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Abstract 

Parkinson’s disease (PD) is an increasingly prevalent neurodegenerative disease 

affecting older adults. Motor symptoms, including tremor, rigidity and tremor were 

classically predominant. However, troublesome non-motor symptomatology are 

known to impair quality of life for patients with PD and there carers.  

 

Sleep-wake disturbances are gaining increased attention in PD encompassing 

disturbances of the circadian, homeostatic and ultradian sleep systems. Such 

symptoms are observed in over two thirds of patients manifesting with a range of 

features including insomnia, rapid eye movement (REM) sleep behaviour disorder 

(RBD), and excessive daytime somnolence. As well as impacting on quality of life for 

patients and their carers, these symptoms have been linked to the troublesome 

problems of cognitive deficits, mood disturbance and visual hallucinations.   

 

Mechanisms exploring the interaction of sleep-wake disturbance, other non-motor 

symptoms and cardinal motor symptoms including tremor, rigidity and tremor and 

non-motor symptoms in PD are not well understood but dopaminergic and non-

dopaminergic pathology across the brainstem, basal forebrain, hypothalamus and 

frontostriatal pathways are likely to be implicated. Bidirectional causality between 

sleep wake disturbance and concomitant symptoms in PD provide insights into 

common chemical and neural mechanisms which prior to the development of 

therapy, must be understood. Furthermore, sleep-wake disorders in PD at present 

provide a maker of early diagnosis for which future disease modifying treatment can 

be targeted. However objective and reliable measurement techniques are yet to be 

devised in this field. 
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This thesis aims to utilise the objective measurement of sleep-wake disturbances 

across the circadian, homeostatic and ultradian sleep systems in PD through four 

empiric experiments to help inform our understanding of these critical symptoms in 

PD. While the usefulness of self-report data is not doubted as a means of engaging 

the patient and hearing their voice they cannot serve the same identification and 

measurement uses of objective data.   Thus these objective techniques could be 

used to assess the validity of the questionnaires which have been devised to 

measure the same entities and to add a further dimension of patient input into the 

treatment.  Improved objective, accurate and reliable measurement techniques will 

help reduce any potential bias in data.    
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Chapter 1 - Introduction 
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1.1 - Sleep-Wake Disorders and Parkinson’s Disease 

Parkinson’s Disease (PD) is a multisystem neurodegenerative disorder that 

increases in prevalence with ageing. Although the cardinal features of PD were 

proposed as the motor problems of tremor, rigidity and bradykinesia, non-motor 

symptoms such as cognitive decline, mood disturbance and autonomic dysfunction 

frequently contribute to reduced quality of life for patients and their carers (1).  To 

date much of the research on PD has focused on the movement oriented symptoms 

and their progression. Less emphasis has been directed towards the non-motor 

symptoms that have profound impacts on the holistic well-being of the patient.  

 

Sleep-Wake disturbances represent some of the most important non-motor 

symptoms in PD and are coexistent with each other as well as other physical and 

important neuropsychiatric features including cognitive decline and mood 

disturbance.  However, the mechanisms underlying the interaction of sleep-wake 

disturbances, other non-motor and motor symptoms in PD are not well understood. 

 

1.1.1 - The Aims of this Thesis 

This thesis aims to highlight the effects of sleep-wake disturbance in PD patients 

using novel objective measurement approaches. It reports on sleep-wake 

disturbances across the circadian, homeostatic and ultradian sleep systems as well 

as their interaction with other disease specific variables. It then aims to interrogate 

and compare self-report measures with novel objective measures to improve our 

understanding of sleep-wake disturbances and their effects on PD patients.  
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1.1.2 - Epidemiological and Economic Analysis of Parkinson’s disease 

The importance of research into troublesome sleep-wake symptoms such as those 

manifesting with circadian sleep phase abnormalities, excessive daytime sleepiness 

(EDS) and REM sleep behaviour disorder (RBD) are emphasised by an 

epidemiological and economic analysis of PD. It is has been estimated that around 

10 million PD patients are found worldwide and that greater than 65,000 Australians 

are currently diagnosed with PD, which equates to approximately 1 in every 350 

people in Australia. Published cohorts report greater than 1% of the population over 

the age of sixty are diagnosed with PD, with a prevalence of approximately 0.3% of 

the total population (2, 3).   

 

Of concern to patients, carers and the community is the increasing prevalence of PD 

noted over the last ten years, which is at least in part attributable to the aging 

population. Age is reported to be the most important risk factor for developing PD, 

with the incidence peaking in the eighth decade.  The median age at diagnosis is 

reported to be sixty and the average disease duration at death is fifteen years (4).  In 

Australia, more than fourteen thousand more new diagnoses of PD were noted in 

2014 compared to 2005 (5).  

 

The prevalence of PD in Australia is higher than many conditions considered 

National Health Priority areas including breast cancer, lymphoma and leukaemia.  

Furthermore, this prevalence is projected to increase by 79% over the next thirty 

years(5). The burden of disease is considered high, with an annual cost for PD in 

Australia being greater than $10 billion (5). At its intermediate stages, PD is 

considered to be more burdensome than primary progressive multiple sclerosis and 
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in the advanced stages is on par with the terminal stages of cancer or severe 

dementia. Advances in our intervention strategies to improve quality of life for 

patients and their carers are therefore imperative. However, accurate, reliable and 

objective measurement techniques for the specific disease parameters in PD are 

limited. Precise quantitative measurement is likely to underpin future progress in PD 

research.  

 

1.1.3 - Clinicopathological Progression in Parkinson’s disease 

Pathologically, the hallmark of PD is the Lewy body, which are aggregates of 

misfolded alpha-synuclein protein found within dying neurons. Other proteolytic 

stress proteins, including ubiquitin and phosphorylated neurofilaments, have also 

been identified in the pathology of PD (6). It has been proposed that there is a 

caudo-rostral spread of this Lewy Body pathology in PD and this would be in keeping 

with the predominance of sleep-wake disturbance in preclinical and early PD (7).  

For example, the ascending reticular activating system, which is responsible for 

wakefulness lies in the medulla and pons.  Similarly, the regulation of the stages of 

sleep is also believed to rely on pontine nuclei, further illustrating why sleep-wake 

disturbances are often an early, pre-motor feature of PD.   

 

The continuing deposition of Lewy bodies ascends through the brainstem and in the 

advanced stages is disseminated throughout neocortical structures. The Braak 

pathological staging model describes the progression of PD in six stages beginning 

in the lower brainstem, which then ascends over time. Initially it was proposed that 

as the deposition of Lewy bodies ascends, so too does the burden of Lewy body 

pathology in already affected structures (8). However, exceptions to this model exist. 
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For example the pathology within the dorsal motor nucleus of the vagus nerve, which 

is affected early in the pathological process does not correlate with cortical Lewy 

body burden (9).   

 

Recently, a prion-like hypothesis for disease spread has been proposed, suggesting 

that neurons with Lewy bodies within them may affect other neighbouring neurons 

(10). Pathology outside of the central nervous system also exists including recent 

evidence confirming phosphorylated alpha-synuclein deposits in dermal nerve fibres 

in patients with PD (11). Alpha synuclein containing inclusions have also been found 

in colonic mucosa, submandibular salivary glands in addition to solid tissue samples 

of the enteric and autonomic nervous system, adding further weight to the possibility 

of a transfective process in the pathology of PD (12). 

 

Stages 1 and 2 of the Braak model are considered pre-clinical as involvement of the 

substantia nigra and the corresponding motor deficits are yet to occur. Within stages 

1 and 2, structures including the dorsal motor nucleus of the vagus nerve and the 

anterior olfactory structures are proposed to be first affected coinciding with the pre-

clinical symptoms of anosmia and autonomic dysfunction. Importantly, sleep-wake 

disturbances in PD can occur in this pre-clinical phase, which is presumably related 

to local pathological processes.  

 

Lewy body deposition and consequent dysfunction of structures critical to sleep-

wake regulation occurs in the lower brainstem in stage 1 and 2 coinciding with 

emerging evidence supporting excessive daytime sleepiness and REM sleep 

behaviour disorder as preclinical problems in PD (13) . Specifically, structures in the 
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reticular activating system such as the dorsal raphe nucleus, locus coeruleus and 

pedunculopontine nucleus are affected prior to the emergence of motor symptoms. 

In addition to regulating sleep-wake systems, these structures are also critical for the 

regulation of mood. Thus the coincidence of mood dysfunction and sleep-wake 

dysregulation at diagnosis, raises questions of bidirectional causality.   

 

Cardinal features of PD, including tremor, rigidity and bradykinesia occur at stage 3 

corresponding to dopaminergic cell loss within the substantia nigra. Stage 4 includes 

limited cortical involvement confined to the temporal mesocortex and allocortex.  

Advanced stages 5 and 6, result in further cognitive decline as there is a pathological 

spread to include the neocortex, often with a formal diagnosis of dementia and the 

development of visual hallucinations. 

 

1.1.4 - Sleep-wake Disturbances and their association with Parkinson’s 

Disease 

Sleep-wake disturbances are a frequently observed non-motor problem, gaining 

increased attention in Parkinson’s disease (PD) (14, 15). Sleep-wake disturbance in 

PD encompasses disturbance of the all systems of sleep architecture including 

disorders of circadian, homeostatic and ultradian sleep systems.  

 

The circadian sleep system contributes to the initiation of sleep as well as entraining 

sleep to the twenty four hour day/night cycle. This is controlled by the retino-

hypothalamic pathway and pineal gland, which is responsible for the secretion of the 

chronobiotic hormone, melatonin (16). The homeostatic sleep system is proposed to 

control energy restoration through the gradual increase in the need to sleep (sleep 
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pressure) with the consequent increase in activity dependent metabolites that 

gradually down regulate the activating reticular system  (17). Finally the ultradian 

sleep system controls the switching between the stages of sleep - Non Rapid Eye 

Movement (NREM) and REM sleep (18). 

 

Such symptoms are observed in over two thirds of patients (19) manifesting with a 

range of sleep-wake symptoms (20, 21)  including circadian phase disturbances and 

REM sleep behavior disorder.  Insomnia secondary to Parkinson’s disease, defined 

as a complaint of sleep onset, sleep maintenance, waking too early or lack of 

restorative sleep is reported in more than 50% of patients with PD (22, 23).  In 

addition to disorders of nocturnal sleep, excessive daytime sleepiness (EDS) is 

observed (24), commonly manifesting as daytime napping (25). Empiric experiments 

are essential to help inform our understanding of these critical symptoms in PD.  

 

As stated above, non-motor symptoms confer reduced quality of life for patients and 

their carers (14, 26). The potential link between sleep-wake disorders and mood 

dysfunction, although frequently identified in Parkinson’s disease is not well 

understood. Mood disorders and sleep-wake disorders, such as insomnia are 

intricately related in studies of cohorts free of neurodegenerative disease (27, 28). 

Whilst studies based on self-report measures have confirmed patients with PD and 

depression exhibit more sleep disturbance, the responsible causal mechanisms have 

not been established (29).  Sleep-wake disturbance in PD has been linked to 

cognitive decline including reduced processing speed, working memory and verbal 

fluency (30-32) . Recent studies have demonstrated that working memory in PD can 

be modified by sleep only after restoration of the normal sleep architecture (33). 
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Mechanisms exploring the interaction between sleep-wake disturbances and  other 

non-motor and motor symptoms in PD are not well understood. Dopaminergic and 

non-dopaminergic pathology across the brainstem, basal forebrain, hypothalamus 

and frontostriatal pathways are likely to be implicated (13, 18, 22, 24).  

 

Obstructive sleep apnea is another potential cause of EDS in PD (34), although 

evidence suggesting an increased incidence of obstructive sleep apnea in PD 

compared to aged match controls is not conclusive (35-37). Restless legs syndrome, 

in which patients report an unpleasant urge to move their limbs during periods often 

at night, are observed in PD cohorts (38). The incidence of restless leg syndrome in 

PD cohorts is approximately 12% and results in difficulty initiating sleep with 

consequent altered sleep architecture (39). Periodic limb movements of sleep, 

involving repetitive and stereotyped limb movements in sleep, are frequently 

observed in restless leg syndrome but can occur independently. Periodic limb 

movements of sleep (PLMs) have also been implicated in nocturnal sleep 

disturbance both with and without restless legs syndrome in 30% of patients with PD 

(40). The mechanisms underlying RLS and PLMs within PD cohorts are not well 

understood, however disruption of dopaminergic circuits have been implicated.  This 

proposal is further supported through there symptomatic benefit derived from 

dopaminergic therapy (41).   

 

1.1.5 - Medication Effects on Sleep-wake Disturbance in Parkinson’s Disease 

1.1.5.1 - Dopaminergic Medication  

In addition to the chemical and cellular changes caused by the progression of Lewy 

body pathology in PD, the medications used most frequently to ameliorate symptoms 
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can also alter sleep-wake regulation through the manipulation of neurotransmitter 

systems. The dopamine agonist class of PD medication has most frequently been 

linked to increasing daytime somnolence in PD (42).  Such an effect could be being 

facilitated through the differential activation of the multiple dopamine receptors in the 

basal ganglia (43). 

 

Two groups of dopamine receptors have been identified including D1 like receptors 

(D1 and D5) and D2 like receptors (D2, D3 and D4) (see Butini et all for review (44)). 

D1 like receptors are principally expressed in the striatum, substantia nigra 

amygdala and multiple cortical regions. D1 like receptors are implicated in 

locomotion, reward and memory circuits (44). D2 like receptors are found in the 

multiple regions including the substantia nigra, hypothalamus, amygdala, 

hippocampus and retina with diverse functions. D1 receptors are important to the 

circadian sleep systems through their expression in the retina and suprachiasmatic 

nucleus. However, these receptors are also important for homeostatic and ultradian 

sleep through their presence in the striatum and other parts of the reticular activating 

system. D1 receptor agonists have been shown to exert wake promoting effects. 

However, D2 related activation results in differential effects with agonists and 

antagonists exhibiting opposite effects dependent on their individual dose. Similar 

results have been reported with manipulation of the D3 receptors. Low dose 

dopamine agonists are thought to preferentially activate D2 receptors promoting 

sleep. Conversely higher concentrations activate D1 receptors resulting in 

wakefulness and increased locomotor activity. Finally, sudden onset episodes of 

REM sleep have been linked to the use of dopamine agonists (34). 
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1.1.5.2 - Melatonin  

In addition to the important role that melatonin plays in affecting the light/dark 

regulation of circadian rhythms, the sleep promoting effect of melatonin has been 

subject to debate (45). Initial studies using exogenous melatonin failed to show a 

sleep promoting effect, although this now appears to be due to the short half-life of 

the melatonin preparation used along with inadequate dosing (46).  Subsequent 

studies have provided compelling evidence that melatonin does have a sleep 

promoting effect via direct neuronal suppression in patients with insomnia and 

delayed sleep phase syndrome (46-49). Furthermore, a recent consensus statement 

from the British Association for Psychopharmacology has proposed melatonin as first 

line therapy for insomnia in older adults (50). However there is insufficient evidence 

to support melatonin as an effective treatment for  insomnia in patients with PD and 

further studies are required to explore this hypothesis (51).  

 

Melatonin has also been reported to improve REM without atonia, the 

electrophysiological hallmark of RBD, in addition to improved symptomatic 

improvements (52-54). However these studies had minimal subjects with Parkinson’s 

disease and did not control for potential confounds such as concomitant use of 

antidepressant medication. Prospective randomised controlled studies are needed to 

determine the efficacy in cohorts of patients with PD (55) . 

 

1.1.5.3 – Antidepressants, Anxiolytics and Sedatives 

Selective serotonin reuptake inhibitors (SSRI), nonspecific serotonin and 

noradrenaline reuptake inhibitors (SNRI) and tricyclic antidepressants that are 
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commonly used in PD to improve mood, also alter the ratio of cholinergic to 

aminergic tone, which is critical to switching between NREM and REM sleep (18, 56, 

57). These medications all suppress REM sleep.  Therefore, using these 

medications to suppress REM is a therapeutic modality in addition to wake 

promoting medications, in the treatment of narcolepsy. The consequence of 

suppressing REM is not fully understood. Medications such as SSRIs and SNRIs are 

also implicated in causing secondary REM sleep behaviour disorder, although the 

mechanism for this causation is not known (58).  

 

Clonazepam a benzodiazepine used to treat RBD and insomnia, is reported to 

disrupt sleep architecture. Specifically these medications reduce the quantity of slow 

wave sleep, critical to mood and cognitive function (59). Other sedative medications 

such as GABA A receptor agonists (e.g. eszopiclone) are reported to improve 

insomnia in patients with PD (60). Of note, zolpidem a similar frequently used 

sedative medication has not been studied for insomnia in PD cohorts but has been 

reported to improve motor symptoms (61). Cognitive behavioural therapy has also 

been reported to improve insomnia in patients with PD (62). 

 

1.1.5.4 - Wake Promoting Medication 

Psychomotor stimulants and related agents such as modafinil and sodium oxybate 

are proposed to enhance the activity of dopamine, facilitating increased activity and 

promoting wakefulness. However studies in cohorts of patients with PD where 

excessive daytime sleepiness was identified on self-report measures, did not report 

improved sleepiness (63, 64). Combining the data from five randomised controlled 

trials of modafinil used in EDS cohorts of PD, Trotti et al 2014 reported a reduced 
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score on the ESS (65). This study suggests modafinil may improve subjective but not 

objective measures of EDS in PD (65). These counterintuitive results may be due to 

inherent deficiencies in self-report measures in patients with known cognitive and 

mood related co-morbidities. Therefore, studies using objectively identified EDS are 

required. 

 

1.2 - Neurobiology of Sleep-wake regulation and Parkinson’s Disease 

1.2.1 - Circadian Sleep Systems 

The circadian system regulates a range of inter-related physiological systems 

including feeding, thermoregulation and critically the sleep-wake cycle.  The main 

driver of the circadian cycle is the level of daylight and this operates through the 

retino-hypothalamic pathway where the suprachiasmatic nucleus (SCN) ultimately 

controls the secretion of melatonin from the pineal gland (17). Whilst circadian 

disturbance is well recognised in Alzheimer’s disease (66), specific contributions 

from structures such as the SCN or pineal gland have not been established in PD. In 

addition, it has been recognised that the anterior hypothalamus sends monosynaptic 

outputs to the lateral hypothalamus, overlapping with the wake promoting orexin 

neurons (67). As the synchrony between sleep and the circadian system is 

dependent on the dorsolateral hypothalamic nuclei (67), it has been proposed that 

increased orexin, through abnormal signaling from the SCN, is a potential 

mechanism for de-regulation of this interaction (68).  

 

As light levels fall in the day, melatonin secretion is increased and acts as a major 

sleep promoter through its actions in the wake promoting and sleep promoting nuclei 

of the brainstem.  Serial plasma melatonin measurement and evaluation of the 
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corresponding dim light melatonin onset (DLMO) (figure 1) have been used 

previously to assess circadian phase (68).  

 

 

Figure 1 – A graph depicting the increase in melatonin secretion, the dim light 

melatonin onset prior to sleep onset and possible abnormal circadian phase advance 

or delay. 

 

Studies in non-PD cohorts have successfully utilized melatonin measurements 

derived from serial salivary sampling (69, 70). The DLMO and estimates of the area 

under the melatonin curve can be calculated from these readings. Furthermore, by 

subtracting the DLMO from the habitual sleep onset (HSO) the entrainment phase 

angle can be calculated (see figure 2) and this has been used as a marker of internal 

circadian dysynchrony (68). To date, these measures have not been applied to a PD 

cohort.  
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Figure 2 – A diagram depicting the entrainment phase angle representing the time 

after  activation of the circadian sleep system in which habitual sleep onset takes 

place. 

 

1.2.1.1 - Circadian Disturbance and Parkinson’s Disease 

Abnormal circadian rhythmicity has been associated with reduced nocturnal sleep 

quality and daytime somnolence (71, 72) and aging alone, has been identified in the 

mechanism of these problems (73). However, despite the frequently observed sleep-

wake disturbance in PD, the precise abnormalities of circadian rhythms are not well 

understood (42).  Previous studies investigating circadian disturbance in PD have 

reported a circadian phase advance in those treated with dopaminergic medication 

but not in untreated PD or aged matched healthy controls (74, 75). In addition, 

Bordet et al 2003 also showed an altered melatonin secretion pattern in PD patients 

with motor complications on L dopa treatment (76). Reduced melatonin secretion 

without circadian phase shift was also reported in a study of patients with early PD 
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(77). More recently, Videnovic et al 2014 reported attenuated circadian rhythm of 

melatonin secretion in PD compared to controls without circadian phase difference 

(78). All of these studies employed invasive 24 hour plasma sampling.  

 

1.2.2 - Homeostatic Sleep Systems 

The evolving pressure to sleep that grows throughout the waking day correlates with 

an increase in the activity dependent metabolites such as adenosine, gamma amino 

butyric acid (GABA), prostaglandin D2 (PGD2), interleukin–1A (Il-1A) and tumour 

necrosis factor (TNFα). The accumulation of these activity dependent metabolites 

precedes the transition from wake to NREM sleep (18) . In mammals the synthesis 

and accumulation of brain metabolites has been shown to be directly proportional to 

the intensity and duration wakefulness. The accumulation of these metabolites 

subsequently inhibits these wake promoting structures (18). Thus the inability to 

clear activity dependent metabolites, through the restorative function of sleep would 

result in excessive daytime sleepiness. 

 

The transition from wake to NREM sleep involves activity dependent metabolites 

gradually reversing the tonic inhibition from the thalamic reticular nucleus on the 

thalamocortical neurons, resulting in gradual hyperpolarisation (17). 

Hyperpolarisation of thalamocortical neurons allows the activation of low threshold 

ionic calcium (Ca2+ ) spikes, initiated in the reticular nucleus and mirrored in the 

thalamocortical neurons (79). When the hyperpolarisation reaches a certain 

threshold, spindles are replaced with delta waves representing the interplay between 

hyperpolarisation cation current and transient low threshold ionic calcium (Ca2+) 

current resulting in delta waves (79). Rhythmic and synchronised spike bursts from 
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thalamic neurons are associated with Ca2+ entry. This may activate Ca2+ calmodulin 

dependent protein kinase implicated in synaptic plasticity required for memory, 

learning and dream mentation (80). It is interesting to note that alpha Ca2+-

calmodulin dependent kinase II plays a causal role in cognitive and motor deficits in 

animal models of PD and thus could represent a common pathology between EDS 

and cognitive deficits in PD (81) (82) (83).   

 

1.2.2.1 - Excessive daytime sleepiness and the Homeostatic Sleep System in 

Parkinson’s Disease 

Excessive daytime sleepiness (EDS) is observed in over half of all PD patients, 

where it commonly manifests as daytime napping (21, 84). The development of 

daytime somnolence in PD has been associated with increasing age, disease 

duration, disease progression, postural instability, depression and the use of 

dopamine agonists (85-87). However, much like the emergence of idiopathic RBD in 

later life (88), EDS can also represent a pre-motor feature heralding the development 

of PD (13, 24, 25).  The presence of daytime somnolence has been linked to 

executive dysfunction in PD implying a link between EDS and cognition in this 

condition (13, 89, 90). Furthermore, impairments in frontostriatal neural circuitry have 

been implicated in the reduced arousal, attentional modulation and working memory 

seen in PD (90-92). 

 

Previous studies in non-PD samples have shown that older individuals with EDS are 

more likely to nap during the day (93, 94). The presence of daytime napping has also 

been proposed as a robust manifestation of EDS in PD (25) and has been used in 

this cohort as a measure of EDS (24, 95). More extensive work has been conducted 
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on napping in healthy older adults where it appears to be associated with increased 

morbidity (96) and mortality (97). In these older cohorts increased napping has been 

associated with decreased global cognitive performance (93, 98-100) and in 

particular deficits in executive function (99). Of note, studies that have utilized 

‘prescribed’ napping to restore the effects of sleep deprivation in healthy cohorts, 

have demonstrated improved executive performance on tasks such as reaction time 

and symbol digit substitution (101-103). These combined observations highlight the 

possibility that the increased frequency of napping seen in older adults and patients 

with PD might represent a compensatory neurobiological strategy to a primary 

neuropathological insult. 

 

The dopaminergic  SNc/VTA and peri-aqueductal grey matter have been established 

as having a wake promoting effect (17). It follows that EDS in PD has been linked to 

dopaminergic cell loss in these regions (24). However EDS is proposed as a 

possible pre-motor problem, which implies that the chemical and neural correlates of 

EDS will also involve non-dopaminergic neurons in the lower brainstem (13). Cell 

death in structures such as the basalis nucleus (BN), pedunculopontine nucleus 

(PPN), locus coeruleus (LC), dorsal raphe (DR), substantia nigra/ventral tegmental 

area (SNc/VTA), tuberomamillary nucleus (TMN), mesencephalic reticular formation 

(MRF) could all facilitate EDS (17).  In addition, depletion of the neurotransmitters 

activating these nuclei, such as acetylcholine (ACh), noradrenaline (NA), serotonin 

(5-HT), dopamine (DA), Histamine (Hist) and glutamate (Glut) may also play a role 

(18).  
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Disruption of energy restoration through excessive accumulation and failure to clear 

activity dependent metabolites with consequent failure of homeostatic circuitry is 

probable in multiple secondary mechanisms of sleep wake disturbance in PD. 

Abnormal sleep architecture is also seen as a consequence of sleep disordered 

breathing, restless legs syndrome and the periodic limb movements of sleep. 

Nocturnal disturbance is also frequently noted secondary to physical symptoms of 

PD including pain, stiffness, nocturia and ‘akinesia where there is a failure to roll over 

effectively (17, 104).  

 

1.2.3 - REM Sleep Circuitry and the Ultradian Sleep System 

After the initiation of sleep, including the gradual transition to slow wave sleep via the 

lighter stages of NREM sleep (stage 1 and stage 2 sleep), there is a switch to REM 

sleep (for review see Swick et al 2005 (105)). NREM and REM alternate in four to 

five cycles in a typical nocturnal sleep cycle, with longer periods of REM sleep in the 

second half of nocturnal sleep (106). The cycling of NREM and REM sleep is 

controlled by the ultradian sleep system with complex neural and chemical control 

systems involving in the reticular activating system, basal forebrain and 

hypothalamus (16, 17, 107). Understanding REM sleep circuitry is important, given 

that REM sleep behaviour disorder is proposed as the most reliable marker of the 

future emergence of Parkinson’s disease (108). 

 

REM sleep is characterised polysomnographically by a desynchronised cortical 

EEG, rapid eye movements and muscle atonia (17). Each of these REM 

characteristics are controlled by brain stem structures, switched on and off 

depending on the relative availability of cholinergic and aminergic neurotransmitters 
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(16-18). It is believed that the transition to REM sleep is facilitated by the reversal of 

gamma amino butyric acid (GABA) inhibition on the pedunculopontine nucleus, 

which predominates in NREM sleep. Concurrently GABA inhibits cells in the LC and 

DR (18). Changes in the ratio of cholinergic to aminergic tone facilitates the 

switching of REM including the REM sign of muscle atonia (17) . Thus the switching 

from NREM to REM is controlled via cholinergic PPN neurons, with signal 

transmission from glutamate and GABA, via kainite, NMDA and GABA-B receptors 

(18).  

 

Animal models have demonstrated RWA through the placement of lesions in the α 

locus coeruleus suggesting this structure is critical to the normal muscle atonia seen 

in REM sleep. Pharmacological models have also shown reductions in the length or 

complete absence of REM in subjects taking medications known to increase 

cholinergic (109, 110) or aminergic tone, such as selective serotonin re-uptake 

inhibitors or non-specific noradrenaline and serotonin re-uptake inhibitors (111). 

Thus it appears that increasing acetylcholine, serotonin or noradrenaline and thereby 

altering the ratio of cholinergic to aminergic tone, can inhibit the switching to REM 

sleep. 

 

1.2.3.1 - REM Sleep Behaviour Disorder and Parkinson’s disease 

Studies have emerged investigating the link between Parkinson’s disease and the 

presence REM sleep behaviour disorder (RBD) (112-115). RBD is noted to occur in 

40-60% of patients where it manifests as dream enactment in the REM phase of 

sleep when the skeletal muscles should ordinarily be electrically silent (19).  In 

addition to conferring comorbidity to both patients and their bed partners, RBD has 
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also been linked to multiple troublesome symptoms including autonomic dysfunction, 

decreased olfaction and colour discrimination (116). As well, visual hallucinations are 

increasingly being linked to RBD in PD (117, 118). These symptoms often coexist 

with cognitive deficits (20, 30, 90) and dementia (116), which in turn represent 

independent predictors for nursing home admission, conferring increased burden on 

the community (26).  As such, accurate screening and diagnosis is essential for 

managing the comorbidity associated with RBD in PD.   

 

RBD has been recognised as the most significant premotor feature of PD occurring 

up to 15 years prior to the diagnosis. The likelihood ratio of RBD as a prodromal 

marker of PD was recently identified as 130, higher than all other markers (119),  

Given that the emergence of idiopathic RBD in later life can herald the development 

of PD (115), this observation might offer some clues toward the underlying 

neuropathology. It has been reported that the vast majority of patients with idiopathic 

RBD will transition to an alpha synucleinopathy such as PD (along with Lewy Body 

Dementia or Multiple System Atrophy) with the symptoms commencing many years 

prior to the clinical diagnosis of PD (115).  It follows that the location of pathology in 

RBD will involve brain stem structures consistent with the pre-clinical stages of the 

Braak pathological staging system for PD (for review see (120)). These structures 

will likely be caudal to the substantia nigra (SNc)/ventral lateral tegmentum (VTA) 

[10] and evidence from animal models suggests that pathology in the alpha locus 

coeruleus region of the pontine tegmentum, results in REM atonia [11]. However, the 

precise circuitry responsible for RBD in humans has not been identified (121). 
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The hallmark of RBD diagnosis is the demonstration of REM without atonia (RWA) 

(see figure 3) in the surface EMG leads from nocturnal polysomnography (ICSD-2) 

(23). Identifying RWA,  has become critical to the diagnosis of RBD (122). 

Furthermore, quantifying the severity of RWA is of particular interest as it appears to 

predict the transition from idiopathic RBD to PD (123).   

 

 

 

Figure 3 – An excerpt from a nocturnal polysomnogram showing EEG, EOG and 

surface EMG activity. Panel A reports REM with atonia. Panel B reports REM without 

atonia. 

 

1.3 - Advancing the Understanding of Sleep-Wake Disturbance in Parkinson’s 

disease using Self-report Measures 

 

1.3.1 Sleep-Diaries and Circadian Phase in Parkinson’s Disease 

Self-report measures have frequently been used in the assessment of sleep-wake 

disturbance in PD (124, 125). For example, sleep diaries have commonly been used 

to assess sleep duration, nocturnal arousals and circadian phase. However, 

inaccuracy of these measures in normal subjects and other cohorts free from a 

neurodegenerative condition has been reported (126-128). There is minimal data 

A B 
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using sleep diaries to assess circadian phase in PD cohorts. Inherent in these 

measures are issues of reliability and validity, which are compounded in patients with 

neurodegeneration.   

 

1.3.2 Self-Report Measures of Excessive Daytime Sleepiness in Parkinson’s 

Disease 

Self-report measures designed specifically to evaluate PD cohorts for sleep-wake 

disturbances have been developed and include the Scale for Outcomes in 

Parkinson’s disease - Sleep (SCOPA-S) and the Parkinson’s disease Sleep scale 

(PDSS) (124, 125). The PDSS or the SCOPA-S were both reported to identify sleep-

wake disturbance in PD (124, 125). Studies using the SCOPA-S have been 

compared to other versions of the SCOPA that exist for cognition, psychiatric 

complications and autonomic problems (129). Kurtis et al 2013 reports depression, 

fatigue, cognitive impairment and autonomic symptoms such as urinary and 

thermoregulatory problems may contribute to sleep-wake disturbance in PD (129). 

Similarly the PDSS has been reported to identify reduced quality of life and mood 

disturbance (130). It is concerning that neither the SCOPA-S, or PDSS were 

validated in conjunction with an objective measure of sleep. Similarly the Epworth 

Sleepiness Scale (ESS) (131) has also been used in PD cohorts to identify cognitive 

deficits (13, 89, 90). Of note both the SCOPA-S and PDSS used the ESS as part of 

their validation (124, 125) despite the fact that this instrument had not actually been 

validated itself in PD.  
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1.3.3 REM Sleep Behaviour Disorder and Self-Report Measures in Parkinson’s 

Disease 

 

Multiple self-report measures have been developed for the identification of REM 

sleep behaviour disorders including the REM Sleep Behaviour Disorder Screening 

Questionnaire (RBDSQ) (132),  the Single Screening question (RBD1Q) (133) and 

parts of the Mayo Sleep Questionnaire (MSQ) (134).  

