maximal or minimal exposure. Busulfan doses were generally escalated in AUS 

to achieve a target of 20.5 mg.h/L or higher, while RMH and PMCC consistently decreased 

or left the doses unchanged, so as to not surpass the daily 20.5 mg.h/L target. 

Preferences of conditioning regimens and dose modifications on busulfan are summarised 

in Table 2-6. 

As busulfan pharmacokinetic variability is known to be highest in children, a change in 

TDM practice was also observed during the study aimed at better achieving target cAUCs. 

After 2012, patients received daily TDM for busulfan doses in CHW allowing more 

opportunities to achieve the target cAUC through dose changes. Furthermore, clinician 

reported target cAUCs were also observed to increase (cAUC +5 mg.h/L) in the children 

population for certain regimens.  
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Table 2-6 Patient characteristics from each institution participating in the PK BMT study. 

Dose modifications were calculated as a net mg/kg alteration in busulfan dosing for each 

transplant occasion. 

Hospital 
Number 

of  
Patients 

Median Age 
(Years, 
Range) 

Median 
Weight (Kg, 

Range) 

Conditioning 
Regimens 

Number of Dose 
Modifications 

(Inc /Dec / 
Unadjusted) 

Austin Health 

(AUS) 

29 54 

(19 – 67) 

85 

(49 – 129) 

Bu-Mel 20 / 6 / 3 

Children’s 

Hospital 

Westmead 

(CHW) 

133 4  

(0.1 – 18) 

16 

(3 – 109) 

Bu-Cy, 

Bu-Mel, 

Flu-Bu, 

Flu-Bu-

Alkylating 

agent, 

Consecutive 

Flu-Bu, 

Mel-Bu, 

RIC Flu-Bu 

26 / 26 / 86 

Geelong Hospital 

(GEE) 

2 50 

(48 – 51) 

99 

(82 – 116) 

Bu-Mel 0 / 0 / 2 

Peter MacCallum 

Cancer Centre 

(PMCC) 

12 55  

(20 – 70) 

82 

(57 – 110) 

Bu-Cy, 

Bu/ Mel 

 

0 / 5/ 7 

Royal Melbourne 

Hospital (RMH) 

54 43  

(18 – 65) 

76 

(50 – 116) 

Bu-Cy, 

Bu-Mel, 

Flu-Bu 

2 / 12 / 40 

Royal Prince 

Alfred Hospital 

(RPA) 

62 49  

(21 – 65) 

74 

(40 – 122) 

Bu-Cy, 

Bu-Mel, 

Flu-Bu, 

RIC Flu-Bu 

19 / 9 / 36 

Westmead 

Hospital (WMD) 

45 40  

(20 – 64) 

75 

(40 – 150) 

Cy/ Bu, 

Flu-Bu, 

RIC Flu-Bu 

4 / 9 / 32 
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Busulfan exposure targeting varied amongst institutions. All adult institutions principally 

targeted 20.5 mg.h/L for each full day of busulfan administered. Exposure at RMH was 

targeted to 22.6 mg.h/L for Flu-Bu based regimens. Also at RMH, in patients with 

extremely high or low Day 1 AUCs, a cAUC target of 82 mg.h/L or 90 mg.h/L for Flu-Bu 

was prescribed. All institutions aimed to avoid AUCs greater than 24 mg.h/L per dose. 

Exposure targeting was based on a combination of published targets and clinical 

impressions, and varied substantially between diagnoses and conditioning at CHW as 

summarised in Table 2-7.    

 

Table 2-7 Busulfan based conditioning regimen used at the Children’s Hospital at 

Westmead, corresponding to diagnosis and target AUC 

Protocol Diagnosis Targets 

Thiotepa/Flu-Bu140 ALL 70mg.h/L +/- 5 

Flu-Bu/Clofarabine ALL/NHL 98.5 mg.h/L 

Flu-Bu AML 85 mg.h/L +/- 5 

Flu-Bu-Mel AML 75 mg.h/L +/- 5 

Bu-Flu-Cy Fanconi Anaemia (2 bd for 2 days) Nil Target 

Flu-Bu CGD 55-60 mg.h/L 

Flu-Bu Gen Non-Malignant 80 mg.h/L +/- 5 

Flu-Bu-Thymo MPS 80 mg.h/L +/- 5 

Flu-Bu-Cy Non-Malignant HR 80 mg.h/L +/- 5 
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2.3.7 Targets for TDM 

Guidelines and targets for busulfan concentrations at CHW were principally between 55 

mg.h/L – 100 mg.h/L for all patients. The analysis of busulfan targets could not be simply 

divided according to the various conditioning regimens in children, as targets were revised 

for various conditions over the ten-year study period. Other studies such as Bartelink et al. 

have used a standard target of 56 mg.h/L  – 86 mg.h/L and provided a uniform target 

recommendation of 78 mg.h/L  – 101 mg.h/L across all busulfan containing regimens.141 

Most patients in the study population were targeted for a cAUC between 55 mg.h/L – 90 

mg.h/L, with two patients treated with the Flu-Bu/Clo conditioning regimen, which requires 

a higher (98.5 mg/L) cut-off. Therefore, the published target range described as the 

“historical target” by Bartelink et al. was used as the uniform target range for the rest of 

this thesis. Further discussion on the target cAUC is provided in Chapter three where the 

pharmacokinetic variability in busulfan has been described in detail using population 

pharmacokinetic analysis. 
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Chapter 3.                
CHARACTERISING PHARMACOKINETIC VARIABILITY IN 

THE BUSULFAN STUDY POPULATION USING 
POPULATION-PHARMACOKINETIC ANALYSIS 
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3.1 INTRODUCTION 

Busulfan therapy is associated with large inter-individual and inter-occasion 

pharmacokinetic variability (IIV and IOV, respectively) as explained in Chapter One. While 

the exact causes of this pharmacokinetic variability are unclear, several contributing 

factors such as body size, immature metabolic function in infants and concomitant 

administration of medications such as paracetamol and metronidazole have been 

investigated in patients receiving high-dose busulfan. This chapter explores the observed 

variability in busulfan pharmacokinetics using a population approach, and the contributions 

of various other transplant-related factors are examined using a post hoc statistical 

analysis.  

 

3.1.1 Rationale 

Chapter 2 described in detail the demographic composition of the study population. In 

keeping with the broad indication for transplant, the large number of patients, participating 

across different institutions, varied in age (40 days to 70 years), weight (2.1 – 150 kg), 

diagnoses and conditioning regimen used prior to transplantation. All patients received a 

variety of essential medications during their transplant, such as antibiotics, 

chemoprotective agents, chemotherapeutics and therapies for other comorbidities, guided 

by institutional protocols. The nature of the transplant itself (autologous, allogeneic and 

type of cells transplanted) was also tailored to the diagnosis, protocol and patient health. 

Furthermore, there were also marked differences in practices between the participating 

institutions for busulfan dosing and therapeutic drug monitoring. The possibility of any one 

or more of the aforementioned factors contributing to the large pharmacokinetic variability 

observed in busulfan could not be ruled out. Population pharmacokinetic (pop-PK) analysis 

can be applied to quantify the contribution of each factor and to characterise the variability 
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observed following administration with the use following administration of high dose 

busulfan.  

 

3.1.2 Population Pharmacokinetic Modeling 

Pharmacokinetic and pharmacodynamic (PK/PD) models describe the relationship 

between drug-concentration and drug effect. Given a population of patients, pop-PK 

models can be used to estimate PK parameters such as clearance (CL) and volume of 

distribution (V) in both the population, and also the individual patient.    .142 Population 

pharmacokinetic models are now routinely implemented in the design and monitoring of 

dosage regimens in drugs with variable pharmacokinetics or for drugs with a narrow 

therapeutic range. Pop-PK models can also be extended to simulate special patient 

groups where clinical trials are difficult or ethically challenging, namely paediatric and 

geriatric patients, or patients with renal or hepatic impairment. In recent years PK/PD 

models have become a regulatory requirement in the drug approval process. As models 

are generalized mathematical concepts, they are useful only if they appropriately fit the 

data.  

 

3.1.3 Population Pharmacokinetic Analysis of the Busulfan Study Population 

Busulfan pharmacokinetic models have been discussed extensively in the scientific 

literature, using either one- or two-compartment structural models.61-74 143 There is a 

continued theme of incorporating IIV and IOV to describe the PK variability, and also the 

inclusion of covariates relating to body-size and maturation on key PK parameters.  The 

aim of building a pop-PK model for the current busulfan study population was to best 

describe the pharmacokinetic data on hand and to quantify the contribution of various 
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demographic and transplant-related factors to the observed variability in busulfan 

pharmacokinetics.  

 

Given the variability in practice across the institutions, there were limited numbers of 

patients treated with medications of interest (eg. paracetamol and metronidazole) that are 

thought to affect PK variability in busulfan. While understanding the contribution of drugs to 

PK variability is of great interest in busulfan pharmacology, the incorporation of such low-

powered covariates (small number of patients) would result in selection bias and harm the 

predictive performance of the model,144 and therefore the impact of concomitant 

medications was tested post hoc by using robust parameter estimates from the model.  

 

3.2 METHODS 

3.2.1 Model Development 

A pop-PK model was developed using nonlinear mixed effects (NLME) modeling. First-

order conditional estimation method with interaction was used throughout the modeling 

process. Both, one- and two-compartmental structural models were analysed for best fit to 

the data. Model selection was based on diagnostic plots, decreases in the objective 

function value (OFV) of more than 3.84 (P< 0.05) for every covariate added and residual 

standard errors. The model was evaluated for precision using a bootstrap of 1000 

simulated datasets and the 5th and 95th percentile confidence intervals were compared with 

the final model.145 A visual predictive check (VPC) was performed using 1000 simulated 

datasets.146 The area under the curve for every dosing occasion was calculated as dose 

divided by estimated individual clearance. Cumulative AUC (cAUC) was calculated as the 

sum of AUCs from every dose of busulfan for a patient for the conditioning episode.  
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3.2.1.1 Pharmacokinetic Tools and Software 

Population pharmacokinetic analysis was performed using the nonlinear mixed-effects 

modeling program NONMEM version 7.3 (ICON developmental Solutions, Ellicott City, 

MD) with Perl-Speaks-NONMEM modules (version 2.9.2)145 on a Pirana workbench 

(version 2.9.2).147 Diagnostic plots and post hoc statistical analysis were performed on the 

statistical software R (version 3.5.0) on the R Studio platform (version 1.0.136) and 

GraphPad Prism (version 7.02). 

 

3.2.1.2 Base Model Development 

Plasma concentrations were log-transformed to allow greater weighting on values close to 

the lower limit of quantitation, thereby reducing the variance otherwise observed in 

untransformed data.148 A one-compartment base model where zero-order absorption was 

used to describe the continuous intravenous infusion, was applied to the pharmacokinetic 

data.  

 

Non-linear mixed-effects (NLME) models allow for the quantitation of variability using a 

combination of fixed-effects (denoted as θ, measurable sources of variability identified 

through a covariate analysis) and random-effects for unmeasurable sources of variability. 

An individual prediction of pharmacokinetic parameters therefore is a combination of fixed 

and random effects, where the random effect (denoted as η) is normally distributed over 

the population and the distribution is noted as ω.142  
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An additional component of random effects is a model to describe the residual unexplained 

variability (RUV), beyond the scope of the measurable and unmeasurable known sources 

of variability. The RUV, defined by ε quantifies the difference between what the model 

predicts in an individual compared to what is observed. The RUV in NONMEM is also 

assumed to be normally distributed and the variance is denoted as σ.142 

 

For the purpose of this analysis, unexplained variability was tested for differences in CL 

and V between patients as inter-individual variability (IIV), amongst the various occasions 

of busulfan dosing in a single individual (inter-occasion variability or IOV). Inter-individual 

variability (IIV) was applied to the two pharmacokinetic parameters, clearance (CL) and 

volume of distribution (V), and a block matrix was introduced between the IIV distributions. 

Inter-occasion variability was also tested on both parameters. A proportional model to 

describe RUV was selected for the log transformed data. 

 

3.2.2 Covariate Analysis 

Demographic and transplant-related information collected during the PK BMT study 

formed the basis of covariate analysis in the study population. The first step in including 

covariates on the base model was a thorough exploration of the covariates identified, their 

relationship with each other, and the parameters CL and V. The continuous covariates 

assessed were weight (WGT, kg), adjusted ideal body weight (AIBW, kg), DuBois-

calculated body surface area (BSA, m2), height (HGT, cm), age from date of birth to date 

of transplant (AGE, years (y)) and pre-transplant albumin (ALB, g/L). Categorical 

covariates included sex (SEX), institution of transplant (HOSP), transplant type, whether 

autologous or allogeneic (TXTYPE), and HLA matched and mismatched transplantations 

(HLAMATCH). Covariate values were plotted against pharmacokinetic parameters of the 
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model to identify covariate relationships. Step-wise covariate modeling (SCM) analysis 

was used to identify potential covariate relationships where selection criterion for the 

inclusion of a covariate was P< 0.05 (dOFV -3.84) and the backward elimination step 

required P < 0.01 (dOFV 6.6) for the retention of the covariate. Other covariates and 

functions for maturation were also tested separate to the SCM process. 

 

3.2.2.1 Maturation Function 

Two maturation models have been described for busulfan clearance in neonates and very 

young children. The first is a sigmoidal function that factors in post-menstrual age (PMA) 

and has been validated for use over the human life-span.62 The second model used age 

as  an exponential function to calculate a maturation factor specifically in neonates and 

children under 12 kg,69 who accounted for 12% (n = 40) of the study population. The 

maturation functions of both models were tested on the study population. Post-menstrual 

age in the sigmoidal maturation function was calculated as 40 weeks of gestation added to 

the age of all patients. As PMA was not recorded for patients in the study, both PMA 

(calculated by adding 40 weeks) and post-natal age were tested on the model to avoid the 

assumption of a consistent 40 week gestation on all patients.  

 

3.2.3 Determination of AUC 

The development of a population pharmacokinetic model allowed for the estimation of CL 

and V for all days of busulfan dosing. High-dose busulfan in myeloablative conditioning is 

given as a once-daily intravenous infusion for four full doses on consecutive days in all 

adult patients. Non-myeloablative and reduced intensity conditioning protocols used two 

days of busulfan dosing. To allow for timely TDM and to overcome logistical challenges of 

sending plasma samples to the Children’s Hospital at Westmead, most patients were 
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administered the first dose of busulfan in two half doses where samples after the first half 

dose would be sent for TDM and subsequent full doses could be adjusted based on the 

first day half dose, to achieve the target full daily dose AUC of less than 24 mg.h/L or a 

cumulative AUC (cAUC), in myeloablative transplants between 56 mg.h/L and 86 mg.h/L.  

Therefore, prior to any post hoc analysis, the AUCs for all patients were standardised to a 

full day 1 dose of busulfan, according to the following equation. The cAUC was calculated 

for the analysis as the sum of all estimated AUCs for every dose administered to a patient. 

 

Equation 3-1    Day 1 AUC = AUCTDM × n 

 

where AUCTDM is the AUC of the therapeutically-monitored dose and n is the number of 

doses into which the day 1 dose was fractionated, to account for the patients receiving the 

Day 1 dose either over two days, or as Q6H over four doses. 

 

3.2.4 Post Hoc Analysis 

The influence of other transplant-related factors such as concomitant medications, 

conditioning regimen, and inter-institutional differences on CL and V were analysed post 

hoc. To allow for comparison over all ages, busulfan normalized clearances (CLNORM, 

L/h/kg) were calculated as busulfan CL divided by patient bodyweight, and average 

CLNORM was computed as the average of all the normalized clearances of an individual in 

one conditioning episode when a drug was either administered or not administered 

concomitantly with busulfan. Comparisons were made between CLNORM of patients using 

an unpaired Mann Whitney U-test when concomitant medications were used for all 

occasions of busulfan dosing.  Average CLNORM was paired per patient based on 

concomitant use of a medication with busulfan dosing and assessed using a paired 
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Wilcoxon signed ranks W test. Net dose adjustments were calculated as a mg/kg change 

in doses on days 3, 4, or 5 based on TDM, compared to the first full dose AUC (either day 

1 AUC or cAUC of days 1 and 2 in patients administered two-half doses), which were 

dosed according to body size.  

 

3.3 RESULTS 

A total of 3241 observations from 344 individuals were used to develop the population 

pharmacokinetic model. Another 210 observations were omitted from the analysis due to 

either being under the LLOQ or else contamination from busulfan from administration or 

flush solution was suspected.  

 

3.3.1 The Base Model 

The two-compartment model initially produced a lower OFV compared to the one-

compartment model.  A comparison of conditional weighted residuals for both one- and 

two- compartment base models over time after dose revealed an even distribution above 

and below the x-axis for the one compartment model. Systematically negative CWRES at 

initial concentrations, immediately followed by a higher density of positive CWRES in the 

two-compartment model also indicated bias in fitting the data. Prediction of inter-

compartmental clearance and peripheral volume were accompanied with high relative 

standard errors (RSE > 50%). A comparison of the goodness of fit plots (supplementary) 

showed no major differences in predicted concentrations of individual or population values, 

and hence parsimony dictated the use of a one- compartment model.  
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a b 

  

Figure 3-1 A comparison between a) one-compartment and b) two- compartment model 

conditional weighted residuals (CWRES) plotted over time after busulfan administration 

(h). 

 

3.3.2 Stochastic Model for Random Effects 

Inter-individual variability (IIV) on both CL and V, resulted in large decrease in OFV (dOFV 

-7335). A block matrix was introduced between the IIV distributions of CL and V, which 

further lowered the OFV by -885. The introduction of IOV on CL lowered the objective 

function by 1208 and IOV on V by a further 205 units. The variability between and within 

subjects and between population values for clearance and volume are described in 

equation 3-2 and 3-3 for Cl and V, respectively.  

 

Equation 3-2   𝐂𝐂𝐂𝐂𝐢𝐢 =  CLpop × e(IOVCL+ IIVCL) 
 

Equation 3-3   𝑽𝑽𝒊𝒊 =  𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝  ×  𝑒𝑒(𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉+ 𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉) 
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The model to describe RUV was chosen to complement log-transformed data as described 

in equation 3-4 where the observed concentration (Y) is the sum of the log transformed 

predicted value (f) and the parameter ε1. 

 

Equation 3-4    𝑌𝑌 = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑓𝑓(𝜃𝜃,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) + 𝜀𝜀1  

 

The base model was used to assess the relationship between the parameters and 

potential covariates. The improvements in model OFV are documented in Table 3-1.  

 

Table 3-1 Development of a structural model with Objective Function Values and the 

difference between models where inter-individual and inter-occasion variability (IIV and 

IOV, respectively) )were incorporated log-normally on CL and  V. 

Model 

No. 
Model Description OFV dOFV 

Run101 One Compartment with log transformed Plasma 

Concentrations 

1302  

Run102 Run101 + IIV-CL -814 -2116 

Run103 Run102 + IIV-V -6033 -5219 

Run104 Run103 + OMEGA BLOCK -6960 -927 

Run107 Run104 + IOV-CL -8127 -1166 

Run108 Run107 + IOV-V -8332 -205 
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3.3.3 Covariate Analysis 

3.3.3.1 Scatterplot Matrix of Continuous Covariates 

There was a high level of correlation between the measures of body-size, due to AIBW 

and BSA being functions of height and weight as illustrated in Figure 3-2. A moving 

average line of best fit identified these relationships between covariates. Age was mostly 

correlated with other covariates until early adolescence (14 years). There was no obvious 

relationship between ALB levels and other continuous covariates.  

 

Figure 3-2 Scatterplot matrix of continuous covariates showing relationships between 

weight, adjusted ideal bodyweight, body surface area, height and age (in years). A moving 

average line of best fit (red) describes any observable trends in the covariate relationships.  
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3.3.3.2 Relationship Between Continuous Covariates and Pharmacokinetic 

Parameters  

Clearance and volume estimated from the base model were plotted against categorical 

and continuous covariates. A preliminary analysis of covariates found a high correlation 

between pharmacokinetic parameters and each measure of body-size. There was no 

observable relationship between pre-transplant albumin levels, and CL or V were highly 

variable over age beyond the adolescent years. Figure 3-3 illustrates the relationship 

between the PK parameters of CL and V and AIBW, BSA, height and weight.   

a  b  

c  d  

 

Figure 3-3 Relationship between parameters, clearance (L/h, black) and volume of 

distribution (L, red), and covariates a. adjusted ideal bodyweight, b. BSA (m2), c. height 

(cm) and d. Actual bodyweight (kg) 



55 

3.3.3.3 Relationship Between Categorical Covariates and PK Parameters  

An analysis of categorical covariates identified several contributors to PK variability. Sex, 

hospital and conditioning regimen had one or more categories with significantly different 

CL or V compared to the other categories. While the difference initially seemed significant, 

the main contributing factor was body size, which varied vastly between paediatric and 

adult institutions, and also in conditioning regimens which were more frequently used in 

paediatric transplants. Figure 3-4 illustrates box and whisker plots highlighting differences 

in CL and V amongst the categorical covariates.  

Clearance Volume 

a  b  

c  d  

e  f  

Figure 3-4 Clearance and Volume of distribution for categories of the categorical 

covariates: Sex, Institution and Conditioning regimen, illustrated using box and whisker 
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plots. The box is comprised of the first and third quartiles separated by the median, while 

whiskers extend to 1.5 times above and below the interquartile range from the hinges of 

the box. All points beyond the aforementioned parameters of the box and whiskers are 

plotted individually as outliers.  

 

3.3.4 Step-wise Covariate Modeling 

The step-wise covariate modeling analysis evaluated an additional 33 parameters to 

characterise the variability in CL and V. The lack of a physiological basis to covariate 

selection resulted in duplication of covariates accounting for body-size, such as weight and 

AIBW, both being incorporated on V. Hockey-stick relationships, where two linear 

functions have a point of intersection, were described between weight and V, and age and 

V in the analysis. For categorical covariates, parameters were incorporated as factors of 

the most common category, which was denoted with a value of 1. This resulted in factors 

being calculated for every category of the covariate, regardless of their effect on CL or V. 

Parameter coefficients (θ) for these categories were miniscule, with overly large residual 

standard errors as highlighted with (*) in Table 3-2.   
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Table 3-2  Parameter estimates, residual standard errors and, and 5% and 95% 

confidence intervals for all covariates included from the SCM. Parameters with RSE 

greater than 50% are marked (*). 

θ Description Estimate Standard 
Error 

Residual 
Standard 

Error 

5% – 95% CI 

1 CL 10.5 0.267 2.5% 9.977  – 11.023 
2 V 37.1 1.09 2.9% 34.964 – 39.236 
3 CLBSA1 0.615 0.0054 0.9% 0.604 – 0.626 
4* CLCONDITIONING1 -0.0476 0.0402 84.5% -0.126 – 0.031 
5* CLCONDITIONING2 -0.0695 0.0403 58% -0.148 – 0.009 
6 CLCONDITIONING3 0.961 0.0793 8.3% 0.806 – 1.116 
7* CLCONDITIONING4 -0.0138 0.0464 336.2% -0.105 – 0.077 
8 CLCONDITIONING5 -0.124 0.0581 46.9% -0.238 – -0.01 
9* CLCONDITIONING6 0.0973 0.0537 55.2% -0.008 – 0.203 
10* CLCONDITIONING7 0.302 0.193 63.9% -0.076 – 0.68 
11 CLHOSP1 0.179 0.0397 22.2% 0.101 – 0.257 
12 CLHOSP2 0.222 0.0551 24.8% 0.114 – 0.33 
13 CLHOSP3 -0.492 0.0122 2.5% -0.516 – -0.468 
14* CLHOSP4 0.0438 0.0595 135.8% -0.073 – 0.16 
15* CLHOSP5 0.00877 0.0667 760.5% -0.122 – 0.14 
16 CLHOSP6 -0.471 0.0867 18.4% -0.641 – -0.301 
17 CLSEX1 -0.0618 0.0208 33.7% -0.103 – -0.021 
18 VAIBW1 0.0162 0.0002 1.3% 0.016 – 0.017 
19 VAIBW2 0.00936 0.0019 20.7% 0.006 – 0.013 
20 VHOSP1 0.124 0.0326 26.3% 0.06 – 0.188 
21 VHOSP2 0.193 0.0398 20.6% 0.115 – 0.271 
22 VHOSP3 -0.118 0.0237 20.1% -0.164 – -0.072 
23* VHOSP4 0.0846 0.0463 54.7% -0.006 – 0.175 
24* VHOSP5 -0.0765 0.0517 67.6% -0.178 – 0.025 
25 VHOSP6 -0.445 0.0714 16% -0.585 – -0.305 
26 VSEX1 -0.0591 0.0172 29.1% -0.093 – -0.025 
27* VWGT1 0.00036 0.0011 303.4% -0.002 – 0.002 
28 VWGT2 0.00623 0.001 15.4% 0.004 – 0.008 
29* VCONDITIONING1 -0.0231 0.0277 119.9% -0.077 – 0.031 
30 VCONDITIONING2 -0.0557 0.0247 44.3% -0.104 – -0.007 
31 VCONDITIONING3 0.265 0.032 12.1% 0.202 – 0.328 
32* VCONDITIONING4 -0.00437 0.0247 565.2% -0.053 – 0.044 
33* VCONDITIONING5 -0.0634 0.0373 58.8% -0.137 – 0.01 
34 VCONDITIONING6 0.0605 0.0299 49.4% 0.002 – 0.119 
35* VCONDITIONING7 -0.017 0.079 464.7% -0.172 – 0.138 
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3.3.5 Other Covariates 

3.3.5.1 Accounting for Body-size 

Weight, AIBW and BSA were all independently tested on the base model, incorporated on 

both CL and V. Adjusted ideal-bodyweight resulted in the biggest improvement in OFV (-

9318) compared to WGT (dOFV -40) and BSA (dOFV -197), and was retained for the rest 

of the analysis. An exponent of allometric scaling of ¾ was added to AIBW for CL and 1 to 

AIBW for V to account for the large range of body size in the study population. Inter-

individual variability decreased for both CL and V from 69.4% and 76.9% to 21.3% and 

13.5%, respectively. Equation 3-5 and 3-6 describes the coefficients for size incorporated 

on CL and V in the final model, respectively.  

 

Equation 3-5      𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠= �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴70 𝑘𝑘𝑘𝑘�
3
4  

 

Equation 3-6      𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴70 𝑘𝑘𝑘𝑘)1 

 

3.3.5.2 Maturation Function 

The sigmoid Emax maturation function as described by McCune et al. yielded a lower OFV 

compared to the exponential maturation function developed by Savic et al. (dOFV -6.46). 

Although the sigmoid maturation function was developed using post-menstrual age of 

patients (PMA, calculated by adding 40 weeks to patient post-natal age),62 the use of post-

natal age  resulted in no significant difference compared to post-natal age (dOFV 0.023). 

As the assumption of a full-term pregnancy (40 weeks) did not improve the fit of the model, 

post-natal age was retained for subsequent analysis.  
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Equation 3-7 describes the sigmoid function as the maturation factor (Fmat) that 

asymptotically approaches 1 (100% maturity) to explain the difference in CL over post-

natal age (labeled AGE). Steepness of the change is governed by the exponent labeled 

“Hill” in Equation 3-7 and TM50 is the age at which maturation is 50% of the adult value.  

Equation 3-7     𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 1

1+� 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇50
�
−𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

3.3.6 The Final Model 

The final model produced after the covariate analysis incorporated two important aspects 

of development over the human lifespan, which could contribute to the pharmacokinetic 

variability in the population: increasing body-size and enzymatic maturation.  Individual CL 

(CLi) and V (Vi) were described using the following equations.  

Equation 3-8    𝐶𝐶𝐶𝐶𝑖𝑖 =  𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 × 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑒𝑒(𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶+ 𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶) 

 

Equation 3-9     𝑉𝑉𝑖𝑖 =  𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  ×  𝑒𝑒(𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉+ 𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉) 

3.3.6.1 Goodness of Fit 

Figure 3-5a shows vast improvement in the population predicted concentrations compared 

to observed concentrations. The base model over-predicted for the paediatric population 

and under-predicted for the adult population, resulting in two separate clusters as 

observed in black. The incorporation of covariates resulted in a dramatic improvement in 

the predictive capacity of the model with predictive and observed concentrations aligning 

towards the line of unity. 

Unexplained residual variability beyond the incorporation of covariates, IIV and IOV was 

assessed over time to see any trend in deviation over time or predictions. Trends beyond 
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y=0 are an indication of model misfit or poor prediction of high or low concentrations. The 

conditional weighted residuals, as illustrated in figure 3-5c and 3-5d, were dispersed 

evenly along the x-axis showing no obvious trends of model misfit or poor predictive 

capacity of the model for plasma concentrations.  

a 

 

b 

 

c 

  

d 

 
 

Figure 3-5 Busulfan base and final model goodness of fit plots in black and red 

respectively, where observations are plotted against a) population predicted 

concentrations and b) individual predicted concentrations. Conditional weighted residuals 

(CWRES) are plotted against c) time after dose, and d) against population predicted 

values.  
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3.3.6.1.1 Bootstrap 

The final parameter estimates for the model are described below in Table 3-3. A bootstrap 

of 1000 simulations was performed on the model and the results of the bootstrap median 

with 5th and 95th percentile confidence intervals are also provided. The bootstrap 

simulations confirmed an inter-individual variability of 20% and 13% for CL and V 

respectively.  There was a 14% and 11% inter-occasional variability in CL and V, 

respectively for each individual. The residual unexplained variability (RUV) was 8%. The 

OFV for the final model was -9452 which was an improvement of 1120 compared to the 

base model.  

 

Table 3-3 Final Estimates of pharmacokinetic model with residual standard errors for the 

busulfan study population. The median bootstrap estimates of n=1000 simulations with 5th 

and 95th percentile confidence intervals are also stated.  

Pharmacokinetic Parameter 
Population Estimate 

(%RSE) 
Bootstrap Median 

(5%   - 95% CI) 

CL (L/h) 12.9 (2) 12.8 (12.4 - 13.3) 

V (L) 48.1 (1) 48 (47.3 - 48.7) 

IIV CL(%) 20 (5) 20 (18 – 22) 

IIVV (%) 13 (6) 13 (12 – 15) 

IOVCL (%) 14 (7) 13.5(12 – 15) 

IOVV (%) 11 (9) 11 (9 – 12) 

TM50 (y) 0.29 (17) 0.30 (0.22 – 0.41) 

HILL 0.74 (13) 0.75 (0.61 – 1.03) 

Residual Variability   

Proportional Error (%) 8 (7) 8 (7.6 - 8.5) 

ID/Obs 344/3241 344/3241 
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3.3.6.1.2 Visual Predictive Check 

A visual predictive check was constructed to observe the final model fit over 8 frequency 

bins (marked as orange scores on the x-axis) for the observed concentrations from the 

study population. One thousand simulations of concentrations were produced based on 

model parameters, where predictions were normalised for dose. Observed data from the 

study population (black scatter plot) fell well within the 5 – 95% confidence intervals of the 

simulated dataset (upper and lower orange bands) with good agreement between the 

median observed and simulated concentrations (solid red line and grey band, 

respectively).   

 

Figure 3-6 Visual predictive check of one thousand simulations with log-transformed, 

observed plasma concentrations plotted as a scatter plot over time after dose in 8 bins. 

Median, and 5th and 95th percentile confidence intervals of the simulations are highlighted 

in bands of grey and orange, respectively, and as solid and dashed red lines, respectively 

for observed concentrations.    
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3.3.7 Post Hoc Analyses 

3.3.7.1 Variability in AUC 

The post hoc calculation of AUC confirmed a high degree of variability in Day 1 AUC (9 to 

40 mg.h/L).  Dose adjustments based on day 1 AUC were implemented in 40% of the 

patients, to ensure a cumulative AUC (cAUC) target was reached. Twenty-nine percent of 

the patients were still out of range for the target AUC despite making dose adjustments. 

Figure 3-7 highlights dose changes in 142 patients based on the first day of busulfan, with 

67 dose reductions and 75 dose elevations.  
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Figure 3-7 a) Busulfan dosing (mg/kg) on day one, calculated by body size compared to 

doses adjusted post TDM in 142 patients 

 

The overall impact of dose adjustment on the cAUC is illustrated in Figure 3-8.  Cumulative 

AUCs predicted from the first dose of busulfan were compared with the observed cAUC at 
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the end of therapy. Based purely on body-size, predicted cAUCs ranged from 35 mg.h/L to 

167 mg.h/L whereas, dose adjustments narrowed the observed range from 48 mg.h/L to 

123 mg.h/L. A two-tailed paired t-test of predicted vs. observed cAUCs identified  a 

significant difference in mean cAUC (75 mg.h/L and 79 mg.h/L, respectively) amongst the 

142 paired observations (t = 3.2 (df = 141), P = 0.0019). Figure 3-8 illustrates the change 

in cAUCs as a result of dose adjustments on the background of the target 56 – 86 mg.h/L 

target range. Overall, the dosage adjustments post pharmacokinetic analysis were able to 

bring cAUCs closer towards the target ranges.  
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Figure 3-8 The difference in predicted cAUC calculated for a total unadjusted dose from 

day 1 AUC, to observed cAUC post dosage adjustment in the 142 patients. The target 

range for cAUC (58 – 86 mg.h/L) is highlighted in orange.  
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3.3.7.1.1 Conditioning Regimen 

Day 1 AUCs were compared between three groups of patients: those where busulfan was 

the first administered cytotoxic (n=132), busulfan was concomitantly administered with 

fludarabine (n=132) and busulfan was administered after a cytotoxic agent (n=80).  There 

were no significant differences in median Day 1 AUCs between the three groups that could 

suggest prior or concomitant cytotoxic therapy affects busulfan AUC (Kruskal-Wallis H test 

H = 2.02, n = 344, P = 0.36). A similar analysis performed on cAUCs in the three groups 

also found no significant differences in the median and range (H = 0.73, n= 344, P = 0.69). 

Table 3-4 summarises the median and ranges of Day 1 AUCs and cAUCs of the three 

groups.  

Table 3-4 Median and ranges for Day 1 AUCs and cAUCs in patients who were 

administered Bu first, with or after a cytotoxic agent.  

 n Median Day 1 AUC 

(Range) 

Median cAUC (Range) 

Bu followed by Cytotoxic 132 18.1 (12.4 – 31.2) 76.4 (37.4 – 131 ) 

Concomitant Bu-Flu 132 18.3 (9.1 – 40.5) 76.1 (28.2 – 131) 

Cytotoxic followed by Bu 80 19.3 (10.8 – 41.3) 77.4 (19.5 – 120) 

 

3.3.7.1.2 Changes in Clinical Practice 

A change in practice occurred around the year 2012. After this date, TDM in children was 

performed on every day of busulfan dosing occasion at The Children’s Hospital at 

Westmead. This resulted in a marked improvement in achieving target cAUCs in the 

paediatric cohort. Figure 3-9a shows the cAUCs of the adult transplant patients over date 

of transplant during the course of the study, where cAUCs in the adult patients were 

relatively well distributed around the target range. Figure 3-9b on the other hand illustrates 

the cAUCs of paediatric transplant patients where two occasion TDM was performed prior 

to 2012 (before the arrow) and daily therapeutic drug monitoring after the arrow. The 
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change in practice evidently allowed for better control of busulfan cAUC within the given 

target range. A chi-squared analysis on 136 patients achieving target cAUCs with or 

without daily TDM (71%(n = 66) vs 40% (n = 70)) identified significant differences, Χ2(df = 

1, N = 136) = 12.15, P  = 0.0005. Two patients who did not make it to transplant were not 

included in this analysis. 
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Figure 3-9 The cumulative AUC of a) adults and b) children displayed chronologically by 

the date of transplant. A change in practice is observable for children, when two-day TDM 

was changed to daily TDM (indicated by an arrow in the children’s HSCT plotted 

chronologically), thereby achieving better control on target cAUCs as highlighted in orange 

for both groups.  
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The improvement in achieving target cAUCs from daily TDM in the children’s cohort was a 

key finding in this pharmacokinetic analysis of busulfan. Most population pharmacokinetic 

models of busulfan describe highly variable pharmacokinetics in the paediatric population, 

but seldom specify techniques to precisely achieve target cAUCs. This study identifies one 

such technique, which, although labour intensive and expensive due to intensive sampling 

over multiple days, is justified in achieving target cAUCs in the children’s cohort.  

 

3.3.7.1.3 Institutional Differences 

There was significant variability in patients achieving target cAUCs across the different 

institutions (47-91%). These differences could be attributed to a number of factors such as 

the number of diagnoses, conditioning regimens, concomitant medications and other 

aspects of the transplant procedure, beyond the scope of this study. Hospitals such as 

AUS and PMCC treated primarily non-Hodgkin’s lymphomas using a single conditioning 

regimen for autologous transplants, while hospitals such as WMD, RPA, RMH and CHW 

used a variety of conditioning regimens.  

 

3.3.7.1.4 Concomitant Medications 

Haematopoietic stem cell transplants are long and complicated procedures involving a 

range of medications, such as antibacterials, antifungals, antivirals, prophylactic 

medications, and immune-suppressants. The possibility of drug-drug interactions in 

contributing to the PK variability in busulfan cannot be ruled out. Many drugs have been 

speculated to affect busulfan clearance on theoretical or anecdotal evidence. The following 

analysis shows the impact of some commonly co-administered drugs on busulfan 

pharmacokinetics. 
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3.3.7.1.4.1 Paracetamol 

Paracetamol is an analgesic that is usually avoided during busulfan dosing due to a drug-

drug interaction involving the glutathione-related metabolic pathways of both drugs. The 

result of this drug interaction would be a potential increase in the serum levels of busulfan. 

Despite the precaution mentioned in the busulfan product information, there were still 

limited incidences of concomitant paracetamol use in the medical records of the patients in 

the study population. An unpaired, Mann-Whitney U test, used to compare the average CL 

normalized to bodyweight (CLNORM, L/h/kg) for each patient for when paracetamol was 

administered compared to the rest of the population, showed a higher CLNORM (0.199 

L/h/kg (n = 69) compared to 0.17 L/h/kg (n = 318), U = 9188, P = 0.0340). In a smaller 

cohort of 45 patients where paracetamol was administered on some occasions of TDM, a 

paired, Wilcoxon signed-rank test was used to compare the average CLNORM on days with 

and without paracetamol administration. No significant differences were observed in the 

average CLNORM for these individuals (Median of differences = 0.003 L/h/kg, W = 99, P = 

0.59).  

 

3.3.7.1.4.2 Metronidazole 

Metronidazole is a broad-spectrum imidazole antibiotic commonly used to treat gastro-

intestinal infections, such as helicobacter pylori and clostridium difficile. One institution in 

the study routinely administered metronidazole in transplant patients during myeloablative 

conditioning at the start of the recruitment period (2010 – 2012). Although the practice has 

ceased following case reports of a potential drug-interaction between metronidazole and 

busulfan, the retrospective analysis allowed for a comparison of busulfan AUCs in patients 

who were administered metronidazole. An unpaired Mann-Whitney U-analysis revealed a 

lower median busulfan CLNORM in patients receiving metronidazole (0.13L/h/kg (n = 17) 

compared to 0.18 L/h/kg (n = 327), U = 1203, P < 0.0001). To ensure the result was not an 
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artifact of the paediatric population having a higher CLNORM, the same comparison was 

made in the adult cohort and still found to be significant (0.13 L/h/kg (n = 16)/ 0.17 L/h/kg 

(n = 191), U = 868, P = 0.0035).  

 

3.3.7.1.4.3 Corticosteroids 

Steroidal agents are potent anti-inflammatory, anti-nausea and appetite-stimulating drugs 

that can be beneficial in improving the quality of life of an individual during the conditioning 

regimen. Corticosteroid use was documented in the study population (dexamethasone (n = 

58), methylprednisolone (n = 12), hydrocortisone (n = 12) prednisolone (n = 5). An 

unpaired Mann-Whitney analysis in children showed markedly lower average CLNORM of 

busulfan in patients with concomitant corticosteroid administration (median 0.2 L/h/kg (n = 

34) compared to  0.23 L/h/kg (n = 119), U = 1543, P = 0.03). Conversely, a similar test 

found a slightly higher median CLNORM in adults taking corticosteroids (0.17 L/h/kg (n = 55) 

compared to 0.16 L/h/kg (n = 154), U = 3187, P = 0.006). The majority of adult patients 

received dexamethasone (n = 49) which resulted in a slightly higher CLNORM in the cohort 

(median 0.17 L/h/kg  (n = 49) compared to 0.16 L/h/kg (n = 159), U = 2861, P = 0.005).  

 

3.3.7.1.4.4 Antifungals 

Triazole antifungals are routinely used as prophylaxis during HSCT. Interactions between 

some triazole antifungals, such as itraconazole, have been documented with oral busulfan, 

but not the intravenous formulations. Triazole antifungals were used in 112 patients on at 

least one occasion of Bu TDM; fluconazole (n = 86), itraconazole (n = 5), posaconazole 

(n= 11) or voriconazole (n=9). An unpaired Mann-Whitney analysis of triazole antifungal 

use in patients showed an unexpected higher median average CLNORM (0.19 L/h/kg (n = 

112) compared to 0.18 L/h/kg (n = 234), U = 10843, P = 0.0094). A similar observation 
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was made in an unpaired comparison considering only fluconazole administration (0.2 

L/kg/h (n = 86) compared to 0.18 L/h/kg (n = 259), U = 8807, P = 0.0035). Liposomal 

amphotericin was also used in 28 patients on at least one occasion of busulfan TDM. An 

unpaired Mann-Whitney analysis also showed a higher average CLNORM with concomitant 

amphotericin administration (0.2 L/h/kg (n = 28) compared to 0.18 L/h/kg (n = 316), U = 

3413, P = 0.04). However, as busulfan CLNORM is known to change over age, the effect of 

antifungal medications on busulfan CL was reassessed in paediatric and adult populations 

for triazole antifungals and amphotericin. A repeated unpaired Mann-Whitney U test 

indeed found an artefact of age confounding results. No significant differences were found 

for busulfan CLNORM  in adults administered or not administered  antifungals (0.16 L/h/kg (n 

= 50)  compared to 0.17 L/h/kg (n = 158), U = 3530, P = 0.26) or children (0.22 L/kg/h for 

both groups (n = 62 and n = 76, respectively), U = 2251, P = 0.66). Therefore, the use of 

neither triazole antifungals nor amphotericin affected busulfan CLNORM .  

 

3.3.7.1.4.5 Antivirals 

Antivirals were commonly administered in patients undergoing a HSCT who had tested 

serologically-positive for viruses such as CMV, EBV, RSV or hepatitis viruses. 

Transplantation is usually avoided in acute infections and prophylactic antiviral 

medications are also administered during the conditioning regimen to avoid opportunistic 

viral infections during myelosuppression from the transplant procedure. Antivirals were 

administered to 137 patients in the study cohort on at least one occasion when busulfan 

TDM was performed (aciclovir (n=63), valciclovir (n =21), valganciclovir (n = 36), 

ganciclovir (n=19), ribavirin (n=1). An unpaired Mann-Whitney analysis indicated 

significantly lower median CLNORM of busulfan in patients when administered an antiviral 

medication (0.17 L/h/kg (n = 137) compared to 0.19 L/h/kg (n= 216), U 11501, P = 0.004). 

However, the difference was confirmed to be an artifact due to changing CLNORM over age. 
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Separate analyses found no significant differences in the CLNORM for concomitant 

administration of antiviral medications or not, in children (0.21 L/h/kg (n = 26) vs 0.22 (n = 

120), U = 1394, P =0.40) or adults (0.16 L/h/kg (n = 96) vs 0.17 L/h/kg (n = 111), U = 5085, 

P = 0.57). 

 

3.4 DISCUSSION 

In this analysis the pharmacokinetic variability of busulfan was explored in a diverse study 

population of paediatric and adult transplant patients from multiple institutions. While 

busulfan pharmacokinetics have been thoroughly explored in adults and children 

separately, there is limited literature on  the evolution of pharmacokinetic variability over 

the human lifespan. Using data from 337 individuals, this study confirms a high degree of 

pharmacokinetic variability at a younger age, which requires greater intervention to 

maintain target exposures (cAUCs).  

 

Exploration using population pharmacokinetic modeling allowed for quantification of the 

variability between and within individuals, over the various dose events of busulfan 

administration. The pop-PK analysis successfully produced a robust description of 

busulfan pharmacokinetics and allowed the estimation of parameters from each individual 

for further post hoc analyses.  

 

3.4.1 The Model 

A one-compartment structural model best described the data in the study population. The 

literature is divided on the structural models used to describe busulfan pharmacokinetics. 

Dosing guidelines for busulfan based on pop-PK analyses for the FDA70 and EMA55, both 
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use one-compartment models, while more recent descriptions from other larger studies 

have employed two-compartment models.61 62 While the reasons for selecting the one-

compartment model over the two-compartment alternative have been discussed  

previously in this chapter, use of the two-compartment model would not have greatly 

affected the substantive conclusions, which were based on CL and AUC (dose divided CL) 

in our analysis. Model misspecifications can impact on precision and bias of 

pharmacokinetic estimates,149 which were both taken into consideration when selecting the 

structural base model. A two-compartment model, with similar covariates has been 

developed for the calculation of initial and Bayesian-adjusted doses by McCune et al.62  

 

3.4.1.1 Covariate Analysis 

As part of the population pharmacokinetic analysis, potential contributors to the variability 

in busulfan pharmacokinetic parameters were tested and identified. Different techniques of 

model building were employed to reduce selection bias for the inclusion of covariates. 