 

Studies using the RBDSQ have identified a link between visual hallucinations and 

RBD in PD (117, 118). The RBDSQ has also been used to identify cognitive decline 

such as reduced processing speed and verbal fluency (20, 30, 90).  The RBDSQ 

also identified increased wake bouts during nocturnal sleep (31). 

 

1.3.4 Limitations with Self-Report Measures in Parkinson’s Disease 

Symptoms of mood disturbance and cognitive deficit often coincide with sleep-wake 

problems and may bias self-report measures in cohorts of PD. Impaired recall has 

been shown to impair the use of self-report measures in non PD cohorts (135). Such 

problems have already been identified in other non-motor symptoms that often occur 

with sleep-wake disturbance in patients with PD, including freezing of gait and visual 

hallucinations (136, 137).   
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1.3.5 Novel Objective Measurement in Sleep-Wake Disturbance in Parkinson’s 

Disease 

 

1.3.5.1 Serial Salivary Melatonin in the Measurement of Circadian Phase in 

Parkinson’s Disease 

 

1.2.1.1 refers to circadian sleep systems that can be assessed through melatonin 

curves. Through these curves, the activation of the circadian system can be 

calculated from the dim light melatonin onset time. The quantity of melatonin 

secreted can be estimated from the area under the curve. Finally, synchrony 

between the sleep and the circadian system can be assessed through the 

entrainment phase angle (see figure 2) (68).  

 

Circadian rhythm disturbances have previously been investigated in patients with PD 

utilising invasive serial measurement of plasma melatonin. Inconsistent results were 

identified along with methodological problems such as not controlling for the acute 

inhibitory effect of light exposure on melatonin synthesis (74-76, 138). Serial salivary 

melatonin measurement as shown in Figure 4, provide an alternative, non-invasive 

technique, that has been successfully demonstrated in non-PD cohorts (69, 139).  

 

The unique application of this method to a PD cohort, collected in an environment 

controlled for light levels, temperature, posture and eating would provide a novel 

objective assessment of circadian phase.  
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For these in-laboratory circadian phase assessment, participants need to be 

maintained in a seated posture for at least 30 minutes before samples are collected.  

Sampling occurs at 30 minute intervals  from 6 hours before habitual sleep onset 

(HSO), until 2 hours after HSO (68, 69).  During this type of assessment, participants 

have to be physiologically and behaviorally monitored under controlled conditions 

with fixed light levels (less than 30 lux) and a controlled ambient temperature 

(24±1oC). Participants maintained a seated posture for at least 20 minutes before 

each sample collection. Patients are also asked to abstain from substances believed 

to affect melatonin and/or sleep (e.g. caffeine, turkey, bananas, tomatoes). The 

subsequent measurement of salivary Melatonin is then achieved by double antibody 

radioimmunoassay (Cat no. RK-DSM2; Buhlmann Laboratories AG, Schonenbuch, 

Switzerland).  

 

 

Figure 4 – A graph depicting the serial salivary melatonin measurement. The 

activation of the circadian phase is indicated by the dim light melatonin onset. The 

area under the curve indicates the quantity of melatonin secreted. 

 

37



1.3.5.2 The Utility of Actigraphy to measure Excessive Daytime Sleepiness in 

Parkinson’s Disease 

As highlighted above (Section 1.2.2.1), previous studies in PD have reported a link 

between self-reported daytime sleepiness and deficits in cognition (13, 89, 90).  

However, these relationships have yet to be investigated using an objective 

measure. Studies in non-PD cohorts have successfully utilised actigraphy as a non-

invasive measure of daytime napping (140). To date daytime actigraphy has not 

been applied in PD.   This measurement tool is commonly worn as a watch like 

device on the wrist less affected by tremor (see figure 5). An actigraph combines 

movement data from a three axis accelerometer with light levels from a spectrometer 

to determine rest intervals based on software and manual scoring. Multiple variables 

are derived from the actigram including total nap time, the number of nap bouts per 

day, total nocturnal sleep time (TST), wake after sleep onset (WASO) and sleep 

efficiency ((TST – WASO)/TST) sleep. Actigraphy previously been reported as a 

robust estimate of polysomnography defined sleep (141).  The use of actigraphy to 

explore sleep disturbance in PD was first demonstrated by Naismith et al 2011 to 

explore RBD  (31).  Subsequently, multiple studies have further validated the use of 

actigraphy to assess nocturnal sleep disturbance in PD (20, 142, 143).  

 

The implementation of this technology in a PD cohort, would be first to use 

actigraphy, a validated objective, non-invasive and inexpensive measure of daytime 

sleep in PD. By comparing excessive napping to other non-motor, motor and disease 

specific problems in PD, the correlates of excessive napping would be determined. 
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Figure 5 – An actigraphy watch, with inbuilt three axis accelerometer, light 

spectrometer and actigram. Multiple variables are derived from the actigram 

including total nap time, the number of nap bouts per day, total nocturnal sleep time 

(TST), wake after sleep onset (WASO) and sleep efficiency ((TST – WASO)/TST) 

sleep. 

 

1.3.5.3 The REM Atonia Index to measure REM Without Atonia in Parkinson’s 

Disease 

The demonstration of REM without atonia (RWA) in muscles that should be 

electrically silent during REM sleep is critical to identifying RBD (144). Given the 

potential for RBD to herald the development of PD, multiple techniques have been 

developed to improve the measurement of RWA and subsequent 

electrophysiological diagnosis of RBD (for review see (145)).  The importance of 

measuring RWA as a continuous variable has been demonstrated in a recent study 

that reported that the severity of RWA predicted the development of PD in cases of 

idiopathic RBD (123). 
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The REM atonia index (see figure 6) was developed as an automated signal 

processing algorithm to assess the surface EMG from nocturnal polysomnography 

for RWA (146-149). The REM atonia index averages the EMG signal in each 1 

second epoch of REM sleep and grades the epoch as normal or abnormal based on 

a voltage threshold (< 1 µV = normal,  1-2 µV = indeterminate,  > 2 µV = abnormal). 

The REM atonia index is the ratio of normal to abnormal epochs of REM. A REM 

atonia index cut-off score is used to  indicate significant RWA and could be 

compared and contrasted with self-report measures used in RBD as an objective 

measure of RBD (146) 
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Panel - A 

 

 

Panel - B 

 

Figure 6 – An excerpt from a nocturnal polysomnogram. The top two channels in 

each panel show the eye movements (EOG), the middle channel of each panel 

shows the surface EMG from the mentalis muscle and the bottom two channels from 

each panel show an excerpt from the cortical EEG. 
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1.4 - Concluding remarks 

This thesis aims to utilise the objective measurement of sleep-wake disturbances 

across the circadian, homeostatic and ultradian sleep systems in PD through four 

empiric experiments to help inform our understanding of these critical symptoms in 

PD. While the utility of self-report data is not doubted as a means of engaging the 

patient and ‘hearing their voice’, there is a clear need for objective data that can 

quantify measurements.   Thus, these objective techniques could be used to assess 

the validity of the questionnaires, which have been devised to measure the same 

entities and to add a further dimension of patient input into the treatment.  Improved 

objective accurate and reliable measurement techniques will help reduce any 

potential bias in data.    

 

Circadian rhythm disturbances have previously been investigated in patients with 

PD. However, these studies did not control for the acute inhibitory effect of light 

exposure on melatonin synthesis, included small numbers of participants and took 

no account of the effects of age, disease duration, disease stage, or mood 

disturbances. Furthermore, the relationship between circadian phase and habitual 

sleep-onset time used as a measure of synchrony between the circadian system and 

the sleep–wake cycle has not been explored within cohorts of patients with PD. 

Chapter Two of this thesis investigates (Disturbances in melatonin secretion and 

circadian sleep-wake regulation in Parkinson’s disease, Sleep Medicine 2014) 

circadian disturbance in PD. It is proposed that perturbations of melatonin secretion 

altered by neuropathological changes or by dopaminergic replacement therapy may 

be contributing to the sleep-wake disturbance seen in PD. This study is the first to 

combine serial salivary melatonin measurement, polysomnography (PSG) and wrist 
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actigraphy to identify whether PD patients demonstrate circadian disturbance 

compared to age matched healthy controls. Furthermore, this study was conducted 

to elucidate whether disturbances in melatonin secretion are associated with PD 

pathology or could be attributed to the use of dopaminergic therapy.  A greater 

understanding of these processes will aid the design of future treatment strategies. 

 

In addition to nocturnal sleep disturbance, excessive daytime sleepiness (EDS), a 

disorder of the homeostatic sleep system, is frequently observed in patients with PD. 

EDS confers significant morbidity to patients with PD and their carers, particularly in 

view of the concomitant cognitive and mood disturbance.  Studies in non-PD cohorts 

have successfully utilised daytime actigraphy as a non-invasive measure of daytime 

napping.  However, previous studies in PD have utilised self-report questionnaires 

such as the Epworth Sleepiness Scale, Scale for Outcomes in Parkinson’s disease - 

Sleep (SCOPA-S) and Parkinson’s disease Sleep Scale to measure EDS, which 

may be prone to bias in cohorts with cognitive and mood dysfunction. Chapter Three 

of this thesis (Objective measurement of daytime napping, cognitive dysfunction and 

subjective sleepiness in Parkinson’s disease. PLoS ONE. 2013) explores objective 

and subjective measurement of daytime sleep disturbance in a sample of PD 

patients and a group of age matched healthy controls that had all undergone 

neuropsychological testing. This is the first study to compare the ESS, a widely used 

self-report questionnaire that rates the probability of napping, with an objective 

measure of napping. This thesis hypothesised that the duration of daytime napping 

would be greater in PD patients as compared to controls and that excessive napping 

would be associated with impaired cognitive performance, specifically within 

domains mediated by fronto-subcortical circuitry. Furthermore, it was proposed that 
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as the ESS rates the probability of napping in several situations, patients with 

excessive daytime sleepiness as determined by the ESS, should also exhibit greater 

levels of napping as identified objectively by actigraphy. Finally, this study suggests 

that the objective measurement of daytime napping will more accurately identify 

those patients who may benefit from pharmacologic and behavioural interventions to 

improve these symptoms. 

 

Rapid eye movement (REM) sleep behaviour disorder (RBD) is observed in over half 

of all PD patients and is linked to significant troublesome symptoms such as visual 

hallucinations, cognitive decline and mood disturbance.  As such, accurate screening 

and diagnosis is essential for managing the comorbidity associated with RBD in PD 

Furthermore, the emergence of idiopathic RBD in later life can represent a pre-motor 

feature heralding the development of PD and thus allowing earlier diagnosis, which 

may offer a window for more effective intervention. Chapter Four of this thesis 

(Improving the electrophysiological measurement of REM without atonia in the 

diagnosis of REM sleep behaviour disorder.  Advances in Clinical Neuroscience and 

Rehabilitation 2014) reviews methods of measurement of RWA, the 

electrophysiological hallmark of RBD. Identifying RWA, in the surface EMG leads 

from nocturnal polysomnography (PSG), has become central to the diagnosis of 

RBD and may become the most reliable biomarker predicting the future development 

of PD in at risk populations.  
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Quantifying RWA could provide a measurement to grade response to treatment in 

addition to providing further insights into the pathophysiological mechanisms 

underlying RBD. However, although there are putative benefits, the utility of 

measuring RWA as a continuous variable is yet to be determined.  Chapter Five 

(Investigating REM without atonia in Parkinson’s disease using the REM sleep 

behaviour disorder screening questionnaire. Movement Disorders 2014) investigates 

the reliability self-report questionnaires specific to dream enactment behaviour to 

correctly identify RWA in patients with PD. Furthermore, the diagnostic utility of 

visually and automatically measured RWA as a continuous variable and night to 

night variability of RWA was interrogated in Chapter Six of this thesis (Investigating 

the night to night variability of REM without atonia in Parkinson’s disease. Sleep 

Medicine 2014). It is proposed that precise measurement of RWA, the electrical 

hallmark of RBD will improve the diagnosis of RBD in patients with PD. 

 

Findings from this thesis will recommend improved measurement techniques specific 

to disorders within the circadian, homeostatic and ultradian sleep systems in patients 

with Parkinson’s disease. Understanding bidirectional causality in between sleep-

wake disturbances and concomitant symptomatology in PD will hopefully provide 

insights into the neural and chemical mechanisms behind these poorly understood 

problems. Improvements in this area will then target existing and new therapies to 

improve quality of life for patients with PD and their carers. Furthermore, the early 

identification of sleep-wake disorders in PD will predict the future development of PD 

in at risk populations to minimise and prevent irreversible structural brain damage.  
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a b s t r a c t

Objective: Using salivary dim light melatonin onset (DLMO) and actigraphy, our study sought to deter-
mine if Parkinson disease (PD) patients demonstrate circadian disturbance compared to healthy controls.
Additionally, our study investigated if circadian disturbances represent a disease-related process or may
be attributed to dopaminergic therapy.
Methods: Twenty-nine patients with PD were divided into unmedicated and medicated groups and were
compared to 27 healthy controls. All participants underwent neurologic assessment and 14 days of actig-
raphy to establish habitual sleep-onset time (HSO). DLMO time and area under the melatonin curve
(AUC) were calculated from salivary melatonin sampling. The phase angle of entrainment was calculated
by subtracting DLMO from HSO. Overnight polysomnography (PSG) was performed to determine sleep
architecture.
Results: DLMO and HSO were not different across the groups. However, the phase angle of entrainment
was more than twice as long in the medicated PD group compared to the unmedicated PD group
(U = 35.5; P = .002) and was more than 50% longer than controls (U = 130.0; P = .021). The medicated
PD group showed more than double the melatonin AUC compared to the unmedicated group (U = 31;
P = 0.001) and controls (U = 87; P = .001). There was no difference in these measures comparing unmed-
icated PD and controls.
Conclusions: In PD dopaminergic treatment profoundly increases the secretion of melatonin. Our study
reported no difference in circadian phase and HSO between groups. However, PD patients treated with
dopaminergic therapy unexpectedly showed a delayed sleep onset relative to DLMO, suggesting dopami-
nergic therapy in PD results in an uncoupling of circadian and sleep regulation.

Crown Copyright � 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Sleep–wake disturbances are gaining increased attention in pa-
tients with Parkinson disease (PD). Such symptoms are observed in
over two-thirds of patients [1] manifesting with a range of fea-
tures, including insomnia, rapid eye movement (REM) sleep behav-
ior disorder, and excessive daytime somnolence [1]. In addition to
impact on quality of life for patients and their caretakers [2], these
symptoms have been linked to cognitive deficits [3,4] and the
development of PD dementia [5].

Sleep–wake cycles are regulated by the circadian system,
mainly from the hypothalamic suprachiasmatic nuclei (SCN),
which controls the rhythm of melatonin synthesis in the pineal
gland. Although circadian disturbance is well-recognized in Alzhei-
mer disease [6], specific contributions from structures such as the
SCN or pineal gland have not been established in PD. In PD there is
widespread neuronal loss with neurotransmitter deficits across
dopaminergic and nondopaminergic systems throughout the
brainstem, basal forebrain, hypothalamus, and frontostriatal path-
ways [7–9]. In addition, it has been recognized that the anterior
hypothalamus sends monosynaptic outputs to the lateral hypo-
thalamus, overlapping wake-promoting orexin neurons [10]. Be-
cause the synchrony between sleep and the circadian system is
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dependent on the dorsolateral hypothalamic nuclei [10], it has
been proposed that increased orexin through abnormal signaling
from the SCN is a potential mechanism for the deregulation of this
interaction [11].

Circadian rhythm disturbances have previously been investi-
gated in patients with PD, utilizing the serial measurement of plas-
ma melatonin to determine the onset in the rise of melatonin
levels. These studies have reported a circadian phase advance with
an earlier onset time of melatonin secretion in patients treated
with dopaminergic medication compared to untreated patients
and age-matched healthy controls [12,13]. Furthermore increased
melatonin secretion has been reported in PD patients who have
developed levodopa (L-dopa)-related motor complications com-
pared to patients without these complications and newly diag-
nosed untreated PD [14]. However, these studies did not control
for the acute inhibitory effect of light exposure on melatonin syn-
thesis [15]. Furthermore, these studies included small numbers of
participants and took no account of the effects of age, disease dura-
tion, disease stage, or mood disturbances.

Thus it is clear that existing studies have employed invasive
24-h plasma sampling with some methodologic deficiencies. Work
in non-PD cohorts has successfully utilized melatonin measure-
ments derived from a noninvasive serial salivary sampling
[16,17]. This approach has allowed the time of melatonin onset
under dim light conditions, referred to as dim light melatonin
onset (DLMO) to be determined as a measure of circadian phase
and evening melatonin output level. The relationship between
DLMO and habitual sleep-onset time (HSO) can be used as a
measure of synchrony between the circadian system and the
sleep–wake cycle [11].

In addition to the important role melatonin plays in affecting
the light–dark regulation circadian rhythms, the sleep-promoting
effect of melatonin has been subject to debate [18]. Initial studies
using exogenous melatonin failed to show a sleep-promoting ef-
fect. However, this lack of effect now appears to be due to the short
half-life of the melatonin preparation used and inadequate dosing
[19]. Subsequent studies provide compelling evidence that melato-
nin does have a sleep-promoting effect via direct neuronal sup-
pression (for review see [20]). Furthermore, a recent consensus
statement from the British Association for Psychopharmacology
has proposed melatonin as first-line therapy for insomnia in older
adults [21]. Therefore, if melatonin secretion was altered by neuro-
pathologic changes or by dopaminergic replacement therapy it
may be contributing to the sleep–wake disturbance seen in PD.

To our knowledge, our study is the first to combine salivary
DLMO, polysomnography (PSG), and wrist actigraphy to identify
if PD patients demonstrate circadian disturbance compared to
age-matched healthy controls. Furthermore, our study was con-
ducted to elucidate if disturbances in melatonin secretion are asso-
ciated with PD pathology or if they could be attributed to the use of
dopaminergic therapy. We suggest that a greater understanding of
these processes will aid the design of future treatment strategies.

2. Methods

2.1. Participants

Twenty-nine patients with PD and 28 age-matched controls
were recruited from the Brain and Mind Research Institute PD Re-
search Clinic, University of Sydney, Australia. Patients with a his-
tory of obstructive sleep apnea were excluded. All patients
satisfied the UK PD Society Brain Bank criteria [22]. The patient
group comprised 13 patients who were unmedicated and 16 who
were treated with dopaminergic medication. Of these, 11 patients
were on L-dopa monotherapy, three were on dopamine agonist

monotherapy, and two were on L-dopa plus a dopamine agonist.
Three of the unmedicated patients were taking an antidepressant
agent (amitriptyline, venlafaxine, mirtazapine), and three of the
patients medicated with dopaminergic replacement therapy were
taking an antidepressant agent (mirtazapine, amitriptyline, dul-
oxetine). One of the age-matched healthy controls was taking
paroxetine.

2.2. Clinical assessment

Patients were assessed in their ‘‘on’’ state and L-dopa dose
equivalents were calculated for dopaminergic medication [23].
Disease stage was rated on the Hoehn and Yahr scale [24] and
motor severity was scored on section III of the Unified PD Rating
Scale [25]. Disease duration was calculated from time since disease
diagnosis and was matched between patient groups. No patients
were demented as assessed by the Movement Disorders Society
PD Dementia criteria [26] and no participants had a history of
major depression. The Mini-Mental State Examination (MMSE)
was recorded as a global measure of cognition [27] and depressive
symptoms were self-rated using the Beck Depression Inventory-II
(BDI-II) Scores of 0–13 were indicative of minimal depressive
symptoms [28].

2.3. Sleep and circadian assessment

Participants completed sleep diaries and were required to wear
a wrist actiwatch (Minimitter Actiwatch Spectrum) on the wrist
less affected by tremor every day for 14 days prior to in-laboratory
DLMO assessment. Actigraphy sleep-rest intervals and determina-
tion of the HSO were calculated using Actiware 5.0 software
(Minimitter-Respironics Inc, Bend, Oregon) and Actiwatch
Firmware, version 01.01.0007 (Minimitter-Respironics Inc, Bend,
Oregon), in conjunction with manual scoring by an experienced
sleep technician [29,30]. HSO was determined calculating the
mean of sleep-onset times derived from actigraphy data over the
14-day sampling period and was corroborated by the sleep diary
data. Participants then attended the chronobiology and sleep
laboratory at the Brain and Mind Research Institute for overnight
PSG followed by circadian phase assessment.

Nocturnal PSG recordings were performed in the laboratory
1–2 weeks prior to the circadian phase assessment. Nocturnal
PSG recordings were collected on an ambulatory recording system
(Compumedics Siesta, Melbourne, Vic, Australia) using the follow-
ing electroencephalographic montage (C3–M2, O2–M1, Fz–M1,
Pz–M2): two electrooculographic channels (left and right outer
canthi) and electromyogram (submentalis). Electroencephalo-
graphic data were sampled at 250 Hz. Sleep stages were visually
scored by an experienced sleep technician using standardized cri-
teria [31]. While in the laboratory, participants were physiologi-
cally and behaviorally monitored under controlled conditions
with fixed light levels (<50 one time during waking and <1 one
time during scheduled sleep periods) and ambient temperature
(24 ± 1 �C). The following sleep variables were calculated: total
sleep time (minutes), percentage of time in REM, percentage of
time in slow-wave sleep, sleep-onset latency (SOL) (minutes), la-
tency to REM sleep (minutes), and wake after sleep onset
(minutes).

For the in-laboratory circadian phase assessment, participants
were asked to arrive 7 h prior to their HSO, to familiarize them-
selves with the laboratory setting and to ensure they were in a con-
trolled posture for at least 30 min before the first sample was
collected. Saliva samples were collected at 30-min intervals (Sali-
vette, Sarstedt, Germany) from 6 h before HSO until 2 h after
HSO, per previously published protocols [11,17]. During this
assessment, participants were physiologically and behaviorally
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monitored under controlled conditions with fixed light levels that
were confirmed with measurement to be less than 30 lux and
ambient temperature (24 ± 1 �C). Participants maintained a seated
posture for at least 20 min before each sample collection. On the
day of melatonin measurement while in the sleep laboratory, pa-
tients were asked to abstain from substances believed to affect
melatonin or sleep (e.g., caffeine, turkey, bananas, tomatoes). To
minimize the effect of eating food, dinner was provided in two
halves which could be consumed during the interval between
two nonconsecutive melatonin sample collections.

Melatonin was assayed in 200 lL of saliva by double-antibody
radioimmunoassay according to the manufacturer’s instructions
(Cat No. RK-DSM2; Buhlmann Laboratories AG, Schonenbuch, Swit-
zerland). The lowest detectable level of melatonin was 4.3 pM. The
intra-assay coefficient of variation was <10% across the range of the
standard curve. The interassay coefficient of variation was 15% at
19.5 pM and 12.3% at 177 pM.

The area under the melatonin curve (AUC) was calculated using
the trapezoidal method for each participant over the entire 8-h
sampling period [11]. To ensure that any potential difference in
AUC was not due timing of the melatonin sampling, the AUC in
the first hour post-DLMO and the average AUC post-DLMO was cal-
culated for all participants. A threshold for melatonin was calcu-
lated as the mean of the first three readings plus two standard
deviations (SD). The DLMO was identified as the point when the
saliva melatonin reached this threshold and remained elevated
for at least the next sampling time in accordance with previously
published criteria [11,17]. The phase angle of entrainment (mea-
sured in minutes) was calculated by subtracting the DLMO time
from the HSO time.

2.4. Standard protocols approvals, registrations, and patient consent

Approval for the study was obtained from the University of Syd-
ney Human Research Ethics Committee (HREC 08-2008/11105)
and all patients gave written informed consent.

2.5. Statistical analysis

Data were analyzed using the Statistical Package for Social Sci-
ences (SPSS version 20, for IBM. Age was compared between the
groups using a one-way analysis of variance. Gender was

compared using a v2 test. Subsequent variables violated assump-
tions of normality. Nonparametric data were first analyzed using
the independent samples Kruskal–Wallis analysis of variance to
determine if group differences existed using an a level of .05. Sub-
sequent post hoc comparisons between groups were assessed
using the Mann–Whitney U test. Bonferroni correction was used
for multiple comparisons.

3. Results

Of the 78 participants in our study, 16 had a sporadic melatonin
profile without an apparent rise in melatonin (4 unmedicated PD, 7
medicated PD, and 5 controls). A further five did not register any
melatonin concentrations over the 8-h sampling period (1 unmed-
icated PD, 2 medicated PD, and 2 controls). DLMO, phase angle of
entrainment, and AUC could not be evaluated for these
participants.

Demographic, clinical, and circadian data are presented in
Table 1. Age, depressive symptoms, and MMSE scores did not differ
across the three groups. On average there were minimal depressive
symptoms and high MMSE scores. There was no significant differ-
ence between the number of participants taking antidepressant
medication across the three groups (v2 = 4.0; P = .135). The medi-
cated and unmedicated patient groups were matched for disease
duration and did not differ on measures of disease stage (Hoehn
and Yahr) or motor severity (section III of the Unified PD Rating
Scale).

DLMO and HSO were not different across the three groups.
However, there was a significant difference across groups in
the phase angle of entrainment (v2 = 10.6; P = .005) (Table 1).
As shown in Fig. 1, the medicated group had a longer phase
angle compared to the unmedicated groups (U = 35.5; P = .002).
The medicated group also had a longer phase angle compared
to the healthy control group (U = 130.0; P = .021). There was no
difference in this measure between the unmedicated group and
controls.

As shown in Table 1, the melatonin AUC was significantly differ-
ent across the three groups (v2 = 14.0; P = .001). The medicated
patient group had more than double the AUC compared to
unmedicated PD (U = 31; P = .001) and controls (U = 87; P = .001),
respectively (Figs. 2 and 3). However, there was no difference
when comparing unmedicated patients and controls.

Table 1
Descriptive, neurology, sleep, and circadian rhythm data for patients and controls.

Unmedicated PD mean ± SD n = 13 Medicated PD mean ± SD n = 16 Controls mean ± SD n = 28 Statistic P value

Age (y) 64.8 ± 6.0 63.6 ± 9.8 68.3 ± 9.0 F = 1.7 .195
Beck Depression Inventory-II 8.2 ± 6.1 6.9 ± 3.1 5.1 ± 4.0 v2 = 3.9 .142
MMSE 28.1 ± 2.1 28.8 ± 1.4 29.1 ± 1.2 v2 = 2.1 .359
UPDRS-III 27.0 ± 13.9 28.5 ± 14.4 – U = 98.0 .792
Hoehn and Yahr 2.0 ± 0.5 1.9 ± 0.5 – U = 97.5 .742
Disease duration (y) 1.0 ± 0.8 1.8 ± 1.3 – U = 63.0 .072

L-dopa dose equivalent (mg) – 420.3 ± 195.4 – –

Total sleep time (min) 406.3 ± 38.7 393.9 ± 60.6 392.0 ± 50.7 v2 = 0.4 .435
Slow-wave sleep (%) 16.9 ± 13.2 18.8 ± 12.0 16.4 ± 10.1 v2 = 0.6 .735
REM sleep (%) 20.7 ± 5.9 21.6 ± 5.6 20.6 ± 5.3 v2 = 0.2 .929
Sleep-onset latency 30.2 ± 22.1 14.8 ± 12.7 15.8 ± 14.0 v2 = 6.4 .041
REM latency (min) 94.1 ± 71.0 78.8 ± 42.7 68.0 ± 23.4 v2 = 0.1 .970
WASO (min) 86.00 ± 84.6 59.8 ± 51.2 96.8 ± 96.8 v2 = 1.1 .580
DLMO (h:min) 20:58 ± 00:76 20:08 ± 00:78 20:58 ± 00:86 v2 = 3.1 .210
HSO (h:min) 22:02 ± 00:56 22:46 ± 00:53 22:41 ± 00:51 v2 = 5.1 .079
Entrainment phase angle (min) 65 ± 68 159 ± 72 103 ± 74 v2 = 10.6 .005
AUC (pM) 124.9 ± 82.0 317.0 ± 175.2 146.7 ± 112.7 v2 = 14.0 .001
AUC 1-h post-DLMO (pM) 26.4 ± 11.6 39.2 ± 15.7 24.9 ± 12.8 v2 = 10.6 .005
AUC post-DLMO (pM/sample) 20.3 ± 12.3 32.7 ± 15.8 19.2 ± 12.6 v2 = 8.8 .012

Abbreviations: PD, Parkinson disease; SD, standard deviation; y, years; MMSE, Mini-Mental State Examination; UPDRS-III, Unified Parkinson Disease Rating Scale Section III;
L-dopa, levodopa; min, minutes; REM, rapid eye movement; WASO, wake after sleep onset; h:min, hours and minutes; DLMO, dim light melatonin onset; HSO, habitual
sleep-onset time; AUC, area under the melatonin curve.

344 S.J. Bolitho et al. / Sleep Medicine 15 (2014) 342–347

68



To ensure that the increased AUC noted in the medicated group
compared to unmedicated PD and controls, respectively, was not
due to an error in the window of the melatonin curve sampled,
melatonin data were plotted for all participants over the 8-h sam-
pling period (Fig. 3; panel A). Furthermore, the average AUC 1 h
post-DLMO and the average AUC post-DLMO was calculated. For
the medicated PD group, the AUC 1 h post-DLMO was significantly
higher than both unmedicated PD groups (39.2 [SD, 15.7] vs 26.4
[SD, 11.6]; U = 54; P = .028) and controls (39.2 [SD, 15.7] vs 24.9
[SD, 12.8]; U = 109; P = .005) (Fig. 3; panel B). Similarly the average
AUC post-DLMO was significantly higher in the medicated PD
group compared to both the unmedicated PD group (32.7 [SD,
15.8] vs 20.3 [SD, 12.3]; U = 50; P = .018) and controls (32.7 [SD,
15.8] vs 19.2 [SD, 12.6]; P = .002).

SOL was noted to be different between the groups (v2 = 6.4;
P = .041), with the medicated PD group reporting the lowest value
of 14.8 min (SD, 12.7). However, this result was not sustained in a
post hoc analysis comparing unmedicated PD to medicated PD

(30.2 [SD, 22.1] vs 14.8 [SD, 12.7]; U = 41.5; P = .022), medicated
PD to controls (14.8 [SD, 12.7] vs 15.8 [SD, 14.0]; U = 196;
P = .915), and unmedicated PD to controls (30.2 [SD, 22.1] vs 15.8
[SD, 14.0]; U = 71.5; P = .023) when correcting for multiple compar-
isons. Other sleep variables assessed using PSG revealed no differ-
ences among the three groups (see Table 1).

4. Discussion

Our study demonstrated that dopaminergic treatment in PD
profoundly increases the secretion of melatonin. Moreover,
although no differences in circadian phase (DLMO) or sleep timing
(HSO) were found in PD compared to age-matched healthy con-
trols, patients treated with dopaminergic therapy unexpectedly
showed a delayed sleep onset relative to their DLMO. This finding
suggests that dopaminergic therapy in PD results in uncoupling of
circadian and sleep–wake regulation. This finding questions previ-
ous work showing a circadian phase advance in PD by recording
plasma melatonin levels [12–14].

We observed differences between medicated PD and unmedi-
cated PD patients on both the phase angle of entrainment and
AUC despite these groups being matched for disease duration,
stage, and motor severity. Specifically medicated PD patients had
a significantly longer phase angle and greater melatonin output
than the unmedicated PD group. Interestingly the unmedicated
PD patients demonstrated similar results compared to controls
on both of these measures, suggesting that the disease process
itself may not be responsible for these changes. Furthermore, there
was no difference in age, global cognition, depression, or use of
antidepressant medications that could have formed an alternate
explanation of these results.

The increased phase angle reported in the medicated PD group
was not accompanied by evidence of insomnia. The medicated PD
group reported the shortest SOL of the three groups. Other sleep
variables collected during PSG indicated that the medication-
related changes in the phase angle of entrainment and melatonin
secretion were not accompanied by changes in sleep architecture.

The difference in phase angle of entrainment cannot be readily
explained by a difference in DLMO or HSO times between the
groups. Indeed the increased difference in HSO relative to DLMO
in medicated patients, as indicated by the longer phase angle of
entrainment, suggests that there may be an uncoupling or altera-
tions in the internal phase relationships between the circadian
rhythm of melatonin synthesis and the sleep–wake cycle. It is

Fig. 1. Entrainment phase angle, habitual sleep-onset time (HSO), and dim light melatonin onset (DLMO). A graph demonstrating the longer entrainment phase angle
(minutes) reported in patients with Parkinson disease (PD) who were medicated with dopaminergic replacement therapy compared to unmedicated patients with PD and
healthy age-matched controls, respectively. The entrainment phase angle is calculated by subtracting the DLMO from the HSO measured in minutes.

Fig. 2. Area under the melatonin curve (AUC) (pM). A chart depicting the increased
AUC (mean ± standard error) reported in patients with Parkinson disease (PD) who
were medicated with dopaminergic replacement therapy compared to unmedi-
cated patients with PD and healthy age-matched controls, respectively. The
melatonin curve was created for each participant by collecting melatonin levels
every 30 min over the 8-h sampling period. The AUC was calculated using the
trapezoidal rule.
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possible that such alterations could account for some of the sleep
disturbances noted in treated PD patients. For example, insomnia
is more prevalent in patients with longer disease duration who
are more likely to be taking doses of dopaminergic therapy [32].

Our results indicate that dopaminergic treatment rather than
the neuropathology underlying PD is responsible for both the pro-
longed phase angle of entrainment and increased melatonin output
level. However, despite matching for disease duration, stage, and
motor severity it is possible that the assessment of medicated pa-
tients in their ‘‘on’’ state might have masked underlying neuropa-
thologic deficits. This increased melatonin secretion in response to
dopaminergic therapy may be related to recent findings linking
dopamine to the regulation of the pineal gland. Animal models
have identified the D4 dopamine receptor on the pineal gland
[33]. Furthermore, the release of serotonin and melatonin from
the pineal gland is reported to be controlled by circadian-related
heterodimerization of adrenergic and dopamine D4 receptors [34].

Given the putative sleep-promoting properties of melatonin,
the finding of an increased phase angle of entrainment in the pres-
ence of increased melatonin secretion would seem paradoxical
[35]. Although establishing the neurochemical basis of these find-
ings was beyond the scope of our study, our observation suggests
that there may be some form of melatonin resistance among pa-
tients during the activation of their circadian systems and could ac-
count for the limited success of this therapy in PD patients with
insomnia [36,37]. Alternatively it is possible that melatonin func-
tion follows an inverse U-shaped relationship similar to dopamine
and serotonin, in which high levels can bring about paradoxical
function. Further studies are needed to identify the mechanism
affecting these phenomena.

Although melatonin levels were measured during the evening,
these results raise the question of dopaminergic replacement

therapy interfering with melatonin secretion during the day
through similar pineal gland receptor-based mechanisms. Future
studies using daytime melatonin sampling may be able to deter-
mine if the putative hypnotic properties of melatonin are impli-
cated in the excessive daytime sleepiness seen in PD, which has
previously been attributed to dopaminergic medication [32].

A relatively high number of participants in our study were ex-
cluded due to a sporadic melatonin profile from which DLMO could
not be derived. The effects of sialorrhoea in PD combined with the
reduced melatonin secretion accompanying aging could have con-
tributed to this limitation [38]. Although 24-h melatonin sampling
is not required to calculate the DLMO [39], an estimate of melato-
nin secretion over the entire circadian cycle would be more precise
and should be considered in future work.

5. Conclusion

Our study suggests that, although there is no evidence of circa-
dian phase change in PD, dopaminergic treatment profoundly af-
fects the secretion of melatonin and the regulation of circadian
phase and sleep timing. Studies are now needed to determine if
these results contribute to specific sleep–wake disturbance in PD
and to determine if these changes can be corrected with pharma-
cologic and nonpharmacologic approaches to help improve sleep
in this common neurodegenerative disease.
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Abstract

Introduction: Sleep-wake disturbances and concomitant cognitive dysfunction in Parkinson’s disease (PD)
contribute significantly to morbidity in patients and their carers. Subjectively reported daytime sleep disturbance is
observed in over half of all patients with PD and has been linked to executive cognitive dysfunction. The current
study used daytime actigraphy, a novel objective measure of napping and related this to neuropsychological
performance in a sample of PD patients and healthy, age and gender-matched controls. Furthermore this study
aimed to identify patients with PD who may benefit from pharmacologic and behavioural intervention to improve
these symptoms.
Methods: Eighty-five PD patients and 21 healthy, age-matched controls completed 14 days of wrist actigraphy within
two weeks of neuropsychological testing. Objective napping measures were derived from actigraphy using a
standardised protocol and subjective daytime sleepiness was recorded by the previously validated Epworth
Sleepiness Scale.
Results: Patients with PD had a 225% increase in the mean nap time per day (minutes) as recorded by actigraphy
compared to age matched controls (39.2 ± 35.2 vs. 11.5 ± 11.0 minutes respectively, p < 0.001). Significantly,
differences in napping duration between patients, as recorded by actigraphy were not distinguished by their ratings
on the subjective measurement of excessive daytime sleepiness. Finally, those patients with excessive daytime
napping showed greater cognitive deficits in the domains of attention, semantic verbal fluency and processing speed.
Conclusion: This study confirms increased levels of napping in PD, a finding that is concordant with subjective
reports. However, subjective self-report measures of excessive daytime sleepiness do not robustly identify excessive
napping in PD. Fronto-subcortical cognitive dysfunction was observed in those patients who napped excessively.
Furthermore, this study suggests that daytime actigraphy, a non-invasive and inexpensive objective measure of
daytime sleep, can identify patients with PD who may benefit from pharmacologic and behavioural interventions to
improve these symptoms.
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Introduction

Sleep-wake disturbance is gaining increased attention in
Parkinson’s disease (PD). Such problems are observed in over
two thirds of patients [1] manifesting with a range of sleep
symptoms [2]. In addition to nocturnal sleep disturbance,
daytime sleep disturbance is defined as encompassing both

excessive daytime sleepiness (EDS) and excessive daytime
napping, which are frequently observed in patients with PD
[3,4]. Whilst EDS and excessive daytime napping are separate
constructs within sleep medicine, the distinction of these
phenomena within PD cohorts remains less clear. Previous
studies have considered these symptoms both as separate
entities [5,6] and also as being measures along the same
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continuum within PD cohorts [3,4,7-9] . It is possible that the
overlap of these phenomena in part represents a common
neural and chemical mechanism involving the reticular
activating system of the brainstem, basal forebrain and
hypothalamus through activation of the homeostatic sleep
system [10,11]. Thus it is difficult to make a clear distinction
between excessive daytime sleepiness and excessive daytime
napping in PD.

In addition to daytime sleep disturbance, fatigue is frequently
observed within PD cohorts. It is important to distinguish
fatigue, an overwhelming lack of energy [12] from excessive
daytime sleepiness and excessive daytime napping, which
exist with impairment of normal arousal mechanisms [12].
Previous studies in PD have identified a link between the self-
reported tendency to doze or nap in contrast to fatigue ,
measured with the Epworth Sleepiness Scale [13] and
cognitive deficits [14-16]. Non-motor symptomatology in PD,
including cognitive dysfunction and daytime somnolence
contribute significantly to poor quality of life for patients and
their carers [17]. Cognitive deficits are an independent
predictor of admission to a nursing home, conferring a negative
impact of burden of health to the community [18]. However
these relationships in daytime somnolence have yet to be
investigated using an objective measure.

The development of daytime somnolence in PD has been
associated with increasing age, disease duration, disease
progression, postural instability, depression and the use of
dopamine agonists [8,19,20]. However, much like the
emergence of idiopathic REM sleep behavior disorder (RBD) in
later life [21], daytime sleep disturbance can also represent a
pre-motor feature heralding the development of PD [3,4,14].
Daytime sleep disturbance has been linked to executive
dysfunction in PD [16] and impairments in frontostriatal neural
circuitry have been implicated in the reduced arousal,
attentional modulation and general working memory seen in
PD [16,22,23]. These observations may imply a link between
excessive napping and reduced cognition in PD [14-16].

The pattern of neuronal loss and neurotransmitter deficits
giving rise to daytime sleep disturbance in PD are not well
understood but dopaminergic and non-dopaminergic pathology
across the brainstem, basal forebrain, hypothalamus and
frontostriatal pathways have been suggested [3,7,10,14]. Such
pathology may impair wake promoting structures [11,24,25]
and/or possibly disrupt the proposed sleep homeostat [25]. The
control of this sleep homeostat is not well defined, but some
have suggested it operates via the accumulation of activity
dependent metabolites that promote sleep throughout the day
(including adenosine, gamma amino butyric acid (GABA),
prostaglandin D2 (PGD2), interlukin–1A (Il-1A) and tumour
necrosis factor-alpha (TNFα)) [10].

Previous studies in non-PD samples have shown that older
individuals with EDS are more likely to nap during the day
[26,27]. More extensive work has been conducted on napping
in healthy, older adults where it appears to be associated with
increased morbidity [28] and mortality [29]. In these older
cohorts increased napping has been associated with
decreased global cognition [26,30-32] and in particular deficits
in executive function [31]. Interestingly, studies that have

utilised ‘prescribed’ napping to restore the effects of sleep
deprivation in healthy cohorts, have demonstrated improved
executive performance on tasks such as reaction time and
symbol digit substitution [33-35]. These combined observations
highlight the possibility that the increased frequency of napping
seen in older adults and patients with PD might represent a
compensatory neurobiological strategy to a primary
neuropathological insult (rather than playing a causative role in
cognitive deficits).

Studies in non-PD cohorts have successfully utilised daytime
actigraphy as a non-invasive measure of daytime napping
[32,36-38]. Furthermore, the use of actigraphy to explore sleep
disturbance has been well validated in nocturnal sleep
disturbance in PD [39,40]. The current study sought to
compare objective and subjective measurement of daytime
sleep disturbance in a sample of PD patients and a group of
age matched healthy controls that had all undergone
neuropsychological testing.

This is the first study to compare the ESS, a widely used
self-report questionnaire that rates the probability of napping,
with an objective measure of napping. We hypothesised that
the duration of daytime napping would be greater in PD
patients as compared to controls and that excessive napping
would be associated with impaired cognitive performance,
specifically within domains mediated by fronto-subcortical
circuitry. Furthermore we propose that as the ESS rates the
probability of napping in several situations, patients with
excessive daytime sleepiness as determined by the ESS,
should also exhibit greater levels of napping as identified
objectively by actigraphy Finally, we suggest that the objective
measurement of daytime napping will more accurately identify
those patients who may benefit from pharmacologic and
behavioural interventions to improve these symptoms.

Methods

Ethics statement
Permission for the study was obtained from the University of

Sydney Human Research Ethics Committee (HREC
02-2008/11105). All patients gave written informed consent.

Participants
Eighty five patients and 21 age matched healthy controls

were recruited from the Brain & Mind Research Institute (BMRI)
PD Research Clinic, University of Sydney. All participants with
a known or suspected diagnosis of obstructive sleep apnea
were excluded, including any participant who had previously
had CPAP prescribed or who had greater than mild OSA on a
diagnostic sleep study [16]. Patients were then asked three
screening questions to identify snoring, nocturnal snorting or
gasping or a history of nocturnal apneas and were excluded if
these were present. No patients were demented as assessed
by the Movement Disorders Society criteria [41] and
participants with a diagnosis of major depression were
excluded. Five patients were unmedicated, thirty patients were
on levodopa monotherapy, six were on dopamine agonist
monotherapy, forty were on levodopa plus an adjuvant agent
(e.g. dopamine agonist, COMT inhibitor, MAO inhibitor), three
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were on a dopamine agonist plus amantadine and one was on
a dopamine agonist plus Rasagiline. Thirteen patients with PD
were taking medications to aid sleep. Twelve of these were
taking a benzodiazepine and one was taking melatonin. None
of the controls were taking sleeping medications. Five patients
had deep brain stimulators in situ.

Clinical assessment
All neurological and neuropsychological assessments were

conducted within one session to confirm study eligibility.
Patients were assessed in their ‘on’ state and levodopa dose
equivalents were calculated for dopaminergic medication [42].
Disease stage was rated on the Hoehn and Yahr (H&Y) scale
[43], disease duration was calculated from time since disease
diagnosis, and depressive symptoms were self-rated using the
Beck Depression Inventory–II (BDI-II, scores of 0-13 indicative
of minimal depressive symptoms) [44].

Neuropsychological functioning was assessed within the PD
cohort using standardised tests and appropriate normative data
(with corrections for age and level of education). These
variables were included in the healthy control group for
descriptive purposes only. Language generativity was
assessed with semantic verbal fluency via the Controlled Oral
Word Associated Test (COWAT animals; z-score) [15,45]. Set-
shifting was measured using the Trailmaking Test, Part B
(TMT-B; z-score) [46,47]. Processing speed was assessed
using the choice reaction time test from the Cambridge
Neuropsychological Test Automated Battery (CANTAB; z-
score) [16,48]. The Mini Mental State Examination (MMSE) [49]
was administered for reporting purposes. Similarly the ability to
retain learned verbal memory was assessed using the Logical
Memory (percentage retention) subtest from the Wechsler
Memory Scale - III [50] and working memory, assessed using
the Digit Span backwards subtest of the Wechsler Adult
Intelligence Scale – III (raw score) [51] were included for
reporting purposes.

Actigraphic assessment
The use of actigraphy to assess daytime sleep has been

validated previously in healthy subjects in both the laboratory
and community setting [37,38] and the measurement of
daytime sleep-wake disturbance in this study was conducted
according to previously established protocols [46,52]. Following
clinical assessment, participants were required to wear a wrist
actiwatch (Minimitter Actiwatch Spectrum) on the wrist less
affected by tremor every day for fourteen days. Actigraphy rest
intervals were calculated using Actiware 5.0 software
(Minimitter-Respironics Inc, Bend, Oregon) in conjunction with
manual scoring by an experienced sleep technician. An
episode of daytime sleep was defined as resting with no
movement on actigraphy during the day for a minimum duration
of thirty minutes. The primary measure of daytime sleep was
the nap time per day (minutes) which was calculated by
summing all napping each day and averaging this over the 14
day measurement period. The number of nap bouts per day
were also reported. Total nocturnal sleep time (TST), wake
after sleep onset (WASO) and sleep efficiency ((TST – WASO)/
TST) were also derived from the actiwatch as per previously

established protocols [39,46]. Patients were defined as
exhibiting ‘excessive daytime napping’ if their nap time per day
was greater than a threshold derived from the control data.
This threshold was defined as the average nap time per day
(duration) + 1.5 standard deviations (minutes).

Subjective Assessment of Daytime Sleep Disturbance
Patients were asked to complete the Epworth Sleepiness

Scale (ESS) (score ≥ to 10 indicative of a high probability of
daytime sleep) [13], within two weeks of completing the
actigraphy.

Statistical analysis
Statistical analysis was conducted on PASW Statistics

Version 20 for Windows. Age was compared between the
groups using a t-test. Gender was compared using a chi-
square test. Subsequent variables violated assumptions of
normality and non-parametric Mann-Whitney U test were used
for these comparisons. All tests were two-tailed with an α value
of 0.05. The three cognitive variables were compared between
groups utilising a Bonferroni correction for multiple
comparisons.

Results

Patients vs. Controls
As shown in Table 1, there was no significant difference in

age or gender between the PD group and control groups. The
groups were not different with regard to global cognition (i.e.
MMSE). However, the patient group had higher ESS scores
(p=0.001). As measured by the BDI-II, depressive symptoms
were significantly higher in the PD group by an average of five
points (p<0.001). However, the average BDI-II in the PD group
was only 9.2 (SD 6.7), suggestive of only minimal depression.

Napping data shown in Figure 1 reports that patients in this
study had a 225% increase in the mean nap time per day
compared to age matched controls (39.2 ± 35.2 vs. 11.5 ±11.0
minutes respectively, p < 0.001). Similarly there was a 244%
increase in median nap time per day in the (p=0.003) and
significantly more nap bouts per day when comparing the
patient group to controls (0.6 ± 0.5 vs. 0.2 ± 0.3 respectively, p
< 0.001). To ensure that the increased napping noted in the PD
group was not due to sleep deprivation, the average total
nocturnal sleep time, derived from actigraphy over the fourteen
day sampling period, was compared to controls. There was no
difference in this measure between the two groups to suggest
the patients with PD had a sleep debt (p=0.303). Furthermore,
there was no difference in sleep efficiency (p = 0.602) or wake
after sleep onset (p = 0.329) comparing the PD group to
controls.

As mood disturbance has been linked previously to daytime
somnolence [53], an analysis of co-variance (ANCOVA) was
performed to assess the contribution of mood disturbance
(BDI-II) to the measure of nap time per day between PD and
control groups. This result affirmed the increased nap time per
day seen in the PD group compared to controls and remained
significantly increased when mood disturbance (BDI-II) was
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used as a covariate (F = 9.6, p =0.003). This result was further
corroborated by the finding that BDI-II did not correlate with
nap time per day in the PD group (Spearman rho = 0.095, p =
0.390).

Table 1. Descriptive, neurologic, sleep and cognitive data
for patients and controls.

 Controls
Parkinson's
Disease Statistic p-value

 
Mean ± SD (n
= 21)

Mean ± SD (n =
85)

  

Age (years) 63.4 ± 9.5 64.8 ± 7.4 t = -0.6 0.537
Sex, Male: Female 12:9 53:32 χ2 = 0.2 0.661
Hoehn and Yahr  2.0 ± 0.7   
Disease duration
(years)

 5.9 ± 5.2   

Levodopa dose
equivalent (mg)

 641.9 ± 466.3   

Participants taking
sleeping tablets

0 13   

Participants with DBS
in situ

 5   

Average nap time per
day (min)

11.5 ± 11.0 39.2 ± 35.2 U = 345.0 < 0.001

Median average nap
time per day (min)
(IQR)

7.7 ± 16.7 26.5 ± 34.6 U = 345.0 < 0.001

Average naps per day 0.2 ± 0.3 0.6 ± 0.5 U = 375.0 < 0.001
Total nocturnal sleep
time (min)

438.0 ± 39.2 453.0 ± 67.1 U = 762.5 0.303

Sleep efficiency (%) 91.1 ± 3.0 90.2 ± 4.7 U = 767.5 0.602
Wake after sleep onset
(min)

35.3 ± 8.4 34.3 ± 12.0 U = 713.0 0.329

Epworth Sleepiness
Scale

4.6 ± 3.6 8.1 ± 4.3 U = 483.5 0.001

Number of participants
with ESS ≥ 10

3 33 χ2 = 4.521 0.033

Beck Depression
Inventory-II

3.1 ± 3.9 9.2 ± 6.7 U = 338.0 < 0.001

Mini-Mental State
Examination

28.4 ± 1.6 28.4 ± 1.8 U = 851.0 0.732

Logical Memory
retention (% retention)

10.9 ± 3.3 11.0 ± 3.4 U = 890.0 0.984

Digit span backwards
raw score

7.1 ± 2.3 6.8 ± 1.8 U = 885.0 0.952

Verbal Fluency animals
z-score

0.5 ± 1.6 0.1 ± 1.3 U = 827.5 0.606

Trailmaking Test, Part
B z-score

-0.1 ± 1.6 -0.9 ± 1.8 U = 627.5 0.016

Choice reaction time z-
score

-0.02 ± 1.2 -0.1 ± 1.4 U = 884.0 0.946

IQR, interquartile range.
doi: 10.1371/journal.pone.0081233.t001

Patients with Excessive Daytime Napping vs. Patients
without Excessive Daytime Napping

Table 2 shows the comparison of patients with (n=41) and
without (n=44) excessive daytime napping. These groups
showed no differences in their disease duration, disease stage
or levodopa dose equivalent. Furthermore, patients on sleeping
tablets were not over represented in either the excessive or
normal napping group (χ2 = 0.194, p = 0.660). Similarly, global
cognition (MMSE), mood disturbance (BDI-II), retention of
learned verbal memory (Logical Memory percentage retention),
and working memory (Digit Span backwards) were not different
between the groups. As age was noted to be different between
the two sub-groups of PD patients, age-adjusted normative z-
scores were used. As shown in Figure 2, patients who
exhibited excessive daytime napping had significantly poorer
mental flexibility and set-shifting (TMT-B z-score, p=0.016), and
semantic verbal fluency (COWAT animals z-score, p=0.004).
Though the processing speed was also slower in those with
excessive napping this did not meet the correction for multiple
comparisons and represents a trend (choice reaction time z-
score, p=0.022). Within the PD cohort, there was no evidence
of a deficit in nocturnal sleep (total nocturnal sleep time p =
0.356), sleep efficiency (p = 0.800) or wake after sleep onset (p
= 0.544), that could explain the excessive daytime napping and
cognitive deficit seen in these results. Furthermore, the patients
with DBS were not over represented in either excessive or
normal nappers (χ2 = 0.294, p = 0.587).

By contrast, differences in napping duration between patients
with and without excessive daytime napping as recorded by
actigraphy were not distinguished by their ratings on the ESS.
Table 3 shows results comparing patients with PD, divided into
those with a tendency to nap during the day based on an ESS
≥ 10. Those who were positive on the ESS also had poorer set-
shifting (TMT-B z-score p = 0.005) and a trend to reduced
processing speed when adjusting for multiple comparisons
(choice reaction time z-score, p = 0.047). Although not the
primary focus of this study, those who were positive on the
ESS also had a trend towards poorer working memory (digit
span backwards raw score, p = 0.020). However, unlike when
the group was divided by excessive napping identified with
actigraphy, Figure 3 reports that patients identified to be
positive on the ESS, had significantly greater mood deficit (p =
0.006), disease stage (p = 0.006) and levodopa dose
equivalent (p < 0.001).

Discussion

This study is the first to use actigraphy, a previously
validated objective measure of daytime sleep, to record the
duration and correlates of excessive daytime napping in PD.
Patients with PD, reported significantly greater number of nap
bouts as well as time spent napping in the day, compared to
healthy age matched controls. Patients with PD who exhibited
excessive napping through the day had poorer performance on
neuropsychological tests probing fronto-subcortical functions
including set-shifting, semantic verbal fluency and processing
speed. This result is in keeping with previous findings
evaluating excessive daytime somnolence [16]. However, other
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studies have suggested prescribed napping can improve
cognition. This paradox may imply that excessive napping is a
compensatory process to preexisting cognitive deficit.
Alternatively these results may imply the neural and chemical
processes that bring about excessive or uncontrolled napping,
rather than intended or prescribed napping are linked to the
cognitive dysfunction seen in this study.

These results were not accounted for by age, mood
disturbance, dementia, disease duration, disease stage or
levodopa dose equivalent. As patients with obstructive apnea
were excluded from the trial, this common cause of daytime
sleepiness could not explain the excessive daytime napping

seen in the PD group. Furthermore there was no evidence of
sleep deprivation or poor sleep quality in patients compared to
controls that may be an alternative cause of the increased
daytime napping seen. Of note there was no difference in total
sleep time, sleep efficiency or wake after sleep onset between
patients with PD and controls. This finding is consistent with
previous studies in this area although mixed results have been
reported, which may reflect issues of sample size (for review
see 54). Within the PD group, those with excessive daytime
napping did not exhibit less nocturnal sleep time, sleep
efficiency or wake after sleep onset time.

Figure 1.  Average nap time per day (minutes).  A chart depicting the average nap time per day (± standard error) calculated by
summing the daytime napping periods identified by actigraphy and averaging this over the 14 day measurement period. Panel A -
Parkinson’s disease vs. Controls. Panel B - Parkinson’s disease patients divided into those who are Epworth Sleepiness Scale
positive (score ≥ to 10 indicative of sleepiness) vs. Parkinson’s Disease patients who are Epworth Sleepiness Scale negative.
doi: 10.1371/journal.pone.0081233.g001

Figure 2.  Cognitive performance of excessive nappers within the Parkinson’s disease cohort.  A chart comparing the
cognitive performance (mean ± standard error) of patients with Parkinson’s disease (PD) divided into those with excessive daytime
napping vs. those with normal daytime napping. Set shifting was measured with the Trailmaking task part B (TMT B; z score).
Semantic verbal fluency (VF) was tested via the Controlled Oral Word Associated Test (COWAT animals; z score) and processing
speed was measured with the choice reaction time (RT) test from the Cambridge Neuropsychological Test Automated Battery
(CANTAB; z score).
doi: 10.1371/journal.pone.0081233.g002
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Within this study, the ESS could not discriminate between
patients with and without excessive daytime napping that was
identified with actigraphy. This result may reflect the fact that
EDS and excessive daytime napping are actually separate
constructs. However, several earlier studies have suggested an
overlap between EDS and excessive daytime napping exists
within PD cohorts [3,4,7-9]. Thus the results presented here
suggest that the ESS may not be an ideal measure of all
elements of daytime sleep disturbance within PD patients.

This study suggests that interventions aimed at reducing
daytime sleep disturbance in PD may have additional benefits
on cognition. Previously, the psychomotor stimulant modafinil
has been investigated for the treatment of EDS in PD with

Table 2. Descriptive, neurologic, sleep and cognitive data in
Parkinson’s disease patients: excessive vs. normal daytime
sleep.

 
Normal
daytime sleep

Excessive
daytime sleep Statistic P -value

 
Mean ± SD
(n=44)

Mean ± SD (n =
41)

  

Age (years) 62.4 ± 7.1 67.3 ± 7.0 t = -3.3 0.001
Hoehn and Yahr 2.0 ± 0.6 2.1 ± 0.8 U = 828.5 0.485
Disease duration
(years)

5.8 ± 4.7 5.8 ± 5.6 U = 825.5 0.501

Levodopa dose
equivalent (mg)

675.7 ± 516.2 605.6 ± 409.3 U = 855.0 0.679

Participants taking
sleeping tablets

5 7 χ2 = 0.194 0.660

Participants with DBS
in situ

2 3 χ2 = 0.294 0.587

Average nap time per
day (min)

14.9 ± 7.6 65.3 ± 34.6 U = 0.0 <0.001

Average naps per day 0.3 ± 0.2 1.0 ± 0.5 U = 56.0 <0.001
Total nocturnal sleep
time (min)

446.0 ± 55.5 460.7 ± 77.1 U = 797.0 0.356

Sleep efficiency (%) 90.0 ± 5.1 91.0 ± 4.2 U = 831.5 0.800
Wake after sleep onset
(min)

35.7 ± 13.3 32.9 ± 10.4 U = 793.5 0.544

Epworth Sleepiness
Scale

7.8 ± 4.7 8.6 ± 3.9 U = 760.0 0.210

Beck depression
inventory-II

8.8 ± 7.3 9.6 ± 6.1 U = 780.5 0.365

Mini-Mental State
Examination

28.5 ± 1.8 28.4 ± 1.8 U = 877.0 0.819

Logical Memory
retention (% retention)

11.0 ± 3.6 11.0 ± 3.4 U = 900.5 0.989

Digit span backwards
raw score

6.9 ± 1.8 6.8 ± 1.9 U = 868.0 0.761

Verbal Fluency animals
z-score

0.4 ± 1.0 -0.3 ± 1.4 U = 576.0 0.004

Trailmaking Test, Part
B z-score

-0.1 ± 1.6 -0.9 ± 1.8 U = 627.5 0.016

Choice reaction time z-
score

0.2 ± 1.4 -0.5 ± 1.4 U = 641.0 0.022

doi: 10.1371/journal.pone.0081233.t002

mixed results [55-57]. Modafinil is believed to promote
wakefulness by inhibiting a dopamine re-uptake and may also
affect noradrenergic reuptake. Other wake promoting agents
such as sodium oxybate and caffeine may act to reduce the
effects of activity dependent metabolites that promote the
global dampening of wake promoting structures and
corresponding neurotransmitters release [58] have also been
trialed in PD [59]. However, these studies did not identify
patients with daytime sleep disturbance using an objective
measure such as actigraphy. Rather, they used the ESS, which
in this study did not identify excessive daytime napping.
Therefore, future studies utilising this objective measurement
may identify a target cohort of PD in which to better assess the
efficacy of pharmacologic and behavioural interventions for
these symptoms.

A similar pattern of cognitive dysfunction was also noted
when dividing the group into those with daytime sleep
disturbance on either the ESS or actigraphy despite the ESS
positive group not identifying higher amounts of napping. This

Table 3. Parkinson’s disease patients: Epworth sleepiness
scale (ESS) positive v Epworth sleepiness scale (ESS)
negative.

 ESS positive ESS Negative Statistic P -value

 
Mean ± SD
(n=33)

Mean ± SD (n =
52)

  

Age (years) 64.5 ± 6.6 65.0 ± 8.0 t = 0.3 0.783
Hoehn and Yahr 2.2 ± 0.7 1.9 ± 0.6 U = 573.0 0.006
Disease duration
(years)

6.9 ± 5.1 5.3 ± 5.2 U = 667.0 0.085

Levodopa dose
equivalent (mg)

858.9 ± 434.4 500.0 ± 439.1 U = 458.0 < 0.001

Participants taking
sleeping tablets

5 8 χ2 = 0.001 0.977

Participants with DBS in
situ

1 4 χ2 = 0.793 0.373

Average nap time per
day (min)

43.4 ± 37.0 36.6 ± 34.1 U = 762.5 0.389

Average naps per day 0.6 ± 0.5 0.7 ± 0.5 U = 783.5 0.500
Epworth Sleepiness
Scale

12.5 ± 2.6 5.3 ± 2.6 U = 0.0 < 0.001

Beck depression
inventory-II

12.3 ± 7.5 7.3 ± 5.4 U = 508.5 0.002

Mini-Mental State
Examination

28.2 ± 1.9 28.6 ± 1.8 U = 772.0 0.418

Logical Memory
retention (% retention)

11.0 ± 3.6 11.0 ± 3.4 U = 900.5 0.358

Digit span backwards
raw score

6.2 ± 1.9 7.3 ± 1.8 U = 868.0 0.020

Verbal Fluency animals
z-score

-0.04 ± 1.0 0.2 ± 1.4 U = 768.0 0.417

Trailmaking Test, Part B
z-score

-1.2 ± 2.0 -0.06 ± 1.4 U = 544.0 0.005

Choice reaction time z-
score

-0.6 ± 1.6 0.2 ± 1.2 U = 638.0 0.047

doi: 10.1371/journal.pone.0081233.t003
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result implies that both measurements are tapping into the
same subset of patients with PD. However, patients who were
positive on the ESS also had higher levels of depression and
more advanced disease both of which are known to be
independent predictors of cognitive dysfunction. These
confounds were not identified when dividing the group based
on actigraphy implying that the ESS may be affected by other
non-sleep related symptoms. Establishing the reason why the
ESS was not able to identify excessive napping was beyond
the scope of this study. However, it may be that the ESS is
tapping into the akinetic rigid phenotype of PD within which
EDS, excessive daytime napping, depression and cognitive
dysfunctions exist in varying combinations. Further studies are
needed to confirm if scores on the ESS confounded by
concomitant problems associated with the sleep disturbance in
PD such as depression and more advanced disease.

Results from this study suggest a common pathology linking
excessive daytime napping and specific domains of cognitive
function in PD. However, putative mechanisms explaining this
link have not been elucidated. Previous studies have
suggested that daytime sleep disturbance might arise from
damage to wake promoting structures in the brain stem, basal
forebrain and hypothalamus or corresponding deficit in wake
promoting neurotransmitters. It is difficult to infer that the
executive cognitive deficit seen in this study may result directly
from these changes. However, pathology across
thalamocortical, hypothalamocortico and basalocorticoal
circuitry could explain the cognitive dysfunction observed.
Although there was no evidence of sleep debt that could
explain the link between cognition dysfunction and excessive
napping seen in patients with PD, this study was not able to
exclude poorly consolidated sleep as a cause for these results.
Further studies using power spectral analysis of
polysomnography will help determine if the cognitive deficit
seen in these results correlates with a specific deficit of sleep
microarchitecture.

In animal models, adenosine and other activity dependent
metabolites have been shown to facilitate both global
dampening of cortical activity in addition to directly inhibiting
wake promoting structures such as the cholinergic
pedunculopontine nucleus [11]. Given metabolic byproducts
could be increased in an oxidative stress model of PD [60], it is
possible that this neurochemical process may be contributing
to the link between excessive daytime napping and cognition
observed in this study. Calmodulin dependent kinase II has
been shown to play a causal role in cognitive and motor deficits
in animal models of PD. This chemical is critical to establishing
NREM sleep architecture and is also linked to synaptic
plasticity and learning [61]. Thus, alterations in calmodulin
dependent kinase II levels may provide a novel explanation of
these results representing a common pathological mechanism
between daytime sleep disturbance and cognitive deficit in PD
[62-64].

The difference in means for these cognitive variables across
the two groups ranged from 0.7 to 0.8 standard deviations and
may be interpreted as modest. However, this study was not
powered sufficiently to determine the effect size of the impaired
cognition linked to excessive napping and this represents a
limitation of the study. Further studies measuring excessive
napping measured prospectively are needed to determine this
effect size and the impact the cognitive deficit has on functional
status and quality of life.