Step-wise covariate modeling provides an unbiased method to identify the best fitting 

covariate relationships on the data based on statistical power, rather than on prior 

assumptions. Based on the statistical measures for adding and removing covariates, the 

SCM incorporates as many covariates as needed to characterise the pharmacokinetic 

variability. This process of adding covariates can result in over-parameterisation, which 

was observed in the busulfan study population. Thirty-three covariates were estimated to 

characterise the pharmacokinetic variability in CL and V as stated in Table 3-2. The 

inherent problems in the methodology of the step-wise covariate modeling analysis were 

apparent from the large relative standard errors observed for several covariates in the 

analysis. Evaluation of categorical covariates saw the inclusion of every single category as 

a covariate, which may or may not have contributed to variability. A large number of 

parameters can also affect model stability and impact on the robustness of the parameters 
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for predictions.142 One way to overcome the issues of overparameterisation are by setting 

more stringent statistical cut-offs for the inclusion and removal of covariates. Instead of 

entering an iterative cycle of improving covariate selection in the SCM, the pop-PK model 

was developed using the most relevant and robust covariates selected by the SCM, such 

as body-size. 

 

3.4.1.2 Shrinkage 

The pop-PK model produced after an extensive analysis of the study data confirms large 

variability among individuals and between the various occasions of dosing. Estimates of 

IIV of 20% and 13% for CL and V respectively are consistent with literature values.150 Inter-

occasion variability in the study population was 13.6% and 10.7% for the two parameters,  

which is low compared to older studies of busulfan, albeit using different structural 

models.150  Given the extensive sampling of busulfan concentrations over time for each 

occasion of TDM, there was relatively low shrinkage on IIV-CL and V (9% and 12%, 

respectively). Variability between the occasions over a four to five-day course of dosing, 

on the other hand, was mostly informed by the cohort of children, in whom TDM was 

performed daily. The two-occasion TDM for busulfan dosing in adults, and children before 

2012, left large gaps in data on occasions when TDM was not performed, and this in turn, 

affected the precision of parameter estimates for those occasions, resulting in high 

shrinkage on the estimates of IOV. Shrinkage ranged from 27% to 68% for IOVCL and 35% 

to 66% for IOVV on occasion 2-5.  

 

3.4.1.3 Allometric Exponent 

Differences in body size explained much of the pharmacokinetic variability present in the 

busulfan study population. Various measures of body size, such as weight, body surface 
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area and fat-free mass have also been proposed to effectively explain pharmacokinetic 

variability in busulfan pop-PK models.70 75 151 152 While the incorporation of AIBW improved 

model fit, the addition of the allometric exponent of ¾ actually increased the OFV (dOFV 

17). Estimating the allometric exponent on clearance in the model resulted in values (0.69) 

inconsistent with the literature. One of the reasons for this discrepancy was the discrete 

distribution of ages in the study population. The allometric exponent on body size is known 

to be different in children under two and alternative exponents have been recommended 

for this younger age group.80 Other studies have used dynamic allometric exponents, that 

evolve over the human lifespan.81 The population in the study was not large enough, nor 

did it have a balanced representation of patients over the entire human lifespan to 

accurately estimate the allometric exponent for scaling clearance according to body-size 

and hence the literature value of ¾ was retained for further analysis despite the resultant 

increase in OFV.  

 

3.4.1.4 Maturation Models 

Maturation functions were tested on the model to account for the significant number of 

infants and very young children in the study, who are reported to have immature metabolic 

pathways for busulfan metabolism.153 There have been two maturation models described 

for busulfan PK in very young children.62 69 While both models resulted in an improved 

OFV, indicating altered busulfan pharmacokinetics in the youngest participants of this 

study, the sigmoid maturation function was a better option, given the adaptability of the 

function over the entire human lifespan. As this maturation function significantly improved 

the model, there was no need for the development of a new function.   
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Information was not recorded on post- menstrual age for any participants in this study. 

Given the high number of children under two in the study population, the assumption of a 

full-term pregnancy by adding forty weeks may have impacted on the maturation profile of 

children who were indeed premature and would be expected to have a lower GSTA1 

activity. Therefore, post-natal age was implemented in the model. As the function is 

intended to describe differences in enzymatic maturation in the youngest of patients, the 

degree of change is highest in this population after which, allometric exponent on body-

size takes over in explaining the variability in CL. Physiologically however, enzymatic 

maturation commences during gestation and continues throughout childhood.78 Therefore, 

any prospective validation of the model should be conducted using post-menstrual age 

and parameters should be reassessed.  

 

3.4.2 Post Hoc Analysis 

A range of post hoc analyses were conducted to characterise the contribution of various 

transplant-related factors to pharmacokinetic variability in the study population. While this 

investigation was by no means exhaustive on all transplant-related factors, a significant 

focus on concomitant medications and TDM practices allowed us to investigate potential 

contributions to PK variability. Lower CLNORM was confirmed in patients administered 

metronidazole in this study, while dexamethasone was found to result in a slightly higher 

CLNORM. Although differences in CLNORM were opposite for adults and children 

concomitantly administered corticosteroids, the small magnitude of the difference may not 

result in a significantly different clinical outcome. A significant problem in teasing out 

differences in CL from the use of concomitant medications was the varying CLNORM profile 

of busulfan over age. Clearance normalised per kilogram of bodyweight decreases with 

age58 which consistently contributed to artefactual differences in analyses of the effect of 

concomitant medication for antifungals and antivirals. An alternative to overcome the age-
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relevant problems in future would be to incorporate concomitant medications into the pop-

PK model, however such an analysis would require a larger, more balanced sample-size 

of patients administered concomitant medications.144  

 

The most significant aspect of the post hoc analysis arose from the change in TDM 

practices for the children’s cohort, where daily TDM resulted in dramatically better control 

of cAUC compared to two-occasion TDM, which is still routinely performed in adults. 

Studies have reported greater unpredictability in busulfan PK of children58, with only 60% 

of patients achieving target exposure based on dosing guidelines from pack inserts.129 

However, daily TDM could be explored as a viable alternative, given the established 

pharmacodynamic relationship between busulfan exposure and clinical outcomes of 

transplant.107 116  

 

A high variability in cAUCs could be attributed to a variety of reasons, such as the 

heterogenous population, various diagnoses and different conditioning regimens used 

within the same institution. The Children’s Hospital at Westmead treated patients with the 

largest variety of conditions, ranging from immune-deficiencies to haematological and 

other malignancies. Most immune-deficiencies surface early in a patient’s life and 

treatment is essential to ensure survival. Transplantation protocols developed for these 

conditions can also vary significantly in the intensity of the conditioning regimen, and 

associated surgeries or debridement as performed in conditions such as neuroblastoma. 

Austin Health and PMCC focused only on autologous transplantations for non-Hodgkin’s 

lymphomas during the time of the study and hence their cohort was homogeneous, with 

similar conditioning regimens and treating physicians, reducing in part the high variability 

observed in other institutions. 
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While this investigation into the pharmacokinetic variability in the study population resulted 

in the analysis of several aspects of the transplant procedures, there were still several 

limitations as part of the analysis. Six institutions conducted transplants in adults and only 

one performed transplants in children. Therefore, there was no absolute way of deducing if 

the highly variable cAUCs in the children’s cohort were a result of demographic factors, or 

institutional practices.  Post hoc analysis in the small number of patients identified 

differences in CL through univariate comparisons. However, to accurately identify 

differences in clearance would require a multivariate analysis that includes the fixed and 

random effect parameters observed in the population. 

 

In all, this chapter identifies several sources of pharmacokinetic variability in adults and 

children. However, the utility calculating pharmacokinetic parameters lies in the translation 

of the data into pharmacodynamic effects. Chapter four investigates the relationship 

between busulfan clearance and the primary endpoint Sinusoidal Obstruction Syndrome 

(SOS).  
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Chapter 4.                           
ASSESSING THE INCIDENCE OF SINUSOIDAL 

OBSTRUCTION SYNDROME AFTER BUSULFAN THERAPY 
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4.1 INTRODUCTION 

Sinusoidal Obstruction Syndrome (SOS), previously known as veno-occlusive disease is a 

known complication of haematopoietic stem cell transplants (HSCT). Associations 

between busulfan use and an increased incidence of SOS have been frequently 

documented in the literature and several strategies have been discussed to reduce the 

incidence and/or severity of SOS. Despite these strategies, SOS is still a persistent side-

effect of Bu therapy prior to HSCT. This chapter builds on the pharmacokinetic findings 

from Chapter 3 to analyse in depth the relationship between busulfan use and the 

incidence of SOS.  

 

4.1.1 Sinusoidal Obstruction Syndrome 

Sinusoidal Obstruction Syndrome is a multimodal complication of transplantation where 

inflammatory responses are followed by increased coagulation and obstruction of hepatic 

sinusoids, which lead to hepatic dysfunction and, if left untreated, cause liver and multi-

organ failure and death. The incidence of SOS can vary from 8% - 30% depending on 

institution, age of patients, the conditioning regimen used and other transplant-related 

factors.  

 

The presentation of SOS can range from early (<21 days post transplantation) to later 

onset (> 21 days). Symptoms of sudden weight-gain from fluid retention, ascites and 

upper-right quadrant pain and tender hepatomegaly, are usually followed by elevated liver 

enzymes and bilirubin and a rapid consumption of platelets. Histological changes in the 

liver and elevated blood pressure in the portal arteries can be identified using doppler 

ultrasounds. Notable multi-organ dysfunction (MOD) or even -failure (MOF) can be 

observed in very severe cases of SOS, both associated with poor prognosis.  
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Much of the treatment for SOS revolves around controlling presentations of the syndrome 

such as fluid retention and hyperbilirubinaemia. There are currently no therapeutic 

measures with complete efficacy against SOS and hence, early intervention and treatment 

are essential to maximise chances of survival in patients. Early detection of SOS requires 

daily monitoring for weight gain, fluid retention, oedema and ascites, tenderness in the 

upper right quadrant, hepatomegaly and early signs of jaundice.  

 

Resolution of SOS depends on severity and control over symptoms, as there are still no 

curative treatments available. Supportive treatment is provided for fluid retention using 

diuretics such as frusemide or spironolactone, and peritoneocentesis is also used in 

severe cases of ascites. Beyond the scope of symptomatic treatment of fluid overload, the 

only proven pharmacological treatment for SOS is defibrotide.111 154 

 

4.1.2 The Relationship Between Busulfan and SOS 

The use of busulfan in HSCT has long been associated with SOS. The earliest 

descriptions of hepatic injury from busulfan use were recorded in Phase 1 trials for 

transplant in the 1980’s when crystalline deposits were found in liver post autopsy in 

patients exposed to cumulative doses higher than 16 mg/kg.35 155 Subsequently SOS was 

characterised as a potential complication of oral busulfan therapy in patients with higher 

than expected AUCs from the standard 16 mg/kg doses.13 As pharmacokinetic variability in 

patients receiving busulfan became more apparent from PK analyses, an association was 

made between patients with AUC > 6.2 mg.h/L after a single dose of oral busulfan (given  

Q6H for sixteen doses) and increased incidence of SOS.156  
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Incomplete and variable absorption of oral busulfan was a contributing factor to busulfan 

pharmacokinetic inter-individual variability (IIV). Furthermore, possible upregulation of 

busulfan metabolism pathways in the enterocytes was also thought to increase busulfan 

clearance (CL/F) in young children, resulting in lower clearances at adult equivalent 

doses.84 The replacement of oral busulfan with an intravenous formulation overcomes 

some of the IIV through bypassing enteric absorption and metabolism, although the impact 

on the incidence of SOS is conflicting.157  

 

As SOS became better characterised, several prophylactic measures, such as the use of 

ursodeoxycholic acid and therapeutic drug monitoring (TDM), were implemented. Despite 

all measures, SOS persists in patients receiving busulfan prior to transplantations.   

 

4.1.2.1 Therapeutic Drug Monitoring and SOS 

As TDM of busulfan became common practice during HSCTs, more refined therapeutic 

windows were identified for optimal efficacy of transplant vs. toxicity of the conditioning 

regimen and many studies confirmed the association between busulfan overexposure and 

incidence of SOS. The use of TDM allowed for dose adjustments, which resulted in lower 

incidences of SOS as reported by Grochow.109 There was however no association to 

suggest the severity of SOS was proportional to the exposure to busulfan.  

 

As discussed at length in chapter 1, an exposure-outcome relationship has been 

documented in several studies exploring SOS incidence in patients receiving busulfan 

prior to transplant. Regimens where busulfan is administered in sixteen doses (1 mg/kg 

administered Q6H over 16 doses) with AUC > 6.2 mg.h/L (after a single dose of busulfan 

given every six hours) have been commonly associated with an increased incidence of 
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SOS.13 156 158 A large multi-institutional retrospective analysis of busulfan use in paediatric 

transplant centres suggested a higher incidence after cumulative AUCs (cAUCs) of all 

dosing occasions of busulfan of 101 mg.h/L while other studies have found no association 

between SOS incidence and busulfan exposure141.  

Busulfan TDM has been implemented in adults and children at several institutions in an 

attempt to overcome interpatient variability in achieving target exposures (cAUC 58 – 86 

mg.h/L).141 The efficacy of TDM in reducing the incidence of SOS is unclear. Studies that 

do show an exposure outcome relationship recommend the use of TDM for dosing 

busulfan. However, one large retrospective analysis (n = 13,097) from patients registered 

in the centre for international blood and marrow transplant research (CIBMTR) registry 

found a higher incidence of SOS following busulfan TDM, compared to patients with no 

dose-adjustment.138 The authors theorised that dose elevations made to achieve target 

exposures (AUC or Css) were the main reason for the increased incidence of SOS in these 

patients, although no thorough assessment was made on TDM or dose adjustment 

practices. This paper contradicts the perceived overall benefit of TDM for busulfan, given 

the improvement in overall survival and reduced non-relapse related mortality.  

 

4.1.3 The Study 

The relationship between busulfan exposure and the incidence and time of onset of SOS 

in transplant patients was assessed in this part of the study. While overexposure of 

busulfan has been assumed to be associated with an increased incidence, and TDM is 

suggested to keep exposures within a target window, a recent investigation found a 

greater rate of SOS in patients receiving TDM as part of their busulfan therapy.138  
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4.2 METHODS 

4.2.1 Data Collection and Analysis 

Information was collected from medical records of all patients on symptoms of SOS 

leading up to diagnosis, as specified in the modified Seattle and Baltimore criteria.112 

Additional information was also collected on rapid consumption of platelets and pulmonary 

involvement, which were not originally part of the criteria. Time to SOS was calculated 

from first dose of busulfan to the first mention of SOS (suspected or diagnosed). Patient 

cAUC and CL as calculated from the pop-PK analysis on the study population in chapter 

three were used for the investigation. Statistical analysis was performed on the software R 

(version 3.5.0) on the R Studio platform (version 1.0.136). 

 

4.2.2 Exploring the Association Between Busulfan Use and SOS Incidence 

Busulfan exposure calculated as cAUC was compared between patients with and without 

SOS using unpaired Mann-Whitney tests. The association was stratified by post-natal age 

categories of infant (0 – 2 years), children (2- 10 years), adolescent and young adult (AYA, 

10- 25 years) and adults (over 25 years). Differences in cAUC for patients of different 

conditioning regimens and diagnoses were also compared using Mann- Whitney tests.  

 

The role of TDM in reducing the incidence of SOS was also assessed in comparative 

Mann-Whitney analyses, where patients with and without dose adjustments and patients 

with dose adjustments were further divided into patients with dose escalations and dose 

reductions. Chi-squared tests were used to compare the number of SOS cases in patients 

over and under the 86 mg.h/L cAUC upper limit, above which incidence of SOS is 

expected to be greater. A recent recommendation to raise the upper limit was also 
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assessed using a Chi-squared test to explore the incidence of SOS in patients with a 

cAUC above or equal to 101 mg.h/L.  

 

Maximum concentration on Day one of busulfan administration is also known to be higher 

in patients with SOS.105 To test the association in the study population, day 1 Cmax was 

calculated for all patients in the pop-PK analysis using Equation 4-1 where “Dose” refers to 

the dose of busulfan administered, duration of infusion is identified as “Duration”, “CL” the 

clearance of busulfan and “ke”, the rate of elimination. Calculated day 1 Cmax were then 

analysed post hoc using unpaired Mann-Whitney analyses. 

 

Equation 4-1   𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚= � 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐶𝐶𝐶𝐶∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� × (1−𝑒𝑒−𝑘𝑘𝑒𝑒 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 

 

4.3 RESULTS 

A total of 66 patients were diagnosed with SOS post busulfan therapy in the study 

population. Of these, two patients did not have a recorded date of SOS onset and were 

excluded from the Cox regression analysis for time to SOS post busulfan therapy. The 

observations were still retained for all association studies.  

 

Onset of SOS ranged from day 9 post first dose of busulfan to day 47, with two outliers 

who were diagnosed on days 110 and 161 after the commencement of busulfan. Median 

patient age was 7.5 years (3 months to 64.8 years). The incidence of SOS was 19% for 

both autologous and allogeneic transplantations (12/63 and 54/281, respectively), and also 

19% between HLA matched and mismatched transplants (27/139 and 25/130, 

respectively). HLA-matching information was not available for 13 patients.  
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Ursodeoxycholic acid was used as SOS prophylaxis in 215 of the 344 transplant 

occasions. A further 14 paediatric patients were given defibrotide in addition to 

ursodeoxycholic acid. The proportion of patients with SOS was 22% (n =47), 50% (n = 7) 

and 10% (n = 12) in patients given ursodeoxycholic acid, defibrotide and ursodeoxycholic 

acid, and no SOS prophylaxis, respectively. 

There was high variability in the proportion of SOS cases within the various conditioning 

regimens and diagnoses. The incidence of SOS in the two largest cohorts of diagnoses, 

AML and myelodysplastic syndrome (MDS) were 14% (n = 117) and 20% (n = 24), 

respectively. Comparatively, SOS was more prevalent in children with high-risk 

neuroblastoma (n = 19), acute lymphoblastic leukaemia (n = 21) and juvenile 

myelomonocytic leukaemia (n = 6), with significantly higher incidences of SOS (47%, 45% 

and 83%, respectively). 

 

4.3.1 Association Between SOS and cAUC 

The association between cAUC and the incidence of SOS was assessed in the study 

population using non-parametric analyses. Median cAUC for patients with and without 

SOS was 77.5 (42.7 – 122) vs 76.0 (19.5 – 131) mg.h/L, respectively. An unpaired Mann-

Whitney U test showed no significant difference in the median cAUCs of patients with or 

without SOS (U = 9451, P = 0.7).  

 

A chi-squared analysis was performed on patients with or without SOS separated by the 

upper limit of the accepted therapeutic window for cAUC of busulfan, which was 86 

mg.h/L. A total of 18/79 and 48/265 patients were diagnosed with SOS, who had cAUCs 
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above and below the upper limit of 86 mg.h/L, respectively. There was no significant 

increase in SOS cases over 86 mg.h/L, X2 (df = 1, N = 344) = 0.86, P = 0.35.  

 

4.3.1.1 SOS Stratified by Age 

An initial exploration of the relationship between cAUC, SOS and age, conducted by 

plotting cAUCs of SOS cases and non-cases over patient age at transplant, found no 

observable trends that indicate an exposure-response profile for SOS. Figure 4-1 

illustrates the cAUCs of patients diagnosed with SOS (blue), which are evenly spread 

between the highest and lowest cAUC values. As expected from the literature, the density 

of SOS cases was higher at a younger age. 

 

Figure 4-1 Cumulative AUC (mg.h/L) of patients with or without SOS (blue and red, 

respectively) are plotted over age (years) at transplantation.  
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The incidence of SOS was 36%, 32%, 16% and 13% over the infant, children, AYA and 

adult age groups respectively. There is a higher than average incidence of SOS in infant 

and children populations, but AYA and adults SOS incidences are consistent with the 

literature. A Mann-Whitney analysis of the cAUCs between patients with and without SOS 

in each age category identified no significant differences as summarised in Table 4-1. 

 

A Fisher’s exact test was used to analyse the incidence of SOS in patients with cAUCs 

above and below the 86 mg.h/L cut off. The odds of developing SOS did not increase with 

exposures higher than 86 mg.h/L for any age category, except in children where higher 

exposures were associated with a lower incidence of SOS. While the P value was 

significant for the odds ratio in children, the 5 – 95% CI included 1, indicating non-effect 

and hence could not be used to confidently describe the statistic. Table 4-2 summarises 

the number of patients with or without SOS, above and below the cAUC upper limit, with 

odds ratio and 5-95% confidence intervals. Significant results (P < 0.05) are marked with 

an asterisk. 
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Table 4-1 Summary of Mann-Whitney U-tests exploring the differences in cAUCs of four age categories of patients with or without SOS 

Age 
Category n = Regimen 

% Cases 
of SOS 

diagnosed 
(n) 

Median 
cAUC 

Median 
cAUC 
mg.h/L 

P < 
0.05 
(*) 

Median 
Cmax µg/mL 

Median 
Cmax µg/mL 

P < 
0.05 
(*) 

    

 

  SOS (range) No SOS 
(range)   SOS (range) No SOS 

(range)   

Infants (0-2 
years)  39 

Bu-Cy, Flu-Bu, 
Flu-Bu-Alkylating 

agent, consecutive Flu-
Bu, Mel-Bu, 
RIC Flu-Bu 

36% (14) 71.2  
(51.5 – 122) 

75.99  
(47.5 – 131) 0.46 3.51 

(2.07 - 4.31) 
3.01 

(1.55 – 4.63) 0.14 

Children (2- 
10 years) 68 

Bu-Cy, Bu-Mel, 
Flu-Bu, Flu-Bu-

Alkylating agent , 
consecutive Flu-Bu, 
Mel-Bu, RIC Flu-Bu 

32% (22) 76  
(48.6 – 111) 

84  
(19.5 – 131) 0.09 3.19  

(0.93 – 6.15) 
3.12  

(1.30 – 7.34) 0.84 

AYA (10-
25) 51 

Bu-Cy, Bu-Mel, 
Cy-Bu, Flu-Bu, 

Flu-Bu-Alkylating 
agent, Mel-Bu, RIC 

Flu-Bu 

16% (8) 77.7  
(42.7 – 97) 

76.3  
(34.1 – 123) 0.44 3.16  

(1.79 – 4.15) 
2.11  

(0.95 – 3.64) 0.02* 

Adults 
(25+) 186 Bu-Cy, Bu-Mel, Cy-Bu, 

Flu-Bu, RIC Flu-Bu 13% (22) 83  
(53.3 – 120) 

75.1  
(28.2 – 106) 0.07 2.12  

(1.58 – 2.95) 
1.92  

(1.32 – 5.81) 0.06 
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Table 4-2 Fisher’s exact test summarising the odds of developing SOS in patients with 
cAUC greater than 86 mg.h/L 

Age Category 

cAUC < 86 mg.h/L cAUC > 86 mg.h/L 
Odds Ratio 

(5-95% CI) 
P < 0.05 

n SOS 
n No 

SOS 
n SOS 

n No 

SOS 

Infants 

(0-2 years) 

10 18 4 7 1.03 

(0.176-5.34) 

1 

Children 

(2- 10 years) 

18 25 4 21 0.27 

(0.06 – 1) 

0.03* 

AYA 

(10-25) 

5 33 3 10 1.95 

(0.26 – 12.3) 

0.40 

Adults 

(25+) 

15 141 7 23 2.84 

0.88- 8.43 

0.06 

 

 

4.3.1.2 SOS Stratified by Conditioning Regimen 

The incidence of SOS across various conditioning regimen was between 14% - 32%.  

There were no significant differences in the cAUCs of patients with or without SOS when 

grouped under the same conditioning regimens, with the exception of the Cy-Bu 

regimen.159  The incidence of SOS amongst conditioning regimens was not significantly 

different, although certain regimens, such as Cy-Bu have been associated with a lower 

incidence of SOS compared to Bu-Cy.159. Table 4-3 summarises the cases of SOS per 

conditioning regimen and median cAUCs. Significance was tested once again using 

unpaired Mann-Whitney tests.  
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Table 4-3 The incidence of SOS across the various conditioning regimen used and their 

corresponding median cAUCs. Significant differences in cAUC tested using unpaired 

Mann-Whitney tests are highlighted with (*) 

Conditioning 

Regimen 
n = 

% Cases of 

SOS diagnosed 

(n) 

Median cAUC 

SOS (range) 

Median cAUC 

mg.h/L 

No SOS (range) 

 (P < 0.05) 

Bu-Cy 
58 17% (10) 

74.7 

(53.3 – 102) 

69.5 

(37.4 – 106) 
0.55 

Bu-Mel 
74 14% (10) 

77.6 

(62.7 – 111) 

79.5 

(55.4 – 131) 
0.38 

Cy-Bu 
42 16% (7) 

92.0 

(72.4 – 120.4) 

78.4 

(53.2 – 106) 
0.04* 

Flu-Bu§ 
80 16% (13) 

85.0 

(43.3 – 109) 

76.0 

(34.1 – 123) 
0.20 

Concomitant Flu-Bu/ 

+  

Cy/Mel or Thiotepaˠ 
43 30% (13) 

74.7 

(54.2 – 96.46) 

77.3 

(55.7 – 131) 
0.59 

Complete Flu 

followed by Bu 17 24% (4) 
70.0 

(52.7 – 116) 

94.8 

(19.5 – 120) 
0.41 

Mel-Bu 
11 27% (3) 

82.5 

(73.9 – 86.9) 

70.2 

(58.3 – 93.7) 
0.50 

RIC Flu/Bu͋  
19 32% (6) 

53.7 

(42.7 – 86.4) 

57.4 

(28.2 – 75.2) 
1 

three patients had concomitant administration of etoposide, one patient had concomitant 

administration of gemcitabine, §concomitant administration of thiotepa in five patients and 

clofarabine in two other patients, ˠone patient was administered concomitant 

clofarabine, f͋ive patients received concomitant thiotepa out of which four were diagnosed 

with SOS.  
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4.3.1.2.1 SOS Incidence Stratified by Number of Chemotherapy Agents per 

Conditioning Regimen 

All 344 transplant occasions of busulfan were given as a combination therapy of either 

concomitantly administered fludarabine or consecutive administration of fludarabine or an 

alkylating agent. Patients were divided into three categories:  

• Busulfan with fludarabine  

• Busulfan with an alkylating agent 

• Busulfan with fludarabine and an alkylating agent   

Where, additional alkylating agents include: Cyclophosphamide, Melphalan or Thiotepa 

 

The incidence of SOS was 13% (n = 12), 16% (n = 30) and 33% (n = 24) in patients 

administered busulfan with fludarabine, an alkylating agent, and fludarabine and alkylating 

agent, respectively. A significantly higher number of SOS cases were initially observed in 

patients administered busulfan with fludarabine and an alkylating agent, compared to the 

rest of the cohort X2 (df = 2, N = 344) = 12.6, P = 0.002. The high incidence of SOS could 

be explained by the fact the aforementioned conditioning regimen was only used in 

paediatric transplants. A focus on SOS incidence in only the paediatric cohort showed no 

significant differences in SOS cases over the three regimens, X2 (df = 2, N = 136) = 3.87, 

P = 0.14. 

 

4.3.1.2.2 SOS Stratified by Dose Adjustments 

As described in Chapter 3, dosage adjustments were made as part of TDM to ensure 

patients received a daily AUC between 4000 and 5260 µMol.min (14.5 and 21.5 mg.h/L). A 

total of 67 net dose reductions and 75 net dose elevations were made in the study 

population. The incidence of SOS was 24% (n = 16), 20% (n = 14) and 17% (n = 36) in 
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patients with net dose reductions, net doses elevations and no dose adjustments, 

respectively. No significant difference was found in the number of SOS cases in patients 

with or without dose adjustments, X2 (df = 2, N = 344) = 1.35, P = 0.51. 

4.3.2 Busulfan Cmax and SOS 

Busulfan Cmax calculated for the first day of administration was compared in adults and 

children with SOS. At first instance, model calculated Cmax were not significantly higher in 

adults or children, although as highlighted in Figure 4-2, there was a tendency for patients 

with SOS to have a higher Cmax. 

 

Figure 4-2 Day 1 Boxplot figures illustrating differences in Cmax of All patients , Adult and 

children with or without SOS from the study population. Median Cmax is identified as a bold 

line dividing the box marking the 25% and 75% quartiles. The whiskers extend to the 

smallest observation and largest observations within 1.5 x IQR. Points beyond the 

parameters of the box and whiskers were plotted individually as outliers. 

Patients were divided by dosage regimen, the largest subset of whom (190 adults and 61 

children) received the first dose in two halves were retained for this part of the analysis.  

Here a significant difference in Cmax was evident for the adult population, but no similar 

finding was observed in the children, as highlighted in Figure 4-3. 
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Figure 4-3 Day 1 Boxplot figures illustrating differences in Cmax of All patients , adult and 

children with or without SOS receiving the first dose of busulfan in two halves. Median Cmax 

is identified as a bold line dividing the box marking the 25% and 75% quartiles. The 

whiskers extend to the smallest observation and largest observations within 1.5 x IQR. 

Points beyond the parameters of the box and whiskers were plotted individually as outliers. 

 

 A re-analysis of measured Cmax concentrations, however unveiled significant differences in 

patients with or without SOS. Data from patients whose first sample was collected more 

than 5 minutes past the end of infusion was excluded from the analysis to minimise error 

for the assumption of true Cmax post-infusion. A total of 52 and 210 patients, with and 

without SOS were retained for comparison. Mann-Whitney analyses revealed a 
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significantly higher Cmax in patients with SOS (U = 7798, P = 1.8x10-6). As Cmax is 

dependent on the dose administered, dosage regimens were stratified into three groups of 

patients who received the first dose as a half dose (n = 199), as a full dose (n = 55) and 

others dose forms which included Q12H busulfan for 8 doses and and Q6H for 16 doses(n 

= 8).  

 

Figure 4-4 illustrates the differences in Cmax between patients receiving a half or full dose 

of busulfan. A Mann-Whitley U test failed to identify a significant difference in median Cmax 

concentrations of patients with or without SOS receiving a full dose of busulfan on Day 1 

(3.71 µg/mL (2.2 µg/mL – 6.11 µg/mL) and 3.5 µg/mL (2.14 µg/mL – 6.22 µg/mL), 

respectively (U = 411, P = 0.23). However, there was a strong effect of median Cmax for 

patients administered a half dose of busulfan on Day 1. Thirty-one of 199 were diagnosed 

with SOS and median Cmax between patients with and without SOS were 2.66 µg/mL (1.66 

µg/mL – 3.78 µg/mL) and 2 µg/mL (1.22 µg/mL – 3.93 µg/mL), respectively (U = 3912, P = 

9.1 x 10-6). 
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Figure 4-4 The difference in Cmax of patients with or without SOS, for All patients with a 

measured Cmax within 5 minutes at the end of infusion, patients receiving a full dose of 

busulfan on Day 1 and patients receiving a half dose of busulfan on Day 1. Median Cmax is 

identified as a bold line dividing the box marking the 25% and 75% quartiles. The whiskers 

extend to the smallest observation and largest observations within 1.5 x IQR. Points 

beyond the parameters of the box and whiskers were plotted individually as outliers. 

 

The maximum concentration measured in patients receiving half a dose of busulfan on day 

one had a highly significant association with SOS. Patients transplanted using a 

myeloablative regimen were administered busulfan over five days, where a full dose of 

busulfan was divided and administered daily over the first two days. A total 191 patients 

received the total five day myeloablative therapy, of whom 143 were adults and 48 were 

children. The differences in Cmax were reassessed in these subsets of patients.  
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Figure 4-5 Differences in Cmax of a) all, b) children and c) adult patients with or without 

SOS receiving the five day myeloablative conditioning regimen. Median Cmax is identified 

as a bold line dividing the box marking the 25% and 75% quartiles. The whiskers extend to 

the smallest observation and largest observations within 1.5 x IQR. Points beyond the 

parameters of the box and whiskers were plotted individually as outliers. 

 

Table 4-4 summarises the Day 1 Cmax observed in all patients, children and adults with or 

without SOS, receiving the five-day myeloablative conditioning protocol. The significance 

was maintained in both paediatric and adult patients as demonstrated by a Mann-Whitney 

analysis of medians, as summarised in Table 4-4.  
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Table 4-4 Summary of Mann-Whitney analysis of median busulfan Cmax in patients with or 

without SOS receiving myeloablative conditioning over five days.  

Patient 

Groups 

n =  

SOS 

Cmax in patients with 

SOS (µg/mL) 

n =  

No SOS 

Cmax in patients 

without SOS 

(µg/mL) 

P - Value 

  Median Range  Med Range  

All 27 2.61 1.66 – 3.76 164 2 1.22 – 3.93 3.7 x 10-5 

Children 10 3.04 2.61 – 3.76 38 2.58 1.44 – 3.93 0.023 

Adults 17 2.31 1.66 – 2.85 126 1.9 1.22 – 2.82 0.0012 

 

4.4 DISCUSSION 

In this chapter the incidence and time to SOS was examined in a large, heterogenous 

population of HSCT patients. Given the wide range in patient age, diagnoses, conditioning 

regimens and transplant-specific factors, an appropriate pairing of patients with and 

without SOS was not possible. Hence, the study population was divided and analysed in 

as many ways as statistically advisable.  

 

4.4.1 Prophylaxis and SOS 

The incidence for SOS was not seen to be higher in patients with allogeneic or HLA-

mismatched transplants in the study population. Ursodeoxycholic acid is used as an SOS 

prophylactic in all paediatric transplants and also in some institutions for adult transplants. 

Defibrotide however, was only used in addition to ursodeoxycholic acid in a small 

proportion of paediatric patients (n = 14) at 25 mg/kg, for a separate study that recruited 

patients known to be at a higher risk of developing SOS. The use of defibrotide for SOS 

prophylaxis reduced the incidence of SOS in children as part of a Phase III clinical trial160 
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but this was not observed in this study population. Higher than expected SOS incidence 

was observed in the defibrotide and ursodeoxycholic acid group, possibly due to the 

patients already being at a higher risk of developing SOS. Also, further analysis was not 

pursued for this group given the small number of individuals.  

 

4.4.2 Diagnosis and SOS 

Comparisons between SOS incidence in various diagnoses were not performed as part of 

this analysis, given the diverse range of patients recruited in the study population. With 

over 50 different diagnoses, a comparison of statistically balanced numbers was not 

possible, other than incidences already discussed for AML and MDS. Patients with high-

risk neuroblastoma are known to have a high incidence of SOS at around 24%,161 although 

the incidence of SOS reported (47%) was almost twice as high in the study population.  

The proportion of SOS cases for each diagnosis was more influenced by patient age e.g. 

JMML and ALL are both predominantly paediatric conditions; as was the case for 

conditioning regimens.  

 

4.4.3 Busulfan Exposure and SOS 

The large variability in cAUC of individuals receiving busulfan has already been discussed 

in depth in Chapter 3 of this thesis, however the association between higher cAUCs and 

SOS, which has routinely been documented in literature, was largely missing in this 

analysis. One of the reasons for a lack of exposure-outcome relationship is the nature of 

the concentration-dependent dose modifications that were made during the TDM. Drugs 

with narrow therapeutic ranges, such as busulfan, were initially given to achieve target 

doses (16 mg/kg) rather than target concentration. Inter-individual variability resulted in 

concentrations far higher than expected, and positive associations were identified between 
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high exposure and SOS. The paradigm shift to concentration-controlled dosing limited 

exposure of busulfan to a smaller targeted window, with most patients falling within a 

narrow range not large enough to show a dose-response relationship. This phenomenon 

has been reported in phase one and dose escalation type studies and is one plausible 

reason for why an association was not observed.162  

 

4.4.4 Busulfan Cmax and SOS 

One of the most significant findings of this chapter was the higher observed Cmax in 

patients with SOS on Day 1 of busulfan therapy. A greater Cmax as calculated using pop-

PK analysis has recently been associated with SOS in a paediatric population.105 The 

analysis mentioned in this chapter, however, did not find a significant difference in 

calculated Cmax but in observed Cmax concentration (based on samples obtained within five 

minutes of the end of infusion) in patients with or without SOS. The observation was 

consistent in both adults and children. One of the reasons for this may be inherent bias in 

the model to fit observations to a one compartment model, and therefore under-predicting 

Cmax concentrations. However, a comparison of observed and model drived Cmax 

concentrations showed good agreement (r2 = 0.89) and provides little reason to doubt the 

validity of the model.  

 

A measured concentration Cmax taken at the end of infusion is a robust, cost-effective 

predictor which does not require the construction of complicated models. If prospectively 

validated, Cmax on day 1 may have a predictive capacity to determine patients at risk of 

SOS providing timely access to treatment, thereby preventing multi-organ failure.  
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4.4.5 Age and SOS 

The incidence of SOS was consistent with the literature for three of the four age categories 

studied here. Infants and children have always reported higher frequency of cases of 

SOS111, albeit not as high as 36%. Out of the seven institutions, only one was involved in 

paediatric HSCTs and hence cross-institutional comparisons could not be made to 

thoroughly identify the source of the higher than average incidence. The Fisher’s exact test 

was used in lieu of the chi-squared test to compare the number of SOS cases, due to 

small numbers of patients diagnosed with SOS in each of the sub-categories. The lower 

number of children (2 – 10 y) having SOS upon over-exposure of busulfan (>86 mg.h/L) 

was a surprising outcome for patients with malignancies and immune conditions. Thus far, 

lower AUC has only been associated with SOS in β-Thalassaemia patients. A higher 

clearance is postulated to either deplete glutathione or produce a toxic metabolite that 

leads to SOS.163 

 

4.4.6 Emendation Conditioning and SOS 

Over the eight conditioning regimens investigated in the study population, the incidences 

varied according to the age of patients in which the regimen was used. The incidence of 

SOS was not found to be different between regimens, although studies have shown lower 

incidence in patients receiving the Cy-Bu regimen compared to the Bu-Cy.159  The reasons 

for this finding remain unclear as SOS cases in both populations (Cy-Bu and Bu-Cy) were 

similar in their diagnoses (AML, MDS or myelofibrosis), demographic and measures of 

busulfan exposures. The only major difference in patients receiving the Cy-Bu regimen 

was the concomitant use of metronidazole which may not have affected SOS incidence, 

even though cAUCand number of dose changes in both regimens were not different.    
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The influence of age on SOS incidence became more apparent when conditioning 

regimens were grouped into three larger categories. Conditioning regimens such as Mel-

Bu, Flu-Bu with an additional alkylating agent and consecutively administered fludarabine 

and busulfan were primarily used in paediatric transplants. These were also regimens with 

some of the highest incidences of SOS (24-30%). Surprisingly, reduced intensity 

conditioning with Flu-Bu with or without an additional alkylating agent had the highest 

proportion of SOS cases (32%). One possible explanation for this finding is pre-existing 

liver dysfunction in patients prompting the use of RIC regimens over myeloablation. Also, 

the concomitant use of thiotepa in the children population receiving the RIC regimen may 

have also confounded the results of the analysis.  

 

4.4.7 Dose Adjustments and Physician Discretion 

Choice of conditioning regimen or use of prophylaxis were both at physician’s discretion 

and therefore, the possibility of using a more conservative regimen, narrower targets or 

dose increases of prophylaxis cannot be ruled out. In our study population, no significant 

differences in terms of SOS incidence were observed between patients with or without 

dose adjustments. While a recent investigation suggested increased incidence of SOS in 

patients with doses adjusted using TDM, the underlying causes of the increase were not 

explored. We compared both dose increases and decreases compared to no adjustment, 

and found neither to make a significant impact on SOS incidence.138  

 

Physician rationale for using a particular conditioning regimen with regards to risk of 

developing SOS was not studied in this analysis. The onset of SOS is multifactorial and 

has been shown to depend on several other transplant-related factors, as recently outlined 

in the revised European guidelines for the current situation of SOS in HSCTs.111 Several of 



102 

these risk factors are unavoidable prior to or during the transplant procedure, which could 

impact on the number of SOS incidences reported in the study population.162 Although this 

is a perceived limitation of this study, the aim was to assess the exposure-response 

relationship of busulfan and SOS incidence, and hence not all risk factors as highlighted 

by the EBMT were exhaustively analysed.  

 

In all, this chapter confirms a higher incidence of SOS in younger patients compared to 

adults. In the study population, the number of cases diagnosed with SOS was not greater 

in patients receiving busulfan cAUCs higher than the upper limit of 86 mg.h/L. There were 

also no significant differences in the cAUCs of patients with or without SOS, that could 

suggest a relationship between busulfan exposure and SOS incidence. However, a higher 

Cmax on the first dose was predictive of SOS in patients receiving the same busulfan 

dosing regimen. This finding likely suggests a predisposition to SOS which, can be 

identified through a higher Cmax, but cannot be controlled by adjusting total busulfan 

exposure (cAUC) to a set target. Although this analysis fails to demonstrate a relationship 

between busulfan exposure and SOS, there may still be a possibility of busulfan use 

accelerating the incidence of SOS post-transplant which will be evaluated in Chapter 5.   
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Chapter 5.                                         
TIME TO EVENT ANALYSIS OF SINUSOIDAL OBSTRUCTION 

SYNDROME AFTER BUSULFAN USE  
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5.1 INTRODUCTION 

Chapter Four provided insights into sinusoidal obstruction syndrome (SOS) with a detailed 

analysis of incidence and time to event in the study population. Consistent with the latest 

EBMT review of SOS, the incidence was higher in children compared to adults. From 

various analyses we found no association between busulfan cAUC and incidence of SOS. 

There was however, an association between high busulfan Cmax (measured within five 

minutes after the end of infusion) and incidence of SOS.  

 

The complicated course of diagnosis and the retrospective nature of gradation make SOS 

a complicated toxicity to treat. Furthermore, timely treatment is essential for optimal 

outcome, due to the possibility of multi-organ failure (MOF) and death if left untreated. 

Understanding an individual patient’s hazard of developing SOS post transplantation can 

flag patients at most risk to improve treatment and outcome. This chapter aims to 

implement non-parametric and semi-parametric survival analysis techniques to model time 

to the incidence of SOS post busulfan administration in the study population. 

 

5.1.1 Survival and Hazard Modeling 

For the purposes of this chapter, the hazard h(t) was defined as the probability of an 

individual having SOS at any given time (t) after the first busulfan administration. Survival 

probability S(t), strictly analysed the cumulative probability of not developing SOS in the 

study population, from the first busulfan administration to the end of the study. The 

interplay between the hazard and survival can be modelled using several methods to 

reflect the time course of an event in a population.  
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5.1.2 Non-Parametric Survival  

Survival probability can be analysed using non-parametric methods of analysis such as 

Kaplan-Meier estimation. Here, events (in this case SOS) are assumed to occur 

independently of one another and therefore survival probability can be calculated from one 

interval to the next, and cumulative survival probability is calculated as a multiple of the 

survival probability between intervals. Equation 5-1 describes the probability of survival 

(not developing SOS) at time ti from time ti-1 where number of events are described as nSOS 

and number of patients without SOS at time ti are described as ni. 

 

Equation 5-1   𝑆𝑆(𝑡𝑡𝑖𝑖) = 𝑆𝑆(𝑡𝑡𝑖𝑖−1) × (1 − 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛𝑖𝑖

) 

 

Survival is assumed constant between times of events, resulting in a step function. 

Kaplan-Meier analyses are particularly effective in comparing survival between two or 

more groups of patients, through non-parametric statistical tests. The Log rank test is a 

chi-squared analysis that calculates the number of events expected since the last event 

between the groups.  

 

The use of Kaplan-Meier analyses is a simple and effective way of determining the 

difference in survival between two or more groups of patients. However, the analysis is 

limited by nature to categorical data. Also, for events as complicated as SOS post HSCT, 

there may be more than one confounding factor, which may not be recognised by a Kaplan 

Meier analysis alone. Lastly, while Kaplan-Meier analyses are effective at calculating 

survival, the hazard of developing SOS cannot be easily calculated and hence other 

means of analysis must also be employed. 
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5.1.3 Cox Proportional-Hazards Modeling of Busulfan 

Cox proportional hazards models overcome the issue of confounding factors by offering a 

method of multivariate analysis, where more than one covariate can contribute to the 

hazard of developing an event. A Cox proportional hazards model is often referred to as a 

semi-parametric survival analysis that describes the relationship between the incidence of 

an event, the time over which the events occurred and the covariates that impacted on the 

hazard. Equation 5-2 describes the hazard at time t (h(t)) as an exponential function where 

the baseline hazard at time 0 (h0 (t)) is multiplied by the exponential increase in hazard by 

p number of covariates (xp), each with their individual weighting or coefficient (bp). 

 

Equation 5-2  ℎ(𝑡𝑡) = ℎ0(𝑡𝑡) × 𝑒𝑒(𝑏𝑏1𝑥𝑥1+ 𝑏𝑏2𝑥𝑥2+ 𝑏𝑏3𝑥𝑥3+ … + 𝑏𝑏𝑝𝑝𝑥𝑥𝑝𝑝) 

 

The multivariate aspect of the Cox proportional hazards analysis can be described as a 

multiple linear regression of a logarithm of hazard. Much like linear regression, an 

assumption of proportionality is made, where a proportional increase or decrease in 

hazard is observed per unit or category of covariate.  