The ESS does not, by its intended design have a definitive
time scale over which the daytime sleep disturbance is
assessed. Instead it asks participants to rate their probability of
napping “in recent times”. This represents a limitation when
comparing the ESS with actigraphy. To minimise this limitation
the ESS was administered within two weeks of completing the
actigraphy. Reassuringly, studies in non PD cohorts have
shown the ESS to have minimal variability over periods longer
than this window [65,66]. Furthermore, although actigraphy is a
validated measure of sleep, it cannot confirm the cortical EEG
correlates of sleep architecture. The lack of polysomnography

Figure 3.  Mood and disease specific variables within the Parkinson’s disease cohort based on subjective sleepiness
scores.  A chart that reports depression scores, disease stage and Levodopa dose equivalents (mean ± standard error) when
patients with Parkinson’s Disease are divided into those who are Epworth Sleepiness Scale positive (score ≥ to 10 indicative of a
positive tendency to sleep during the day) vs. those who are Epworth Sleepiness Scale negative.
doi: 10.1371/journal.pone.0081233.g003
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also represents a limitation in this study. Finally, it is possible
that actigraphy may under or over classify daytime sleep based
on extra movements or a lack of movement respectively.
Further studies characterising this limitation in PD cohorts are
needed. Studies using daytime sleep diaries rather than the
ESS may also provide better subjective measurement of
daytime napping for future comparison with actigraphy.

In summary, using an objective measurement this study has
confirmed that patients with PD exhibit excessive napping
compared to healthy age matched controls. Conflicting results
between self-report questionnaires (namely the widely used
ESS) and wrist actigraphy confirm the need for more objective
measurement of daytime sleep-wake disturbance. Further,
those patients with PD who nap excessively during the day
have greater cognitive deficits in the domains of attention,
semantic verbal fluency and processing speed. These results
highlight a possible interrelationship between sleep and

cognitive circuitry in PD that may represent common pathology.
Further studies are now needed to evaluate the effect of
prescribed napping, targeted at those with excessive daytime
napping. Furthermore, given the potential for pharmacological
and behavioural interventions to reduce excessive napping,
trials are needed to investigate if these treatments can improve
focal cognitive deficits in PD. This would have far reaching
benefit to the quality of life of patients and their carers, in
addition to reducing the burden of illness in the community.
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Summary points

REM sleep behaviour disorder is frequently observed in the synucleinopathies (Parkinson’s disease,

Lewy Body Dementia and Multiple System Atrophy).

Recent evidence concludes that REM sleep behaviour disorder is a biomarker heralding the future

development of an alpha synucleinopathy.

Normally, muscles should demonstrate electrical silence (atonia) during REM sleep. The demonstration

of REM without atonia is critical to the diagnosis of RBD represents the electrophysiological hallmark of

RBD.

Multiple physiological tools, including visual scoring systems and automated signal processing

algorithms have been developed to improve the objectivity of the measurement of REM without atonia.

The emergence of techniques to measure REM without atonia has raised several technical questions

regarding the data collection and the method in which it is analysed.
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REM sleep behaviour disorder (RBD) is frequently observed in the synucleinopathies (Parkinson’s disease,

Lewy Body Dementia and Multiple System Atrophy). Within Parkinson’s disease cohorts RBD is observed in

more than half of all patients with PD and has been linked with the akinetic rigid phenotype of PD , visual

hallucinations , selective cognitive deficits and dementia . As such accurate screening and diagnosis is

essential for managing the comorbidity associated with RBD in PD . In addition, the emergence of RBD in

later life can represent a pre-motor feature heralding the development of synucleinopathy and may thus

have utility as a future biomarker . Recent studies have suggested that almost all patients with idiopathic

RBD will develop a neurodegenerative disorder, most probably an α synucleinopathy, if they live long

enough . The predominance of synucleinopathies was also reported by Boeve et al 2013 in a

clinicopathological study of 172 cases of RBD .

The diagnosis of RBD is based on patient history in conjunction with the demonstration REM without atonia

noted in the surface EMG of the mentalis muscle during polysomnography . Given the importance in

accurately identifying RBD, multiple physiological tools have been developed to improve objective diagnosis.

Specifically these tools have been focused on the measurement of REM sleep without atonia (RWA).

Normally, muscles should demonstrate electrical silence (atonia) during REM sleep, thus RWA represents

the electrophysiological hallmark of RBD. In addition to visual scoring systems to quantify RWA, automated

signal processing algorithms have been developed to improve the objectivity of this measurement . This

review aims to investigate the use of RWA derived from surface EMG collected during polysomnography to

identify RBD in PD.

REM Without Atonia in RBD
The identification of RWA has become critical to the diagnosis of RBD. However, the precise chemical and

neural mechanisms of RWA are yet to be determined. Evidence from animal models suggest a structure in

the pons referred to as the subcoeruleus or lateral dorsal tegmentum is responsible for normal atonia

expected in the REM phase of sleep . REM atonia is proposed to be controlled through the ratio of

cholinergic to aminergic tone, differentially activating kainite receptors in the midbrain . Given that RBD can

pre date the motor diagnosis of PD by up to 15 years , the regions suggested in these animal models are

in agreement with structures expected to be damaged through the deposition of alpha synuclein in the pre-

clinical stages of the Braak pathological staging system . However, attributing RWA to a structural deficit in

the brainstem raises several questions pertaining to the varying clinical phenotypes of RBD. Principally RBD

appears as paroxysmal nocturnal episodes with varying frequency and severity among patients . There is

some evidence that the night to night variability of RWA is relatively constant in idiopathic RBD , however

this is yet to be confirmed within PD cohorts. Furthermore, varying severities of RWA with concomitant RBD

have been reported in the literature . Studies proposing cut scores for the amount of RWA consistent with

RBD suggest that despite reaching an electrophysiological diagnosis of RBD, the majority of the REM sleep
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Summary points

REM sleep behaviour disorder is frequently observed in the synucleinopathies (Parkinson’s disease,

Lewy Body Dementia and Multiple System Atrophy).

Recent evidence concludes that REM sleep behaviour disorder is a biomarker heralding the future

development of an alpha synucleinopathy.

Normally, muscles should demonstrate electrical silence (atonia) during REM sleep. The demonstration

of REM without atonia is critical to the diagnosis of RBD represents the electrophysiological hallmark of

RBD.

Multiple physiological tools, including visual scoring systems and automated signal processing

algorithms have been developed to improve the objectivity of the measurement of REM without atonia.

The emergence of techniques to measure REM without atonia has raised several technical questions

regarding the data collection and the method in which it is analysed.

Introduction
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remains normal (atonic) . It may also be the case that sub-clinical RBD exists , in which RWA is

present on polysomnography, however dream enactment behaviour is not sufficiently prominent as to impair

the sleep quality of patients and their bed partners .

The heterogeneous phenotype of RBD suggests that RWA is likely to result from both structural lesions in

the pons in addition to abnormalities of the cholinergic and aminergic chemicals that control REM atonia.

Given these unanswered questions, it is imperative to improving the understanding of RBD that accurate

objective techniques are developed to measure RWA as a continuous variable. In addition to gauging the

effect of treatment, continuously variable RWA will allow accurate diagnosis of RBD necessary in the

prediction of consequent neurodegenerative disorders.

Quantifying REM Without Atonia
The first method proposed to quantify RWA as a continuous variable was developed by Lapierre and

Montplaisier in 1992 and was validated in a cohort of idiopathic RBD patients . This method evaluated

tonic or baseline RWA based on abnormally high EMG signal (defined as signal greater than 2 times the

baseline or greater than an absolute voltage of 10 microvolts) being present for more than 50% of each

epoch of REM sleep. The EMG tonic density was calculated as the percentage of epochs of REM

demonstrating tonic RWA. If the tonic EMG density was greater than 30% this was deemed suggestive of a

diagnosis of RBD and resulted in a sensitivity and specificity of 73.8% and 90.0% respectively when

compared to the ICSD-2 diagnostic guidelines . Furthermore, a second measurement of phasic EMG

density was derived based on the percentage of 2 second mini epochs containing a phasic element of REM

such as rapid eye movements that concomitantly reported abnormally high EMG activity (defined as greater

than 4 times the baseline signal). Phasic EMG density greater than 15% was deemed suggestive of RBD

and comparing this diagnostic tool with the current guideline reported a sensitivity and specificity of 88.9%

and 82.5% respectively.

The method proposed by Lapierre and Montplaisier provides an accurate tool to measure RWA as a

continuous variable and diagnose RBD. However, the visual scoring system is labour intensive and still has

a subjective element conferring possible bias. To improve this, an automated computer based algorithm was

developed by Ferri et al 2008 . This algorithm generates a REM atonia index that grades RWA and has

been validated in a mixed cohort of RBD and was recently validated in PD . The REM atonia index

averages the EMG signal in each 1 second epoch of REM sleep and grades the epoch as normal (figure 1

panel A) or abnormal (figure 1 panel B) based on a voltage threshold (< 1 µV = normal,  1-2 µV =

indeterminate,  > 2 µV = abnormal). The REM atonia index is the ratio of normal to abnormal epochs of

REM. This index was found to correlate closely with the visual scoring system developed by Montplaiser et

al (2010). The REM atonia index has been further improved with a noise reduction algorithm and
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REM sleep behaviour disorder (RBD) is frequently observed in the synucleinopathies (Parkinson’s disease,

Lewy Body Dementia and Multiple System Atrophy). Within Parkinson’s disease cohorts RBD is observed in

more than half of all patients with PD and has been linked with the akinetic rigid phenotype of PD , visual

hallucinations , selective cognitive deficits and dementia . As such accurate screening and diagnosis is

essential for managing the comorbidity associated with RBD in PD . In addition, the emergence of RBD in

later life can represent a pre-motor feature heralding the development of synucleinopathy and may thus

have utility as a future biomarker . Recent studies have suggested that almost all patients with idiopathic

RBD will develop a neurodegenerative disorder, most probably an α synucleinopathy, if they live long

enough . The predominance of synucleinopathies was also reported by Boeve et al 2013 in a

clinicopathological study of 172 cases of RBD .

The diagnosis of RBD is based on patient history in conjunction with the demonstration REM without atonia

noted in the surface EMG of the mentalis muscle during polysomnography . Given the importance in

accurately identifying RBD, multiple physiological tools have been developed to improve objective diagnosis.

Specifically these tools have been focused on the measurement of REM sleep without atonia (RWA).

Normally, muscles should demonstrate electrical silence (atonia) during REM sleep, thus RWA represents

the electrophysiological hallmark of RBD. In addition to visual scoring systems to quantify RWA, automated

signal processing algorithms have been developed to improve the objectivity of this measurement . This

review aims to investigate the use of RWA derived from surface EMG collected during polysomnography to

identify RBD in PD.

REM Without Atonia in RBD
The identification of RWA has become critical to the diagnosis of RBD. However, the precise chemical and

neural mechanisms of RWA are yet to be determined. Evidence from animal models suggest a structure in

the pons referred to as the subcoeruleus or lateral dorsal tegmentum is responsible for normal atonia

expected in the REM phase of sleep . REM atonia is proposed to be controlled through the ratio of

cholinergic to aminergic tone, differentially activating kainite receptors in the midbrain . Given that RBD can

pre date the motor diagnosis of PD by up to 15 years , the regions suggested in these animal models are

in agreement with structures expected to be damaged through the deposition of alpha synuclein in the pre-

clinical stages of the Braak pathological staging system . However, attributing RWA to a structural deficit in

the brainstem raises several questions pertaining to the varying clinical phenotypes of RBD. Principally RBD

appears as paroxysmal nocturnal episodes with varying frequency and severity among patients . There is

some evidence that the night to night variability of RWA is relatively constant in idiopathic RBD , however

this is yet to be confirmed within PD cohorts. Furthermore, varying severities of RWA with concomitant RBD

have been reported in the literature . Studies proposing cut scores for the amount of RWA consistent with

RBD suggest that despite reaching an electrophysiological diagnosis of RBD, the majority of the REM sleep
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remains normal (atonic) . It may also be the case that sub-clinical RBD exists , in which RWA is

present on polysomnography, however dream enactment behaviour is not sufficiently prominent as to impair

the sleep quality of patients and their bed partners .

The heterogeneous phenotype of RBD suggests that RWA is likely to result from both structural lesions in

the pons in addition to abnormalities of the cholinergic and aminergic chemicals that control REM atonia.

Given these unanswered questions, it is imperative to improving the understanding of RBD that accurate

objective techniques are developed to measure RWA as a continuous variable. In addition to gauging the

effect of treatment, continuously variable RWA will allow accurate diagnosis of RBD necessary in the

prediction of consequent neurodegenerative disorders.

Quantifying REM Without Atonia
The first method proposed to quantify RWA as a continuous variable was developed by Lapierre and

Montplaisier in 1992 and was validated in a cohort of idiopathic RBD patients . This method evaluated

tonic or baseline RWA based on abnormally high EMG signal (defined as signal greater than 2 times the

baseline or greater than an absolute voltage of 10 microvolts) being present for more than 50% of each

epoch of REM sleep. The EMG tonic density was calculated as the percentage of epochs of REM

demonstrating tonic RWA. If the tonic EMG density was greater than 30% this was deemed suggestive of a

diagnosis of RBD and resulted in a sensitivity and specificity of 73.8% and 90.0% respectively when

compared to the ICSD-2 diagnostic guidelines . Furthermore, a second measurement of phasic EMG

density was derived based on the percentage of 2 second mini epochs containing a phasic element of REM

such as rapid eye movements that concomitantly reported abnormally high EMG activity (defined as greater

than 4 times the baseline signal). Phasic EMG density greater than 15% was deemed suggestive of RBD

and comparing this diagnostic tool with the current guideline reported a sensitivity and specificity of 88.9%

and 82.5% respectively.

The method proposed by Lapierre and Montplaisier provides an accurate tool to measure RWA as a

continuous variable and diagnose RBD. However, the visual scoring system is labour intensive and still has

a subjective element conferring possible bias. To improve this, an automated computer based algorithm was

developed by Ferri et al 2008 . This algorithm generates a REM atonia index that grades RWA and has

been validated in a mixed cohort of RBD and was recently validated in PD . The REM atonia index

averages the EMG signal in each 1 second epoch of REM sleep and grades the epoch as normal (figure 1

panel A) or abnormal (figure 1 panel B) based on a voltage threshold (< 1 µV = normal,  1-2 µV =

indeterminate,  > 2 µV = abnormal). The REM atonia index is the ratio of normal to abnormal epochs of

REM. This index was found to correlate closely with the visual scoring system developed by Montplaiser et

al (2010). The REM atonia index has been further improved with a noise reduction algorithm and
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represents an objective computational measurement of continuously variable RWA and thus a purely

objective diagnosis of RBD. As such the REM atonia index represents an instrument that could be applied

to at risk populations such as idiopathic RBD or those with mild cognitive impairment, to determine who will

transition to PD or another synucleinopathy. This method does not divide the EMG into tonic and phasic

elements and given the high accuracy reported and the close correlation with the previously described visual

scoring system, questions the need to make this division.

Both of the methods described so far rely on surface EMG data from the mentalis muscle collected during

polysomnography. However, it is possible that by restricting the assessment of RWA to the mentalis muscle,

some patients with RWA in other muscles, specifically in the upper and lower limbs may not be detected by

this approach. To counter this problem Frauscher et al 2012 evaluated tonic and phasic RWA, using criteria

very similar to those proposed by Montplaisier et al 2010, in multiple muscles in the upper and lower limbs

and over the sternocleidomastoid muscle . This study concludes that the optimal assessment of RWA

should include the measurement of tonic or phasic activity within the mentalis muscle in addition to phasic

activity within the left and right flexor digitorum brevis muscle .

Technical difficulties in Acquiring and Measuring REM Without
Atonia
Measurement techniques developed to quantify RWA have raised multiple technical questions regarding the

optimal acquisition of surface EMG data, used to assess RWA. One problem raised by these techniques is

the surface EMG signal is a low voltage signal susceptible to interference from snoring, breathing and other

electrical noise. Furthermore, there is no agreement as to whether this signal should be assessed relative to

the patient’s own baseline EMG signal or whether arbitrary voltage thresholds should be applied to all

participants. Studies have also deemed a variety of voltage thresholds, below which the signal is consistent

with atonia. The visual scoring method proposed by Montplaiser et al 2010 determined baseline surface

EMG as between 3-7 microvolts, however the method used to derive this value was not described.

Conversely the automated REM atonia index described by Ferri et al 2008 reported an average EMG signal

during REM less than 1 microvolt to be the threshold of normal atonia. Similarly a variety of epoch lengths

have been described to determine RWA ranging from 1 to 30 seconds and there is conflicting evidence as

to whether to divide the surface EMG into tonic and phasic components or to assess the signal as one.

Finally, there is a lack of agreement regarding which muscle to measure the signal. All of methods described

rely on the accurate scoring of REM, which is difficult in patients within PD cohorts that experience frequent

arousals with high rates of obstructive sleep apnea. In order to utilise the potential of RWA both in the

diagnosis of RBD and in the prediction of neurodegenerative disease, studies are needed to answer these

technical questions.
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represents an objective computational measurement of continuously variable RWA and thus a purely

objective diagnosis of RBD. As such the REM atonia index represents an instrument that could be applied

to at risk populations such as idiopathic RBD or those with mild cognitive impairment, to determine who will

transition to PD or another synucleinopathy. This method does not divide the EMG into tonic and phasic

elements and given the high accuracy reported and the close correlation with the previously described visual

scoring system, questions the need to make this division.

Both of the methods described so far rely on surface EMG data from the mentalis muscle collected during

polysomnography. However, it is possible that by restricting the assessment of RWA to the mentalis muscle,

some patients with RWA in other muscles, specifically in the upper and lower limbs may not be detected by

this approach. To counter this problem Frauscher et al 2012 evaluated tonic and phasic RWA, using criteria

very similar to those proposed by Montplaisier et al 2010, in multiple muscles in the upper and lower limbs

and over the sternocleidomastoid muscle . This study concludes that the optimal assessment of RWA

should include the measurement of tonic or phasic activity within the mentalis muscle in addition to phasic

activity within the left and right flexor digitorum brevis muscle .

Technical difficulties in Acquiring and Measuring REM Without
Atonia
Measurement techniques developed to quantify RWA have raised multiple technical questions regarding the

optimal acquisition of surface EMG data, used to assess RWA. One problem raised by these techniques is

the surface EMG signal is a low voltage signal susceptible to interference from snoring, breathing and other

electrical noise. Furthermore, there is no agreement as to whether this signal should be assessed relative to

the patient’s own baseline EMG signal or whether arbitrary voltage thresholds should be applied to all

participants. Studies have also deemed a variety of voltage thresholds, below which the signal is consistent

with atonia. The visual scoring method proposed by Montplaiser et al 2010 determined baseline surface

EMG as between 3-7 microvolts, however the method used to derive this value was not described.

Conversely the automated REM atonia index described by Ferri et al 2008 reported an average EMG signal

during REM less than 1 microvolt to be the threshold of normal atonia. Similarly a variety of epoch lengths

have been described to determine RWA ranging from 1 to 30 seconds and there is conflicting evidence as

to whether to divide the surface EMG into tonic and phasic components or to assess the signal as one.

Finally, there is a lack of agreement regarding which muscle to measure the signal. All of methods described

rely on the accurate scoring of REM, which is difficult in patients within PD cohorts that experience frequent

arousals with high rates of obstructive sleep apnea. In order to utilise the potential of RWA both in the

diagnosis of RBD and in the prediction of neurodegenerative disease, studies are needed to answer these

technical questions.
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Figure 1 – An excerpt from polysomnography from which the REM atonia index can be calculated. C3-M2 and O2-M1
(electroencephalographic montage), EOG–L, EOG–R (left and right electroocularographic channels), chin EMG.

A chart depicting an excerpt from nocturnal polysomnography for 2 patients with Parkinson’s disease from which the REM
atonia index and RBD diagnosis can be derived. The REM atonia index averages the EMG signal in each 1 second epoch

of REM sleep and grades the epoch as normal or abnormal based on a voltage threshold (< 1 µV = normal, 1-2 µV =
indeterminate, > 2 µV = abnormal). The REM atonia index = % time normal/(% time normal + % time abnormal). Panel A
shows a patient in which all the mini epochs have an average EMG signal < 1 µ. The REM atonia index for this patients =
100/(100+0) = 0 which is normal. Panel B show a patient where all the mini epochs have an average EMG > 2 µV. The

REM atonia index for this patient = 0/(0 + 100) = 0. This is abnormal and highly suggestive of RBD.

Conclusion
The accurate screening and diagnosis of RBD is essential for reducing comorbidity in PD. Furthermore,

recent evidence concludes that REM sleep behaviour disorder is a biomarker heralding the development of

an alpha synucleinopathy and provides up to 15 year window in which it might be possible to intervene and

prevent or at least minimise the consequences of these syndromes. The emergence of techniques to
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measure RWA as a continuous variable have raised several technical questions regarding the data

collection and the method in which it is analysed. Developing a unified approach to the objective

quantification RWA, the electrophysiological hallmark of RBD, is critical to both the diagnosis of RBD as well

as the future prediction of the neurodegenerative disorders preceded by RBD. It is hoped that the more

accurate determination and quantification of RWA in RBD may improve the management of patients with PD

in the future.
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measure RWA as a continuous variable have raised several technical questions regarding the data

collection and the method in which it is analysed. Developing a unified approach to the objective

quantification RWA, the electrophysiological hallmark of RBD, is critical to both the diagnosis of RBD as well

as the future prediction of the neurodegenerative disorders preceded by RBD. It is hoped that the more

accurate determination and quantification of RWA in RBD may improve the management of patients with PD

in the future.
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ABSTRACT: Rapid eye movement (REM) sleep
behavior disorder (RBD) is frequently observed in
patients with Parkinson’s disease (PD). Accurate diag-
nosis is essential for managing this condition. Further-
more, the emergence of idiopathic RBD in later life can
represent a premotor feature, heralding the develop-
ment of PD. Reliable, accurate methods for identifying
RBD may offer a window for early intervention. This
study sought to identify whether the RBD screening
questionnaire (RBDSQ) and three questionnaires
focused on dream enactment were able to correctly
identify patients with REM without atonia (RWA), the
neurophysiological hallmark of RBD. Forty-six patients
with PD underwent neurological and sleep assessment
in addition to completing the RBDSQ, the RBD single
question (RBD1Q), and the Mayo Sleep Questionnaire
(MSQ). The REM atonia index was derived for all partic-
ipants as an objective measure of RWA. Patients identi-
fied to be RBD positive on the RBDSQ did not show

increased RWA on polysomnography (80% sensitivity
and 55% specificity). However, patients positive for
RBD on questionnaires specific to dream enactment
correctly identified higher degrees of RWA and
improved the diagnostic accuracy of these question-
naires. This study suggests that the RBDSQ does not
accurately identify RWA, essential for diagnosing RBD
in PD. Furthermore, the results suggest that self-report
measures of RBD need to focus questions on dream
enactment behavior to better identify RWA and RBD.
Further studies are needed to develop accurate deter-
mination and quantification of RWA in RBD to improve
management of patients with PD in the future. VC 2014
International Parkinson and Movement Disorder Society

Key Words: Parkinson’s disease; REM sleep behav-
ior disorder; REM without atonia; REM atonia index;
REM sleep behavior screening questionnaire

Rapid eye movement (REM) sleep behavior disorder
(RBD) is observed in over half of all Parkinson’s dis-
ease (PD) patients.1 The development of RBD has

been associated with visual hallucinations2,3 and cog-
nitive deficit,4-7 which represent independent predic-
tors for nursing home admission. As such, accurate
screening and diagnosis is essential for managing the
comorbidity associated with RBD in PD.8 Further-
more, because the emergence of idiopathic RBD
(iRBD) in later life9 can represent a premotor feature
heralding the development of PD,9,10 early diagnosis
may offer a window for early intervention.

Identifying REM without atonia (RWA), in the sur-
face electromyography (EMG) leads from nocturnal
PSG, has become critical to the diagnosis of RBD.11,12

However, at present, the guidelines only confirm or
exclude RWA without reference to severity, although
cutoff scores have been suggested.11,13 A recent study
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quantifying the severity of RWA is of interest because
the severity of RWA appears to predict the transition
from iRBD to PD.14 Quantifying RWA could provide
a measurement to grade response to treatment in addi-
tion to providing further insights into the pathophysio-
logical mechanisms underlying RBD. However,
although there are putative benefits, the utility of
measuring RWA as a continuous variable is yet to be
determined.

Multiple scoring systems have also been developed
to improve quantification of RWA.11,13 One such
method, developed by Ferri et al., used a quantitative
statistical analysis of the chin EMG during sleep to
develop the REM atonia index.15,16 This index was
found to correlate closely with a scoring system devel-
oped by Montplaiser et al.13 The REM atonia index
represents a computational measurement of continu-
ously variable RWA and an objective diagnosis of
RBD. As such, the REM atonia index represents an
instrument that could be applied to at-risk popula-
tions, such as iRBD, to determine who will transition
to PD or another synucleinopathy.

Another instrument used to evaluate RBD is the

REM Sleep Behavior Disorder Screening Question-

naire (RBDSQ).17 This questionnaire was found to be

accurate when compared with the International Classi-

fication of Sleep Disorders, 2nd edition (ICSD-2),

guidelines.12 An initial study in a mixed cohort found

the RBDSQ to be sensitive (96%), but with poor spec-

ificity (56%).17 High sensitivity (96%) was also

reported in a cohort of PD patients.18 However, in

each of these studies, measurement of RWA as a con-

tinuous variable was not calculated. Furthermore, the

initial validation study concluded that the RBDSQ

was not able to identify subclinical iRBD in a cohort

at risk of developing synucleinopathy.17

Some of the limited utility of the RBDSQ question-
naire may relate to the broad range of questions,
which cover a number of frequently observed non-
RBD sleep disturbances, including sleep quality, dream
content, and abnormal movements. Whereas these
problems may form part of the RBD phenotype in PD,
they may be present in the absence of RBD. As such,
these questions may have limited utility in PD cohorts
or in identifying iRBD that represents preclinical PD.

To enhance the utility of questionnaires to identify
RBD, a “single” screening question (RBD1Q) has
been proposed.19 A similar single question is also pro-
posed by the RBD section of the Mayo Sleep Ques-
tionnaire (MSQ).20 This question covers four of the
individual items included in the RBDSQ, namely,
items 3, 6.1, 6.2, and 6.3, all of which ask questions
probing dream enactment behavior.

The current study investigated the reliability of the
RBDSQ and three questionnaires specific to dream
enactment behavior to correctly identify RWA in

patients with PD, using the objective REM atonia
index. Furthermore, using established cut-off scores,
diagnostic utility was investigated. It was hypothe-
sized that the RBDSQ would offer limited utility in
identifying those patients who demonstrate patho-
logical RWA by virtue of the high incidence of con-
comitant sleep disorders captured by the current
questionnaire. However, it was predicted that by limi-
ting the RBDSQ to the items specific to dream enact-
ment behavior, the accuracy for identifying RWA
would be improved.

Patients and Methods

Participants

Forty-six patients with PD were recruited from the
Brain and Mind Research Institute, Parkinson’s Dis-
ease Research Clinic, University of Sydney (Camper-
down, NSW, Australia). All patients satisfied the UK
Parkinson’s Diseae Society Brain Bank criteria.21 Par-
ticipants with a known or suspected diagnosis of
obstructive sleep apnea (OSA) were excluded. Patients
were also excluded if they had DBS.

No patient had dementia.22 One patient was taking
amitriptyline, 2 were taking mirtazapine, and 1 was
taking venlafaxine. Two patients were taking clonaze-
pam as treatment for RBD. Permission was obtained
from the local research ethics committee, and all
patients gave written informed consent.

Clinical Assessment

Patients were assessed in their “on” state, and levo-
dopa dose equivalents were calculated.23 Disease stage
was rated with the H & Y scale,24 and motor severity
was scored on section III of the UPDRS (UPDRS-
III).25 Disease duration was calculated from the date
of diagnosis.

Sleep Assessment

Nocturnal polysomnography (PSG) recordings were
collected on two consecutive nights using a sleep-lab–
based ambulatory recording system (Compumedics
Siesta, Melbourne, Victoria, Australia). Night 1 was
considered an adaptation night. PSG data were col-
lected using the following montage: electroencephalo-
graphic (EEG; C3-A2, O2-M1, Fz-M1, and Pz-A2);
two electroocularographic channels (left and right
outer canthi) and EMG (submentalis). EEG and EMG
data were sampled at 256 Hz. Sleep architecture was
visually scored by an experienced sleep technician
using standardized criteria.26 The following variables
were collected for descriptive purposes: total sleep
duration; percentage of time in REM; percentage of
time in slow wave sleep (SWS); latency to REM sleep;
and wake after sleep onset (WASO).
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RWA

The primary measure of RWA was the REM atonia
index.15,16,27,28 A secondary analysis using visually
scored RWA was also included to derive the REM
EMG density as per established protocols.13,29 Data
acquired from the chin-surface EMG leads during over-
night PSG was digitally filtered using a digital band-
pass filter (10–100 Hz) and a notch filter at 50 Hz.28

After application of a noise reduction algorithm,28 the
REM atonia index was calculated as per established
protocols.15 An REM atonia index cutoff score of less
than 0.9 was used to indicate a diagnosis of RBD in
PD.16 REM density was based on any RWA (either
tonic or phasic RWA more than 2 times the baseline),
and a cutoff score of 18% was used to indicate a diag-
nosis of RBD.29 All sleep studies were inspected for
nonphysiological noise, and participants were excluded

if this was present. A global impression was included to
approximate the ISCD-2 guideline, which consisted of
those patients positive for RBD on the REM atonia
index who also reported a clinical history of dream
enactment.

RBDSQs

All patients completed the RBDSQ, and, in accord
with previous studies, a cutoff score of 6 was used to
indicate a diagnosis of RBD in PD.18 Four questions
from the RBDSQ (items 3, 6.1, 6.2, and 6.3) were
identified to ask a question similar to the single RBD
screening question proposed recently by Postuma et al.
(RBD1Q) and Boeve et al. (MSQ).19,20 These four
questions were extracted from the full questionnaire
and combined to create a RBDSQ subscore. Patients
were deemed to be positive on the subscore if they
answered yes to any one of these four questions
(RBDSQ subscore �1 5 RBD positive). The RBDQ1
was administered to patients with assistance from bed
partners, and the MSQ was administered to bed
partners.

Statistical Analyses

Statistical analysis was conducted on PASW Statis-
tics (Version 20 for Windows). Categorical variables
were compared using chi-square tests. Because other
variables violated assumptions of normality, Mann-
Whitney’s nonparametric U tests were used. An
a-value of 0.05 was used for all tests.

Results

Neurological and sleep data for patients are shown
in Table 1. A comparison of the total RBDSQ and
REM atonia index is shown in Table 2 (panel A). This
analysis showed that the RBDSQ had a sensitivity of

TABLE 1. Patient demographics, disease-related variables,
self-report results, and REM atonia index for 46 patients

with idiopathic PD

Mean 6 SD (n 5 46)

Age, years 64.6 6 7.6
Male/female 35:11
UPDRS-III 27.3 6 13.4
H & Y 1.9 6 0.5
Disease duration, years 3.0 6 3.4
Levodopa dose equivalent (equivalent units) 355.37 6 323.9
Mini–Mental State Examination 28.5 6 1.7
RBDSQ 6.0 6 3.7
REM atonia index 0.90 6 0.12
REM EMG density, % 35.5 6 32.3
Total sleep time, minutes 399.3 6 61.2
REM, % 20.2 6 6.2
SWS, % 19.2 6 12.6
REM latency, minutes 88.4 6 51.8
WASO, minutes 83.9 6 49.8

SD, standard deviation.

TABLE 2. Questionnaires versus REM atonia index

REM Atonia Index Positive REM Atonia Index Negative

A. RBD Diagnosis: REM Atonia Index Versus RBDSQ Total (n 5 46)
RBDSQ positive 12 14 PPV 5 46%
RBDSQ negative 3 17 NPV 5 85%

Sensitivity 5 80% Specificity 5 55%
B. RBD Diagnosis: REM Atonia Index Versus RBDSQ Subscore (n 5 46)
RBDSQ subscore positive 14 17 PPV 5 47%
RBDSQ subscore negative 1 14 NPV 5 93%

Sensitivity 5 93% Specificity 5 45%
C. RBD Diagnosis: REM Atonia Index Versus RBD1Q (n 5 46)
RBD1Q positive 15 16 PPV 5 48%
RBD1Q negative 0 15 NPV 5 100%

Sensitivity 5 100% Specificity 5 48%
D. RBD Diagnosis: REM Atonia Index Versus MSQ (n 5 31)
MSQ positive 10 13 PPV 5 43%
MSQ negative 0 8 NPV 5 100%

Sensitivity 5 100% Specificity 5 36%
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80% and specificity of 55% for detecting RWA.
Whereas the REM atonia index identified 15 of
18 patients with RWA, 3 of these screened negative
on the RBDSQ, thus representing false negatives. Of
the 31 patients that scored negative for RWA on the
REM atonia index, 14 screened positive on the
RBDSQ, representing false positives.

Table 2 (panel B) reports the comparison of the
RBDSQ subscore with the REM atonia index. Sensi-
tivity and specificity of the RBDSQ subscore to iden-
tify a positive REM atonia index were 93% and 45%,
respectively. In this analysis, 1 of the 15 RWA-
positive patients was a false negative and 17 of the 31
RWA-negative patients were false positives. When
patients were asked the RBDQ1, results were identical
to that of the RBDSQ subscore (Table 2, panel C).
However, when the MSQ was asked to bed partners
(Table 2, panel D), sensitivity increased to 100%.

The diagnosis of RBD, based on the REM atonia
index and REM EMG density, was in agreement (chi
square 5 15.7; P < 0.001). Two-by-two tables com-
paring the RBD diagnosis from questionnaires and the
visually derived REM EMG density are shown in
Table 3. This analysis showed that the RBDSQ had a
sensitivity of 74% and specificity 68%. Sensitivity
increased to 85% when using the RBDSQ subscore
and further to 93% and 95% when using the RBD1Q
and MSQ, respectively.

Because all patients who were positive for RBD on
the REM atonia index also reported a positive clinical
history of dream enactment, the results found by
dividing the group based on the global impression
were no different to those found when dividing the
group based on the REM atonia index alone (shown
in Table 2). However, when using the visually derived
REM EMG density, 1 false positive was identified.

To investigate the diagnostic discrepancy between
the RBDSQ and REM atonia index, neurological and

sleep variables were divided into RBD positive and
RBD negative based on the RBDSQ (Supporting
Table 1).

Dividing the PD cohort into RBD positive and RBD
negative based on the RBDSQ did not identify a dif-
ference in RWA, as identified by the atonia index
(0.94 6 0.09 vs. 0.87 6 0.13; U5 176; P 5 0.063).
When using the REM EMG density, the RBDSQ did
identify higher amounts of RWA (21.6% 6 29.1% vs.
46.2% 6 30.9%; U 5 126; P 5 0.003).

When dividing the patients with PD based on the
RBDSQ subscore into RBD and positive and negative
groups, these groups also showed no statistical differ-
ences in demographics or disease-related variables
(Supporting Table 2). However, compared with those
screening negative on the RBDSQ subscore, those
patients who were positive on the RBDSQ subscore
exhibited a significantly greater REM atonia index
(0.94 6 0.10 vs. 0.85 6 0.019; U 5 169; P 5 0.032).
A similar result was noted when dividing the REM
atonia index based on either the RBD1Q (0.97 6 0.02
vs. 0.87 6 0.013; U 5 103; P 5 0.002) and the MSQ
(0.98 6 0.02 vs. 0.90 6 0.1; U 5 36; P 5 0.010).
Similarly, there was statistical agreement when com-
paring the RBD diagnosis based on the REM atonia
index, compared to dream enactment status from the
RBDSQ subscore (chi square 5 6.816; P 5 0.009). To
better understand the distribution of the RWA across
those with and without a history of dream enactment,
the REM atonia index was compared to the RBDSQ
subscore in a scatter plot (see Fig. 1).

Discussion

This study is the first to compare the RBDSQ in
patients with PD to an objective measure of RWA: the
REM atonia index. Significantly, 46% of patients with

TABLE 3. Questionnaires versus REM EMG density

REM EMG Density REM EMG Density

A. RBD Diagnosis: REM EMG Density Versus RBDSQ Total (n 5 46)
RBDSQ positive 20 6 PPV 5 77%
RBDSQ negative 7 13 NPV 5 65%

Sensitivity 5 74% Specificity 5 68%
B. RBD Diagnosis: REM EMG Density Versus RBDSQ Subscore (n 5 46)
RBDSQ subscore positive 23 8 PPV 5 74%
RBDSQ subscore negative 4 11 NPV 5 73%

Sensitivity 5 85% Specificity 5 58%
C. RBD Diagnosis: REM EMG Density Versus RBD1Q (n 5 46)
RBD1Q positive 25 6 PPV 5 81%
RBD1Q negative 2 13 NPV 5 87%

Sensitivity 5 93% Specificity 5 68%
D. RBD Diagnosis: REM EMG Density Versus MSQ (n 5 31)
MSQ positive 19 4 PPV 5 83%
MSQ negative 1 7 NPV 5 88%

Sensitivity 5 95% Specificity 5 64%
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PD who were positive for RBD on the RBDSQ did not
exhibit RWA, as identified by the REM atonia index.
Furthermore, sensitivity and specificity of the RBDSQ,
when compared to RWA, as identified by the REM ato-
nia index, was lower than had been reported in previous
studies.17,18,30 This result highlights differences
between the current diagnostic guidelines and the REM
atonia index. The RBDSQ also reported excessive false-
positive and -negative rates. Given that emerging evi-
dence suggests that severity of RWA predicts develop-
ment of PD, these results raise concerns about the
RBDSQ’s utility in predicting preclinical PD.

The low accuracy of the RBDSQ to identify RWA
may be a result of patients who are asymptomatic or
unaware of symptoms. Alternatively, it may be a result
of problems with the REM atonia index, although the
REM atonia index is simply a ratio of normal/abnormal
REM atonia, and, when compared to a diagnosis made
by visually scoring the surface EMG, the two methods
were in agreement. However, subtle differences were
identified. A higher proportion of those identified to be
positive on the RBDSQ were deemed positive on the
REM EMG density, albeit with lower sensitivity. Of
note, both the REM atonia index and the visually
derived REM EMG density have been recommended by
the International REM Sleep Behavior Disorder Study
Group (IRBD-SG).31 Although beyond the scope of this
study, these results suggest that direct comparisons of
these two techniques is needed.

In addition to differences between the measurement
techniques for RWA, these results suggest that inad-
equacy of the RBDSQ is, at least in part, a result of ques-
tions in the RBDSQ that tap into other problems
associated with the akinetic rigid phenotype that links
PD to RBD. This study found greater sleep disturbance
(WASO) in those who screened positive for RBD on
both the RBDSQ and the RBDSQ subscore. Several

questions in the RBDSQ target general sleep disturb-
ance, yet sleep disturbance is frequently observed in PD
and not exclusively observed in those with RBD. Simi-
larly, the RBDSQ asks a question specific to vivid dream
imaging, which has been linked to visual hallucina-
tions,32,33 and to nonspecific nocturnal leg movements,
both of which could potentially exist without RBD in
PD. By removing these questions from the RBDSQ and
creating a subscore based on questions specific to dream
enactment, the RBDSQ subscore was able to identify
differences in RWA. A higher degree of RWA was also
identified in those patients who endorsed questions
focused on dream enactment in the RBD1Q and the
MSQ. Thus, it appears that heterogeneity within this
phenotype may be cofounding the utility of the RBDSQ
in the accurate identification of RWA in PD.

The importance of screening questions focused on

dream enactment was also evident in the higher sensi-

tivity when using either the RBDSQ subscore or the

RBD1Q. A further increase in sensitivity to 100% was

noted when the MSQ questionnaire was administered

to bed partners exclusively, confirming the importance

of corroborative history from bed partners to identify

a clinical history of RBD. Despite the improved identi-

fication of higher RWA when the RBDSQ was limited

to questions aimed purely at dream enactment, similar

low specificity was noted across the questionnaires.

This result highlights limitations of self-report meas-

ures in PD.34,35 Caution must be used when interpret-

ing the low specificity for the MSQ in view of the 15

participants who did not have bed partners available.
All patients positive for RBD on the REM atonia

index also described a history of dream enactment,
and thus recent work identifying asymptomatic RWA
could not be evaluated in this cohort.36 Adding the
clinical history of dream enactment to the REM atonia
index did not alter the diagnosis, in comparison to
using the REM atonia index alone. This supports
recent studies that have suggested that, at a certain
severity of RWA, a purely electrophysiological diagno-
sis of RBD is sufficient.11,13,15,16,28

All the questionnaires used in this study reported
high false-positive rates, confirming that a clinical
history alone is not sufficient to confirm a diagnosis
of RBD. However, it is possible that RWA is a par-
oxysmal phenomenon and that multiple nights are
needed to identify RBD. A recent study in iRBD
showed that the night-to-night variability of the
REM atonia index measured over a period of 2.5
years was less than 20%.27 Variability of the REM
atonia index within PD patients over time has not yet
been established and will form the basis of future
studies. It is also possible that the cutoff score for the
REM atonia index is too low. When analyzing distri-
bution of the RWA across those with and without a
history of dream enactment (Fig. 1), if the cutoff

FIG. 1. REM atonia index versus RBDSQ subscore. A scatter plot
depicting the REM atonia index in patients with PD who were positive
for RBD on the RBDSQ subscore, compared with those who were
negative on the RBDSQ subscore.
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score for the REM atonia index was increased, more
subjects with a positive dream enactment history
would be deemed positive on the REM atonia index.
However, this would come at the expense of false
negatives. It is beyond of the scope of this study to
suggest modifications to improve the REM atonia
index. Further multicenter studies are needed to con-
firm the optimal cutoff score to apply to the measure-
ment of RWA as a continuous variable.

These results have identified varying levels of RWA
with varying severity of dream enactment. Although
animal models have demonstrated RWA with a single
brainstem lesion,37 other mechanisms must exist to
vary both RWA and concomitant dream enactment.
Quantification of RWA in PD patients may improve
our understanding of the mechanisms underlying RBD
and may prove beneficial in evaluation of treatments
for RBD.

Patients with a history of OSA or snoring were
excluded from this study to minimize false-positive
RWA. Studies are needed to determine the effect of
OSA and snoring artefact on the REM atonia index to
understand this limitation. Furthermore, because the
REM atonia index is designed to detect phasic and tonic
chin EMG activity together, it is not able to detect pha-
sic activity identified in other limbs11 and represents a
limitation of this method. Another potential limitation
of the REM atonia index is interference from electrical
noise in the surface EMG leads. Although a noise reduc-
tion algorithm was employed to improve signal quality,
3 participants were excluded from the study based on
clearly nonphysiological noise present in the EMG trace.
Studies are needed to describe the optimal data acquisi-
tion parameters and the threshold of noise, over which
the REM atonia index is unacceptably affected.

In conclusion, this study suggests that the RBDSQ can-
not be relied upon to accurately identify RWA in PD.
This lack of accuracy may relate to some of the nonspe-
cific questions in the RBDSQ that tap into concomitant
problems in PD. By limiting this questionnaire to ques-
tions specific to dream enactment, or by using similar
focused questions in the RBD1Q or MSQ, the accuracy
of these questionnaires to identify RWA and RBD was
improved. However, all the questionnaires investigated in
this study reported alarming false-positive rates, which
reiterate ongoing problems with the self-report measure
in PD. It is hoped that the more accurate determination
and quantification of RWA in RBD may improve man-
agement of patients with PD in the future.
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A B S T R A C T

Objectives: Rapid eye movement (REM) sleep behaviour disorder is frequently observed in Parkinson’s
disease and is characterized electrophysiologically by the absence of atonia during REM sleep. However,
the night-to-night variability of REM sleep without atonia is yet to be determined in Parkinson’s disease.
Methods: Using polysomnography, this study measured the variability of REM sleep without atonia across
two consecutive nights, using the REM atonia index in 38 patients with Parkinson’s disease.
Results: The intraclass correlation coefficient between the REM sleep atonia index across two nights was
0.816 (F = 9.795, p < 0.001) and the difference between the two nights was 4.7% (standard deviation (SD)
8.2).
Conclusion: The REM atonia index demonstrated low variability across two consecutive nights of PSG.
Furthermore, the diagnosis of REM sleep behaviour disorder based on this electrophysiological marker
and other clinical variables was in agreement across the two nights.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Rapid eye movement (REM) sleep behaviour disorder (RBD) is
gaining attention in Parkinson’s disease (PD) cohorts both as a
co-morbidity [1] and as a potential biomarker predicting the
development of PD in at-risk populations [2–4]. The demonstra-
tion of REM without atonia (RWA), where muscles should
be electrically silent, is essential for the diagnosis of RBD [5,6]. Fur-
thermore, the importance of measuring RWA as a continuous variable
has been demonstrated in a recent study, which reported that the
severity of this objective measure predicted the development of
PD in cases of idiopathic RBD [7].

The International Classification of Sleep Disorders (ISCD)-2
guideline for the diagnosis of RBD requires the presence of RWA
in addition to either ‘Sleep related injurious or potentially injuri-
ous disruptive behaviours by history’ and/or ‘Abnormal behaviors
during REM sleep documented on polysomnogram (PSG)’ [5]. Two
different techniques, the automated REM atonia index [8] and the
visually scored REM electromyograph (EMG) density [9,10], have

been proposed by the International REM Sleep Behaviour Disor-
der Study Group (IRBD-SG) as alternatives to satisfy the RWA
requirement in this guideline [6]. Previously, these two methods were
noted to be closely related [11]. Using the REM atonia index, the
night-to-night variability of RWA in idiopathic RBD was reported
to be relatively low [12]. However, the degree of night-to-night RWA
variability in PD has yet to be confirmed. This study aimed to
measure the variability of RWA across two consecutive nights of
polysomnography (PSG) in 38 patients with PD. It is believed that
establishing this variability will improve the understanding of the
electrophysiological contribution to the diagnosis of RBD.

2. Methods

2.1. Participants

Thirty-eight patients with PD were recruited from the Brain &
Mind Research Institute (BMRI), Parkinson’s Disease Research Clinic,
The University of Sydney. All patients satisfied the UK PD Society
Brain Bank criteria [13]. All participants with a known or sus-
pected diagnosis of obstructive sleep apnoea (OSA) were excluded,
including any participant who had previously had continuous pos-
itive airway pressure (CPAP) prescribed or who had greater than mild
OSA on a previous diagnostic sleep study. Patients were then asked

* Corresponding author. Parkinson’s Disease Research Clinic, Brain and Mind
Research Institute, The University of Sydney, Sydney, NSW, Australia. Tel.: +61 2 9351
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three screening questions to identify snoring, nocturnal snorting or
gasping or a history of nocturnal apnoea and were excluded if these
were present. Patients with deep brain stimulation were also
excluded.

No patients were demented [14] or had a diagnosis of major
depression. Nine patients were unmedicated, 11 were on levodopa
monotherapy, six were on dopamine agonist monotherapy and 12
were on levodopa plus an adjuvant (dopamine agonist, catechol
O-methyltransferase [COMT] inhibitor or monoamine oxidase [MAO]
inhibitor). Six patients without RBD were taking antidepressants (one
amitriptyline, one mirtazapine, one venlafaxine, one duloxetine, one
fluoxetine and one citalopram). One patient diagnosed with RBD
was taking an antidepressant (citalopram). One patient was taking
clonazepam as treatment for RBD and one patient was taking
temazepam to aid sleep. Permission was obtained from the local
research ethics committee and all patients gave written informed
consent.

2.2. Clinical assessment

Patients were assessed in their ‘on’ state and levodopa dose
equivalents were calculated [15]. The disease stage was rated on
the Hoehn and Yahr (H&Y) scale [16] and motor severity was scored
on section III of the Unified Parkinson’s Disease Rating Scale (UPDRS-
III) [17]. The disease duration was calculated from the time since
disease diagnosis.

2.3. Sleep assessment

Nocturnal video PSG recordings were collected on two consec-
utive nights using a sleep-laboratory-based recording system
(Compumedics Siesta, Melbourne, VIC, Australia). The PSG data were
collected using the following montage: electroencephalographic (C3-
A2, O2-M1, Fz-M1 and Pz-A2), two electroocularographic channels
(left and right outer canthi) and electromyogram (sub-mentalis).
Electroencephalographic (EEG) data were sampled at 250 Hz and
EMG data were sampled at 256 Hz. Sleep architecture was visual-
ly scored by an experienced sleep technician using standardized
criteria [18]. As the attenuation of the EMG signal could not be used
to corroborate REM, REM was scored using the cortical EEG,
electrooculograph (EOG), ‘saw tooth’ waves and an absence of vertex
sharp waves, spindles, and K complexes. Total sleep time (TST), REM
percent, slow wave sleep (SWS) percent, latency to REM and SWS,
and wake after sleep onset (WASO) were reported.

2.4. REM atonia index

Data acquired from the chin-surface EMG leads during over-
night PSG were digitally filtered (band pass 10–100 Hz, notch 50 Hz)
[19]. The REM atonia index averages the EMG signal in each 1-s epoch
of REM sleep and grades the epoch as normal or abnormal based
on a voltage threshold (<1 μV = normal, 1–2 μV = indeterminate and
>2 μV = abnormal). The REM atonia index is the proportion of normal
and abnormal mini-epochs that are deemed normal [11]. A noise
reduction algorithm was applied to the REM atonia index [19]. For
each mini-epoch of REM, this algorithm determines the mini-
epoch with the lowest average voltage in a 60-s moving window
around the mini-epoch of REM and estimates this is a measure of
noise. The minimum value in this moving window is subtracted from
each mini-epoch of REM before it is graded as normal, abnormal
or indeterminate [19]. An REM atonia index cut-off of <0.9 was used
to indicate RWA in PD [8]. The ICSD-2 guideline was used to confirm
the diagnosis of RBD, which included fulfilling the RWA threshold
recommended in the IRBD-SG consensus statement [5,6]. The effect
of variability in RWA on the diagnosis of RBD, according to the IRBD-
SG, was evaluated between night 1 and night 2 [6]. The variability

between night 1 and night 2 was calculated as the percentage
difference of the mean values from the two nights.

2.5. Statistical analyses

Statistical analysis was conducted on SPSS Statistics Version
21 for Windows. Categorical variables were compared using a
chi-squared test. Non-parametric Wilcoxon signed-rank tests were
used for the comparison of related variables across the two nights.
An intraclass correlation coefficient (ICC) was calculated for com-
parison of the REM atonia index between night 1 and night 2. An
α value of 0.05 was used for all tests.

3. Results

Of the 38 patients with PD in this study, 10 patients fulfilled the
diagnostic criteria for RBD [5]. The average age was 63.4 years (stan-
dard deviation (SD) 7.6) and there was no evidence of global cognitive
deficit with an average mini–mental state examination (MMSE) score
of 28.5 (SD 1.6). The average disease duration was 2.8 years (SD 3.2),
and the disease stage (H&Y) and motor severity (UPDRS III) were
1.9 (SD 0.5) and 25.8 (SD 12.5), respectively. The mean levodopa dose
equivalency was 334.9 mg (SD 311.7).

The comparison of the REM atonia index between night 1 and
night 2 is shown in Fig. 1. The ICC between these two nights was
0.816 (F = 9.795, p < 0.001), and the ICC for participants with and
without RBD was 0.619 (F = 4.001, p = 0.025) and 0.617 (F = 4.331,
p < 0.001), respectively. The difference in the REM atonia index
between the two nights was 4.7% (SD 8.2). The classification of RWA
between the nights according to the IRBD-SG recommendations was
in agreement (χ2 = 8.919, p = 0.003) (Table 1) [6]. A total of 10 par-
ticipants were identified to have an abnormal REM atonia index on
either night. Four of these participants had an abnormal REM atonia
index on both nights, two were abnormal only on night 1, and four
were abnormal only on night 2. The REM atonia index for all par-
ticipants is shown in Fig. 1. All of the 10 patients who met the
threshold for RWA recommended in the IRBD-SG consensus state-
ment on either night also fulfilled the diagnostic criteria for RBD
set out in the ICSD-2 [5].

The first night of PSG reported a shorter TST (night 1 369.5 ± 79.0
vs. night 2 403.3 ± 61.3, Z = −2.785, p = 0.005) and longer REM latency
(night 1 98.9 ± 56.7 vs. night 2 81.8 ± 45.4, Z = −2.647, p = 0.008). Other
sleep variables were not different.

4. Discussion

This is the first study to demonstrate the night-to-night vari-
ability of RWA in PD. Our results demonstrate that the REM atonia
index was highly correlated between the two nights of PSG (ICC
0.816, p < 0.001). Furthermore, the percentage variation in the REM
atonia index was low (4.7%).

The low RWA variability indicated by our results suggests that
observed first-night effects (shorter TST and longer REM latency)
had a minimal impact on the measurement of RWA. Repeating this

Table 1
REM without atonia threshold: night 1 vs. night 2 (χ2 = 8.919, p = 0.003). A two-by-
two table comparing the classification of REM without atonia (RWA) across the two
nights according to the REM atonia index threshold of <0.9 being consistent with
significant RWA.

Night 2 REM
AI positive

Night 2 REM
AI negative

Night 1 REM AI positive 4 2
Night 1 REM AI negative 4 28

Abbreviation: REM AI, Rapid eye movement atonia index.
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study with an adaption night could further characterize the ob-
served first-night effects. These results suggest that objectively
quantifying RWA electrophysiologically may provide a more con-
venient and robust marker of RBD than capturing a paroxysmal
episode of florid dream enactment during video PSG.

In addition, the low variability of the REM atonia index implies
that at least some degree of RWA is irreversible. This finding may
support the existence of a pathological defect in the region of the
pons, which has been proposed in animal models postulated to
explain REM atonia. However, the percentage change observed in
RWA between the two nights implies that mechanisms do exist to
vary the severity of RWA.

When applying cut-off scores to the REM atonia index, the vari-
ation in RWA identified did not statistically alter the classification
of RWA according to the IRBD-SG consensus statement across
the two nights [6]. However, for six participants, meeting the
threshold for RWA changed between the two nights. As a small
variation in REM atonia index could alter fulfilling the IRBD-SG
consensus statement recommendations for significant RWA [6],
further studies are needed to better understand if this change relates
to genuinely variable degrees of RWA or if this discrepancy relates
to errors in data acquisition. These results suggest that the
proposed REM atonia index cut-off value used in this study to
establish abnormal RWA is not always reliable. Future studies
are needed to define the optimal cut-off score for the REM atonia
index in PD.

Repeating PSG is likely to increase the identification of RWA
and subsequent diagnosis of RBD, in view of patients who record
insufficient REM sleep on one night of PSG. Further studies in larger
cohorts could also quantify the effects of antidepressant medica-
tions on RWA, given these medications are implicated in altering
sleep architecture and causing RBD [20]. Another significant
issue for pursuing this diagnostic approach is interference from
electrical noise in the electrically susceptible surface EMG leads
used in recording RWA. Although a noise reduction algorithm
was employed to improve signal quality, studies are needed to
describe the threshold of noise over which the REM atonia
index is unacceptably affected. Furthermore, although this study
excluded established or suspected OSA based on clinical history,
the PSG montage did not include sufficient respiratory param-
eters to excluded subclinical OSA, which is a limitation of the
study.

In conclusion, the REM atonia index demonstrated low
variability across two consecutive nights of PSG in PD. These

findings imply that the objective REM atonia index may be a
useful biomarker on which to base a diagnosis of RBD and to monitor
future treatment responses. Furthermore, by applying the estab-
lished cut-off score to the REM atonia index to establish a significant
threshold of RWA, this electrophysiological marker was in agree-
ment across the two nights. However, the infrequent variability was
evident. Further studies are needed to better understand if this
relates to paroxysmal degrees of RWA, errors in data acquisition,
or in the definition of an optimal cut-off score for the REM atonia
index in PD.
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Discussion 

This thesis presents four empiric experiments, which execute objective 

measurement techniques in the exploration of sleep-wake disturbance in Parkinson’s 

disease (PD). Innovative methods were utilised for the first time in patients with PD, 

including serial salivary melatonin levels, wrist actigraphy to assess daytime napping 

and signal quantification from nocturnal polysomnography. These novel techniques 

confirmed the presence of significant sleep-wake disturbances in PD operating 

across the circadian, homeostatic and ultradian sleep systems. In each case, the 

limitations of self-report measures were reported. Beyond the premise that improved 

objective measurements will minimise bias, these studies were also able to confirm 

the coexistence of sleep-wake disturbance with troublesome non-motor symptoms, 

such as cognitive decline and mood disturbance. The demonstration that coincident 

mood disturbance and cognitive deficits appear to frequently coexist with disorders 

of sleep-wake regulation provides novel insights into potentially common 

mechanisms that may underpin bidirectional causality. However, the precise nature 

of these neural and chemical correlates will require further investigation utilising the 

techniques demonstrated in this thesis. Finally, this thesis demonstrates a number of 

possible approaches that could be applied to at risk cohorts to predict the 

emergence of PD in pre-motor stages of the disease, identifying those patients who 

might benefit most from future disease modifying therapies.  

 

Serial salivary melatonin measurement combined with actigraphy, as demonstrated 

in Chapter Two, was confirmed as a robust, non-invasive circadian marker.  In this 

study, dopaminergic-treatment profoundly increased the secretion of melatonin in 

patients with PD. Circadian phase abnormalities, identified in previous studies, were 
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not replicated. The work presented here demonstrated a novel finding, namely that 

patients treated with dopaminergic therapy have an uncoupling of the circadian 

system and sleep regulation. This uncoupling suggests a possible link between 

dopamine and the regulation of the pineal gland.  Indeed, previous animal studies 

have reported dopamine receptors in this region (1) but other work has suggested 

that the release of serotonin and melatonin from the pineal gland is controlled by a 

newly identified circadian receptor (2). This receptor is made up of parts of an 

adrenergic and dopamine D4 receptor combined together to form a new hybrid 

receptor (2). Further studies are required to explore this novel receptor and its role in 

the circadian system. Currently, the pattern of neuronal loss and neurotransmitter 

deficits giving rise to reported circadian sleep disturbance in PD are not well 

understood. Dopaminergic and non-dopaminergic pathology across the brainstem, 

basal forebrain, hypothalamus and frontostriatal pathways are likely to be implicated. 

Further contributions from circadian structures include the suprachiasmatic nucleus 

(SCN) in the hypothalamus and melatonin secretion from the pineal gland. Future 

studies that utilise objective circadian measurements like the ones presented in this 

thesis, could be combined with dopaminergic manipulation (e.g. On vs. Off treatment 

studies) to more directly record the impact of this neurotransmitter.  Similarly, 

manipulation of other neurotransmitter systems (e.g. serotonergic via dietary 

restriction protocols (3)) could also probe these influences.  Finally, prospective 

clinicopathological studies could also reveal critical insights by exploring patterns of 

cell death and receptor change. 
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Sleep disturbances generally increase over the duration of disease, which of course 

is often mirrored by increasing doses of dopaminergic therapy.  Therefore, the 

finding of circadian decoupling in patients on treatment may underpin disturbances in 

sleep-wake regulation operating through alterations in melatonin secretion. For 

example, insomnia is more prevalent in patients with a longer disease duration who 

are more likely to be taking higher doses of dopaminergic therapy. An over 

stimulated melatonergic system from dopamine replacement therapy as suggested 

by this thesis, may bring about a similar result to patients taken off dopamine, treated 

with endogenous melatonin. A comparative study based on chapter two, comparing 

patients on and off dopamine and melatonin therapies, would explore this 

hypothesis. This would further elucidate the uncoupling of the circadian system and 

sleep regulation observed in this thesis. 

 

Future studies using daytime melatonin sampling could help determine if the putative 

hypnotic properties of melatonin are implicated in the excessive daytime sleepiness 

seen in PD, which has previously been attributed to a more direct effect of 

dopaminergic medication acting on the wake and sleep promoting centres. Clock 

genes are implicated in the pathogenesis of circadian disruption in PD (4). Using 

methodology demonstrated in Chapter Two in combination with measurement of the 

products of clock genes from buccal mucosal swabs would explore this hypothesis 

(5). A greater understanding of these mechanisms will inform future pharmacological 

and non-pharmacological approaches, such as bright light therapy and exercise, 

combined with objective circadian measurement to help improve quality of life for 

patients and their carers.  
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Chapter Three of this thesis presented results from wrist actigraphy, a previously 

validated objective and inexpensive measure of daytime sleep, applied for the first 

time to record the duration and correlations of excessive daytime napping in PD.  In 

doing so, these results provide a robust non-invasive measure, that could be 

implemented in the community as part of a future research effort to identify the 

associations of this troublesome problem.  Patients with PD reported a significantly 

greater number of nap bouts, as well as time spent napping in the day, compared to 

healthy age-matched controls. Patients with PD who exhibited excessive napping 

through the day had poorer performance on neuropsychological tests probing fronto-

subcortical function, including set-shifting, semantic verbal fluency and processing 

speed. Furthermore, the results from this study highlight that the commonly used 

self-report Epworth sleepiness Scale (ESS), which has been used extensively in 

previous studies of EDS in PD, did not accurately identify objective napping in PD. 

Of particular concern and importance for designing future studies were the results 

from the present study that suggested the ESS inadvertently identified cognitive 

decline and mood disturbance rather than the intended assessment of EDS as 

manifested by napping. Given the high frequency in which these symptoms exist in 

patient with PD, this result raises questions as to the accuracy of self-report 

measures in PD cohorts in general. Novel techniques demonstrated throughout this 

thesis would therefore seem needed to compliment self-report measures. 

 

The results discussed in Chapter Three suggest that interventions aimed at reducing 

daytime sleep disturbance in PD, may have additional benefits on cognition. 

However, previous studies of wake-promoting drugs in patients with PD and EDS, 

have reported disappointing results (6-8).  However, these previous studies utilised 
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the ESS. Future studies utilising actigraphy may offer a more reliable way of 

assessing the efficacy of pharmacological and behavioural interventions for this 

symptom.  

 

The reputed link between reduced cognitive performance and excessive napping 

contrasts with studies that have utilised ‘prescribed’ napping to restore executive 

performance on tasks such as reaction time and symbol digit substitution. These 

combined observations highlight the possibility that increased napping might 

represent a compensatory neurobiological strategy to a primary neuropathological 

insult, rather than playing a causative role in cognitive deficits.  

 

Disruption of brainstem and basal forebrain structures is believed to underpin many 

of the sleep-wake disorders in PD and may also represent the pathophysiological 

link to mood dysfunction and cognitive decline.  Structures affected early in PD such 

as the dorsal raphe nucleus, locus coeruleus and pedunculopontine nucleus have 

known functions across these domains (9). Furthermore, these circuitry disruptions 

may be compounded by impaired sleep architecture where there is an inability to 

clear activity dependent metabolites (10). This could lead to a ‘dampening’ of cortical 

activity with direct inhibition of wake promoting structures (11). This would be further 

amplified by the increased oxidative stress processes that have been proposed in 

PD (12, 13). These insights do potentially allow for targeted interventions.  For 

example, the commonly prescribed anti-glycaemic medication metformin, may 

reduce oxidative stress in PD (14) whereas specific nocturnal dopaminergic dosing 

may reduce cardinal symptoms known to disrupt sleep (15, 16). Medications which 

inhibit wake promoting chemicals include istradefylline (17, 18), an adenosine 
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antagonist similar to caffeine (19), or flumazenil a GABA antagonist (20). Studies 

evaluating these medications are needed in cohorts of PD with actigraphically 

confirmed EDS as demonstrated in this thesis. Ultimately, a more precise 

understanding of the neural and chemical correlates of sleep-wake disorders in PD 

would potentially allow new approaches for restoration of the normal sleep 

architecture. Clinical studies using the techniques identified in this thesis will better 

inform this knowledge, such as prescribed daytime napping monitored by wrist 

actigraphy to aid the clearance of wake dependent metabolites. 

 

The emergence of REM sleep behaviour disorder in later life is the most reliable 

prodromal marker for the future development of PD and other synucleinopathies. 

The objective REM without atonia (RWA) EMG biomarker is the electrophysiological 

hallmark critical to the diagnosis. Chapters Four and Five reported two studies that 

utilised the REM atonia index, an automated signal processing technique, to quantify 

RWA in a cohort of patients with PD.  The REM atonia index has the additional 

benefit of being a continuous variable, wherein it allows the severity grading of RWA, 

which offers prognostic qualities. The studies presented in this thesis were the first to 

apply this algorithm outside of the group that developed it, and in doing so, validated 

this technique through comparison with accepted visual scoring methods. At present, 

the diagnosis of RBD requires both clinical and electrophysiological criteria. Further 

studies are required to determine if there are thresholds for RWA over which a purely 

electrophysiological based diagnosis RBD could be made. With improved home 

based sleep studies this could provide an automated screening process in at risk 

individuals.  Furthermore, the significance of asymptomatic RWA remains uncertain. 

Whether this phenomenon is a normal variant or a prodromal marker of the future 
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development of a neurodegenerative disorder is yet to be determined. This could be 

evaluated with large cohort studies of older adults, using the REM atonia index. 