 

5.2 METHODS 

5.2.1 Software 

All statistical analyses were conducted on the software R (version 3.5.0) through the 

graphical interface R Studio (version 1.0.136). Busulfan pharmacokinetic information is as 

derived from the population pharmacokinetic model described in Chapter 3. Information on 

SOS incidence was described in Chapter 5. Time to SOS was calculated in days from first 

dose of busulfan administration to first mention of potential SOS in medical records.  
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5.2.2 Analysing Hazard for Time to SOS in the Study Population 

Kaplan Meier curves were constructed to assess the hazard of developing SOS after 

commencement of busulfan therapy for conditioning regimens and age categories. 

Significance was assessed upon both, visual analysis of curves, plotted with 5 – 95% 

confidence intervals, hazard ratios and log-rank scores between various categories and 

SOS incidence.   

 

Univariate Cox proportional hazards assessments of various transplant-related factors 

were undertaken on the time to SOS onset from commencement of busulfan therapy. 

Continuous covariates such as institution of transplantation, weight, adjusted ideal 

bodyweight, body surface area, busulfan clearance (L/h/Kg), cAUC, age at transplantation 

and pre-transplant albumin levels (g/mL) were assessed as causing a proportional 

increase or decrease in the hazard of SOS per unit increase of covariate at a significance 

of P < 0.05. Dichotomous categorical covariates, such as sex (male/female), transplant 

type (autologous/allogeneic) and concomitant use of serotherapy, paracetamol, 

metronidazole or fluconazole with busulfan were assessed as a hazard ratio with 5-95% 

confidence intervals and significance of P < 0.05. A multivariate Cox proportional hazards 

model was then constructed by incorporating all continuous and categorical covariates into 

a single analysis to identify the most significant covariates for time to SOS incidence in the 

study population. 
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5.3 RESULTS 

5.3.1 Non-Parametric Time to Event Analysis 

A total of 341 transplant occasions (64 SOS cases) had incidence or censoring information 

available for time to event analysis. For the time to event analysis, survival probability is 

the probability of not having SOS and will be referred to as survival probability hereon.  

The results of non-parametric and semi-parametric analyses are as reported below:  

 

5.3.1.1 Time to SOS and Conditioning Regimen 

The onset of SOS was analysed in the eight conditioning regimens for busulfan as 

described in Chapter 2. Median survival probability was plotted from first dose of busulfan 

to 160 days after, which was the last case reported for SOS. Large overlapping confidence 

intervals for each conditioning regimen were not plotted for clarity. A log-rank test identified 

no significant difference in hazards of SOS incidence for the various conditioning regimens 

(P = 0.19). Survival probability appeared lower for conditioning regimens predominantly 

used in children, such as consecutively or concomitantly administered fludarabine and 

busulfan followed by an alkylating agent, or melphalan followed by busulfan.  
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Figure 5-1 Survival probability of developing SOS over Time observed by conditioning 

regimen: Bu-Cy (black), Bu-Mel (grey), Cy-Bu (orange), concomitant Flu-Bu (gold), 

consecutive Flu-Bu (brown), Mel-Bu (dark green), concomitant Flu-Bu followed by Cy/Mel 

or thiotepa (purple) and RIC- concomitant Flu-Bu (grey). 

  



110 

5.3.1.2 Time to SOS and Autologous vs. Allogeneic Transplantations 

Kaplan Meier curves of time to SOS onset in autologous and allogeneic transplantations 

revealed no significant differences in survival probabilities as indicated by overlapping 

confidence intervals and log rank test (P  = 0.21) in Figure 5-2. 

 

Figure 5-2 Survival probability of developing SOS over Time observed by type of 

transplant: Allogeneic transplants with 5 – 95% confidence intervals (black), Autologous 

transplantations with 5 – 95% confidence intervals (red). 
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5.3.1.3 Time to SOS and Age 

Survival probabilities were significantly different in the adult population compared to the 

infant and children population as indicated in the Kaplan Meier figure 5-3. A log-rank test 

for trends analysed age as an ordered categorical covariate and indicated a significant 

improvement in survival over the categories (P < 1x10-4). This was an expected result from 

association studies in 5.3.1.1 given the marked difference in SOS incidence from infants to 

adults.  

 

 

Figure 5-3 Survival probability of developing SOS over Time observed by the following 

age categories with 5 – 95% confidence intervals: infants (black), children (grey), 

adolescents and young adults (orange) and adults (red). 
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5.3.1.4 Time to SOS, and SOS Prophylaxis 

The Kaplan Meier curves were analysed in patients with or without prophylaxis in the study 

population. A log-rank test identified significant differences (P = 1x10-4) over three groups 

of patients receiving ursodeoxycholic acid, defibrotide with ursodeoxycholic acid and no 

SOS prophylaxis during transplantation. Figure 5-4 highlighted lower survival probability in 

patients with SOS prophylaxis, particularly in high risk patients receiving defibrotide with 

ursodeoxycholic acid.  

 

 

Figure 5-4 Probability of developing SOS over Time observed in patients receiving SOS 

prophylaxis with 5 – 95% confidence intervals: no prophylaxis (black), ursodeoxycholic 

acid with defibrotide (orange) and ursodeoxycholic acid (red). 
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5.3.2 Proportional Hazards Model of SOS incidence 

 

5.3.2.1 Univariate Cox Proportional Hazards Model 

Time to SOS was recorded in 64/66 incidences in the study population. A Cox proportional 

hazards univariate analysis identified several continuous and categorical covariates that 

were significantly associated with SOS.  

 

5.3.2.1.1 Continuous Covariates 

Analysis of continuous covariates revealed a correlation between body size and SOS, 

such that adjusted- ideal bodyweight (kg), weight (kg) and age (y) were all significant 

covariates in the univariate analysis. Also, pharmacokinetic parameters such as busulfan 

volume of distribution (L), clearance (L/h) (both retaining an element of body-size) and 

observed Cmax (µg/mL) were also found to be significant. Pre-transplant albumin (g/L), a 

marker for liver heath was also identified as significantly associated with the hazard of 

developing SOS. The magnitude of hazard identified, as the beta coefficient, was highest 

for Cmax where a positive correlation of 0.43 was calculated per µg/mL increase and 

development of SOS, implying higher Cmax increased the hazard of developing SOS. There 

was no significant association between cAUC and hazard to SOS in the univariate 

analysis. The beta coefficient for cAUC also had one of the lowest Wald chi-squared test 

statistics, indicating the least influence as a covariate on the model. Adjusted-ideal 

bodyweight scored the highest Wald chi-squared statistic, indicating high significance, 

confirmed by a highly significant P value of 8.7 x 10-8. Table 5-1 summarises all continuous 

covariates tested on time to SOS from day 1 of busulfan dosing. Covariates are sorted in 

order of the highest Wald chi-squared test score.  
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Table 5-1 Continuous covariates for a univariate Cox- proportional hazard model of time to 

SOS from first dose of busulfan.  

 

β-

coefficient 

Hazard Ratio 

(5%-95% CI for 

HR) 

Wald chi-

squared test 
P value 

Adjusted Ideal Bodyweight 

(kg) -0.026 0.97 (0.97-0.98) 29 8.70 x 10-8 

Volume of Distribution (L) -0.037 0.96 (0.95-0.98) 27 1.70 x 10-7 

Body Surface Area (m2) -1 0.36 (0.25-0.54) 26 3.10 x 10-7 

Clearance (L/h) -0.15 0.86 (0.82-0.91) 26 3.50 x 10-7 

Bodyweight (kg) -0.02 0.98 (0.97-0.99) 23 1.70 x 10-6 

Age (y) -7.80E-05 1 (1-1) 18 1.80 x 10-5 

Cmax (μg/mL) 0.4315 

1.54 (1.26 – 

1.28) 4.35 1.3 x 10-5 

Pre-transplant Albumin (g/L) -0.035 0.97 (0.95-0.99) 12 0.00068 

Cumulative AUC 0.00013 1 (0.98-1) 0 0.99 

     

 

5.3.2.1.2 Categorical Covariates 

A range of categorical dichotomous covariates such as concomitantly administered 

metronidazole, fluconazole or paracetamol, which are believed to increase SOS incidence 

through various mechanisms, were not identified as significant in the univariate cox-

proportional hazards analysis. Other covariates such as sex, allogeneic vs. autologous 

transplants and concomitant T-cell depleting serotherapy were also not significant. 

Surprisingly, concomitant defibrotide for SOS prophylaxis was a significant covariate for 

the development of SOS with a hazard ratio of 3.5 (1.6 – 7.8), P = 0.0016. Fludarabine 

administration was identified as a weak contributor to the development of SOS with a 

hazard ratio of 1.7 (1 - 2.7), P = 0.044. Table 5-2 identifies all categorical dichotomous 
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covariates tested on the Cox-proportional hazards model, sorted by highest Wald chi-

squared test. . 

 

Table 5-2 Categorical covariates for a univariate Cox- proportional hazard model of time to 

SOS from first dose of busulfan.  

 
β-coefficient 

Hazard Ratio 

(5%-95% CI for 

HR) 

Wald chi-

squared test 
P value 

Defibrotide 1.3 3.5 (1.6-7.8) 10 0.0016 

Fludarabine 0.5 1.7 (1-2.7) 4.1 0.044 

Sex 0.43 1.5 (0.94-2.5) 2.9 0.087 

Paracetamol 0.47 1.6 (0.93-2.8) 2.9 0.09 

Type of Transplant  

(Autologous vs Allogeneic) 
-0.31 0.73 (0.4-1.3) 1 0.32 

Antivirals -0.2 0.82 (0.49-1.4) 0.61 0.44 

Thymoglobulin -0.15 0.86 (0.5-1.5) 0.31 0.58 

Cyclophosphamide -0.13 0.88 (0.53-1.5) 0.24 0.62 

Metronidazole -0.26 0.77 (0.24-2.5) 0.19 0.67 

Melphalan 0.086 1.1 (0.66-1.8) 0.11 0.74 

Cancer diagnosis -0.1 0.9 (0.47-1.7) 0.1 0.75 

Fluconazole 0.014 1 (0.58-1.8) 0 0.96 

 

5.3.2.2 Multivariate Analysis 

A multivariate Cox proportional hazards model of all significant continuous and categorical 

covariates from the univariate analyses is described in Table 5-3.. No covariates by 

themselves were found to be significant in the multivariate analysis confirming the 

multifactorial nature of SOS onset. The P-values for the likelihood ratio test, the Wald test 

and the Score (logrank) test for the overall models were 4.75 x 10-6, 5.26 x 10-6  and 2.75 x 

10-7, respectively, indicating the effect is significant.  
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Table 5-3 Multivariate Cox- proportional hazard model of time to SOS from first dose of 

busulfan.  

  β-coefficient HR (5 – 95% CI) 
Wald chi-

squared test 
P value 

Defibrotide -0.63 0.53 (0.23 – 1.22) -1.5 0.14 

Pre-transplant 
Albumin (g/L) 

-0.015 0.98 (0.96 – 1) -1.4 0.18 

C
max

 (μg/mL) 0.18 1.2 (0.90 – 1.6) 1.25 0.21 

Age (y) 1.8 x 10
-5
 1 (1 – 1) 0.52 0.60 

Adjusted Ideal 
bodyweight (kg) 

-0.018 0.98 (0.91 – 1.06) -0.45 0.65 

Volume (L) -0.014 0.98 (0.79 – 1.2) -0.13 0.90 

Clearance (L/h) 0.021 1.02 (0.59 – 1.7) 0.08 0.94 

 

5.4 DISCUSSION 

5.4.1 Time to SOS- Analysis by Non- and Semi-parametric Investigations.  

An attempt to study time to SOS was made using non-parametric and semi-parametric 

time to event analyses. Kaplan Meier curves produced for conditioning regimens failed to 

show significant differences in survival probabilities of the various regimens. Survival 

probabilities were significantly different in the age categories from infants to adults. This 

was expected from the aforementioned association studies and is a phenomenon well-

supported by the literature.111 164 While it is unclear as to why there is a higher incidence of 

SOS in children, there is a trend in recent guidelines towards treating SOS in both patient 

groups as separate diseases with their own presentations, risk factors, diagnoses and 

gradations 113 114. Age was also an underlying risk factor in almost all significant findings of 

the non-parametric analyses. All paediatric patients received ursodeoxycholic acid as 
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prophylaxis and some received defibrotide with ursodeoxycholic acid. Therefore, the 

largest contribution to SOS incidence in the SOS prophylaxis groups was made by the 

entire paediatric cohort. The marked improvement in survival over the age categories 

prompted an investigation into how the hazard of SOS would change over age as a 

continuum. Therefore, a Cox proportional hazards model was employed where age was 

incorporated as a continuous covariate.  

 

5.4.2 Uni- and Multi-variate Cox Proportional Hazards Models 

Univariate Cox regression analysis allowed for the incorporation of transplant-related 

factors as covariates that could influence the hazard of SOS in the study population. The 

analysis identified several covariates in relation to body-size that affected time to SOS 

from first day of busulfan dosing. Most of the investigations conducted in this study until 

this point identified age as the underlying factor in determining SOS incidence, however 

the results of the univariate analysis identified AIBW as the strongest covariate for 

characterising SOS hazard. This was attributed to a more consistent distribution of weight 

over the entire range of the study population compared to age. The association between 

AIBW and SOS was not maintained in the multivariate analysis, rather a multitude of 

covariates were found to affect the hazard of SOS in a transplant patient. Of course, the 

dramatic fall in the rate of SOS incidence between children and young adults as observed 

in the association studies implies a non-linear relationship between SOS hazard and age, 

which cannot be tested in a Cox proportional hazard model and is a limitation of the 

analysis. 

 

Although several confounding factors relevant to busulfan use in transplantation were 

investigated in this analysis, there were still many aspects missing. Sinusoidal obstruction 
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syndrome is a complication of transplantation, partly attributed to busulfan use. Other 

chemotherapeutics such as gemtuzumab and ozogamicin and prior radiation have also 

been associated with SOS, as have concomitant norethisterone and thalassaemia.111 The 

presentation of SOS can be ambiguous in its early stages and differential diagnosis 

between acute graft vs. host disease of the gut amongst other complications can be 

difficult. Therefore, inaccurate determination of time of SOS diagnosis, in addition to the 

potential for under- or over-diagnosis may have influenced the results. Lastly, a time-

course of SOS development in patients according to the most recent guidelines requires 

sophisticated modeling of multiple events such as thrombocytopaenia, hyperbilirubinaemia 

and also involvement of other organs such as the kidneys and lungs. All of these were 

beyond the scope of this analysis and are a possible extension for future research.  

 

In all, this chapter aimed to analyse time to SOS after the administration of busulfan. While 

busulfan cAUC did not impact on the hazard of developing SOS, Day 1 Cmax as observed 

at the end of infusion was observed to be a significant covariate. Chapter 6 proceeds to 

explore predisposition to SOS through an exploratory pharmacogenetic analysis of the 

study population as a final attempt to understand the development of SOS after busulfan 

administration. 

  



119 

 

 

 

 

 

 

 

 

 

Chapter 6.            
PHARMACOGENETIC VARIABILITY OF GLUTATHIONE-S-

TRANSFERASES AND OTHER ADME ENZYMES IN 
PATIENTS RECEIVING BUSULFAN 
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6.1 INTRODUCTION 

Chapter three characterised variability in busulfan clearance across the study population 

using a population pharmacokinetic approach. The effect of concomitant medications on 

busulfan clearance was also noted, as were the effects of conditioning regimens. Chapter 

4 explored the pharmacodynamic relationship between busulfan and the toxicity of 

Sinusoidal Obstruction Syndrome (SOS). While targeted busulfan exposure, estimated as 

a cumulative area under the curve (cAUC), was not significantly associated with SOS, a 

higher Cmax on the first dose was observed in patients with SOS compared to those 

unaffected and receiving similar dosage regimens.  

 

6.1.1 Genetic Influences on pharmacokinetic variability  

A large proportion of busulfan pharmacokinetic (PK) variability has been attributed to 

differences in metabolism between individuals. Section 1.4.2.3 outlined the metabolism 

pathway for busulfan through various enzymes. The impact of one or more polymorphisms 

of the listed enzymes on busulfan clearance have been previously studied. Busulfan is 

predominantly metabolised by the glutathione S transferase (GST) family of enzymes, and 

various polymorphisms of GST enzymes, particularly GST-A1, -M1 and -T1, have been 

associated with a lower busulfan clearance.165 A recent analysis incorporated GSTA1 

polymorphisms into a population pharmacokinetic model based on enzymatic activity, to 

further characterise variability in busulfan clearance.92 While that study quantified the 

genetic contribution to busulfan pharmacokinetic variability in a paediatric population, there 

is no similar study in an adult cohort. 

 

Apart from the GST family of enzymes, there is little information on other enzymes and 

metabolic pathways that are associated with busulfan PK variability. An exploratory 
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analysis in a panel of 1936 SNPs in ADME genes, as described by Ten Brink et al. in an 

adult transplant population, did not find any influence  of genetic variants on busulfan 

clearance, with the exception of GSTA1.166 Enzymatic maturation has been discussed in 

previous chapters as having an effect on busulfan clearance in young children, and this 

may also be subject to genetic variation. This level of complexity may be beyond the scope 

of this thesis.  Nevertheless, the impact of genetic variation in a panel of ADME genes 

could shed further light on sources of pharmacokinetic variability. 

 

6.1.1.1 Linear Regression Analysis of the Influence of Genotype on Busulfan 

Clearance 

Associations with busulfan clearance are commonly studied using linear regression 

analysis. Similar to the models constructed in Chapters 3 and 5, linear regression allows 

for the prediction of a dependent variable (in this case clearance) in an individual. 

Assuming a linear relationship, clearance can be predicted as the sum of all significant 

covariates that are present in the individual. A weighting or coefficient describes the 

magnitude of the effect of each covariate on the parameter. Equation 6-1 describes the 

mathematical relationship for linear regression where busulfan clearance (CL) is affected 

by an 𝑛𝑛 number of covariates, each with their own coefficient (𝛽𝛽). Covariates are retained 

in the analysis based on the P-value calculated from the Wald Z-score (calculated as the 

coefficient divided by standard error).  

 

Equation 6-1   𝐶𝐶𝐶𝐶 =  𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 +  𝛽𝛽3𝑥𝑥3 … + 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 
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6.1.2 GST and SOS 

Beyond the influence of metabolizing enzymes on busulfan pharmacokinetics, genetic 

variants of GSTA1 and GSTM1 have also been linked to pharmacodynamic outcomes 

such as a higher incidence of SOS. Although the association is not observed 

consistently,167 recent analysis of GSTA1 polymorphisms have found a sex-linked 

predisposition to developing SOS in patients with the GSTA1*B/*B diplotype.92 

Furthermore, patients with genetic variants of cystathionase (CTH), an enzyme involved in 

glutathione synthesis, had a greater risk of developing SOS when these variants occurred 

in conjunction with the GSTA1*B/*B genotype168. Patients null for the GSTM1 enzyme are 

also at increased risk of SOS169. Other genetic polymorphisms in enzymes such as 

methylene-tetrahydrofolate-reductase (MTFR-A1298C) have been shown to independently 

affect peak levels of bilirubin and duration of hyperbilirubinaemia in patients with SOS after 

busulfan therapy.170 

 

6.1.2.1 Logistic Regression Analysis of Genotypes affecting SOS 

Logistic regression can describe the relationship between a binary variable such as the 

presence or absence of SOS with one or more covariates. Like linear regression, 

covariates are incorporated in an additive process using Equation 6-2. Significant 

covariates are retained based on the p-value calculated from the Wald Z- score.  

 

Equation 6-2  𝑙𝑙𝑙𝑙 � 𝑝𝑝
1−𝑝𝑝

� =  𝛽𝛽𝑜𝑜 + 𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 … + 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 

 

This chapter describes an exploratory analysis on a panel of drug metabolising enzymes 

and their relationship with busulfan clearance and SOS. Furthermore, this chapter aims to 
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characterise the contribution of GSTA1 polymorphisms to variability in busulfan clearance 

and also their association with SOS.  

6.2 METHODS 

6.2.1.1 Materials 

Tris EDTA (TE) buffer was sourced from invitrogen by Thermo Fisher Scientific (LOT 

00369409) for the dilution of patient DNA samples. DNA concentration was measured 

using a NanoDrop Microvolume Spectrophotometer® and confirmed using a Qubit® 2.0 

fluorescence detector. Working solution and standard solutions (Qubit® dsDNA HS Assay 

Kit) were supplied by the Bosch Institute at the University of Sydney.  

 

6.2.1.2 DNA Extraction 

Patient EDTA blood samples were collected at the time of busulfan therapy. DNA was 

extracted using Roche MagNA from the fresh blood samples following the manufacturer’s 

instructions and stored as two separate aliquots. The DNA samples and any remaining 

whole blood were then stored at -80 ºC until further use. Frozen DNA samples were 

thawed immediately before vortex mixing and centrifuged at 14,000 rpm for 2 minutes prior 

to use. 

 

6.2.1.3 DNA Quantitation 

6.2.1.3.1 Calculating DNA concentration using UV-spectrophotometry 

DNA concentrations were measured using UV-spectrophotometry. The Nanodrop™ is a 

UV-spectrophotometer that can analyse microliter volumes of solutions of DNA, RNA or 

protein for purity and concentration. The Nanodrop™ was initialised using 1 µL of nuclease 

free water and TE buffer. One microlitre samples were then placed on the nanodrop 
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detector to quantify the concentration of DNA. DNA purity was also determined using the 

260/280nm ratio as calculated by the Nanodrop. Calculated volumes of DNA samples 

were aliquoted into Eppendorf tubes to produce 100 µL samples normalized to 5 ng/µL 

diluting in TE buffer. 

 

6.2.1.3.2 Calculating DNA concentration by fluorescence 

Prior to shipping for analysis, DNA sample concentrations were reconfirmed using 

fluorescence at the Bosch Institute at University of Sydney. The Qubit® working solution 

was prepared by diluting Qubit® dsDNA HS Reagent at a ratio of 1 µL of reagent to 199 µL 

of TE buffer. Standards were prepared by diluting 10 µL of standard solution in 190 µL of 

working solution in an Ultra-clear Qubit™ assay tube. 

 

All normalized samples were tested by adding 5 µL of sample to 195 µL working solution 

in Ultra-clear Qubit™ assay tubes. Concentration of the normalized samples were back-

calculated to the original concentration of the stock and samples were remade to 5 ng/µL 

concentrations prior to plating on a 96-well plate. 

 

6.2.1.4 Exploratory analysis of ADME enzymes and association with busulfan 

clearance and Sinusoidal Obstruction syndrome 

 

6.2.1.4.1 The Patient Population 

DNA samples were available in a subset of 217 patients (141 adults and 76 children) 

transplanted between 2010 and 2016 from six out of seven institutions (all except PMCC). 

Median age was 37 years (4 months – 67 years) and median weight was 66 kg (5.2 kg – 

122 kg). One hundred and sixty-three patients received allogeneic transplants and 54 
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patients received autologous transplants. The largest groups of patients transplanted were 

treated for AML (n = 70), NHL (n = 32) and MDS (n = 16). 

 

6.2.1.4.2 Analysis 

Samples were sent to the Australian Genomics Research Foundation (AGRF) for analysis 

of common genetic variant in a panel of absorption, distribution, metabolism and 

elimination (ADME) enzymes using iPLEX PRO chemistry on an ADME PGx Pro panel.   

 

“AGRF is accredited by the National Association of Testing Authorities, Australia to 

ISO/IEC 17025:2005 in 8.81.02 Genotyping (Accreditation No. 14332). The test(s) 

reported have been performed (and this document is issued) in accordance with NATA's 

requirements.  AGRF is also a registered Agena Certified Service Provider (CSP).  Agena 

works closely with CSP providers to ensure technical staff, equipment and workflows meet 

the standards needed for the highest quality MassARRAY System® research services.” 

 

6.2.1.4.3 Quality Control 

Patients with a call rate of less than 90% were excluded from the analysis. All SNPs were 

tested for deviation from Hardy-Weinberg equilibrium for a P – value cut-off of 0.05 with a 

Bonferroni correction (P – value <0.05 divided by the number of SNPs tested). SNPs with 

a minor allele frequency of less than 1% were excluded from analysis  

 

6.2.1.4.4 Association with normalised CL and SOS 

Individual clearance normalised to bodyweight (CLNORM) was calculated from the 

population pharmacokinetic analysis as described in Chapter 3. Age was incorporated as a 
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covariate for all patients to account for age-related maturation processes. Patients with 

SOS were identified as described in Chapter 4. A linear regression analysis was 

constructed for each SNP significantly associated with CLNORM (P < 0.01).  

 

Logistic-regression analysis was used to determine associations between SNPs and SOS 

(P <0.01). Age was incorporated as a covariate on both models to account for changes in 

clearance over age. Linear regression analysis and additive model development on PLINK 

was conducted by Alexis Liu (PhD Candidate in Pharmacogenomics) and her contribution 

to this aspect of the thesis chapter is duly acknowledged.  

 

Copy number variations (CNVs) are repeating numbers of genetic regions, which have 

been associated with variability in drug responses171 and were therefore of interest in this 

study. Copy number variations can occur in individuals due to gene deletions, insertions, 

inversions, duplications or complex recombinations.172  Gene deletions are common in the 

GST family of enzymes, occurring in roughly 50% and 30% of the population for GSTM1 

and GSTT1.173 As the GSTM1 and GSTT1 enzymes are involved in the metabolism 

pathways for several drugs (including busulfan), patients homozygous for the gene 

deletions are reported to have greater toxicities, such as leukocytopaenia and 

thrombocytopaenia from R-CHOP (rituximab with cyclophosphamide, vincristine, 

doxorubicin and prednisolone) therapy in patients with diffuse large B-cell lymphomas.174 

Similar toxicities have also been reported for GSTM1 and GSTT1 gene deletions in 

patients administered busulfan prior to HSCTs.165 Therefore in addition to the SNPs 

investigated, the influence of CNVs in GSTM1, GSTT1 and also GSTT2 were also studied 

as part of the exploratory analysis.   
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6.2.1.5 Assessment of GSTA1 polymorphisms in busulfan clearance and SOS.  

DNA samples collected for 184 patients (117 adults and 67 children) were sent for analysis 

to the CanSearch group (Université de Genève, Switzerland) under the guidance of 

Professor Marc Ansari for determination of GSTA1 using a previously reported algorithm.92 

Single nucleotide polymorphisms in the promoter region of GSTA1 at positions T-513-

C(rs119649968), A-567-C (rs4715332), A-631-C (rs4715333) and C-1142-G (rs58912740) 

were analysed and patients categorised into six different haplotypes as summarised in 

Table 4-1.175   

 

Table 6-1 Summarising the corresponding SNP combinations to denote the haplotype of 

GSTA1 

T-513-C A-567-C A-631-C C-1142-G Haplotype 

T A C G *A2 

T A A C *A3 

T A A G *A1 

T C C C *B1a 

T C C G *B2 

C C C C *B1b 

 

Patient diplotypes were consolidated into four ordinal categories separated by activity,92 as 

shown in Table 6-2.176 The impact of diplotype on busulfan CLNORM was assessed between 

the four categories using a post-hoc analysis of non-parametric Mann-Whitney U-tests.  
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Table 6-2 GSTA1 diplotypes divided into four activity groups where group I) is extensive 

metabolisers, II is normal metabolizers, III normal/slow metabolisers and IV are slow 

metabolisers.  

GSTA1 *A2 *A3 *A1 *B1a *B2 *B1b 

*A2 I I II II II IV 

*A3 I I II II II IV 

*A1 II II III III III IV 

*B1a II II III IV IV IV 

*B2 II II III IV IV IV 

*B1b IV IV IV IV IV IV 

 

 

6.2.1.6 Data Analysis 

Association studies and quality control were performed using PLINK v 1.9, GraphPad 

Prism 7. Haplotype analysis was performed on PHASE 2.1. Analysis of GSTA1 

polymorphisms was conducted on R (version 3.5.0) on the R Studio platform (version 

1.0.136). 

6.3 RESULTS 

6.3.1 Linear and And Logistic Regression Analysis For ADME Enzymes Associated 

With Busulfan Clearance And SOS 

A total of 217 individual DNA samples were available for the exploratory analysis. As 

problems of power with a smaller sample size were reported in a previous exploratory 

study where patients were divided into training and validation cohorts, this analysis was 

conducted using all available samples.   Six SNPs were excluded from the analysis due to 
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a missing rate of >10%. A further 102 SNPs were removed due to minor allele frequencies 

of <1%. Eleven SNPs were excluded for deviation from the Hardy-Weinberg equilibrium, 

leaving a total of 67 SNPs for analysis. A list of excluded SNPs is provided in Appendix 5 

of this thesis. Given the vast age range, both linear and logistic regression analyses were 

conducted with age incorporated as a prior covariate.  

 

Linear regression analysis as summarized in Appendix 3 identified the weighting (B 

coefficient) for each of the genes as a covariate. The significance of each covariate was 

assessed using the Wald Z-score (B coefficient divided by standard error) and the 

corresponding P-value.  No SNPs from the ADME panel were identified to be of 

significance with regards to busulfan clearance or incidence of SOS  by the linear 

regression analysis.  

 

6.3.2 The Influence of  GSTM1, GSTT1 and GSTT2 Variants on Busulfan CLNORM and 

SOS Incidence 

 

6.3.2.1 GSTM1 

A total of 217 patients were included for the analysis of GSTM1, GSTT1 and GSTT2 

activity on busulfan CLNORM and SOS. In GSTM1, 125 patients were observed to have a 

gene deletion (CNV = 0). A further 76 patients had a single copy of the GSTM1 gene and 

the remaining 22 patients had both copies present. A Mann Whitney comparison of CLNORM 

in the three CNV groups showed no significant differences in the median CLNORM ( 0.18 

L/h/kg (0.09 L/h/kg – 0.33 L/h/kg), 0.18 L/h/kg (0.12 L/h/kg – 0.38 L/h/kg) and 0.16 L/h/kg 

(0.13 L/h/kg – 0.27 L/h/kg) for CNV = 0,1, and 2 respectively) of the three groups (P = 

0.47). Figure 6-1 illustrates the difference in CLNORM for the three activity groups of 

GSTM1.  
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Figure 6-1 CLNORM in patients with a gene deletion, one or two copy number variants for 

GSTM1. Median CLNORM is identified as a bold line dividing the box marking the 25% and 

75% quartiles. The whiskers extend to the smallest observation and largest observations 

within 1.5 x IQR. Points beyond the parameters of the box and whiskers were plotted 

individually as outliers. 

 

For the 92 patients with at least one copy of the gene (CNV > 0), patient alleles could be 

divided into homozygous *A, homozygous *B or heterozygous *A*B alleles. However, both 

alleles of GSTM1 have been shown to have comparable activity and therefore were 

treated as a single group of patients active for GSTM1. A Mann-Whitney analysis failed to 

reveal any significant differences in median busulfan CLNORM of patients with (0.17 L/h/kg, 

0.12 L/h/kg – 0.92 L/h/kg) or without (0.18 L/h/kg, 0.09 L/h/kg – 0.48 L/h/kg) a functional 

GSTM1 genotype (U = 5388, N = 217, P = 0.429.) 
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The incidences of SOS in patients with or without functional GSTM1, were 30% and 23%, 

respectively. No significant differences were observed in SOS incidence of the two groups 

Χ2 (d.f .= 1,N = 217,P = 0.5) = 0.45. Furthermore, a comparison of SOS incidence between 

patients with gene deletion, one or two alleles for GSTM1 (23%, 17% and 18%, 

respectively) did not reveal any significant influence of GSTM1 genotype on SOS 

incidence X2 (d.f. = 2, N = 217, P = 0.69) = 0.74. 

 

6.3.3 GSTT1 
Gene deletion (CNV = 0) was observed in 49 of 217 patients. A Mann Whitney analysis of 

busulfan median busulfan CLNORM found no significant differences in patients with (0.18 

L/h/kg ,0.09 L/h/kg – 0.92 L/h/kg) or without (0.18 L/h/kg, 0.09 L/h/kg – 0.81 L/h/kg) 

GSTT1 gene deletion (U = 4289, N = 217, P = 0.66). Furthermore, a Χ2 analysis of SOS 

incidence in patients with or without GSTT1 gene deletion (24% and 20%, respectively) 

failed to find any significant differences Χ2 (d.f .= 1,N = 217,P = 0.66) = 0.20.  

 

6.3.4 GSTT2 

A total of 56 patients had a gene deletion for GSTT2. A Mann Whitney analysis of median 

busulfan CLNORM found no significant differences in patients with (0.18 L/h/kg ,0.10 L/h/kg – 

0.30 L/h/kg) or without (0.18 L/h/kg, 0.09 L/h/kg – 0.92 L/h/kg) GSTT2 gene deletion (U = 

4491, N = 217, P = 0.97). A Χ2 analysis of SOS incidence in patients with or without 

GSTT2 gene deletion (18% and 22%, respectively) did not find any significant differences 

Χ2 (df = 1, N = 217, P = 0.60) = 0.27. 
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6.4 CHARACTERISATION OF GSTA1 POLYMORPHISMS IN THE STUDY 

POPULATION 

Glutathione-S-transferase- α1 polymorphisms were characterised in a separate analysis of 

216 patients in the study population. Of these, 23 samples were not usable for analysis 

and eight samples were uncharacterized beyond determination of the C-69-T SNP on the 

promoter region. They were included in analysis where only one SNP was used to 

categorise patients. The analysis reported in this thesis was based on genotyping of either 

A-52-G or A-567-C, which are in complete linkage disequilibrium with C-69-T. Patients 

were divided into three groups based on their genotype for -52 or -567, based on 

GSTA1*A, GSTA1*A/*B and GSTA1*B genotypes. The influence of GSTA1 diplotypes on 

busulfan clearance normalised to bodyweight (CLNORM L/h/kg) reported purely on the basis 

of the one SNP are summarised in a boxplot (Figure 6-2). 

 

Table 6-3 GSTA1 diplotype frequencies in the patient population with mean CLNORM and 

standard deviation for all patients genotyped for GSTA1 in the study population. 

Diplotype Number of 

patients (%) 
Mean CLNORM (range) SD 

GSTA1*A 86 (45%) 0.22 (0.07 – 0.37) 0.056 

GSTA1*A/*B 76 (39%) 0.19 (0.09 – 0.35) 0.057 

GSTA1*B 31 (16%) 0.18 (0.10 – 0.31) 0.051 
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Figure 6-2 Boxplots comparing median CLNORM (L/h/kg) in three haplotypes of GSTA1 

determined by the A-52-G or A-567-C SNPs. Median CLNORM is identified as a bold line 

dividing the box marking the 25% and 75% quartiles. The whiskers extend to the smallest 

observation and largest observations within 1.5 x IQR. Points beyond the parameters of 

the box and whiskers were plotted individually as outliers, as present in the intermediate, 

normal and slow metabolisers. 

 

An unpaired t-test between all groups found CLNORM in patients with the GSTA1*A 

genotype (mean CLNORM = 0.22, SD = 0.056) to be significantly higher than that in patients 

with either the GSTA1*A*B genotype (mean CLNORM = 0.19, SD = 0.057) or GSTA1*B 

genotype (mean CLNORM = 0.18, SD = 0.051). The t-statistic, degrees of freedom and 

significance are summarised in Table 6-4. 
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Table 6-4 Patient GSTA1 polymorphisms on C-69-T  using an unpaired t-test of mean 

CLNORM. Significance is reported with 5th and 95th percentile confidence intervals of the 

difference  

Group 1 

(n = ) 

Group 2 

(n = ) 
T (df) P – Value 

Mean 

difference in 

CLNORM 

5th – 95th 

percentile 

confidence 

intervals of the 

difference in 

mean CLNORM 

GSTA1*A 

(86) 

GSTA1*A/*B 

(76) 

2.89 (156) 0.004 0.03 0.008 – 0.04 

GSTA1*A/*B 

(76) 

GSTA1*B 

(31) 

-1.43 (63) 0.15 0.02 -0.039 – 0.006 

GSTA1*A 

(86) 

GSTA1*B 

(31) 

3.84 (58) 0.0003 0.04 0.02 – 0.06 

 

 

 

6.4.1.1 The Association Between Busulfan Clearance and GSTA1 Activity  

Beyond the distribution of patients into GSTA1*A,*B or *A*B haplotypes, GSTA1 

polymorphisms were categorised according to the recently-described functional groups 

developed from the combinations of four SNPs. Table 6-5 characterises the patient 

diplotypes and summarises their frequency. The table divides the various diplotypes into 

the four functional groups of rapid, intermediate, normal and slow metabolisers as 

described by Ansari et al.92 
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Table 6-5 Number of patients per diplotype of GSTA1, separated into the four categories 

of groups I -Rapid, II - Intermediate, III- Normal and IV- Slow metabolisers of busulfan.  

 GSTA1 Diplotype Number of Patients 

(%) 

Number of patients 

per functional group  

Group I 

(Fast) 

GSTA1*A2/*A2 14 (7%) 
16 (8%) 

GSTA1*A3/*A3 2 (1%) 

Group II 

(Fast-Normal) 

GSTA1*A1/*A2 22 (11%) 

59 (31%) 

GSTA1*A1/*A3 2 (1%) 

GSTA1*A2/*B1a 20 (10%) 

GSTA1*A2/*B2 1 (1%) 

GSTA1*A3/*B1a 1 (1%) 

GSTA1*A3/*B2 13 (7%) 

Group III 

(Normal) 

GSTA1*A1/*A1 41 (21%) 

63 (33%) GSTA1*A1/*B1a 18 (9%) 

GSTA1*A1/*B2 4 (2%) 

Group IV 

(Slow) 

GSTA1*A1/*B1b 9 (5%) 

44 (23%) 

GSTA1*A2/*B1b 3 (2%) 

GSTA1*A3/*B1b 1 (1%) 

GSTA1*B1a/*B1a 23 (12%) 

GSTA1*B1a/*B1b 5 (3%) 

GSTA1*B1b/*B1b 2 (1%) 

GSTA1*B2/*B2 1 (1%) 

Undetermined 
GSTA1*A/*A 3 (2%) 

9 (5%) 
GSTA1*A/*B 6 (3%) 

Total  193 (100%)  
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Distribution of patients across the four categories of predicted GSTA1 activity in adults was 

consistent with literature available on paediatric data, with the exception of Group 4, which 

was higher (23% vs 14.5% in literature).92 Categorising patients by activity allowed for the 

inclusion of patients with diplotypes of lower frequency in the analysis. Busulfan 

clearances calculated using the population pharmacokinetic model were normalised to 

bodyweight to account for size-related differences. Table 6-6 highlights the median CLNORM 

(L/kg/h) for patients across the four activity groups with median ages. Difference in median 

busulfan clearance between two groups were assessed using a  one-way analysis of 

variance, which found no significant difference in CLNORM of patients grouped in either 

activity group (F(3,180) = 2.17, P = 0.09).   

 

Table 6-6 The patients as divided in each category of GSTA1 metabolisers. 

GSTA1 

category 

Median Age (y, range) Median CLNORM (L/kg/h, range) 

I 19 (0.6 – 58) 0.20 (0.15 – 0.37) 

II 40 (1.4 – 65) 0.18 (0.11 – 0.35) 

III 41 (0.12 – 65) 0.19 (0.07 – 0.35) 

IV 25 (0.3 – 65) 0.17 (0.10 – 0.31) 
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Figure 6-3 summarises the differences in distribution of CLNORM across the four functional 

groups through a boxplot. A marked difference in the CLNORM of slow metabolisers can be 

observed compared to the fast, intermediate and normal metabolising functional groups.  

 

Figure 6-3 Boxplots comparing median CLNORM (L/h/kg) in the four categories of patient 

GSTA1 activity. Median CLNORM is identified as a bold line dividing the box marking the 

25% and 75% quartiles. The whiskers extend to the smallest observation and largest 

observations within 1.5 x IQR. Points beyond the parameters of the box and whiskers were 

plotted individually as outliers, as present in the intermediate, normal and slow 

metabolisers. 

 

6.4.1.2 Relationship between GSTA1 activity and SOS 

Sinusoidal obstruction syndrome was diagnosed in 16 (14%) patients in the subpopulation 

characterised for GSTA1 polymorphisms. Based on the single SNP discrimination of 

GSTA1 subtypes, SOS was diagnosed in 6 (12%), 6 (13%) and 4 (20%) patients with 

GSTA1*A, *A*B and *B haplotypes, respectively. A Χ2 analysis revealed no significant 

differences in SOS incidence between the three groups of GSTA1 Χ2 (df = 2, N = 116) = 

0.83, P = 0.66. 
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The incidence of SOS in adult patients according to predicted phenotype was 21% (n =3), 

10% (n =3), 13% (n = 6) and 15% (n = 4) for rapid, intermediate, normal and slow 

metabolisers, respectively. Given the small number of SOS incidences per functional 

group, a X2 squared analysis could not be performed. Also, there were no significant 

differences in median CLNORM values of patients with or without SOS in any of the 

phenotypic enzyme function groups for GSTA 1 as illustrated in a box plot (Figure 6-4).  

 

 

Figure 6-4 Normalised clearances (L/h/kg) of patients with or without SOS for each 

category of GSTA1. Median CLNORM is identified as a bold line dividing the box marking the 

25% and 75% quartiles. The whiskers extend to the smallest observation and largest 

observations within 1.5 x IQR. Points beyond the parameters of the box and whiskers were 

plotted individually as outliers, as present in the intermediate, normal and slow 

metabolisers. 
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6.5 DISCUSSION 

This chapter explored the genetic variability in the study population and attempted to 

explore the effect of genetic variants on busulfan clearance and SOS incidence. The 

analysis was divided into two segments; one an exploratory panel of ADME enzymes for a 

cohort of 217 individuals with available extracted DNA and secondly a detailed analysis of 

GSTA1 polymorphisms on a group of 184 patients from the study cohort. Beyond the 

glutathione-transferase superfamily of enzymes, there is a dearth of literature on busulfan 

metabolism. An exploratory analysis by Ten Brink et al. identified genes significantly 

associated with busulfan clearance using linear regression analysis in adult patients. 

However, there has been no similar exploratory analysis reported to date for paediatric 

patients. The current study population provided a unique opportunity to explore enzymatic 

associations in patients spanning the entire human lifespan.  

 

One of the challenges associated with an exploratory analysis in the study population was 

the varying clearance of busulfan over age. The addition of age as a covariate prior to 

commencing the linear regression analysis for the various SNPs sought to overcome the 

differences in clearance. However, enzymatic immaturity of GST enzymes has been 

reported and characterised in populations previously, and also in the analysis described in 

Chapter 3.  

 

Given the small number of patients available and to maximise the statistical power of the 

exploratory analysis of ADME enzymes, the study population was not divided further into 

training and validation cohorts. An initial exploration of the linear regression did find two 

SNPs significantly associated with busulfan clearance in the linear regression analysis, 
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however on further Despite the larger group of 217 patients, linear and logistic regression 

analyses failed to identify further effects of SNPs on either busulfan clearance or SOS.  

 

Comparison of genotype groups for GSTM1, GSTT1 and GSTT2 also failed to show 

significant differences in busulfan clearance or SOS incidence in the study population. 

Given the modest differences in incidence of SOS (4 – 6% between patients with or 

without gene deletions for GSTT1, GSTT2 and GSTM1), the sample size was not large 

enough to yield significant results. In the literature, patients with a combination of gene 

deletions for both GSTM1 and GSTT1 have been reported to have a higher incidence of 

SOS.177 However, only 14 patients in the study population had no activity for both GSTM1 

and GSTT1, of whom three developed SOS, and this relationship was not assessed 

further due to lack of statistical power. 

 

However, in the cohort of adult patients where GSTA1 polymorphisms were characterised, 

significant differences in normalised clearance were observed. The division of patients into 

*A and *B haplotypes alone was sufficient to highlight significant differences in busulfan 

CLNORM for patients with or without the *B allele. Lower GSTA1 activity in patients with the 

*B haplotype has been reported previously to result in a lower busulfan clearance.178  

 

The further characterisation of GSTA1 haplotypes into the six polymorphisms was shown 

to refine the classification of enzymatic activity relative to the conventional single SNP 

genotyping.175 Patient diplotypes could be divided into four phenotypic groups that reflect 

GSTA1 activity and may explain the differences in busulfan CLNORM. These phenotypic 

groups have also been successfully incorporated into population pharmacokinetic models 

for paediatric populations. This was the first attempt at characterising GSTA1 haplotype 
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variability according to the most recent model and to identify the impact of functional 

GSTA1 diplotype groups on busulfan CLNORM. In the adult population, no significant 

differences in CLNORM were observed for rapid, intermediate or normal metaboliser 

phenotypes. However, all three phenotypic groups (mean CLNORM = 0.20 L/h/kg) had 

significantly higher CLNORM values compared to the slow metabolisers (mean CLNORM = 

0.18 L/h/kg) t = 2.62 (df 80.9) = P = 0.01. Based on the differences observed in both types 

of GSTA1 characterisations, a prospective validation of GSTA1 genotyping prior to 

busulfan administration may help target busulfan cAUCs more effectively.  

 

To compare between the two methods of analysing GSTA1 polymorphisms, patients with a 

*B allele, either homo- or heterozygous, represented 56% of GSTA1 genotyped patients 

(65 patients). The slow metaboliser phenotypic groups however, represented 22% of the 

genotyped patients for GSTA1 (26 patients). The determination of *A and *B alleles is a 

simpler process that requires the genotyping of a single SNP, while characterising 

phenotypic groups requires the analysis of four SNPs, which then need to be sorted into 

four activity groups. The process of determining GSTA1 diplotype groups can be 

expensive and time consuming and, based on this analysis, did not provide additional 

benefit in adult patients to characterise pharmacogenomic variability. Given the small 

number of patients genotyped relative to the entire study population (337 individuals) and 

the smaller groups tested for lower clearance, such as *B or the slow metaboliser 

phenotypic group, incorporation into the population pharmacokinetic model was not 

attempted.  