 

Chapter Four of this thesis was the first study to compare the widely used REM 

sleep behaviour disorder screening questionnaire (RBDQ) in patients with PD, to the 

REM sleep without atonia (RWA) index. Similar results were noted to those in 

Chapter Three, with discrepancies between the subjective self-report questionnaire 

and the objective biomarker.  The inadequacy of the RBDSQ is at least in part due to 

questions that tap into other symptoms, such as visual hallucinations. The 

questionnaires assessed in this study reported high false-positive rates, confirming 

that a clinical history alone is insufficient to confirm a diagnosis of RBD, whereas a 

history focused purely on dream enactment offers a higher diagnostic utility.  

 

Until the publication of the study reported in Chapter Five, the night-to-night 

variability of RWA as a continuous variable was unknown in PD. This study 

concluded that the night- to-night variability is minimal, suggesting that RWA is a 

robust electrophysiological variable in the diagnosis of RBD. However, for multiple 

participants in this study, meeting the threshold for RWA changed between the two 

nights. Thus the study reported diagnostic uncertainty using the different guidelines 

currently used for the diagnosis of RBD. Future studies are needed to form a 

consensus on the ideal diagnostic threshold for RWA in the diagnosis of RBD. The 

application of an automated RWA, as demonstrated in these two studies, would offer 

potential for future studies confirming idiopathic RBD as a pre-motor feature 

heralding the development of PD as well as being an objective measure for 

symptomatic trials. Reliable and accurate methods for identifying RBD may thus offer 
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a window for early intervention in disease modifying trials and a robust measure to 

determine symptomatic improvement rather than relying on subjective 

questionnaires that can fail to quantify RBD.  

 

This thesis applies the objective measurement of sleep-wake disturbances, through 

a series of empiric experiments to help inform our understanding of these critical 

symptoms in PD. These innovative methods and devices were applied for the first 

time in cohorts of patients with PD, compared against previously validated self-report 

questionnaires.  The work presented here confirms the significance of sleep-wake 

disturbances across the circadian, homeostatic and ultradian sleep systems in PD.  

The interaction of sleep-wake disturbance, other non-motor symptoms and cardinal 

motor symptoms was also explored. In each case, significant limitations of self-report 

questionnaires were confirmed. This thesis therefore proposes that objective 

measurements will be critical in future studies to explore the neurobiology of sleep-

wake disturbances and to better identify any bidirectional causality linking frequently 

coincident mood disturbance and cognitive deficits. The application of the techniques 

demonstrated in this thesis would allow more accurate outcome measures for trials 

of symptomatic therapy. Finally, this thesis demonstrates non-invasive methods and 

devices, which could be applied to at risk cohorts to predict the emergence of PD 

and to monitor therapeutic response in future disease modifying therapies.  

 

Given our ageing population, the need for diagnostic, predictive and sensitive 

monitoring biomarkers in Parkinson’s disease has never been greater. Objective, 

accurate and reliable measurement techniques, as demonstrated in this thesis, 

underpins further research in this field.  

114



References 

1. Kim J-S, Bailey MJ, Weller JL, Sugden D, Rath MF, Moller M, et al. Thyroid hormone and 

adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene 

(Drd4). Molecular & Cellular Endocrinology. 2010;314(1):128-35. 

2. Gonzalez S, Moreno-Delgado D, Moreno E, Perez-Capote K, Franco R, Mallol J, et al. 

Circadian-related heteromerization of adrenergic and dopamine D4 receptors modulates 

melatonin synthesis and release in the pineal gland. Plos Biology. 2012;10(6):e1001347. 

3. Worbe Y, Savulich G, de Wit S, Fernandez-Egea E, Robbins TW. Tryptophan Depletion 

Promotes Habitual over Goal-Directed Control of Appetitive Responding in Humans. 

International Journal of Neuropsychopharmacology. 2015;18(10):pyv013. 

4. Videnovic A, Willis GL. Circadian System – A Novel Diagnostic and Therapeutic Target in 

Parkinson’s Disease? Movement disorders : official journal of the Movement Disorder 

Society. 2016;31(3):260-9. 

5. Weissova K, Bartos A, Sladek M, Novakova M, Sumova A. Moderate Changes in the Circadian 

System of Alzheimer's Disease Patients Detected in Their Home Environment. PLoS ONE 

[Electronic Resource]. 2016;11(1):e0146200. 

6. Ondo WG, Fayle R, Atassi F, Jankovic J. Modafinil for daytime somnolence in Parkinson's 

disease: double blind, placebo controlled parallel trial. Journal of Neurology, Neurosurgery & 

Psychiatry. 2005;76(12):1636-9. 

7. Ondo WG, Perkins T, Swick T, Hull KL, Jr., Jimenez JE, Garris TS, et al. Sodium oxybate for 

excessive daytime sleepiness in Parkinson disease: an open-label polysomnographic study. 

Archives of Neurology. 2008;65(10):1337-40. 

8. Trotti LM, Bliwise DL. Treatment of the sleep disorders associated with Parkinson's disease. 

Neurotherapeutics. 2014;11(1):68-77. 

115



9. Braak H, Del Tredici K, Rub U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain 

pathology related to sporadic Parkinson's disease. Neurobiology of Aging. 2003;24(2):197-

211. 

10. Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-

wake behavior: reinterpretation of historical evidence and inclusion of contemporary 

cellular and molecular evidence. Neuroscience & Biobehavioral Reviews. 2007;31(5):775-

824. 

11. Datta S. Cellular and chemical neuroscience of mammalian sleep. Sleep Medicine. 

2010;11(5):431-40. 

12. Puspita L, Chung SY, Shim JW. Oxidative stress and cellular pathologies in Parkinson's 

disease. Molecular Brain. 2017;10(1):53. 

13. Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson's disease. 

Neurology. 1996;47(6 Suppl 3):S161-70. 

14. Fitzgerald JC, Zimprich A, Carvajal Berrio DA, Schindler KM, Maurer B, Schulte C, et al. 

Metformin reverses TRAP1 mutation-associated alterations in mitochondrial function in 

Parkinson's disease. Brain. 2017;140(9):2444-59. 

15. Zibetti M, Romagnolo A, Merola A, Priano L, Montanaro E, Angrisano S, et al. A 

polysomnographic study in parkinsonian patients treated with intestinal levodopa infusion. 

Journal of Neurology. 2017;264(6):1085-90. 

16. Sringean J, Anan C, Thanawattano C, Bhidayasiri R. Time for a strategy in night-time 

dopaminergic therapy? An objective sensor-based analysis of nocturnal hypokinesia and 

sleeping positions in Parkinson's disease. J Neurol Sci. 2017;373:244-8. 

17. Jenner P. An overview of adenosine A2A receptor antagonists in Parkinson's disease. 

International Review of Neurobiology. 2014;119:71-86. 

116



18. Matsuura K, Kajikawa H, Tabei KI, Satoh M, Kida H, Nakamura N, et al. The effectiveness of 

istradefylline for the treatment of gait deficits and sleepiness in patients with Parkinson's 

disease. Neuroscience Letters. 2018;662:158-61. 

19. Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A, Moscovich M, et al. Caffeine for 

treatment of Parkinson disease: a randomized controlled trial.[Erratum appears in 

Neurology. 2012 Oct 16;79(16):1744]. Neurology. 2012;79(7):651-8. 

20. Ondo WG, Silay YS. Intravenous flumazenil for Parkinson's disease: a single dose, double 

blind, placebo controlled, cross-over trial. Movement Disorders. 2006;21(10):1614-7. 

 

117



Appendix A – Editorial of Chapter 5 

Diagnosing REM Sleep Behaviour Disorder in Parkinson’s Disease Can We Avoid  

the Polysomnography. 

 

Postuma RB 

 

Movement Disorders 2014 

 

  

118



Diagnosing REM Sleep Behavior Disorder in Parkinson’s
Disease—Can We Avoid the Polysomnogram?

Ronald B. Postuma, MD, MSc1,2*
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Rapid eye movement (REM) sleep behavior disorder
(RBD) is emerging as a key non-motor manifestation
of Parkinson’s disease (PD). Persons with RBD talk,
cry out, punch, or kick in response to the content of
their dreams.1 In addition to potential injury and sleep
disruption (especially to spouses), RBD has other
implications in PD. It is the strongest clinical predictor
(or prodromal marker) of future PD and other synu-
cleinopathies. This implies that RBD patients are the
ideal candidate population for neuroprotective trials;
treatment can start early enough to meaningfully inter-
vene and before symptomatic PD medications con-
found assessments. Moreover, once a patient has PD,
RBD may identify a disease subtype that is character-
ized by more severe autonomic abnormalities, gait
dysfunction, and dementia.2-4 So, diagnosing RBD in
PD has both treatment and prognostic implications.

The gold standard of diagnosis of RBD is an over-
night polysomnogram, particularly to document loss
of REM atonia (the necessary substrate of dream
enactment behavior). Polysomnography also rules out
mimics such as obstructive sleep apnea and non-REM
parasomnia. Overnight polysomnography, however, is
time consuming, expensive, and often resisted by
patients, particularly those with concomitant anxiety
or insomnia. If diagnosis could be made on history
alone, this would have major practical advantages.

To enable history-based diagnosis, numerous ques-
tionnaires have been developed to screen for RBD.
They range in complexity from single questions, to
13-item severity screening scales.5-9 Although generally
designed as screens, they could potentially make the

diagnosis if sufficiently reliable; so, how good are
they?

To answer this question, Bolitho et al8 explored
diagnosis of RBD within PD by comparing four differ-
ent screening questionnaires with two different over-
night polysomnographic REM atonia measures. The
four questionnaires were the 13-item RBD screening
questionnaire (RBDSQ)9; a four-item dream enactment
subscore of the RBDSQ; the single-question, caregiver-
administered Mayo Sleep questionnaire11; and the
single-question, patient-administered RBD1Q.7 This is
an important contribution, because this is the first
study to compare screening methods head to head.
The two REM atonia quantification techniques were
visual scoring (labor intensive, but generally consid-
ered the gold standard) and automatic software detec-
tion (much less labor intensive, but with reliability less
established). Their findings suggested that caution is
needed in RBD diagnosis.

Compared with the gold-standard (visually scored
electromyography), sensitivities of the four question-
naires ranged from 74% to 95% (the lowest was for
the RBDSQ), and specificities ranged from 58% to
68% (the lowest was for the RBDSQ four-item sub-
score). The RBD1Q and Mayo Sleep Questionnaire,
had the best sensitivity/specificity combinations (93%/
68% and 95%/64%, respectively). Thus, the Mayo
and RBD1Q questionnaires both performed better and
were simpler; so they emerged, at least from this
study, as the screening procedures of choice. It would
be of interest to see whether other screens, such as the
13-item RBD-HK6 or the five-item Innsbruck REM
Sleep Behavior Disorder Inventory9 can perform better
than the single-question screens in head-to-head
comparison.

Regardless of the questionnaire used, there appears to
be a specificity problem with screening for RBD. Does
this imply that clinical history is inaccurate? Before
drawing this conclusion, one must look more closely.

To start, can one question the gold standard? There
is night-to-night variability in polysomnography, and
sensitivity can vary according to which electromyogra-
phy leads are assessed (chin vs. chin and limb com-
bined). Consequently, studies in idiopathic RBD
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suggest that gold-standard, visually scored polysom-
nography can miss up to 20% of true RBD cases.12

This may be worse in PD if the polysomnographic
measures validated in idiopathic RBD translate imper-
fectly to PD. So, some false positives in this study may
actually have had true RBD. Of note, the specificities
in this study were all low, but sensitivities were gener-
ally high. The first response to such a finding should
be to check the cutoff for the gold-standard scales; if
the cutoff is made stricter, then sensitivity decreases
but specificity increases, and perhaps a better balance
may be achieved. Of note, specificity was much worse
when data were compared with the automatically
determined atonia index (as low as 36% for the Mayo
Sleep Questionnaire). Other alternate cutoffs may be
possible,13 and setting the cutoff higher may improve
specificity without overly compromising sensitivity.

However, if the findings from this study are correct
and RBD screens are nonspecific, then what are the
implications? First, there are research considerations.
As mentioned above, numerous studies suggest that
RBD is an important marker of disease subtype.2 How-
ever, this is not found in all studies. In general, studies
that used polysomnographic confirmation of diagnosis
have found more differences between groups than those
that relied upon history alone. Perhaps non-specificity
of questionnaires with resulting misclassification bias
explains this variation; therefore, studies investigating
associations between disease subtypes and RBD should
not rely upon questionnaires and should use polysom-
nographic confirmation if possible.

Second, this finding introduces a note of caution into
our clinics when diagnosing RBD; must we perform a
polysomnogram in all PD patients with suspect RBD? If
so, then the implications for patient burden and health
care resources are considerable; PD is the second most
common neurodegenerative disorder, and between one-
third and one-half of patients with PD have RBD. How-
ever, there are reasons to think that careful clinical his-
tory can suffice in most cases. First, additional
questioning by an experienced clinician should be able
to outperform questionnaire screens; for example
(unlike non-REM parasomnia), during an episode, RBD
patients will not walk, respond to bed-partner interven-
tion, or interact with their non-immediate environment
(eyes are typically closed). Moreover, RBD episodes
predominate in the latter part of the night. Absence of
snoring or arrests in respiration also provides evidence
against apnea (although only weakly so). Second, unlike
idiopathic RBD with its 1% to 2% prevalence, RBD
within established PD is common—so moderate speci-
ficity still translates into a reasonably likely correct
diagnosis. Third, whereas a diagnosis of idiopathic
RBD has very high stakes (ie, a new diagnosis of proba-

ble prodromal PD), the stakes are lower in already
established PD. Many patients have mild symptoms of
dream enactment and may not need treatment; observa-
tion with simple bed safety measures may suffice. Treat-
ment response is usually robust and can also help
confirm the diagnosis (note, however, that clonazepam
treats both RBD and non-REM parasomnia). Therefore,
outside of research settings, it may be reasonable to
diagnose RBD in PD empirically and to investigate fur-
ther only if treatment response is atypical.

To conclude, what can we take home from this
study? First, simple, single-question screens seem to
work as well as longer ones. Second, no screening
questionnaire can be fully trusted; further clinical his-
tory for positive screen results plus polysomnographic
confirmation in some may be needed. Third, it is clear
that the ideal way to clinically diagnose RBD is not
yet defined; there is plenty of room to improve.
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Rapid Eye Movement Atonia Is Not
Rapid Eye Movement Sleep

Behavior Disorder

We have read with interest the paper by Bolitho et al.1

recently published in Movement Disorders, assessing the
ability of four screening questionnaires to correctly identify
rapid eye movement (REM) sleep without atonia (RSWA) in
patients with Parkinson disease (PD). We also agree with
Dr. Postuma’s editorial2 about the importance of comparing
different screening tools “head to head.”

However, we believe that the validity of the study results
might be significantly limited by some problematic aspects.
RSWA is a crucial feature of REM sleep behavior disorder
(RBD); however, it only represents one of the diagnostic cri-
teria,3 and its exact extent has not yet been defined, espe-
cially in patients with RBD and PD. Nevertheless, authors
implicitly assume equivalence between RSWA and RBD,
and surprisingly enough, do not provide any data about the
diagnosis of RBD according to standard criteria (eg,
International Classification of Sleep Disorders, 2nd edition4

at the time of the study). Given these premises, measures of
sensitivity and specificity of the different screening question-
naires could not be obtained.

But even assuming “equivalence” between RSWA and
RBD, the study found an unexpectedly high rate of false-
positive RBD diagnosed by questionnaire (eg, subjects who
scored positively on the questionnaire but did not have
RSWA), and a virtual absence of false-negative (subjects
who are unaware of their RBD but who exhibit RWSA).
This is very surprising, in light of studies showing that 18%
of PD patients without a history of dream-enacting behav-
iors actually have RSWA or video-behavioral RBD manifes-
tations5 or reporting a sensitivity of only 33% for the
clinical interview for RBD in PD patients.6 According to our
and others’ experience, detection of RSWA in unaware PD
patients, especially those without a bed partner, is not
uncommon. This raises some concerns about the methodol-
ogy used to assess sleep in these patients. First, Bolitho
et al.1 do not mention how they scored REM sleep stage in
this population (eg, allowing the presence of muscle tone
during REM sleep in all subjects). Second, but even more

critical, they provide no data about video-recorded behaviors
during nocturnal polysomnography, which are an essential
part of the diagnostic criteria according to the ICSD-2.4

Actually, the authors stated that sleep was assessed with
ambulatory polysomnography without mention of concomi-
tant video-recording. If this is true, the calculation of RSWA
appears to be at least problematic. Indeed, authors need to
explain how they could correctly assess REM sleep epochs
in RBD patients, and especially how they differentiated
EMG changes related to RBD episodes from those attribut-
able to normal arousals during REM sleep, body position
changes, cough, wakefulness, and so forth. To what extent
was EMG activity related to RBD episodes included or
excluded from their calculation of RSWA? Conversely, if
video-recording was performed and carefully inspected, the
authors should give details of RBD episodes observed in
questionnaire-positive and -negative RBD patients.

In conclusion, we believe that the mere comparison of results
of two sets of parameters (questionnaires and RSWA), both of
which are not perfect indicators of a disorder (RBD), cannot
be performed without a clear and sound clinical diagnosis of
the disorder itself, following established standard criteria. The
evident lack of information and the probable impossibility of
establishing such a firm diagnosis (with the data available in
the paper) make these results not conclusive.
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Reply: Unified Techniques Are
Needed to Diagnose REM Sleep

Behavior Disorder

We are grateful for the opportunity to respond to the let-
ter from Fantini and colleagues regarding our recent paper.1

The objective of our study was to identify “. . .if the RBD
screening questionnaire and 3 questionnaires focused on
dream enactment were able to correctly identify patients
with REM without atonia [RWA].” The suggestion that we
“implicitly assume the equivalence between RSWA and
RBD” fails to acknowledge this objective. Electrophysiologi-
cal and clinical data were combined to establish the diagno-
sis of REM sleep behavior disorder (RBD).2 At no point in
our manuscript is an electrophysiological diagnosis of RBD
suggested to be the gold standard, and as such we find our-
selves aligned with the sentiments of Fantini and colleagues.

Fantini and colleagues raised a concern regarding the lack of
asymptomatic RWA identified. However, establishing this inci-
dence was not our objective. This would require a cohort pow-
ered to represent the phenotypes of Parkinson’s disease (PD).
Establishing the video correlates of RWA was also not an
objective. Video polysomnography was undertaken. However,
contrary to what is stated in the letter of Fantini and colleagues,
video-recorded behaviors are not an essential part of the Inter-
national Classification of Sleep Disorders – 2nd edition (ICSD-
2) RBD diagnostic criteria. Rather, patients need to exhibit
“Sleep related injurious or potentially injurious disruptive
behaviors by history” or “Abnormal R [REM] behaviors docu-
mented on polysomnogram.”3 Furthermore, the International
REM Sleep Behavior Disorder Study Group (IRBD-SG) recom-
mends quantification of RWA.2 All participants who met the
threshold for RWA exhibited “Sleep related injurious or poten-
tially injurious disruptive behaviours by history” and as such
video correlates would not contribute further to their diagnosis.

Rapid eye movement atonia cannot be used to identify REM
sleep in patients with RBD. However, REM sleep can be identi-
fied by other characteristics.4 Arousals were excluded visually
when deriving the REM electromyogram density and automati-
cally using the REM atonia index. Possibly REM periods would
have been longer in our study because of the inclusion of periods
before the first rapid eye movement and less prescriptive REM
off criteria.5 If, as suggested, this resulted in REM being scored
incorrectly in periods of non-REM sleep, this would result in
more patients with asymptomatic RWA. However, no asymp-
tomatic patients met the RWA threshold. Identifying REM
remains a source of error specific to manually scored sleep.

In conclusion, our study independently recreated techniques
designed to measure RWA. These techniques were used to
assess whether self-report measures accurately identify RWA.
Using criteria set out in the IRBD-SG consensus statement,
the accuracy of these self-report measures was estimated. All
participants in this study had their polysomnogram PSG and
quantification of RWA conducted as per published standards.
We suggest that any potential discrepancies raised by our
results are entirely consistent with the need for an improved,
unified objective diagnosis of RBD. Our position echoes the
final statement in the recent editorial by Postuma stating that
“it is clear that the ideal way to clinically diagnose RBD is
not yet defined; there is plenty of room to improve.”6
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a b s t r a c t

The frequency of sleep disturbance and cognitive impairment in Parkinson’s disease has led to the sug-
gestion that these processes might share common neural circuitry. This study aimed to identify the rela-
tionships between measures of cognitive functioning and an objective measure of sleep disturbance.
Ninety-five patients with idiopathic Parkinson’s disease and 48 healthy controls underwent neurological
and neuropsychological examination. They wore an actigraphy watch for 2 weeks, from which a measure
of nocturnal sleep efficiency was calculated. Multiple regression models showed that working memory
and verbal memory consolidation were significantly associated with sleep efficiency, as well as education
and age. By contrast, verbal fluency and attentional set-shifting were not associated with sleep efficiency,
after accounting for age and education. These findings reveal that nocturnal sleep disturbance in Parkin-
son’s disease is associated with specific cognitive difficulties, rather than a global pattern of cognitive
dysfunction. This may in part reflect common neural underpinnings.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in our understanding of sleep have demonstrated that
this behaviour is critical for memory consolidation [1] and optimal
neuropsychological functioning [2]. The frequent combination of
cognitive impairment and sleep disturbance that is seen across
many neurodegenerative diseases has led to the suggestion that
these processes might be underpinned by disruptions in common
neural circuitry [3].

Sleep-wake disturbance is particularly common in Parkinson’s
disease (PD) with approximately two-thirds of PD patients report-
ing this feature [4]. There is a considerable range of sleep-wake dis-
turbances in PD, which can manifest as rapid eye movement (REM)
sleep behaviour disorder (RBD), hypersomnolence, sleep-disor-
dered breathing and insomnia (for a review see Gunn et al. [5]).
Of significance, sleep-wake disturbance in PD has been linked to
a range of cognitive and psychiatric complaints [6–8], increased
carer burden [9] and reduced quality of life [10], warranting efforts
to delineate its pathogenesis.

While few studies have examined the relationship between
sleep and cognition in detail, our research group recently con-
ducted a study using self-report questionnaires of sleep-wake dis-
turbance in PD and noted differential patterns of deficit [11].
Specifically, greater nocturnal sleep disturbance was associated
with impaired working memory and memory consolidation. In

contrast, excessive daytime somnolence was associated with slo-
wed processing speed and reduced attentional set-shifting, and
RBD symptoms were correlated with both working memory and
verbal fluency. These differential patterns suggest that anatomi-
cally distinct pathophysiological changes may underpin specific
profiles of sleep and cognitive complaints. Thus, further elucidating
these relationships may help to identify the associated pathologi-
cal substrates and allow for development of more targeted
pharmaceutical interventions or individually tailored cognitive
training programs [5,12].

Building on this notion, only one previous study has used actig-
raphy to explore the relationships between sleep disturbance and
cognition in PD to our knowledge. In a sample of 35 PD patients
this study found that sleep efficiency (described as total sleep time
minus wake time divided by the time in bed multiplied by 100)
was associated with motor symptom severity, increased dopami-
nergic mediation and male sex [13]. A further analysis of this sam-
ple found that poorer sleep efficiency was associated with reduced
attention/executive functioning but not memory or psychomotor
speed [14]. Several authors have highlighted the considerable phe-
notypic variation across variables such as age of onset, motor
symptom severity, cognition and mood disturbance that exist
within PD [5,15,16].

Disease heterogeneity in PD is likely to impact on sleep-wake
disturbances and influence sleep efficiency. Therefore, the present
study sought to evaluate whether actigraphically-defined sleep
efficiency is associated with specific patterns of neuropsychologi-
cal functioning in PD accounting for a range of potentially con-
founding demographic and disease variables.
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2. Methods

2.1. Participants

Ninety-five patients (58 men, 37 women) were recruited from
the Brain & Mind Research Institute PD Research Clinic, University
of Sydney, Australia. All patients satisfied the United Kingdom Par-
kinson’s Disease Society Brain Bank criteria and were deemed un-
likely to have dementia [17] or major depression according to the
Diagnostic and Statistical Manual version IV (DSM-IV) [18] criteria
by consensus rating of a neurologist (S.J.G.L.) and a neuropsychol-
ogist (S.L.N.). Exclusion criteria included dementia diagnosis; neu-
rological disease other than PD (for example epilepsy); psychosis;
prior stroke or head injury (with loss of consciousness >30 min-
utes); diagnosis of obstructive sleep apnoea; or inadequate English
for neuropsychological assessment. Thirty-four patients were on
levodopa monotherapy, nine were on dopamine agonist mono-
therapy, and 52 were on levodopa plus an adjuvant agent (such
as dopamine agonist, catechol-O-methyl transferase [COMT] inhib-
itor or monoamine oxidase [MAO] inhibitor). Twenty-two patients
were taking antidepressants and 13 were taking benzodiazepines.
A further 48 (27 men, 21 women) age-matched volunteers were re-
cruited as healthy control subjects after being screened for neuro-
logical and psychiatric disease. All participants scored P24 on the
Mini Mental State Examination (MMSE) [19]. Permission for the
study was obtained from the University of Sydney Human Re-
search Ethics Committee and all patients gave written informed
consent.

2.2. Clinical assessment

All neurological and neuropsychological assessments were con-
ducted within one session to confirm study eligibility. Patients
were assessed in their ‘‘on’’ state with the motor section of the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS-III) [17] and levodopa
dose equivalents were calculated for dopaminergic medication
[20]. Disease stage was rated on the Hoehn and Yahr scale [21], dis-
ease duration was calculated as the time (years) since disease diag-
nosis, and depressive symptoms were self-rated using the Beck
Depression Inventory-II (BDI-II) [22]. The REM Sleep Behavior Dis-
order Screening Questionnaire (RSBDSQ) [23] was used to assess
for the presence of RBD with a cut-off score of 6 or greater sugges-
tive of RBD [24]. Question six of the clinician rated Non-Motor
Symptom Scale [25] was used to assess PD patients’ severity and
frequency of symptoms of Restless Legs Syndrome (RLS).

Neuropsychological functioning was assessed by a neuropsy-
chologist using standardised tests. The MMSE was administered
for reporting purposes. Working memory was assessed using the
Digit Span Backwards subtest (raw score) of the Wechsler Adult
Intelligence Scale-III (WAIS-III) [26]. The Logical Memory subtest
of the WAIS-III was used to assess the consolidation (Logical Mem-
ory % Retention) of verbal material [27]. Verbal Fluency was as-
sessed via the Controlled Oral Word Association Test (letters F, A,
S) [28]. Executive functioning was examined using the Trailmaking
Test. Part A was subtracted from Part B so that the score repre-
sented the pure attentional set-shifting component of Part B
(TMTB–A, seconds) as has previously been reported [11].

2.3. Actigraphic assessment

Wrist-worn actigraphy has been demonstrated to be a reliable
method to assess sleep disturbance in PD patient samples [29].
Measurement of sleep-wake disturbance was conducted according
to previously established protocols [30]. Following clinical assess-
ment, participants were required to complete a sleep diary and

wear a wrist actiwatch (MiniMitter Actiwatch Spectrum, Kon-
inklijke Philips Electronics, Amsterdam, Netherlands) on their
least severe disease side arm for 14 consecutive days. Actigraphy
rest intervals were calculated using Actiware 5.0 software
(MiniMitter-Respironics, Bend, OR, USA) in conjunction with man-
ual scoring. One rest interval per 24 hour period was scored (total
rest time). The primary measure of sleep disturbance was ‘‘sleep
efficiency’’, which reflected the percentage of total time spent
‘‘asleep’’ during the rest interval, calculated as [(total rest time -
�wake after sleep onset)/(total rest time)] � 100]. Actigraphy also
recorded the average variability in sleep onset and offset, which
was used to measure the robustness of the sleep-wake cycle over
the 14 trial days.

2.4. Statistical analyses

Statistical analysis was conducted on using the Statistical Pack-
age for the Social Sciences version 20 (SPSS, Chicago, IL, USA) for
Windows (Microsoft, Redmond, WA, USA). Between-group com-
parisons used independent samples t-tests. Univariate correlations
were conducted using Pearson correlation coefficients. To deter-
mine the relative contribution of sleep efficiency to neuropsycho-
logical functioning, multiple regression was used. Four backward
elimination regression models (method = backward) were con-
structed with Digit Span Backwards, Logical Memory % Retention,
Verbal Fluency and TMTB–A as dependent variables. In addition
to sleep efficiency, age, education, BDI-II depression score, disease
duration, UPDRS-III and dopamine dose equivalent were included
as independent variables in the model to account for the potential
impact that these variables may have on cognition. Semi-partial
correlations were used to determine the ‘‘unique’’ (that is, the var-
iance that was attributed only to that predictor, and not shared)
variance of significant predictors.

3. Results

Demographic, cognitive and sleep disturbance variables are pre-
sented in Table 1. The PD group and the healthy controls did not
differ with respect to age, sex, education or MMSE score. With re-
spect to the cognitive variables, the PD group performed signifi-
cantly worse on measures of verbal memory consolidation
(Logical Memory % Retention, t = �2.0, p = .047) and set-shifting
(TMTB–A, t = 4.3, p < .001). There were no differences between pa-
tients and controls on any of the actigraphy variables or self-report
measures of sleep, other than the PD group reporting more symp-
toms of RBD (RSBDSQ total, t = 5.9, p < .001).

3.1. Analysis of sleep disturbance and neuropsychological functioning

Healthy controls showed a significant inverse relationship be-
tween age and sleep efficiency (r = �.390, p = .007) but no correla-
tions were observed between sleep efficiency and any other
demographic, cognitive or sleep variable.

By contrast, for the PD group, univariate correlations identified
that actigraphically-defined sleep efficiency was significantly cor-
related with Digit Span Backwards (r = .279, p = .006) and Logical
Memory % Retention (r = .234, p = .023) but not with Verbal Flu-
ency (r = .103, p = .318) or TMTB–A (r = �.132, p = .206). In addi-
tion, sleep efficiency in the PD group was significantly correlated
with disease duration (r = �.258, p = .012) and dopamine dose
equivalent (r = �.436, p < .001). Table 2 shows the relationships be-
tween the cognitive variables and the potential confounding vari-
ables age, education, BDI-II score, disease duration, UPDRS score
and levodopa dose equivalent.
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3.2. The effect of RBD, RLS and sleep-wake cycle

Forty-seven people in the PD group met criteria for RBD on the
RSBDSQ using a cut-off score of 6. Comparing this group against
those patients without self-reported symptoms of RBD (n = 48) re-
vealed no significant differences on the measure of sleep efficiency
(t = �.2, p = .875). Similarly, when comparing those with (n = 33)
and without symptoms of RLS (n = 62), there were no significant
differences in sleep efficiency (t = 1.9, p = .065). Finally, to investi-
gate whether variability in the sleep-wake cycle of patients
impacted upon sleep efficiency, comparisons were made between

those patients in the upper and lower quartiles of both sleep onset
and offset variability. No significant differences of sleep efficiency
were found between those patients in the upper (n = 30) and lower
quartiles (n = 24) of sleep onset (t = .5, p = .628) or offset (t = .1,
p = .902) variability.

3.3. Relationships between sleep efficiency and cognitive variables

To determine the veracity of the relationship between sleep
efficiency and cognition in PD, multiple regression analyses were
conducted and included the potential confounding variables of
age, education, BDI-II depression score, disease duration, UPDRS-
III and dopamine dose equivalent. Note that all potential confounds
were entered, even if they were not associated with sleep effi-
ciency, since most are known correlates of cognition.

The first backward regression analysis exploring working mem-
ory revealed that only sleep efficiency (B = .10, sleep efficiency [SE]
B = .04, p = .007) and education (B = .16, SE B = .06, p = .006) were
significant predictors of Digit Span Backwards, overall accounting
for 15.1% of variance in working memory performance (F = 8.21,
p = .001). Sleep efficiency and education uniquely predicted 7.0%
and 7.3% of the variance, respectively.

The second regression analysis investigating memory consoli-
dation revealed that sleep efficiency (B = .94, SE B = .39, p = .019)
and age (B = �.60, SE B = .25, p = .020) remained the only significant
predictors of Logical Memory % Retention. Together, they ac-
counted for 11.0% of variance (F = 5.61, p = .005) and uniquely pre-
dicted 5.6% and 5.5% of the variance in memory consolidation,
respectively.

4. Discussion

The current study is the largest study to our knowledge to ex-
plore the association between objectively-measured sleep distur-
bance and neuropsychological functioning in PD. The findings
both support and extend our prior work, which demonstrated dif-
ferential patterns of self-reported sleep dysfunction in association
with neuropsychological functioning [11]. In the former study, pa-
tients endorsing higher levels of nocturnal sleep disturbance dem-
onstrated poorer performance on Digit Span Backwards and Logical
Memory. In keeping with this finding, the current study found that
an objective measure of nocturnal sleep disturbance, namely acti-
graphically-defined sleep efficiency, was also a significant predic-
tor of working memory (Digit Span Backwards) and memory
consolidation (Logical Memory). Importantly, these findings re-
mained significant even when controlling for likely confounds such
as age, depressive symptoms, education, levodopa dose and dis-
ease severity. By contrast, sleep efficiency did not appear to be per-
tinent to performance on tasks of verbal fluency and attentional
set-shifting, a finding which is consistent with our prior research
suggesting that dysfunction in these cognitive domains is preferen-
tially related to daytime somnolence and symptoms of RBD, rather
than nocturnal sleep disturbance.