 

In all, the results of this chapter have identified a clear relationship between the *B 

polymorphism of GSTA1 and lower busulfan clearance. Furthermore, this analysis finds 

sufficient discrimination in busulfan clearance using determination of C-69-T genotype for 
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GSTA1 as either  *A or *B, and no further benefit of the complicated phenotypic activity 

groups as described by Ansari et al. However, despite marked differences in busulfan 

clearance of the GSTA1 diplotypes, there was no identifiable relationship between GSTA1 

polymorphisms and the development of SOS.  
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Chapter 7.                     
CONCLUSIONS AND FUTURE DIRECTIONS 
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This thesis has, through a number of experimental techniques, investigated key concepts 

of busulfan clinical pharmacology and has characterised contributing factors associated 

with clinical outcomes, such as SOS. Each chapter in this thesis has furthered the 

understanding of particular aspects of busulfan therapy using contemporary 

pharmacokinetic, pharmacodynamic and pharmacogenetic techniques, the results of which 

will be summarised in this chapter. As mentioned in the introduction, busulfan therapy is 

vastly complicated and one thesis cannot possibly address all of the associated issues. 

This thesis does however, assess current clinical practice and and individualisation of 

treatment in the context of avoiding toxicity.  

 

7.1 RECAP 

7.1.1 Chapter 1: Busulfan use in Haematopoietic Stem Cell Transplantation 

Chapter 1 introduced the current applications of busulfan as a myeloablative conditioning 

agent prior to Haematopoietic Stem Cell Transplantation (HSCT). Issues pertinent to 

busulfan therapy, such as inter-individual pharmacokinetic variability and toxicities such as 

Sinusoidal Obstruction Syndrome (SOS) were discussed with a thorough exploration of 

previous studies. Following a brief history of transplantations and the introduction of 

busulfan as a conditioning agent in the 1970’s, the review explored subsequent 

improvements in therapy, particularly after the introduction of the intravenous formulation 

of busulfan. The application of therapeutic drug monitoring (TDM) was discussed along 

with an assessment of recent arguments surrounding appropriate target windows of AUC 

for busulfan administration. The different approaches to TDM were also outlined and 

differences between TDM techniques highlighted.  The development of busulfan dosing 

through the use of nomograms and Bayesian dose calculators in reducing inter-individual 

variability and the potential impact of genetic differences was discussed.  
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7.1.2 Chapter 2: The Patients- A Detailed Analysis of the Patient Population 

Recruited for Analysis 

Chapter 2 introduced the retrospective analysis of HSCT patients at seven institutions 

across New South Wales and Victoria, Australia. The patient population of 337 transplant 

patients was described, along with an a priori exploration of interpatient differences such 

as the wide range of age, diagnoses and conditioning regimens used during 

transplantation. The chapter also provided a prelude on inter-institutional differences in 

addressing busulfan therapy - including institution-specific approaches to targeting 

busulfan and to SOS prophylaxis. The range of heterogeneity in the study population set 

the scene for the investigations performed in subsequent chapters.  

 

7.1.3 Chapter 3: Characterising Pharmacokinetic Variability in the Busulfan Study 

Population Using Population-Pharmacokinetic Analysis 

Chapter 3 aimed to characterise the degree of inter-individual and inter-occasion variability 

in busulfan pharmacokinetics in the study population. Through the use of population 

pharmacokinetic analysis, the chapter discussed the application of a one-compartment 

model that explained inter-patient variability through differences in body size and also 

enzymatic maturity from paediatric through to adult transplant patients.  Following a 

thorough assessment of goodness of fit, and robustness of parameter estimates using 

techniques such as visual predictive checks and bootstrap simulations, the population 

pharmacokinetic model was used to estimate individual clearance, volume of distribution 

and area under the curve for every occasion of busulfan administration. These parameter 

estimates were then applied in a range of post hoc analyses, exploring the impact of 

conditioning regimens and concomitant medications on busulfan clearance. Patients 

coadministered metronidazole were found to have decreased clearance (0.13L/h/kg vs. 

0.18 L/h/kg, P < 0.0001). 
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While the large inter-individual variability in paediatric patients was already known, the 

impact of daily TDM for busulfan in this patient group has not yet been published. The 

dramatic improvement in cumulative area under the curve (cAUC), as observed in Figure 

3-9 of Chapter 3, clearly highlights improved control of cAUC in patients receiving daily 

TDM (71% with daily TDM vs 40% without daily TDM, P  = 0.0005 

 

7.1.4 Chapter 4: Assessing the Incidence of Sinusoidal Obstruction Syndrome 

After Busulfan Therapy 

Chapter 4 examined the incidence of sinusoidal obstruction syndrome (SOS) as an 

outcome of busulfan therapy in the study population. Using a variety of statistical 

techniques, the incidence of SOS was studied in patients receiving various conditioning 

regimens, in the different age groups. While no significant differences in busulfan cAUC 

were observed in patients with or without SOS, measured Cmax, sampled within five 

minutes at the end of the first busulfan infusion, was higher in patients with SOS (2 µg/mL 

vs. 2.66 µg/mL, P = 9.1 x 10-6). This finding has important clinical implications for 

predicting SOS and providing earlier therapy with agents such as defibrotide to improve 

clinical outcome but raises questions as to why model based Cmax was not able to identify 

the relationship as strongly as measured Cmax. 

 

7.1.5 Chapter 5: A Parametric Time to Event Analysis of Sinusoidal Obstruction 

Syndrome After Busulfan Use 

The development of SOS after transplant was studied using non- and semi- parametric 

analyses. Age was suspected to confound results in the non-parametric analysis, a finding 

confirmed when SOS incidence was compared between the four age categories of 
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patients.  A proportional hazards analysis found a range of significant covariates such as 

lower age and pre-transplant albumin levels, and increased weight and day 1 Cmax 

concentrations as predictors of SOS in a univariate analysis. Multivariate Cox proportional-

hazards analysis however could not determine a single covariate for predicting SOS, 

rather a combination of the aforementioned covariates.  

 

7.1.6 Chapter 6: Pharmacogenetic Variability of Glutathione-S-Transferases and 

Other ADME Enzymes in Patients Receiving Busulfan 

The final experimental analysis on busulfan pharmacology examined genetic differences in 

the population. A linear regression analysis in 217 patient for a panel of 67 SNPs (on an 

exploratory panel of ADME enzymes) failed to identify an effect on busulfan clearance. A 

similar logistic regression analysis was also unsuccessful at determining an association 

between the tested SNPs and the incidence of SOS in the study population. An 

assessment on the various copy number variations in GSTM1, GSTT1 and GSTT2 

enzymes also failed to identify any differences in busulfan clearance or SOS incidence in 

the study population.  

However, a separate analysis on a subset of 193 patients identified a significantly higher 

clearance in patients with the GSTA1*A allele compared to GSTA1*A*B (0.22 L/h/kg vs 

0.19 L/h/kg, P = 0.004) and GSTA1*B (0.22 L/h/kg vs 0.18 L/h/kg, P = 0.0003) alleles.  No 

similar effect on SOS incidence was observed. The further division of GSTA1 

polymorphisms was ineffective at better describing busulfan clearance or SOS incidence. 

This was the first study that characterised the six GSTA1 haplotyples into the activity 

groups to analyse busulfan clearance.  
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7.2 CLINICAL IMPACT AND TRANSLATION 

The research described in this thesis aimed to address several issues pertinent to high 

dose busulfan therapy. Inter-occasion and inter-individual variability during 

transplantations is a lingering problem that has not been overcome by the intravenous 

formulation. While the pharmacokinetic variability is known to be wider in children than 

adults, there has been little progress in identifying a solution to overcome the variability in 

achieving targets. The results from this thesis demonstrate daily TDM in children is 

essential to tightly target busulfan cumulative AUCs.  

 

However, this thesis also adds to literature where the relationship observed is of busulfan 

use and SOS, but not busulfan AUC or cAUC and SOS.105   The relationship between high 

busulfan Cmax on day 1 and SOS is an intriguing outcome discussed in this thesis. The first 

dose of busulfan is calculated purely on body-size and pharmacokinetic monitoring 

performed on this dose forms the basis of subsequent dose adjustments. Therefore, any 

patient specific differences in the metabolism of busulfan may be masked when calculating 

the dose-adjusted cAUC. A high Cmax could be used to flag high-risk patients who could be 

offered additional prophylaxis or aggressive monitoring to diagnose SOS at the earliest.  

However, the timing of such a sample is crucial and a missed sampling time would not 

allow the use of this information. 

 

Although we failed to develop a clear model for predicting SOS hazard in patients, the 

multivariate analysis did reveal a combination of likely factors that may play a role in the 

development of SOS. A clinical evaluation of risk factors as suggested in the EBMT 

guidelines may still be the most comprehensive method of predicting SOS risk.  
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Lastly, the genetic influence of glutathione S transferase polymorphisms (mainly in 

GSTA1) demonstrated a clear effect on pharmacokinetic variability where patients with the 

GSTA1*B/*B genotype had a lower clearance across all ages. The novel method of 

incorporating the several diplotypes created from multiple combinations of SNPs into 

activity groups proved ineffective in teasing out differences in clearance across the four 

groups. Moving forward, GSTA1 polymorphisms using the C-69-T single nucleotide 

polymorphism alone could be incorporated into practice to identify patients with a lower 

clearance.  

 

7.3 LIMITATIONS 

A large retrospective analysis of a heterogenous population of patients undergoing a 

complicated and challenging medical procedure is not without its limitations. Firstly, the 

very nature of the analysis was retrospective, meaning that there was little scope to action 

any recommendations that resulted from the study. Changes to practice, and to guidelines 

for treatment and management were observed and taken into account wherever possible, 

but there were still many inconsistencies that could not be evaluated. Some of these 

include the change in targets for cAUC in conditioning regimens over the years, or the 

reintroduction of Q6H dosing of busulfan for 16 doses in a small number of patients for a 

limited time. Changes to SOS diagnosis and severity guidelines also made analyzing SOS 

incidence data more challenging.  

 

The second limitation of this analysis lies in the vast heterogeneity of the population. 

Patients were transplanted for over fifty different conditions using over thirty busulfan-

based protocols. Generalisations and groupings were made for ease of analysis, but there 

may have been data loss as part of the process. All types of non-Hodgkin’s Lymphomas 
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were grouped together for the analysis of patient populations and cases of SOS. There 

may be a possibility that one or more of the NHL subtypes had a higher incidence of SOS 

and went unnoticed in the analysis. Every patient is unique and carries innumerable 

sources of heterogeneity. The alternative to overlooking heterogeneity was dividing the 

patients into smaller sub-populations to remove some of the confounding factors.  

 

The subdivision of patients brings to light the third limitation of this study, which is sample-

size and study power. The retrospective nature of the study allowed for data collection 

from as many patients as possible to enhance study power. However, to appropriately 

calculate a statistically significant difference (P < 0.05), using small effect-sizes (10% or 

less) would require study populations in excess of 785 patients. This would have not been 

possible in the study times of all the three retrospective trials combined. The subdivision of 

patients therefore adds to the problem of sample size as the differences in effect would 

need to be far greater to bear significance or power. However, the small but significant 

differences that were shown in this analysis warrant further investigation to recruit 

homogenous groups of patients through large multi-center collaborative approaches to 

thoroughly analyse differences, resulting from factors such as concomitant medications or 

genotype. 

 

Continuing with issues of sample-size, there were limitations in analyzing the genotype 

data. Having a small number of patients affected the ability to investigate genes with low 

minor allele frequencies, resulting in the exclusion of several SNPs from linear and logistic 

regression analysis. Similar issues of power and sample-size were encountered for the 

previous exploratory analysis by Ten Brink et al. To counteract this issue, the entire 

dataset was used without further division of training and validation cohorts. Even so, 

patient numbers needed to be significantly higher, possibly explaining the lack of a 
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conclusive result from the logistic regression and the unexpected findings of the linear 

regression analysis.  

 

While this is not an exhaustive list of limitations of this analysis, it certainly brings to light 

several unavoidable issues encountered during this study. The results of from these 

retrospective analyses and the limitations offer a learning opportunity to better shape 

prospective studies and future retrospective studies, in terms of patient selection and 

clarity of endpoints. 

 

7.4 FUTURE DIRECTIONS 

The large dataset collected for this research provided the opportunity to explore several 

aspects of busulfan therapy, with more content than for one mere PhD student to handle. 

There were some smaller analyses that sparked interest but were not fit for incorporation 

into this thesis. This section describes some of the ‘could have’ and ‘would have’ elements 

for further analysis, which may serve as a point of continuation from this thesis: 

 

7.4.1 The Impact of Dimethylacetamide SOS Incidence 

Dimethylacetamide (DMA) is a solvent included in the formulation of intravenous busulfan. 

Busulfan is available as 60 mg/10 mL dissolved in 33% DMA (v/v). Therefore, cumulative 

doses of busulfan administered to patients can result in the administration of several mL of 

DMA into the patients. As a known hepatotoxin, the contribution of DMA to SOS incidence 

is of interest. There have been limited studies on DMA pharmacokinetics in busulfan 

formulations, but these have failed to demonstrate any effect of on SOS.179 Plasma 

samples were stored at the Children’s Hospital Westmead for all patients as part of the 
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retrospective analysis, which will provide an excellent opportunity for the analysis of DMA 

pharmacokinetics.  

 

Two methods were also validated for detecting DMA in plasma, one using UPLC and the 

other, unpublished using LC-MS/MS analysis. Stability of DMA in plasma stored at -20 C 

was also demonstrated, giving confidence in the results of the analysis. However, given 

that previous studies appeared to  demonstrate the safety of DMA safety,179 180 albeit with 

limited data, were considered sufficient to not continue with the analysis.  

 

7.4.2 A Parametric Time to Event Analysis of SOS Incidence Post Busulfan 

Therapy 

The inconclusive results from Chapter 5 were in part due to the proportional nature of the 

Cox regression analysis. Hazard of developing SOS is a complicated process which peaks 

post transplantation but decreases overtime. Furthermore, the relationship of covariates 

such as age or weight would not be completely proportional with the hazard of developing 

SOS and therefore alternative relationships would need to be tested for the analysis of 

SOS hazards.  

 

Parametric time to event analysis offers an elegant solution to this problem by fitting 

survival to exponential distributions of survival, with the flexibility to test various time-

varying hazards of developing SOS. There are three essential components of a time to 

event analysis: 
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The likelihood of not having SOS post-transplant (S(t)) at any given time (t) was described 

as an exponential function of the cumulative hazard (H(t)), integrated from the rate of 

instantaneous hazard (h(t)) between time 0 to time t.  

 

Equation 7-1     𝑆𝑆(𝑡𝑡)  =  𝑒𝑒−𝐻𝐻(𝑡𝑡) 

where: 

Equation 7-2    𝐻𝐻(𝑡𝑡) =  ∫ ℎ(𝑡𝑡
0 𝑡𝑡) 𝑑𝑑𝑑𝑑 

 

The probability density (f(t)) of having SOS at any given time (t) was described as a 

function of survival and instantaneous rate of hazard: 

 

Equation 7-3     𝑓𝑓(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) × ℎ(𝑡𝑡) 

 

The incidence of SOS post transplantation is a single event per individual, and therefore a 

parametric time to event analysis would be sufficient for investigation. Such an analysis is 

possible using non-linear mixed effects modeling using the program NONMEM as 

described in Chapter 3. The insights provided from a parametric time to event analysis 

may be able to better incorporate the covariates identified in the univariate Cox regression 

analysis and help construct a model for the prediction of SOS incidence. 
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7.4.3 Prospective Validation of the Findings from this Study 

As reiterated in this chapter, several important findings in this research require prospective 

validation. The predictive capacity of Cmax for SOS development or accounting for GSTA1 

polymorphism effect on clearance prior to busulfan dosing should be assessed 

prospectively to improve busulfan pharmacokinetic and pharmacodynamic outcomes.  

 

7.4.4 The Association between HLA Variants and SOS 

The Human Leukocyte Antigens (HLA) are part of the major histocompatibility complex 

(MHC) which are a group of glycoproteins found on chromosome 6. Donor HLA for groups 

A, B, C, DRB1 and DQB1 are matched to the patient HLA profile as a selection 

requirement for transplant. Mismatched- HLA between patient and donor have been 

reported as a risk factor for SOS.181  

 

Variations in HLA have been previously been associated with adverse immune responses, 

such as Steven-Johnsons Syndrome in patients using the anti-epileptic drug, 

carbamazepine. Given the immune-response component in SOS, and an established 

increased risk of SOS in patients with HLA-mismatched transplants,111 there may be merit 

in investigating the association between HLA-variants and SOS development in transplant 

patients. This interaction to the best of our knowledge has not been reported in literature.  

 

7.5 CONCLUDING REMARKS 

IN CONCLUSION, this research adds to the repository of information on the use of 

busulfan prior to haematopoietic stem cell and bone marrow transplants. Although 

substantial research has been conducted on busulfan since the first reported use in 
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transplants, there are still several questions left unanswered. An improved understanding 

of the pathophysiology of SOS and further research into curative treatment may help 

improve outcomes for patients. Until then, daily TDM in children offers a feasible solution 

to better control busulfan exposure.  A high Cmax may be indicative of susceptibility to SOS 

and GSTA1 polymorphisms can be used to better guide dosing in patients based on 

differences in clearance; although the latter two findings warrant prospective validation.  
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APPENDICES 

Appendix 1. Code for NONMEM pop-PK analysis 

;; 1. Based on: Run… 

;; 2. Description: … 

;; x1. Author: … 

;; 3. Label: 

 ;ID Patient ID 

 ;HOSP Participating Institution 

 ;CMT Compartment 

 ;OCC Occasion of Dosing 

 ;FLG Flag for DV 1 = DOSING, 2 = PK, 3 = SOS, 4 = LAST DATE OF FOLLOW 

UP, 5 = RELAPSE if observed 

 ;EVID Event ID 

 ;MDV Missing DV 

 ;FLAG Flagged samples ignored from analysis (<LLOQ, Contamination etc) 

 ;DUR Duration of Infusion 

 ;RATE Rate of Infusion 

 ;AMT Dose of Busulfan administered 

 ;TAU Frequency of Dosing (h) 

 ;TIME Time (clock time) 
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 ;ODV Untransformed (Original) DV (ug/mL) 

 ;LNDV=DV Log-Tranformed DV 

 ;CONUMOL Busulfan concentration uMol 

 ;SEX = Sex (M/F) ;HGT = Height (cm)  

 ;WGT = weight (kg)  ;AIBW = Adjusted Ideal Bodyweight (kg) ;BUWGT = 

Weight of Busulfan dosing (kg)  

 ;BSA = Body Surface Area (m2) 

 ;AGE = Age at transplant (days) 

 ;AGILENT = Instrument for Bu detection (Agilent / Other)  

 ;TXTYPE = Transplant Type (Autologous/ Allogeneic) 

 ;SERO ;FLU ;MEL ;CPHOS ;PMOL ;MDZOLE ;FLUZOLE ;ANTIVIR ;DEFIB =  

 ;Concomitant Serotherapy, fludarabine, melphalan, cyclophosphamide, 

paracetamol, metronidazole, fluconazole, antivirals, defibrotide 

 ;CONDT = COnditioning regimen  

 ;CANCER = Diagnosis ( Cancer vs non cancer) 

 ;ALB = Pre-transplant Albumin levels (g/L) 

 ;SOS  

 

$PROBLEM PK 

$INPUT … 

$DATA …  IGNORE=@ IGNORE=(FLAG.EQ.1) IGNORE=(OCC.GT.5);  
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$SUBROUTINES ADVAN1 TRANS2 

 

$PK 

;:::::::::::::::: Inter-Occasion Variability on Clearance:::::::::::::::::::: 

IF(OCC.EQ.1) IOVCL=ETA(3) 

IF(OCC.EQ.2) IOVCL=ETA(4) 

IF(OCC.EQ.3) IOVCL=ETA(5) 

IF(OCC.EQ.4) IOVCL=ETA(6) 

IF(OCC.EQ.5) IOVCL=ETA(7) 

 

;:::::::::::::::: Inter-Occasion Variability on Volume:::::::::::::::::::: 

IF(OCC.EQ.1) IOVV=ETA(8) 

IF(OCC.EQ.2) IOVV=ETA(9) 

IF(OCC.EQ.3) IOVV=ETA(10) 

IF(OCC.EQ.4) IOVV=ETA(11) 

IF(OCC.EQ.5) IOVV=ETA(12) 

 

;::::::::::::::::Inter-Individual Variability on Clearance and Volume:::::::::::::::::::: 

PPVCL=IOVCL+ETA(1) 

PPVV=IOVV+ETA(2) 
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;:::::::::::::::: Population values of PK Parameters :::::::::::::::::::: 

TVCL=THETA(1)*EXP(PPVCL) 

TVV= THETA(2)*EXP(PPVV) 

TVD1=DUR 

 

;:::::::::::::::: Factor for BodySize:::::::::::::::::::: 

FSIZE=(AIBW/70)**(3/4) 

 

;:::::::::::::::: Factor for Maturity:::::::::::::::::::: 

TM= THETA(3) 

HILL=THETA(4) 

FMAT= 1/(1+((AGE/(365*TM))**(-HILL))) 

 

;:::::::::::::::: Individual PK Parameters :::::::::::::::::::: 

CL=TVCL*FMAT*FSIZE 

V= TVV*(AIBW/70) 

S1=V/1 

D1=TVD1 
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;:::::::::::::::: Solver time to calculate Time After Dose :::::::::::::::::::: 

IF (AMT.GT.0)THEN 

TDOS=TIME 

TAD=0.0 

ENDIF 

IF(AMT.EQ.0) TAD=TIME-TDOS 

 

K=CL/V ;Elimination Constant 

AUC = DOSE/CL ; Area Under the Curve (mg.h/L) 

CLNORM=CL/WGT ; Clearance normalised to bodyweight 

 

 

;:::::::::::::::: CMAX at First and Subsequent Busulfan doses :::::::::::::::::::: 

IF(OCC.EQ.1) CMAX= (DOSE/(CL*DUR))*(1-EXP(-K*DUR)) 

IF(OCC.GT.1) CMAX= (DOSE/(CL*DUR))*((1-EXP(-K*DUR))/(1-EXP(-K*TAU))) 

 

;:::::::::::::::: Age Categories :::::::::::::::::::: 

IF((AGE/365).LT.2) AGECAT=1 ; Infants and Toddlers 

IF((AGE/365).GE.2.AND.(AGE/365).LT.10) AGECAT=2 ; Children 

IF((AGE/365).GE.10.AND.(AGE/365).LT.25) AGECAT=3 ; Adolescents and Young 

Adults 
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IF((AGE/365).GE.25) AGECAT=4 ;Adults 

 

;:::::::::::::::: For TTE table sheet:::::::::::::::::::: 

IF(FLG.EQ.3) DVID=1 

IF(FLG.NE.3) DVID=0 

 

;:::::::::::::::: Proportional Error model for Log-transformed Data :::::::::::::::::::: 

$ERROR (OBSERVATIONS ONLY) 

IPRED = 0 

IF(F.GT.0) IPRED = LOG(F) 

Y = IPRED + ERR(1) 

 

$THETA 

(13.8) ;CL 

(48.1) ; V 

 (0.377) ; TM50 

(0.634) ; HILL 

 

$OMEGA BLOCK(2) 

 0.049  ; CL 
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 0.0297 0.0232  ; V 

 

$OMEGA BLOCK(1) 0.0126 ;ETA3 BOVCL 

$OMEGA BLOCK(1) SAME ;ETA4 BOCL 

$OMEGA BLOCK(1) SAME ;ETA5 BOVCL 

$OMEGA BLOCK(1) SAME ;ETA6 BOVCL 

$OMEGA BLOCK(1) SAME ;ETA7 BOVCL 

 

$OMEGA BLOCK(1) 0.0081 ;ETA8 BOVV 

$OMEGA BLOCK(1) SAME ;ETA9 BOVV 

$OMEGA BLOCK(1) SAME ;ETA10 BOVV 

$OMEGA BLOCK(1) SAME ;ETA11 BOVV 

$OMEGA BLOCK(1) SAME ;ETA12 BOVV 

 

$SIGMA 

0.00725 ;ERR 

 

$COV 

$EST MAX=9990 SIG=3 PRINT=1 METHOD=COND INTER NOABORT 

$TABLE… 
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Appendix 2. NONMEM vs. Observed Cmax 

Day 1 Cmax estimated from NONMEM compared to observed Cmax in patients.  