There is a range of other factors that could potentially impact
upon sleep efficiency and cognitive performance, such as level of
exercise, dopaminergic and non-dopaminergic treatment, medica-
tion side effects, pain and additional underlying brain pathology
such as Alzheimer’s disease. However, this study explored a num-
ber of likely confounds and did not demonstrate any difference in
sleep efficiency measures between those patients with and with-
out RBD, RLS or a disrupted pattern of sleep onset and offset.

Interestingly, in the present study the PD group did not differ
from the controls in terms of their average sleep efficiency. Despite
this, within the PD group there existed a relationship between
sleep efficiency and aspects of cognition that were not present in
the control group. This finding potentially highlights the complex-

Table 1
Demographic, neuropsychological and sleep disturbance data of Parkinson’s disease
patients

Mean (SD) t/v2

PD
(n = 95)

Healthy
controls
(n = 48)

Age, years 64.6 (7.8) 65.1 (9.5) �.3
Sex, male:female 58:37 27:21 .4a

Education, years 13.9 (3.1) 14.1 (3.1) �.5
Hoehn and Yahr, stage 2.0 (0.7) – –
Disease duration, years 5.3 (5.5) – –
UPDRS motor score 23.8 (11.4) – –
Levodopa dose equivalent, mg 594.5

(489.4)
– –

RSBDSQ total score 5.47 (3.6) 2.0 (1.5) 5.9**

NMSS restless legs total 1.5 (2.7) – –
Mini Mental State Exam 28.6 (1.5) 28.8 �.6
Beck Depression Inventory-II 9.4 (6.6) 4.62 (4.9) 4.0**

Neuropsychological data
Digit Span Backwards, raw score 6.81 (1.9) 7.3 (2.5) �1.1
Logical Memory% Retention, raw
score

75.9 (19.9) 81.7 (14.3) �2.0*

Letter Fluency (FAS), raw score 42.2 (16.8) 42.0 (12.2) .1
TMTB–A, seconds 66.3 (53.4) 36.9 (20.7) 4.3**

Actigraphy variables
Sleep efficiency, % 90.2 (5.1) 91.2 (3.4) �1.4
Sleep onset, hh:mm 20:21 (6:4) 20:26 (6:4) �.1
Sleep onset variability, minutes 65.8 (63.9) 64.0 (79.5) .1
Sleep offset, hh:mm 7:00 (0:55) 7:10 (0:54) �1.0
Sleep offset variability, minutes 54.0 (40.9) 53.2 (48.9) .9

a v2 analysis.
* p < .05.
** p < .01.
FAS = verbal fluency test for words starting with the letters ‘‘F’’, ‘‘A’’ and ‘‘S’’,
hh:mm = hours:minutes, NMSS = Non-Motor Symptoms Scale, PD = Parkinson’s
disease, RSBDSQ = REM Sleep Behavior Disorder Screening Questionnaire,
SD = standard deviation, TMTB–A = Trailmaking Test Part B – Part A, UPDRS = Uni-
fied Parkinson’s Disease Rating Scale.

Table 2
Correlations between neuropsychological measures and demographic variables for
the Parkinson’s disease group

Digit Span
Backwards

Logical Memory
% Retention

Letter
fluency
(FAS)

TMTB–A

Age �.134 �.215* �.302** .384**

Education .295** .221* .329** �.266**

Beck Depression
Inventory-II

.015 �.070 �.287** .063

Disease duration �.032 �.082 �.232* .181
UPDRS motor score �.178 �.215* �.299** .265**

Levodopa dose equivalent �.159 �.206* �.143 .170

* p < .05.
** p < .01.
FAS = verbal fluency test for words starting with the letters ‘‘F’’, ‘‘A’’ and ‘‘S’’, TMTB–
A = Trailmaking Test Part B – Part A, UPDRS = Unified Parkinson’s Disease Rating
Scale.
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ity of sleep disturbance in PD, with particular aspects of sleep dis-
turbance making a greater contribution to cognitive impairment in
certain subsets of PD patients. Future research should attempt to
delineate the unique contribution of these factors to sleep distur-
bance and cognition in PD.

The finding that actigraphically-defined sleep disturbance plays
a role in working memory and the recall of verbal information is
consistent with past research concerning sleep-dependent mem-
ory consolidation [1]. It is also in broad agreement with a recent
study that correlated actigraphically-defined sleep efficiency with
working memory as assessed by Digit Span [14]. The present study
expands upon these observations in a larger sample of PD patients
and importantly revealed that sleep efficiency in PD is associated
with memory consolidation.

Overall, the results of this study suggest that sleep efficiency in
PD is associated with specific patterns of cognitive dysfunction
rather than a generalised reduction in cognitive functioning. Thus
nocturnal sleep disturbance in PD may be impacting on cognition
through dysfunction in underlying neural substrates predomi-
nantly within frontal and temporal networks. The cause of this dis-
ruption is not well understood but may include underlying
pathology in the cortical projections of the suprachiasmatic nu-
cleus–dorsomedial nucleus pathway modulating sleep-wake
behaviour [5], dopaminergic [13] and non-dopaminergic treat-
ment, nocturia and pain.

Whilst polysomnography represents the gold standard for the
assessment of sleep disturbance, wrist-worn actigraphy performed
over multiple nights has been confirmed as a reliable methodology
that has been previously validated in PD patient samples [29]. In
the absence of accompanying polysomnography we are unable to
make direct comment regarding how the contribution of specific
sleep staging might impact upon cognition. Examination of these
relationships is clearly worthy of further research, particularly in
light of data suggesting that discrete nocturnal neurophysiological
events, such as sleep spindles and slow oscillations, are critical to
overnight memory consolidation (see reviews by Naismith et al.
[3] and Stickgold [1]). A greater understanding of the interaction
between sleep and cognitive networks in PD, as well as the impact
of sleep apnoea, RBD and hypersomnolence, will hopefully allow
for more targeted interventions in the future.
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Circadian profiles in young people during the early
stages of affective disorder

SL Naismith1, DF Hermens1, TKC Ip1, S Bolitho1, E Scott1, NL Rogers2,3 and IB Hickie1

Although disturbances of the circadian system are strongly linked to affective disorders, no known studies have examined
melatonin profiles in young people in early stages of illness. In this study, 44 patients with an affective disorder underwent clinical
and neuropsychological assessments. They were then rated by a psychiatrist according to a clinical staging model and were
categorized as having an ‘attenuated syndrome’ or an ‘established disorder’. During the evening, salivary melatonin was sampled
under dim light conditions over an 8-h interval and for each patient, the time of melatonin onset, total area under the curve and
phase angle (difference between time of melatonin onset and time of habitual sleep onset) were computed. Results showed that
there was no difference in the timing of melatonin onset across illness stages. However, area under the curve analyses showed that
those patients with ‘established disorders’ had markedly reduced levels of melatonin secretion, and shorter phase angles, relative
to those with ‘attenuated syndromes’. These lower levels, in turn, were related to lower subjective sleepiness, and poorer
performance on neuropsychological tests of verbal memory. Overall, these results suggest that for patients with established
illness, dysfunction of the circadian system relates clearly to functional features and markers of underlying neurobiological change.
Although the interpretation of these results would be greatly enhanced by control data, this work has important implications for the
early delivery of chronobiological interventions in young people with affective disorders.
Translational Psychiatry (2012) 2, e123; doi:10.1038/tp.2012.47; published online 29 May 2012

Introduction

Over the last decade, there has been increasing interest in the
relationship between the circadian system and affective
disorders. Various disruptions of circadian rhythms have
been described in depressive disorders, including shifts in the
onset and offset of the sleep phase relative to environmental
time (phase-advance or delay), as well as disruption to the
endogenous release of key hormones such as melatonin and
cortisol and changes in core body temperature rhythm.1

Disruption to the rhythmicity of the systems under the control
of the circadian system is likely to represent a fundamental
disturbance of centrally regulated neurohormonal function,
and may well underpin many of the somatic symptoms so
often reported by patients with common mental disorders.2

There is evidence to suggest that sleep and/or circadian
disturbance may be causally linked to both the emergence
and persistence of affective disorders (see review by Harvey
et al.3 and Wulff et al.4). Indeed, this notion is well supported
by studies conducted in patients with seasonal affective
disorder, where circadian misalignment has been linked with
the onset, extent and resolution of depressive symptoms.5

Additionally, sleep–wake disturbance has been noted to be a
prodromal, inter-episodic and prognostic feature of bipolar

disorder (see review by Harvey et al.3). Misalignment of the

circadian system relative to environmental time cues has

profound affects not only on mood, but also on cognition, and

a range of other physiological systems under circadian control,

including thermoregulatory, endocrinological, immunological,

cardiovascular and metabolic systems.4,6,7 Together, these

data suggest that changes in the circadian system may not only

represent a potential biomarker for illness onset and progres-

sion but may also be associated with adverse health and

psychosocial outcomes.
The pattern of somatic features, sleep disturbance, daytime

fatigue and related anxiety and depressive symptoms that often
emerges throughout the adolescent period indicates the need to
focus more closely on the underlying physiology of the
developing circadian system.8 Developmental changes in the
sleep–wake and circadian systems are common in adolescents
and young adults, with delayed sleep phase syndrome a
common feature of adolescence (see review by Crowley et al.9).
It has been postulated that changes to both circadian timing and
period are explained largely by intrinsic biological drives, rather
than extrinsic environmental or psychosocial factors.9

As altered sleep patterns may precede the onset and
persistence of psychological distress in young people,10 better
characterization of these features may lead to identification of
vulnerability markers that can then underpin better targeting of
early interventions.4,11 To date, there has been little attempt to
characterize these features in those at high risk or during the
onset phases of affective disorders.4 Such objectives can,
however, be accomplished by utilizing novel clinical staging
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paradigms seeking to identify young people in early stages of
major mental disorders.11,12 Within this framework, young
people presenting for care with admixtures of anxiety and
depressive symptoms are typically categorized as being within
early or ‘attenuated syndrome’ phases as compared with those
with ‘established disorders’ (that is, first episode of major
illness or later relapsing or persisting phases).12,13 Concur-
rently with the longitudinal evaluation of this model, we are
testing whether there are distinct biomarkers evident at the
different phases of affective illness.

The aim of the present study was to examine circadian
parameters, notably the timing, secretion and synchrony of
melatonin, according to the clinical stage of affective illness.12

Specifically, we aimed to examine melatonin onset and
secretion patterns in those with early ‘attenuated syndromes’
as compared with those with ‘established disorders’. It was
hypothesized that those in later stages of illness would exhibit
evidence of altered circadian functioning, in comparison with
those in early illness phases.

Subjects and methods

Participants. A total of 44 young individuals were recruited
from services that offer specialized assessment and early
intervention of mental health problems in young people
(Youth Mental Health Clinic (YMHC) at the Brain & Mind
Research Institute (BMRI); and headspace, Campbelltown,
Sydney, Australia13,14). Inclusion criteria for this substudy
were: (1) individuals aged 12–30 years seeking professional
help primarily for significant anxiety or depressive symptoms;
and (2) willingness to participate in overnight assessments of
circadian rhythms (salivary melatonin) and sleep.
Participants were excluded if they did not have sufficient
English-language skills. The assessment protocol was
approved by the University of Sydney Human Research
Ethics Committee. Participants gave written informed
consent before participation in the study.

Clinical assessments. As described elsewhere,12,13

patients entering the mental health services were assessed
and managed by medically and/or psychologically trained
health professionals. In this study, an independent psychiatrist
or trained research psychologist conducted a standardized
clinical interview, focussing on ratings of depressive symptom
severity (Hamilton Depression Rating Scale (HDRS))15 as well
as assessment of the detailed criteria developed for formal
application of our clinical staging framework.12 The clinical
stage of affective disorder was rated by two psychiatrists with
extensive clinical and research expertise in affective disorders
and staging paradigms (ES and IH). Patients were rated as
having either an ‘attenuated syndrome’ (stage 1b) or an
‘established disorder’ (stage 2 and above). Within this staging
system, patients may also be classified as being in ‘stage 1a’.
However, the stage 1a group is much more heterogeneous;
although they are help seeking, with mild symptoms, there is
subsequently less confidence that such subjects would
transition to full-threshold disorders (see Hickie et al.12).
Classification at stage 2 or above depends on the
recognition of depressive syndromes with more severe

features (for example, agitation, psychomotor retardation,
psychotic features and additional intermittent hypomanic
features). Such disorders may traditionally be classified as
meeting full-threshold criteria for major depression according
to a DSM-IV (Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition) or ICD-10 (International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision) diagnosis, and later stages are characterized
predominantly by illness persistence or recurrence. Conse-
quently, 52 and 56% of participants in our study who were
classified as being in stage 1b and stage 2þ , respectively,
were taking antidepressant medications (w2¼ 0.08, not
significant (NS)). In comparison, 15% of those in stage 1b
were taking atypical antipsychotic medications as compared
with 63% of those in stage 2þ (w2¼ 10.4, Po0.01).

Sleep and circadian assessment. As described
previously,16 participants completed diaries and/or
actigraphy for 7 continuous days and nights before
circadian assessment. Habitual sleep onset (HSO) was
derived on a daily basis from a combination of light and
activity data, which was supplemented by diary information,
and averaged across the recording period. Participants then
attended the Chronobiology and Sleep Laboratory at the
BMRI for overnight circadian assessment. Participants were
asked to arrive 7 h before their HSO, to familiarize with the
laboratory settings, and to ensure they were in a maintained
posture for at least 30 min before the first sample being
collected. As per standard dim light melatonin onset (DLMO)
protocols, saliva samples were collected at 30-min intervals
using Salivettes (Sarstedt, Germany) from 6 h before HSO
until 2 h after HSO. That is, participants were kept awake 2 h
past their HSO. At all times, while in the laboratory,
participants were physiologically and behaviourally
monitored under controlled conditions, with fixed light levels
(o50 lx) and ambient temperature (24±1 1C). Participants
maintained a seated posture for at least 20 min before each
sample collection.

Melatonin was assayed in 200ml saliva by double antibody
RIA (Cat no. RK-DSM2; Buhlmann Laboratories AG, Schö-
nenbuch, Switzerland) according to the manufacturer’s
instructions. The lowest detectable level of melatonin was
4.3 pM. The intra-assay coefficient of variation was o10%
across the range of the standard curve. The inter-assay
coefficient of variation was 15% at 19.5 pM and 12.3% at
177 pM. The total area under the curve (AUC) was calculated
using the trapezoid method, for each participant over the
entire 8-h sampling period. To determine the DLMO, the
average melatonin levels of the first three sampling times was
calculated and a threshold of two standard deviations greater
than this value was established for each subject. The DLMO
was defined as the time when the saliva melatonin level first
exceeded this threshold and remained elevated for at least the
next sampling time. The phase angle of entrainment was
calculated by subtracting the time of DLMO from HSO
(measured in min).

Self-report data. Patients were asked to complete the Beck
Depression Inventory-II for depressive symptom severity.17

In order to assess daytime sleepiness in everyday or social
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situations, patients completed the Epworth Sleepiness
Scale.18 Sleepiness during the evening of DLMO
assessment was rated using the Karolinska Sleepiness
Scale19 (range¼ 1 ‘very alert’ to 9 ‘extremely sleepy-
fighting sleep’). Ratings were obtained 3 h before HSO
(KSS�3), and 1.5 h after HSO (KSSþ 1.5).

Neuropsychological assessment. Within 2 weeks of
laboratory assessment, a neuropsychologist administered the
Trailmaking Test Part A & Part B20 to assess psychomotor
speed and set-shifting, respectively. Performance on this test
was converted to a z-score according to age matched
normative data.21 The Rey Auditory Verbal Learning Test
(RAVLT)22 was administered to measure unstructured verbal
learning. Total learning over the five trials was used (RAVLT-
encoding, maximum¼ 75) and scores were converted to z-
scores according to age- and education-adjusted normative
data.23 We specifically chose to examine these two measures
as our prior work24,25 has shown them to be sensitive to
underlying neurobiological changes in depressive disorders,
even in young people at early stages of illness.26

Statistical analysis. Data were analysed using the Statistical
Package for Social Sciences (SPSS version 19, IBM, Chicago,
IL, USA). For continuous data, analyses employed Pearson’s
or Spearman’s correlations where appropriate. For analyses
between stage 1b and stage 2þ , all categorical data were
checked for distribution and normality. Student’s t-tests were
employed to analyse these data utilizing assumptions of equal
or unequal variance where appropriate. All analyses were two-
tailed and used an a level of 0.05.

Results

For three patients (n¼ 2, stage 1b and n¼ 1, stage 2þ ),
melatonin data were not observed (within the sensitivity of the
assay) over the 8 h sampling period. For another three
patients (n¼ 1, stage 1b and n¼ 2, stage 2þ ), melatonin
was detected but did not reach the threshold as required by
the algorithm. Thus, DLMO and phase angle data were not
available on a total of six patients. Demographic, clinical and
DLMO data for the sample are presented in Table 1. There
was no difference in the time of DLMO between the clinical
stage groups. The stage 1b and stage 2þ groups did not
differ statistically in terms of their level of subjective sleepi-
ness 3 h before HSO and 1.5 h after HSO (KSS�3 and
KSSþ 1.5), nor in their levels of daytime sleepiness, as
assessed by the Epworth Sleepiness Scale. As expected,
patients in earlier clinical stages were significantly younger;
however, there was no difference in gender distribution. There
was no significant difference in HSO in the week before
assessment. However, stage 1b patients had significantly
greater phase angles than stage 2þ patients when their
DLMO was compared with their HSO times.

Analysis of salivary melatonin AUC data for patients in stage
1b vs stage 2þ showed that those in earlier stages had almost
double the melatonin concentration of those in later stages
(Table 1 and Figure 1). This was apparent for the entire sample
as well as for melatonin concentration 2 h before and 2 h after
HSO. Additionally, after controlling for age and depression

severity, these analyses remained significant (total DLMO:
F3,36¼ 4.9, Po0.05; DLMO 2 h before HSO: F3,36¼ 5.6,
Po0.05; and DLMO 2 h after HBO: F3,36¼ 4.6, Po0.05).

Correlations with depressive symptoms. There was no
significant association between salivary melatonin AUC and
either self-reported or clinician-rated depressive symptoms
for patients with stage 1b (Beck Depression Inventory (BDI),
r¼�0.15, NS; HDRS, r¼�0.15, NS) or stage 2þ (BDI,
r¼ 0.12, NS; HDRS, r¼ 0.37, NS) affective disorders.

Correlation with subjective sleepiness. For both staging
groups, there was no association between subjective
sleepiness 3 h before HSO, and total salivary melatonin
AUC in the 3 h before HSO (KSS�3: r¼�0.17 and r¼ 0.28
for stage 1b and 2þ , respectively). However, lower levels of
salivary melatonin AUC 2 h after HSO were related to
decreased levels of subjective sleepiness for those in stage
2þ only (KSSþ 1.5: r¼ 0.5, Po0.05 and r¼ 0.29, NS for
stage 2þ and 1b, respectively).

Correlation with cognition. For those in stage 1b, there
were no significant relationships between total salivary
melatonin AUC and performance on tasks of psychomotor
speed (Trailmaking Part A, r¼ 0.12, NS), new learning
(RAVLT-encoding, r¼�0.04, NS) or set-shifting (Trailmaking
Part B, r¼�0.06, NS). For those in stage 2þ , lower levels of
salivary melatonin AUC were not associated with processing
speed or set-shifting (Trailmaking Part A, r¼ 0.46, NS;
Trailmaking Part B, r¼ 0.32, NS). However, as shown in
Figure 2, lower melatonin levels were associated with poorer
performance on a task of verbal memory encoding (RAVLT-
encoding, r¼ 0.58, Po0.05).

Table 1 Demographic, psychiatric and circadian data for patients with stage 1b
(n¼28) and 2+ (n¼ 16) affective disorders

Stage 1b,
mean (s.d.)

Stage 2+,
mean (s.d.)

t-value

Age, years 20.5 (4.3) 23.2 (4.7) �2.2*
Sex, male/femalea 15/13 8/8 0.2
Hamilton Depression Rating scale 12.9 (6.5) 14.1 (8.3) �0.5
Education, years 12.6 (2.7) 12.6 (2.8) �0.4
Beck Depression Inventoryb 18.0 (8.6) 24.8 (11.1) �2.1*
Trailmaking Part A, z-scoreb �0.0 (1.2) 0.2 (0.7) �0.7
Trailmaking Part B, z-scoreb �0.3 (1.9) �0.4 (1.2) 0.3
RAVLT-encoding 0.27 (1.3) �0.48 (1.4) 1.7
Epworth Sleepiness scale 6.4 (3.7) 7.1 (4.1) �0.6
Habitual sleep onset, time 00:34 (01:27) 23:56 (01:12) 1.4
AUC, total sampledb 142.3 (85.7) 69.3 (60.4) 2.7**
AUC, 2 h before HSOb 51.5 (38.8) 20.3 (22.0) 3.3**
AUC, 2 h after HSOb 85.2 (62.4) 42.1 (36.5) 2.8*
DLMO, time 21:43 (01:41) 22:23 (01:37) �1.2
Phase angle, min 169.08 (98.0) 90.0 (94.2) 2.4*
KSS�3 5.6 (2.1) 6.8 (1.6) �1.9
KSS+1.5 7.8 (1.9) 8.0 (1.4) �0.4

Abbreviations: AUC, area under the curve; DLMO, dim light melatonin onset;
KSS, Karolinska Sleepiness Scale; RAVLT, Rey Auditory Verbal Learning Test.
*Po0.05, **Po0.01. All test statistics are Student’s t-test unless otherwise
specified; aThe w2 test; bStudent’s t-test with unequal variances assumed. AUC
for melatonin over the sampling period (total sample), and for 2 h before and
after habitual sleep onset; KSS 3 h before habitual sleep onset (KSS�3), and
1.5 h after habitual sleep onset (KSS+1.5). Note that DLMO data are missing for
three patients in stage 1b and three patients in stage 2+ because of inability to
detect melatonin within the sensitivity of the assay or not reaching the threshold
as required by the algorithm.
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Discussion

The present study has demonstrated that young people in
later stages (that is, ‘established disorders’) of major affective
disorders have significantly lower salivary melatonin levels
assessed during the first part of the melatonin secretory
period than those who are still at earlier stages of illness (that
is, ‘attenuated syndromes’). In turn, lower salivary melatonin
levels appeared to have functional correlates as they were
associated with decreased ratings of sleepiness. This finding
is consistent with previous studies describing the relationship
between melatonin and sleepiness levels.27,28 The fact that
this was more apparent in the time after HSO is expected, as
this is when melatonin secretion would be elevated, although
it is important to note that there may be more variability in
melatonin levels during this time. In addition, the present study
has shown that differences in melatonin secretion profiles are
related to other markers of underlying neurobiology, namely
neuropsychological functioning. Specifically, lower melatonin

levels during the first part of the night were related to poorer
performance on the encoding component of the RAVLT.
Performance on this task of unstructured verbal learning (that
is, word-list learning) is commonly compromised in patients
with affective disorders,25,29 and in this sample, over two-
thirds of participants performed below average. As prior
work has demonstrated that poor performance may reflect
dysfunction in frontotemporal, including hippocampal circui-
try, these preliminary data may suggest that disturbances of
the circadian system and neuropsychological dysfunction
may reflect abnormalities in common underlying neural
circuitry. From these data, we cannot ascertain the temporal
relationship between dysfunction in the sleep and cognitive
systems, as neuropsychological testing did not occur at the
same time. Future studies may focus on delineating these
relationships further.

Regarding circadian timing, differences were not apparent
between the clinical staging groups, with DLMO occurring on
average at 2130 and 2200 h for those with ‘attenuated
syndromes’ and ‘established disorders’, respectively. Inter-
estingly, for those in later clinical stages, the timing of
melatonin onset and habitual sleep onset occurred within
the expected 120-min period, whereas for those with
‘attenuated syndromes’, the difference in the timing of these
two systems was B3 h. Although it is difficult to interpret these
findings in the absence of a control group and full melatonin
profile, these data may suggest that the circadian pacemaker
is phase-shifted (advanced) relative to timing of the sleep–
wake cycle. Alternatively, the sleep–wake timing may be
delayed, although it is noted that sleep onset is only weakly
influenced by the circadian system, and delays in sleep may
be due to a number of confounders. As we did not measure
peak melatonin amplitude in our current protocol, we cannot
ascertain whether there was attenuation in circadian ampli-
tude in this group. However, this seems unlikely as those with
‘attenuated syndromes’ did not have reduced melatonin
secretion (that is, the absolute amount of melatonin secretion
was higher) relative to those with ‘established disorders’.
Conversely, another possible explanation for these findings
could be that patients with ‘established disorders’ have a
shortened phase angle or even a phase delay, relative to
those at early stages of illness. As stated above, in the
absence of a control group and full melatonin profile, further
studies are now required to delineate these possibilities. It is
also worth noting that a greater proportion of those with
‘established disorders’ were taking antipsychotic medications.
Although little is known about the effect of atypical
antipsychotics on circadian parameters, a preliminary study
has suggested that the older ‘typical’ antipsychotics have
disruptive effects on circadian rhythms.30 Thus, we cannot
rule out the possible contribution of antipsychotic medication
to the disturbances in circadian parameters observed within
this study.

In terms of underlying circadian regulation of the sleep–
wake cycle, it is clear that the circadian clock in the anterior
hypothalamus is critical for establishing the circadian rhythm
of sleep–wake behaviour.31 However, the suprachiasmatic
nucleus itself has only minimal monosynaptic outputs to
sleep–regulation centres such as the ventrolateral preoptic
nucleus and the lateral hypothalamus and has no outputs to

Figure 1 Graph demonstrating reduced salivary melatonin data (mean±s.e.m.)
for patients with stage 2þ affective disorders, relative to stage 1b. According to prior
actigraphy monitoring, habitual sleep onset would normally occur at sample 0.

Figure 2 Scatterplot demonstrating the relationship between decreased
salivary melatonin (area under curve) and memory performance (Rey Auditory
Verbal Learning Test (RAVLT)-encoding trials) for patients with stage 2þ (n¼ 15)
affective disorders. Note that neuropsychological assessment occurred within a 2-
week timeframe and did not occur in the evening of dim light melatonin onset
(DLMO) assessment.
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brainstem arousal sites.31 Thus, the weakened relationship
between the sleep and circadian systems in early-stage
patients (that is, as suggested by increased phase angles)
may reflect alterations in a multiple range of divergent
pathways. Indeed, recent models regarding synchrony of
the sleep and circadian systems highlight the critical role of the
dorsomedial hypothalamic nucleus. The dorsomedial hy-
pothalamic nucleus sends a glutamatergic projection to the
lateral hypothalamus (overlapping with the field of orexin-
containing neurons) as well as a GABAergic projection to the
ventrolateral preoptic nucleus.31 Thus, desynchronization
between the sleep and circadian system may be because of
increased wake promotion via orexin neurons (resulting in a
delayed sleep phase despite homeostatic pressure) or a
reduction in amplitude of the circadian signal reaching the
ventrolateral preoptic nucleus.32 As the dorsomedial hypotha-
lamic nucleus is very sensitive to self-imposed schedules, and
integrates circadian signals with environmental and social
factors, behavioural feedback is recognized to be a critical
influence in sleep–wake patterns particularly to light exposure
and meal times. In this study, we cannot attribute the findings
regarding melatonin secretion and sleep timing in patients
with ‘attenuated syndromes’ to any particular process; there-
fore, further empirical studies specifically examining the
synchrony between these systems are now warranted.

Overall, these data suggest that with the emergence of
major mood disorders in young people, fundamental changes
in the sleep and circadian systems are occurring that are not
merely because of pubertal development, as commonly seen
in ‘healthy’ adolescents. Importantly, they highlight that
interventions targeting the circadian system are warranted
even in early phases of illness where there appears to be
some degree of misalignment of the sleep and circadian
systems. As more marked dysfunction in the circadian system
was observed in those with ‘established disorders’, these data
suggest that persistence of depressive symptoms may
perpetuate disruptions within the circadian system. Conver-
sely, persistent sleep–wake disturbance in young people may
contribute to ongoing psychological distress, an observation
that has been reported recently from epidemiological data.10

In either case, these data indicate that differential interven-
tions may be required for those presenting at different clinical
stages. Specifically, behavioural interventions targeting de-
pressive symptoms and sleep–wake functioning concurrently
appear warranted in those with ‘attenuated syndromes’ and
sleep–wake disturbance. In ‘established disorders’, clinical
assessment should incorporate circadian markers (for exam-
ple, melatonin, core body temperature) where possible and
interventions may be much more targeted in order to address
the lowered levels of melatonin likely to be observed in this
group. Such agents may incorporate the use of pharmacolo-
gical compounds such as melatonin, melatonin analogues or
the newer antidepressants targeting both mood and sleep
symptoms (see Hickie and Rogers1 for a review). Although at
this stage it is unclear whether circadian misalignment is
causally linked to cognitive dysfunction, or merely co-occurs
with neurobiological changes observed with the disease, it is
possible that improvements in both the mood and sleep–wake
systems will have broader benefits for both cognition and
functional outcomes. In this regard, it is worth noting that the

decreased melatonin observed in this group was only weakly
associated with depressive symptom severity, suggesting
that interventions aiming to improve functioning should target
more than depressive symptoms alone.

Although the current study represents the first to examine
circadian rhythms in young people with emerging affective
disorders, some limitations exist. First, as expected, those in
later stages had more severe disorders and, consequently,
greater numbers of patients had psychotic or hypomanic
features, and psychotropic use was more common in this
group. Second, although in the present study we measured
melatonin secretion under appropriate dim light conditions,
studies have shown that the timing of melatonin onset can be
influenced by light exposure the prior day.33 Thus, some
variability between groups in terms of light exposure may have
influenced these findings. Third, as this was not a longitudinal
study, we are uncertain whether patients move from a
weakened sleep–wake and circadian relationship early in
the course of disorder to a more compensated shift in sleep–
wake cycle (that is, with later sleep-onset (phase-delay) and
resynchronizing with the circadian rhythm).

In conclusion, this study presents the first preliminary
findings suggesting that melatonin may be a viable marker of
affective disease progression and may assist with persona-
lized treatment planning. Future research may extend these
findings by examining the predictive utility of melatonin as a
biomarker for disease progression. It may also examine
whether individually tailored chronobiological interventions
provide more optimal treatment outcomes for young people
with affective disorders than conventional treatment ap-
proaches.
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Abstract.
Background: While it is evident that Alzheimer’s disease is associated with disturbed sleep and circadian rhythms, the extent
to which such changes are evident in older people ‘at risk’ of developing dementia is unknown.
Objective: In this study, we aimed to determine whether patients with mild cognitive impairment (MCI) demonstrated significant
alterations in the timing of melatonin secretion onset and amount, as well as sleep architecture.
Methods: Thirty patients with MCI and 28 age-matched controls underwent psychiatric, medical, and neuropsychological
assessment, followed by overnight polysomnography and dim light melatonin onset assessment. Participants also performed an
episodic memory task while in the laboratory. Dim light melatonin onset was computed using a standardized algorithm, and
area under the curve was computed for melatonin secretion. Sleep architecture measures including wake after sleep onset and
latency to rapid eye movement sleep were derived.
Results: Patients with MCI had advanced timing of their melatonin secretion onset relative to controls, but the levels of melatonin
secreted did not differ between groups. The MCI group also had greater wake after sleep onset and increased rapid eye movement
sleep latency. There were differential associations between dim light melatonin onset and cognition between the two groups,
with earlier dim light melatonin onset being associated with poorer memory performance in MCI patients.
Conclusion: Circadian misalignment and sleep disruption is evident in patients with MCI, and is consistent with changes
observed in Alzheimer’s disease. Such findings could be a marker for disease trajectory, and may even be implicated in disease
pathogenesis.

Keywords: Circadian, melatonin, mild cognitive impairment, salivary, sleep

INTRODUCTION

With advancing age, changes can be observed in
sleep latency, quality, and consolidation along with
increased insomnia, nocturnal wakefulness, and less
time spent in slow wave and rapid eye movement
sleep. Older individuals may also experience reduced
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1Joint last author.

circadian amplitude and period length in both body
temperature and melatonin rhythms [1–5]. Over and
above these common alterations observed as part of the
‘normal’ aging process, at least 40% of patients with
Alzheimer’s disease (AD) exhibit severe dysfunction
of sleep-wake and circadian systems, manifesting clin-
ically as sundowning, excessive daytime sleepiness,
nocturnal wandering, agitation, and day-night reversal
[6, 7].