 

Appendix 2 shows good correlation between observed and predicted Cmax (r2 = 

0.89), although some patients are overpredicted by the model compared to 

observed concentrations.  
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Appendix 3. Summary of SNP association with busulfan CLNORM, where major allele (A1) 

was described for the number of patients included, with β coefficients (slope), 5th percentile 

and 95th percentile confidence intervals, Z statistic and corresponding P value. Significant 

associations (P < 0.01) were demarked with an (*).  

Gene SNP 
Major 
SNP 

Patients 
β- 

Coefficient 

5 – 95  
Percentile 

Confidence 
Interval 

Wald Z- 
Statistic 

P - 
Value 

ABCB1 rs1045642 T 217 0.00309 -0.006 - 0.012 0.6681 0.505 

ABCB1 rs1128503 T 217 0.004061 -0.004 - 0.013 0.9434 0.347 

ABCB1 rs3213619 C 215 -0.00182 -0.024 - 0.021 -0.1596 0.873 

ABCC2 rs2273697 A 217 -0.00474 -0.015 - 0.006 -0.8731 0.384 

ABCC2 rs3740066 A 216 -0.00191 -0.011 - 0.007 -0.4002 0.689 

ABCC2 rs717620 A 216 -0.00125 -0.013 - 0.011 -0.2009 0.841 

ABCG2 rs2231142 A 216 0.00716 -0.007 - 0.021 1.022 0.308 

COMT rs165599 G 217 -0.00168 -0.01 - 0.007 -0.3784 0.706 

COMT rs4680 A 217 -0.00179 -0.01 - 0.007 -0.4235 0.672 

COMT rs737865 C 217 0.004488 -0.005 - 0.014 0.8922 0.373 

CYP1A1 rs1048943 G 217 -0.0044 -0.019 - 0.01 -0.6005 0.549 

CYP1A1 rs1799814 A 217 -0.02506 -0.05 - -0.003 -2.178 0.031 

CYP1A2 rs762551 C 217 -0.0028 -0.012 - 0.006 -0.6196 0.536 

CYP2A6 rs1801272 A 216 -0.02078 -0.047 - 0.005 -1.567 0.119 

CYP2A6 rs28399433 G 217 -0.00121 -0.016 - 0.014 -0.159 0.874 

CYP2B6 rs3745274 T 217 0.004312 -0.005 - 0.013 0.948 0.344 

CYP2B6 rs8192709 T 217 -0.01722 -0.035 - 0.001 -1.863 0.064 

CYP2C19 rs3758581 A 217 -0.01523 -0.033 - 0.002 -1.713 0.088 

CYP2C19 rs4244285 A 217 0.0116 0.002 - 0.022 2.253 0.025 

CYP2C19 rs4986893 A 217 0.001267 -0.035 - 0.038 0.06775 0.946 

CYP2C8 rs10509681 C 216 -0.00162 -0.016 - 0.012 -0.2251 0.822 

CYP2C8 rs1058930 G 217 0.003102 -0.016 - 0.022 0.3142 0.754 

CYP2C8 rs11572080 A 217 -0.0016 -0.016 - 0.012 -0.2223 0.824 

CYP2C9 rs1057910 C 217 -0.01571 -0.033 - 0.001 -1.822 0.070 

CYP2C9 rs1799853 T 217 -0.00477 -0.018 - 0.008 -0.7085 0.479 

CYP2D6 rs1080985 G 216 -0.00788 -0.018 - 0.002 -1.597 0.112 

CYP2D6 rs28371725 A 216 -0.00273 -0.018 - 0.013 -0.3448 0.731 
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Gene SNP 
Major 
SNP 

Patients 
β- 

Coefficient 

5 – 95  
Percentile 

Confidence 
Interval 

Wald Z- 
Statistic 

P - 
Value 

CYP2D6 rs5030656 D 217 0.01013 -0.016 - 0.036 0.7617 0.447 

CYP2E1 rs2070673 A 210 -0.01148 -0.022- -0.001 -2.191 0.030 

CYP3A4 rs35599367 T 216 0.009994 -0.013 - 0.033 0.8593 0.391 

CYP3A5 rs776746 A 214 -0.00098 -0.014 - 0.012 -0.1505 0.881 

DPYD rs1801265 C 217 0.00125 -0.01 - 0.012 0.224 0.823 

GSTP1 rs1138272 T 217 0.002472 -0.016 - 0.021 0.2682 0.789 

GSTP1 rs1695 G 216 -0.00607 -0.015 - 0.003 -1.353 0.178 

NAT1 rs4986782 A 217 -0.02975 -0.063 - 0.004 -1.74 0.083 

NAT2 rs1041983 T 217 -0.00501 -0.014 - 0.004 -1.094 0.275 

NAT2 rs1208 G 216 0.001123 -0.007 - 0.01 0.2568 0.798 

NAT2 rs1799929 T 217 0.00131 -0.007 - 0.01 0.2992 0.765 

NAT2 rs1799930 A 217 -0.00664 -0.015 - 0.002 -1.481 0.140 

NAT2 rs1799931 A 216 0.007521 -0.01 - 0.025 0.8367 0.404 

NAT2 rs1801280 C 217 0.00196 -0.006 - 0.01 0.4547 0.650 

SLC15A2 rs1143671 T 217 0.000173 -0.008 - 0.009 0.04029 0.968 

SLC15A2 rs1143672 A 217 0.000173 -0.008 - 0.009 0.04029 0.968 

SLC15A2 rs2257212 A 216 0.000144 -0.008 - 0.009 0.03342 0.973 

SLC15A2 rs2293616 T 217 0.000173 -0.008 - 0.009 0.04029 0.968 

SLC22A1 rs12208357 T 217 -0.00158 -0.019 - 0.016 -0.1787 0.858 

SLC22A1 rs2282143 T 217 -0.00122 -0.026 - 0.024 -0.0957 0.924 

SLC22A1 rs34059508 A 217 -0.00634 -0.036 - 0.024 -0.4162 0.678 

SLC22A1 rs4646281A A 217 0.000739 -0.007 - 0.009 0.1818 0.856 

SLC22A1 rs628031 A 217 0.001028 -0.007 - 0.009 0.2534 0.800 

SLC22A1 rs72552763 T 217 0.004436 -0.009 - 0.018 0.6497 0.517 

SLC22A2 rs316019 T 217 0.000484 -0.013 - 0.014 0.07111 0.943 

SLCO1B1 rs2306283 G 216 -0.00392 -0.012 - 0.004 -0.9445 0.346 

SLCO1B1 rs4149056 C 217 -0.00039 -0.013 - 0.012 -0.0603 0.952 

SLCO1B3 rs4149117 T 216 -0.0002 -0.011 - 0.011 -0.0368 0.971 

SLCO1B3 rs7311358 G 208 -0.00082 -0.012 - 0.01 -0.15 0.881 

TPMT rs1142345 G 216 -0.0277 -0.05 - -0.006 -2.476 0.014 

TPMT rs1800460 A 217 -0.0219 -0.052 - 0.008 -1.441 0.151 
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Gene SNP 
Major 
SNP 

Patients 
β- 

Coefficient 

5 – 95  
Percentile 

Confidence 
Interval 

Wald Z- 
Statistic 

P - 
Value 

UGT1A1 rs4124874 C 217 -0.0047 -0.013 - 0.004 -1.075 0.284 

UGT1A1 rs4148323 A 217 -0.01451 -0.041 - 0.012 -1.059 0.291 

UGT2B15 rs1902023 T 216 0.004538 -0.004 - 0.013 1.086 0.279 

UGT2B7 rs7662029 A 217 -0.00181 -0.01 - 0.007 -0.4113 0.681 

UGT2B7 rs7668258 T 217 -0.00181 -0.01 - 0.007 -0.4113 0.681 

VKORC1 rs17708472 A 209 0.004801 -0.006 - 0.016 0.8404 0.402 

VKORC1 rs7294 A 216 -0.00543 -0.014 - 0.003 -1.199 0.232 

VKORC1 rs9923231 T 217 0.001699 -0.006 - 0.01 0.4116 0.681 

VKORC1 rs9934438 A 215 0.001684 -0.006 - 0.01 0.404 0.687 
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Appendix 4. Summary of SNP association with SOS incidence, where major allele (A1) 

was described for the number of patients included, with Odds ratio, 5 percentile and 95 

percentile confidence intervals, Wald Z-statistic and corresponding P value. Significant 

associations (P < 0.01) were demarked with an (*).  

Gene SNP 
Major 
SNP 

Patients 
Odds 
Ratio 

5 – 95  
Percentile 

Confidence 
Interval 

Z 
Statistic 

P - 
Value 

ABCB1 rs1128503 T 217 0.821 0.504 - 1.338 -0.791 0.429 

ABCB1 rs3213619 C 215 0.544 0.116 - 2.555 -0.772 0.44 

ABCB1 rs1045642 T 217 0.892 0.54 - 1.473 -0.446 0.656 

ABCC2 rs717620 A 216 0.549 0.261 - 1.153 -1.585 0.113 

ABCC2 rs2273697 A 217 1.153 0.634 - 2.099 0.467 0.641 

ABCC2 rs3740066 A 216 0.92 0.546 - 1.552 -0.312 0.755 

ABCG2 rs2231142 A 216 1.556 0.745 - 3.251 1.177 0.239 

COMT rs165599 G 217 1.486 0.914 - 2.417 1.598 0.11 

COMT rs737865 C 217 1.108 0.641 - 1.914 0.367 0.713 

COMT rs4680 A 217 0.967 0.608 - 1.538 -0.142 0.887 

CYP1A1 rs1799814 A 217 0.481 0.101 - 2.285 -0.92 0.357 

CYP1A1 rs1048943 G 217 0.668 0.256 - 1.739 -0.827 0.408 

CYP1A2 rs762551 C 217 1.002 0.609 - 1.649 0.007 0.994 

CYP2A6 rs28399433 G 217 1.346 0.605 - 2.991 0.729 0.466 

CYP2A6 rs1801272 A 216 0.639 0.13 - 3.148 -0.55 0.582 

CYP2B6 rs8192709 T 217 0.506 0.114 - 2.243 -0.897 0.37 

CYP2B6 rs3745274 T 217 1.233 0.746 - 2.04 0.817 0.414 

CYP2C19 rs4244285 A 217 0.735 0.395 - 1.369 -0.971 0.332 

CYP2C19 rs3758581 A 217 1.422 0.566 - 3.573 0.749 0.454 

CYP2C19 rs4986893 A 217 0.453 0.05 - 4.129 -0.703 0.482 

CYP2C8 rs11572080 A 217 1.813 0.841 - 3.907 1.519 0.129 

CYP2C8 rs10509681 C 216 1.796 0.833 - 3.872 1.494 0.135 

CYP2C8 rs1058930 G 217 0.505 0.138 - 1.845 -1.033 0.302 

CYP2C9 rs1799853 T 217 1.593 0.766 - 3.313 1.245 0.213 

CYP2C9 rs1057910 C 217 1.661 0.682 - 4.047 1.117 0.264 

CYP2D6 rs5030656 D 217 2.797 0.782 - 10.01 1.581 0.114 

CYP2D6 rs1080985 G 216 1.256 0.737 - 2.14 0.838 0.402 
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Gene SNP 
Major 
SNP 

Patients 
Odds 
Ratio 

5 – 95  
Percentile 

Confidence 
Interval 

Z 
Statistic 

P - 
Value 

CYP2D6 rs28371725 A 216 1.012 0.441 - 2.322 0.029 0.977 

CYP2E1 rs2070673 A 210 1.245 0.681 - 2.277 0.712 0.477 

CYP3A4 rs35599367 T 216 1.153 0.337 - 3.946 0.227 0.82 

CYP3A5 rs776746 A 214 0.933 0.469 - 1.854 -0.198 0.843 

DPYD rs1801265 C 217 1.389 0.76 - 2.538 1.068 0.286 

GSTP1 rs1138272 T 217 2.381 0.936 - 6.057 1.821 0.069 

GSTP1 rs1695 G 216 0.959 0.581 - 1.583 -0.165 0.869 

NAT1 rs4986782 A 217 1.415 0.249 - 8.025 0.392 0.695 

NAT2 rs1799931 A 216 0.299 0.067 - 1.326 -1.589 0.112 

NAT2 rs1799930 A 217 1.32 0.807 - 2.161 1.105 0.269 

NAT2 rs1799929 T 217 0.822 0.496 - 1.362 -0.762 0.446 

NAT2 rs1041983 T 217 1.069 0.642 - 1.78 0.256 0.798 

NAT2 rs1208 G 216 1.017 0.625 - 1.655 0.067 0.946 

NAT2 rs1801280 C 217 0.996 0.612 - 1.621 -0.016 0.987 

SLC15A2 rs2257212 A 216 1.325 0.826 - 2.128 1.166 0.244 

SLC15A2 rs1143671 T 217 1.325 0.825 - 2.13 1.165 0.244 

SLC15A2 rs1143672 A 217 1.325 0.825 - 2.13 1.165 0.244 

SLC15A2 rs2293616 T 217 1.325 0.825 - 2.13 1.165 0.244 

SLC22A1 rs34059508 A 217 3.501 0.839 - 14.61 1.719 0.086 

SLC22A1 rs4646281A A 217 0.756 0.476 - 1.201 -1.185 0.236 

SLC22A1 rs628031 A 217 0.762 0.481 - 1.209 -1.152 0.249 

SLC22A1 rs2282143 T 217 1.558 0.424 - 5.733 0.668 0.504 

SLC22A1 rs72552763 T 217 1.273 0.6 - 2.7 0.629 0.529 

SLC22A1 rs12208357 T 217 0.998 0.384 - 2.591 -0.004 0.997 

SLC22A2 rs316019 T 217 1.965 0.997 - 3.873 1.95 0.051 

SLCO1B1 rs4149056 C 217 2.291 1.136 - 4.622 2.316 0.021 

SLCO1B1 rs2306283 G 216 1.123 0.71 - 1.778 0.497 0.619 

SLCO1B3 rs7311358 G 208 0.818 0.42 - 1.592 -0.591 0.554 

SLCO1B3 rs4149117 T 216 0.864 0.459 - 1.626 -0.453 0.65 

TPMT rs1142345 G 216 1.808 0.57 - 5.737 1.005 0.315 

TPMT rs1800460 A 217 1.701 0.381 - 7.586 0.696 0.486 
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Gene SNP 
Major 
SNP 

Patients 
Odds 
Ratio 

5 – 95  
Percentile 

Confidence 
Interval 

Z 
Statistic 

P - 
Value 

UGT1A1 rs4148323 A 217 0.536 0.081 - 3.529 -0.649 0.517 

UGT1A1 rs4124874 C 217 1.034 0.628 - 1.703 0.133 0.894 

UGT2B15 rs1902023 T 216 0.653 0.404 - 1.056 -1.737 0.082 

UGT2B7 rs7662029 A 217 0.762 0.466 - 1.247 -1.082 0.279 

UGT2B7 rs7668258 T 217 0.762 0.466 - 1.247 -1.082 0.279 

VKORC1 rs7294 A 216 1.419 0.853 - 2.359 1.348 0.178 

VKORC1 rs9934438 A 215 0.805 0.504 - 1.287 -0.906 0.365 

VKORC1 rs9923231 T 217 0.824 0.517 - 1.313 -0.816 0.415 

VKORC1 rs17708472 A 209 0.811 0.421 - 1.559 -0.629 0.529 
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Appendix 5. List of Excluded SNPs from linear and Logistic regression  

ABCB1(rs1045642) 

ABCB12(rs1128503) 

ABCB13(rs2032582) 

ABCB14(rs3213619) 

ABCC2(rs2273697)  

ABCC25(rs3740066)  

ABCC26(rs56199535)   

ABCC27(rs56220353)   

ABCC28(rs56296335)   

ABCC29(rs717620)   

ABCG2(rs2231142)   

ABCG210(rs72552713)   

COMT(rs165599)   

COMT11(rs4680)   

COMT12(rs737865)   

CYP1A1(rs1048943)   

CYP1A113(rs1799814)   

CYP1A114(rs1800031)   

CYP1A115(rs41279188)   

CYP1A116(rs56313657)   

CYP1A117(rs72547509)   

CYP1A118(rs72547510)   

CYP1A2(rs12720461)   

CYP1A219(rs2069514)   

CYP1A220(rs56107638)   

CYP1A221(rs762551)  

CYP2A6(CYP2A6_A7conversion)  

CYP2A622(CYP2A6E1)   

CYP2A623(CYP2A6E2)   

CYP2A624(rs1801272)   

CYP2A625(rs28399433)   

CYP2A626(rs28399444)   

CYP2A627(rs28399447)   

CYP2A628(rs28399454)   

CYP2A629(rs28399468)   

CYP2A630(rs4986891)   

CYP2A631(rs5031016)   

CYP2A632(rs5031017)   

CYP2B6(rs12721655)   

CYP2B636(rs28399499)   

CYP2B637(rs34097093)   

CYP2B638(rs3745274)   

CYP2B639(rs8192709)   

CYP2C19(rs12248560)   

CYP2C1943(rs28399504)  

CYP2C1944(rs3758581)   

CYP2C1945(rs41291556)  

CYP2C1946(rs4244285)   
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CYP2C1947(rs4986893)  

CYP2C1948(rs55640102)  

CYP2C1949(rs56337013)  

CYP2C1950(rs72552267)  

CYP2C1951(rs72558186)  

CYP2C8(rs10509681)   

CYP2C852(rs1058930)   

CYP2C853(rs11572080)   

CYP2C854(rs11572103)   

CYP2C855(rs72558195)  

CYP2C856(rs72558196)   

CYP2C9(rs1057910)   

CYP2C957(rs1799853)  

CYP2C958(rs2256871)   

CYP2C959(rs28371685)   

CYP2C960(rs28371686)  

CYP2C961(rs56165452)   

CYP2C962(rs72558187)   

CYP2C963(rs72558188)  

CYP2C964(rs72558190)   

CYP2C965(rs7900194)   

CYP2C966(rs9332130)   

CYP2C967(rs9332131)   

CYP2C968(rs9332239)   

CYP2D6(CYP2D6intr1E3)  

CYP2D669(dup4125_4133)  

CYP2D670(rs1065852)   

CYP2D671(rs1080985)   

CYP2D672(rs28371706)   

CYP2D673(rs28371725)   

CYP2D674(rs35742686)   

CYP2D675(rs3892097)   

CYP2D676(rs5030655)   

CYP2D677(rs5030656)   

CYP2D678(rs5030862)  

CYP2D679(rs5030863)   

CYP2D680(rs5030865)   

CYP2D681(rs5030867)   

CYP2D682(rs72549346)   

CYP2D683(rs72549347)   

CYP2D684(rs72549349)   

CYP2D685(rs72549352)   

CYP2D686(rs72549353)   

CYP2D687(rs72549354)   

CYP2D688(rs72549356)   

CYP2D689(rs72549357A)  

CYP2D690(rs72549357B)  

CYP2E1(rs2070673)   

CYP2E194(rs72559710)   

CYP3A4(rs35599367)   
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CYP3A495(rs4646438)  

CYP3A496(rs55785340)   

CYP3A497(rs67666821)   

CYP3A5(rs10264272)   

CYP3A598(rs41279854)   

CYP3A599(rs41303343)   

CYP3A5100(rs55965422)  

CYP3A5101(rs776746)   

DPYD(rs1801265)   

DPYD102(rs1801266)   

DPYD103(rs1801268)   

DPYD104(rs3918290)   

DPYD105(rs72549309)   

GSTT2(GSTT2bE1)   

NAT1(rs4986782)   

NAT1118(rs4986989)   

NAT1119(rs5030839)   

NAT1120(rs55793712)   

NAT1121(rs56172717)   

NAT1122(rs56318881)   

NAT1123(rs56379106)   

NAT2(rs1041983)   

NAT2124(rs1208)   

NAT2125(rs1799929)   

NAT2126(rs1799930)   

NAT2127(rs1799931)   

NAT2128(rs1801279)   

NAT2129(rs1801280)   

NAT2130(rs1805158)   

SLC15A2(rs1143671)   

SLC15A2131(rs1143672)  

SLC15A2132(rs2257212)  

SLC15A2133(rs2293616)  

SLC22A1(rs12208357)   

SLC22A1134(rs2282143)  

SLC22A1135(rs34059508)  

SLC22A1136(rs34130495)  

SLC22A1137(rs34305973)  

SLC22A1138(rs35167514)  

SLC22A1139(rs36103319)  

SLC22A1140(rs4646277)  

SLC22A1141(rs4646278)  

SLC22A1142(rs4646281A)  

SLC22A1143(rs4646281B)  

SLC22A1144(rs55918055)  

SLC22A1145(rs628031)  

SLC22A1146(rs72552763)  

SLC22A2(rs316019)   

SLC22A2147(rs8177504)  

SLC22A2148(rs8177508)  



3 

SLC22A2149(rs8177516)  
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