Accordingly, a corpus of research over the last
decade has sought to elucidate the pathophysiology
of circadian rhythm alterations in patients with AD.
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Detailed examination has revealed that such patients
have poor consolidation of their rest-activity rhythms,
reduced circadian amplitudes, and misalignment of
key circadian markers such as core body temperature
and cortisol [8]. These observations have occurred in
conjunction with data showing that in AD, there is
neuronal degeneration of the hypothalamic suprachi-
asmatic nuclei (SCN) [3], the site of the major
circadian pacemaker. In keeping with these obser-
vations, melatonin, the most robust marker of the
circadian system, has received considerable attention
(see reviews, [9, 10]). It has also been postulated that
this neurohormone, a potent antioxidant that is pro-
duced predominantly in the pineal gland (as well as
various peripheral nervous system sites), may play
a significant neuroprotective role in the inhibition of
oxidative and amyloid pathology [11–13], thus war-
ranting efforts to identify its role at various stages
of the disease. Neuropathological studies in AD have
shown decreased melatonin levels in the cerebrospinal
fluid, even in preclinical stages [14, 15]. Furthermore,
decreased melatonin MT1 receptor expression [16] and
reduced neurons in the SCN [17] have been reported,
which may be related to the circadian rhythm abnor-
malities observed in AD.

Despite it being recognized that endogenous mela-
tonin levels are reduced in AD, studies in which
melatonin was administered to patients with AD
have produced inconsistent findings. While a num-
ber of open-label and double-blind melatonin trials
have shown improvements in sleep quality, noctur-
nal arousals, cognition, and sundowning, others have
shown negative or inconclusive effects of melatonin on
sleep and agitation (see reviews, [9, 12]). Such conflict-
ing findings could be explained by factors such as the
timing and dose of melatonin administration as well as
by key clinical factors such as disease heterogeneity,
stage and severity of disease, and by whether on an
individual level, patients actually had any melatonin
deficiency [18], or change in SCN melatonin receptors
[16].

Relative to the number of studies examining cir-
cadian and sleep-wake disturbance in AD, there has
been a dearth of such research in individuals with mild
cognitive impairment (MCI), an ‘at risk’ or potential
prodromal stage of dementia, whereby individuals’
manifest cognitive decline in the context of largely
preserved functioning [19, 20]. The MCI syndrome
has traditionally been characterized by predominant
memory deficits (amnestic MCI, aMCI), where con-
version rates to AD are almost 50% over a five-year
period. However, a non-amnestic subtype (naMCI) is

now recognized and may be associated with various
etiological underpinnings and disease trajectories [19].
While detailed data regarding sleep-wake disturbance
in the subtypes of MCI is not yet available, caregiver or
clinician ratings suggest that sleep-wake disturbance is
evident in up to 60% of patients with MCI [21]. Impor-
tantly, sleep disturbance appears to be associated with
neuropsychological dysfunction, suggesting that these
features may share common neurobiological underpin-
nings [22]. Melatonin administration to MCI patients
appears to have positive effects on sleep, neuropsycho-
logical functioning, and mood (e.g., [23, 24]). Thus,
it is possible that chronobiotic interventions such as
melatonin and light therapies may be most beneficial
if delivered early in the disease course.

Overall, available data suggests that sleep-wake and
circadian changes are evident in those with AD. By
contrast, such features have not been adequately char-
acterized in patients with MCI. We aimed to assess
concurrently aspects of the circadian and sleep-wake
system in older patients with MCI, relative to age-
matched controls. Specifically, we aimed to determine
whether patients with MCI differed from controls in
terms of the timing and amount of melatonin secre-
tion as well as some specific components of sleep
architecture. We further sought to examine associa-
tions between such changes and performance on tasks
of memory consolidation.

MATERIALS AND METHODS

Participants

Thirty patients aged 50 years and over and meeting
criteria for MCI [20] were recruited from a special-
ist ‘Healthy Brain Ageing’ Clinic, at the Brain &
Mind Research Institute, Sydney, Australia. Patients
were specifically seeking assessment and intervention
for their cognitive problems. Twenty-eight age- and
education-matched healthy volunteers were recruited
from the community via local advertisements.

Exclusion criteria were: history of stroke; neurolog-
ical disorder; head injury with loss of consciousness
≥30-minutes; current major depression; at least mild
depressive symptoms as evidenced by a Hamilton
Depression Rating Scale score≥8; history of psychosis
or bipolar disorder; Mini Mental State Examination
Score (MMSE) <24 [25] and/or diagnosis of demen-
tia; shiftworkers; transmeridian travel within the prior
60-days; use of cholinesterase inhibitors; use of medi-
cation known to affect sleep and/or melatonin secretion
including beta-blockers, lithium, thyroid replacement
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therapy, or benzodiazepines. Patients taking sedative
hypnotics were requested to abstain for two-weeks
prior to sleep assessment. For ethical reasons, how-
ever, we did not ask patients to abstain from taking
antidepressant medication. A full medical history was
conducted and patients with diagnosed or suspected
sleep apnea were excluded, as well as those with known
eye disease (e.g., cataracts, retinopathy). Additionally,
controls were screened extensively and were excluded
for lifetime history of major depression and/or prior
antidepressant use. All participants were required to
have adequate English for neuropsychological assess-
ment, be willing to wear an actigraphy watch and
complete sleep diaries for two weeks, in addition to
undergoing overnight sleep assessments. This research
was approved by the Human Research Ethics Com-
mittee of The University of Sydney. Written informed
consent was obtained from all participants.

Procedure

After telephone screening, all participants under-
went clinical assessments to confirm study eligibility.
Participants were then issued with actigraphs (Acti-
watch Spectrum, Philips Respironics) and sleep diaries
to complete for two-weeks, prior to undergoing the
three-night circadian and sleep protocol.

Clinical assessments

All participants received a medical assessment by
an Old Age Psychiatrist including risk for major sleep
disorders, measurement of body mass index, and med-
ication use. Psychiatric history was assessed using
the Structured Clinical Interview for DSM-IV disor-
ders [26]. As detailed elsewhere [22], a standardized
neuropsychological assessment was conducted by a
Clinical Neuropsychologist incorporating the assess-
ment of: attention/working memory; processing speed;
verbal and visual learning and memory; language;
visuospatial function; and, executive function. The
MMSE was administered for descriptive purposes. All
assessors were blinded to sleep measurements. A clin-
ical diagnosis of MCI was obtained using Petersen’s
criteria requiring cognitive decline of at least 1.5 stan-
dard deviations on at least one neuropsychological test,
relative to age- and education-adjusted normative data
[20]. Per criteria, each participant was required to have
subjective and objective cognitive decline, but with
the general preservation of function. MCI diagnoses
were consensus rated by an Old Age Psychiatrist and
two Neuropsychologists, based on clinical profile and

neuropsychological assessment, and with reference to
structural MRI scans. The broad clinical definition of
MCI was further categorized into amnestic and non-
amnestic subtypes [20]. In order to be categorized as
aMCI, participants were required to demonstrate clear
evidence of deficits in memory consolidation, which
were not merely due to poor encoding.

Circadian and sleep assessment

Participants’ sleep-wake behavior for the 14-nights
prior to commencing the in-laboratory portion of the
protocol was assessed using actigraphy (Actiwatch
Spectrum, Minimitter, Philips Respironics, OR) and
sleep diaries in accordance with previously published
protocols [27]. Actigraphy was scored by an experi-
enced sleep technician blinded to participant diagnosis.
From this assessment, habitual sleep onset (HSO) was
derived from the mean of the sleep onset times over the
14-day period. The HSO was then used to inform tim-
ing of the circadian assessment protocol. Participants
attended the Chronobiology and Sleep Laboratory at
the Brain & Mind Research Institute. At all times while
in the laboratory, participants were physiologically
and behaviorally monitored under controlled condi-
tions, with fixed light levels (<50 lx during waking;
<30 lx during saliva sampling; <1 lx during scheduled
sleep periods) and ambient temperature (24 ± 1◦C),
and were asked to abstain from substances believed
to effect melatonin and/or sleep. Assessment of cir-
cadian function (melatonin rhythm timing and levels)
and sleep architecture were examined using melatonin
and polysomnographic (PSG) assessments, on sepa-
rate nights. Since the sampling of melatonin required
participants to stay awake two-hours past their HSO,
this assessment was conducted on the final night, so
as to avoid residual effects of the sleep restriction on
PSG-measured sleep.

Melatonin sampling

Salivary melatonin was assessed to determine dim
light melatonin onset (DLMO), a reliable and valid
marker of the circadian pacemaker in relation to plasma
melatonin [10, 28]. Participants arrived seven-hours
prior to their HSO, to familiarize with the labora-
tory settings, and to ensure they were in a controlled
(seated) posture for at least 30-minutes prior to the
sample collection. Saliva samples (1.5 ml) (Salivette,
Sarstedt, Germany) were collected at 30-minute inter-
vals from six-hours prior to HSO until two-hours after
HSO (i.e., participants were kept awake two-hours past
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their HSO). Participants maintained a seated posture
for at least 20-minutes prior to each sample collection.
Samples were immediately frozen at −20◦C.

As detailed previously [29], melatonin was assayed
in 200 �l saliva by double antibody RIA (Cat# RK-
DSM2; Buhlmann Laboratories AG, Schönenbuch,
Switzerland). The lowest detectable level of melatonin
was 4.3 pM. The total area under the curve was calcu-
lated using the trapezoid method, for each participant
over the entire eight-hour sampling period and sepa-
rately for the two-hour interval before HSO and the
two-hour interval after HSO. To determine the DLMO
[28], the average melatonin levels of the first three
sampling times was calculated and a threshold of two
standard deviations greater than this value was estab-
lished for each subject. The DLMO was defined as
the time when the saliva melatonin level first exceeded
this threshold and remained elevated for at least the
next sampling time. The relationship between the time
of onset of melatonin secretion and the HSO time,
referred to as the phase angle of entrainment, was cal-
culated by subtracting DLMO time from HSO time
(minutes).

Polysomnography

Nocturnal PSG recordings were collected for two
consecutive nights on an ambulatory recording sys-
tem (Compumedics Siesta, Melbourne, Vic, Australia)
using a six-channel electroencephalographic (EEG)
montage (C3-M2, O2-M1, Fz-M1, Pz-M2); two
electroocularographic channels (left and right outer
canthi); and electromyogram (sub-mentalis). EEG data
were sampled at 250 Hz. Night one was considered an
adaptation night. Sleep architecture on night two was
visually scored on a computer by an experienced sleep
technician using standardized criteria [30], with mod-
ifications for older participants [31]. For descriptive
purposes, time of sleep onset (24-hour clock time),
time of sleep offset (24-hour clock time), total sleep
duration (minutes), and time spent in slow wave sleep
(SWS) and rapid eye movement (REM) sleep were cal-
culated. Due to data showing altered REM latency in
AD [32], and increased wake after sleep onset (WASO)
in MCI [22], we chose to examine these two measures
as key sleep outcome variables (minutes).

Evening neuropsychological assessment

On the evening of the second PSG, a subset of par-
ticipants (n = 43) completed the Rey Auditory Verbal
Learning Test (RAVLT) [33], and were again asked to

recall the same material the following day (i.e., after a
period of sleep). Key measures were memory consoli-
dation during the evening (i.e., % retention trial 7/trial
5; RAVLT%) as well as the number of words recalled
the following day (i.e., RAVLT7-am, maximum = 15).

Self-report data

For descriptive purposes, participants were asked
to complete the Horne-Östberg Morningness-
Eveningness Questionnaire (MEQ) [34] to assess
chronotype. The Epworth Sleepiness Scale was
included as a measure of daytime sleepiness [35].

Statistical analysis

Data were analyzed using the Statistical Package
for Social Sciences (SPSS version 20, IBM Corp.).
For continuous data, analyses employed Pearson’s
or Spearman’s correlations. Chi-square analyses were
used for categorical data. For normally distributed data,
analyses between groups utilized student’s t-tests. For
data where assumptions of normality were violated,
Mann-Whitney U-tests were employed. All analyses
were two-tailed and used an alpha level of 0.05, with
the exception of the Fishers r-to-z test, which used a
one-tailed test.

RESULTS

Out of the 58 participants, melatonin data did not
reach the threshold level- within the sensitivity of
the assay for six participants: two controls and four
patients with MCI. Thus, melatonin data are reported
on 26 patients with MCI and 26 controls. Of these,
DLMO data could not be computed for a further three
controls and three patients due to either an inability
to detect melatonin within the sensitivity of the assay
or data not reaching the threshold as required by the
algorithm.

Demographic, clinical, and self-report data for the
sample are presented in Table 1. Of the 26 patients
with MCI, 11 had aMCI and 15 had naMCI. The
patient and control groups did not significantly dif-
fer in terms of age, gender, education, body mass
index, or severity of depressive symptoms. However,
there were a significantly greater proportion of patients
with MCI taking antidepressant medication (14 ver-
sus 3, χ2 = 7.1, p = 0.007). As expected, those with
MCI performed slightly lower on the MMSE com-
pared to controls. Self-reported chronotype was not
significantly different between the groups, however,

138



S.L. Naismith et al. / Circadian Misalignment and Sleep in MCI 861

Table 1
Descriptive data for healthy controls and patients with mild cognitive impairment (MCI)

Control mean (SD) n = 26 MCI mean (SD) n = 26 Test statistic p-value

Age, years 65.9 (9.8) 70.1 (9.9) −1.5 0.128
Gender, male:female# 12:14 17:9 1.9 0.163
Education, years 13.8 (3.1) 13.6 (4.0) 0.2 0.848
Body Mass Index 26.2 (4.0) 25.6 (4.8) 0.5 0.645
Hamilton Depression Rating 2.0 (2.1) 3.2 (2.5) −1.8 0.077
MMSE score 29.2 (1.1) 27.5 (2.1) 3.6 0.000
PSQI total score 4.7 (3.0) 6.0 (2.9) −1.5 0.130
Morningness-Eveningness Questionnaire 63.9 (7.8) 62.0 (6.1) 1.0 0.330
Epworth Sleepiness Scale 5.1 (3.0) 7.8 (4.4) −2.1 0.045
RAVLT% 72.4 (28.5) 65.6 (38.3) 0.7 0.513
RAVLT7-am 8.2 (3.5) 6.0 (2.6) 2.2 0.037

All test statistics are students t-test unless otherwise specified; #Chi-square. PSQI, Pittsburgh Sleep Quality Index; MMSE, Mini Mental State
Examination; RAVLT%, Rey Auditory Verbal Learning Test, evening performance, trial 7/trial 5*100; RAVLT7-am, Rey Auditory Verbal
Learning Test, morning recall of 15 words.

Table 2
Actigraphic, circadian and polysomnographic sleep data for healthy controls and patients with mild cognitive impairment (MCI)

Control mean (SD) n = 26 MCI mean (SD) n = 26 Test statistic p-value

Circadian
Habitual sleep onset, time‡ 23:04 (1:03) 22:18 (0:41) −2.7 0.007
AUC, total sampled‡ 91.6 (61.9) 158.7 (170.7) −1.2 0.207
AUC, 2-hours pre-HSO‡ 31.7 (27.3) 43.4 (45.1) −0.6 0.530
AUC, 2-hours post-HSO‡ 48.3 (32.7) 82.7 (74.1) −1.5 0.124
DLMO, time1 20:55 (1:09) 19:44 (1:02) 3.7 0.001
Phase angle, minutes 124.1 (59.0) 156.3 (67.7) −1.7 0.096
Polysomnography2

Sleep onset 22:54 (0:55) 22:27 (0:41) 1.7 0.080
Sleep offset 06:39 (0:57) 06:42 (0:49) −0.2 0.848
TST, minutes‡ 398.5 (51.1) 381.5 (82.1) −0.9 0.395
REM latency‡ 69.4 (38.7) 121.4 (89.9) −2.6 0.012
WASO, minutes‡ 75.1 (44.6) 124.6 (62.3) −2.7 0.007
SWS, minutes 54.4 (31.3) 58.8 (49.7) −0.3 0.729
REM, minutes 91.2 (25.0) 81.5 (36.0) 1.0 0.309

All test statistics are students t-test unless otherwise specified; ‡Mann-Whitney U test Z-statistic. AUC, Area under the curve for melatonin over
the sampling period (total sample), and for two-hours prior to and after habitual sleep onset; DLMO, dim light melatonin onset. 1Melatonin data
is available for 26 controls and 26 patients with MCI, and of these a further 3 controls and 3 patients do not have DLMO data due to inability to
detect melatonin within the sensitivity of the assay or not reaching the threshold as required by the algorithm. Note that for those in whom values
of melatonin returned scores below the assay sensitivity, values entered into AUC values were zero. 2PSG data was available for 22 controls
and 21 patients with MCI. TST, total sleep time; WASO, wake after sleep onset; REM, rapid eye movement sleep; SWS, slow wave sleep.

those with MCI reported greater levels of daytime
sleepiness.

Table 2 shows circadian and sleep-wake data.
There were no significant differences between aMCI
and naMCI subtypes in terms of actigraphy-defined
HSO or DLMO timing (t = 0.08, p = 0.940; t = −0.41,
p = 0.968, respectively). There were no significant dif-
ferences in the amount of melatonin secretion between
the control and patient groups over the sampling period
and of note, the patient group demonstrated large vari-
ability here. Nor were there group differences in the
relationship between melatonin onset and HSO times
(i.e., phase angle of entrainment).

Patients with MCI had significantly earlier HSO
times, as shown by actigraphy, and significantly earlier

melatonin onset (Fig. 1), in comparison to controls.
In order to ensure that the earlier HSO and DLMO
times were not confounded by antidepressant medica-
tion, these analyses were repeated with those (n = 14)
taking antidepressants excluded. The resultant anal-
yses remained significant (t = 2.5, p = 0.016; t = 2.2,
p = 0.032 for HSO and DLMO respectively).

With regard to sleep architecture, there were no
differences between groups in terms of sleep onset,
offset or total sleep time, or the duration of SWS
and REM sleep. However, patients with MCI had
increased latency to REM sleep and greater nocturnal
wakefulness (WASO) relative to controls. There were
no differences between amnestic and non-amnestic
subtypes with respect to these significant findings
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Fig. 1. Salivary melatonin concentration (picoMolar) displayed as a
function of relative habitual sleep onset time. Patients with mild cog-
nitive impairment recorded earlier melatonin onset in comparison
to age-matched healthy control subjects. However, non-parametric
analyses showed that there was no difference between groups in
terms of the amount of melatonin secretion. Data represents mean
salivary melatonin concentration with standard error for each time
point.

(REM latency, t = −0.17, p = 0.868; WASO, t = 0.58,
p = 0.573). When these analyses were repeated after
excluding the sub-sample taking antidepressant med-
ication, the group difference in WASO remained
significant (Z = −2.8, p = 0.004). However, the dif-
ference in REM latency was no longer significant
(Z = −1.3, p = 0.187).

Correlations with memory

Associations between memory performance and
DLMO were examined for each group at two times
of the day: evening and morning. In terms of evening
memory performance, no significant association was
found between DLMO and evening memory con-
solidation for healthy controls (RAVLT%: r = −0.15,
p = 0.535). For patients with MCI, however, ear-
lier DLMO onset was moderately associated with
poorer consolidation of verbal material in the evening
(r = 0.50, p = 0.036). The difference between these
two correlation coefficients was statistically signifi-
cant (Fisher’s r to z = −1.91, p = 0.028). By contrast,
when memory for the same material was examined
the next morning (RAVLT7-am), for healthy controls,
earlier DLMO onset was moderately associated with
better recall of verbal material (r = −0.58, p = 0.012).
However, no significant association was found for
patients with MCI (r = −0.10, p = 0.741). The dif-

ference between these two correlation coefficients
was statistically significant (Fisher’s r to z = −1.93,
p = 0.026).

DISCUSSION

This study represents the first to examine concur-
rently salivary melatonin and polysomnographic sleep
in patients with MCI. We found that the onset of mela-
tonin secretion occurs earlier in MCI patients than
in age-matched control subjects, despite the levels of
melatonin being similar across the two groups. Of sig-
nificance, earlier melatonin onset in MCI was also
related to poorer memory consolidation during the
evening. By contrast, in the control group, DLMO
appears to associate with retention of that same mate-
rial the following day. Overall, these data suggest that
for controls and patients with MCI, there are differen-
tial relationships between circadian timing and patterns
of memory consolidation. In our three-night proto-
col, this study also incorporated measures of sleep
architecture. In accordance with our prior work using
actigraphy [22], this current data showed that patients
with MCI had significantly greater nocturnal wakeful-
ness (WASO). Additionally, even though sleep onset
times did not differ between groups, patients with MCI
took significantly longer to enter REM sleep.

Overall, our findings suggest that both circadian and
sleep-wake systems are disturbed in MCI. The earlier
circadian phase found in those with MCI is consistent
with data reported previously in AD [6, 7, 14, 15].
While it is noted that the levels of salivary melatonin
did not differ from controls, we cannot, however, make
a direct comparison to the investigations conducted
in AD, since those studies utilized neuropathologi-
cal tissue. While such studies have shown that levels
of cerebrospinal fluid melatonin are correlated with
pineal melatonin [36], salivary melatonin in AD has
not been examined.

It has been noted that disruption in circadian rhythms
and sleep that occur with aging are paralleled by alter-
ations in the neural and temporal organization of the
hypothalamic SCN, as well as altered neuropeptide
synthesis and a decreased photic input to the circadian
pacemaker (for review, see [3]). Our results support
the notion that the circadian regulation of melatonin
is disturbed in MCI, a finding which is not merely
attributable to aging. While it is unclear from our data
whether the earlier timing of melatonin onset reflects
dysfunction of the SCN or from the pineal production
of melatonin, we note that melatonin levels per se,
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were not altered in our sample (within the sampling
period), suggesting that the latter explanation is less
likely. From our data, we cannot infer whether mela-
tonin synthesis is impaired. That is, it is possible that
patients with MCI have normal melatonin synthesis but
alterations in the timing of release.

Consistent with our prior study using actigraphy
[22], we found that patients with MCI had almost
an hour (50-minutes) more of nocturnal wakeful-
ness compared to controls. Latency to REM was also
delayed in MCI, with the first REM cycle occurring on
average 50-minutes later than that of controls. Such
findings are aligned with those reported in patients
with AD over two decades ago, where it was sug-
gested that REM latency may have diagnostic utility
[32]. While the mechanism underpinning the increased
REM latency is unclear, it is noted that differences in
other aspects of sleep architecture (e.g., time spent in
SWS and REM) and total sleep time were not apparent.

While the pathophysiological mechanisms under-
pinning the circadian and sleep-wake changes
observed in MCI cannot be ascertained from this study,
it is possible that there is disruption to common neuro-
biological circuits subserving both sleep and cognition.
Of significance, we found that circadian timing in
MCI was also related to reduced ability to form new
episodic memories during the evening, and that there
were differential relationships between patients and
controls in terms of both evening memory acquisition
and overnight memory retention. This is perhaps not
surprising given the increasing data showing how cir-
cadian rhythms contribute to memory formation [37].
Currently, there is no clear specificity regarding the
neural circuitry likely to underpin memory formation.
However, it appears that neurophysiological events
occurring during non-REM sleep play a large role [38].

In terms of neurotransmitter systems, it is possible
that the noradrenergic system is involved, particularly
given its role in pineal melatonin synthesis [36]. The
cholinergic system, which projects from the basal fore-
brain and brainstem to the hypothalamus, has also
received much attention [39]. This cholinergic cir-
cuitry has been shown to be critical for memory, REM
sleep onset, and the regulation of wakefulness and
arousal [39, 40]. Atrophy of the basal forebrain has
been documented in MCI as well as in AD [41], and
the integrity of associated fiber tracts from this region
may indeed be compromised [42]. While our data do
not provide the capacity to examine these systems, the
finding of delayed REM sleep onset in MCI may at least
partly reflect alterations to the circadian pacemaker
[43] and to cholinergic systems which are known to

be implicated in AD [44]. Interestingly, the use of
cholinesterase inhibitors do show positive effects on
sleep and circadian rhythms but detailed data are lack-
ing regarding whether such changes may counteract
memory dysfunction (see [2] for a review), or other
aspects of neuropsychological dysfunction.

With respect to etiological mechanisms, the phys-
iological basis of the disturbances in the sleep-wake,
circadian, and cognitive systems are unknown. Indeed,
MCI is a heterogeneous ‘at risk’ syndrome encompass-
ing people with multiple etiologies and trajectories.
While aMCI appears to yield the highest longi-
tudinal transition to AD, other pathophysiological
mechanisms (e.g., vascular, Lewy bodies) are likely
contributors, and may be particularly prevalent in non-
amnestic subtypes [19]. Notably, in this study, the
observed earlier circadian phase did not differ between
amnestic and non-amnestic subtypes. Thus, it is pos-
sible that the disruption to circadian rhythms does not
reflect AD pathology per se, but could reflect common
alterations to neural circuitry subserving sleep-wake,
circadian, and cognitive systems. Unfortunately, in
this study, we did not have an AD group, which
would have enabled us to examine whether the pat-
terns observed here are consistent with those seen
in later disease stages. Additionally, incorporation of
biomarkers for AD (i.e., cerebrospinal fluid or amy-
loid imaging) would have enhanced our capacity to
attribute our findings to emerging AD. Future stud-
ies incorporating biomarkers would thus be helpful to
determine if these observed sleep-wake changes reflect
AD pathology specifically or are non-specific markers.

Clearly, the clinical utility of the findings of this
study would become apparent if they were shown to
have predictive capacity for disease trajectory or if they
were able to be incorporated into personalized treat-
ment strategies targeting either the sleep, circadian,
and/or cognitive systems. For example, chronothera-
pies utilizing light [45] or mimicking the effects of
light (e.g., cholinergic agonists with higher affinity
for mAChRs than nAChRs) may help to realign (i.e.,
phase delay) circadian rhythms, while therapies such
as physical exercise [46] and melatonin (see [47] for a
review) that reduce nocturnal awakenings or latency to
REM may improve sleep. Similarly, administration of
melatonin in the late night or early morning may delay
melatonin onset [48] although the soporific effects of
melatonin administered during the daytime need to be
considered. While prior studies in MCI have certainly
shown improvements in sleep with melatonin admin-
istration (see [12] for a review), melatonin is generally
given at or before bedtime, and effects on circadian
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phase were not established. Ultimately, the signifi-
cance of such interventions would be assessed not only
by their effects on sleep and circadian timing, but also
by their capacity to enhance broader aspects of func-
tioning including cognition. Indeed, some data in MCI
do support the capacity of melatonin to enhance mem-
ory [23], an outcome which is perhaps unsurprising
given the role of the circadian system in memory for-
mation [39]. Since some side-effects of melatonin do
exist (e.g., sleepiness, dizziness, headaches) and there
is potential for interaction with other medications, fur-
ther controlled trial data is now required to evaluate the
efficacy of this hormone in this ‘at risk’ clinical group.

While the current study represents the first to
examine circadian rhythms in MCI using salivary
melatonin secretion, some limitations exist. Firstly,
antidepressant medication use was more common in
those with MCI. When those taking antidepressants
were excluded, the earlier HSO and DLMO times
and increased nocturnal wakefulness remained evi-
dent. However, the finding of decreased REM latency
was no longer significant. This finding is aligned with
prior reports [49] and suggests that antidepressants
may mediate REM latency in MCI. The higher use
of antidepressants in the MCI group could also reflect
vulnerability to depression in this help-seeking sample
(they were used for symptoms reported commonly by
persons with MCI including sleep disturbance, depres-
sive symptomatology, and anxiety). Secondly, while
we did screen for known eye disease, changes to the
retina may have influenced photic input to the SCN,
and in this regard, future studies examining the retina
are required in order to rule out this potential confound
[50]. Third, while the use of laboratory-based analy-
sis of melatonin and PSG in this study is a strength
as it ensures a controlled scientific environment, the
measurements obtained within the laboratory may dif-
fer from those obtained in the home setting. However,
it is noted that the HSO obtained from two-weeks of
actigraphy was concordant with that obtained in the
laboratory setting, thus affirming that the melatonin
analysis is likely to reflect that observed out of the
laboratory environment. Finally, to comprehensively
assess the melatonin rhythm, sampling throughout the
night is required.

In conclusion, this study is the first to show that the
melatonin rhythm is significantly advanced in MCI,
and the degree of advance is associated with poorer
memory consolidation. Advanced melatonin rhythm
was observed concomitantly with disturbed sleep
including more nocturnal awakenings and increased
REM latency. From our data, it is unclear whether

circadian misalignment and sleep disruption are eti-
ologically linked to neural compromise and resultant
neuropsychological dysfunction in MCI. Longitudinal
studies are now required to determine if sleep-wake
changes observed in MCI are merely a biomarker, or
whether they may actually contribute to or mediate
disease course and trajectories. Future studies that
provide a physiological basis for melatonin and other
chronobiotic therapies in MCI will also enhance our
knowledge in this area, providing for personalized
treatment planning.
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a b s t r a c t

There are currently two validated questionnaires, the Freezing of Gait Questionnaire and the New
Freezing of Gait Questionnaire, that are intended to assess the degree of freezing of gait in patients with
Parkinson’s disease. However, to date no study has attempted to determine whether ratings on these
questionnaires accurately reflect the severity (frequency and duration) of actual freezing episodes
experienced by patients. We studied twenty-four patients with Parkinson’s disease who self-reported
significant freezing while in their practically-defined ‘off’ state. Prior to clinical assessment they
completed both freezing of gait questionnaires before being video-recorded while performing a series of
timed up-and-go tasks, which incorporated turning, rotating and passing through narrow gaps. The
rating of video recordings by two independent observers identified a total of 530 freezing events. The
frequency and duration of freezing episodes for each patient were calculated and correlated with
questionnaire ratings. Scores on either questionnaire did not correlate with either the frequency or
duration of freezing episodes experienced by patients during objective assessment. These results suggest
the need to re-evaluate the utility of questionnaires in the assessment of freezing of gait. Furthermore,
these results highlight the need for accurate objective methods of identifying freezing events when
assessing future clinical interventions aimed at reducing this potentially disabling symptom of Parkin-
son’s disease.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Freezing of Gait (FOG) is a paroxysmal disabling symptom that
commonly affects patients with Parkinson’s Disease (PD), particu-
larly in the later stages [1,2]. Patients typically experience abrupt
episodes where they are unable to move their feet, leading to an
increased incidence of falls and subsequent nursing home place-
ment [3,4]. The pathophysiological mechanisms underlying FOG
remain poorly understood (for review see [5]) and response to
current treatments is at best limited.

The assessment of FOG is difficult given the paroxysmal nature
of this phenomenon. Indeed, patients may appear free of this
symptom in the clinical setting, although evaluation during the ‘off’
state can increase the likelihood of recording freezing episodes [6].
In order to allow a more practical symptom appraisal, researchers
have previously sought to design questionnaires capable of better
characterizing and quantifying FOG.

The first such questionnaire (FOG-Q) comprised six questions
(maximum score 24 points) that sought to assess both freezing of

gait, as well as global gait disturbance [7]. This tool was validated in
a large cohort of advanced PD patients who were participating in
‘LARGO’, a multi-center double-blind, placebo-controlled trial
comparing the effects of Rasagiline and Entacapone [8]. The vali-
dation study found that a single item on the FOG-Q (question 3 e

Do you feel that your feet get glued to the floor while walking, making
a turn or when trying to initiate walking (freezing)?) was able to
identify ‘freezers’ at least as well as the specific freezing item on the
Unified Parkinson’s Disease Rating Scale (UPDRS question 14),
which was previously viewed as the most reliable questionnaire
measure of FOG [9]. It was concluded that the FOG-Q was useful
both as a screening tool and also as an assessment of treatment
intervention given the symptomatic benefits reported in the LARGO
trial [8]. The authors of this validation study acknowledged the lack
of specificity inherent in the FOG-Q as a subset of questions that
were primarily concerned with overall gait dysfunction rather than
FOG per se.

To address these concerns, a new questionnaire was developed
which sought to introduce questions that were specific to FOG in PD
[10]. The New Freezing of Gait Questionnaire (NFOG-Q) is a clini-
cian-administered tool that aims to assess both the clinical aspects
of FOG as well as its subsequent impairments on quality of life. In
order to increase the likelihood of accurate self-assessment by
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patients, the NFOG-Q incorporates a short focused video that shows
a number of FOG examples. The addition of this video appeared to
increase the ratings of severity of the condition, however it did not
add to the sensitivity or specificity of the tool with regards to
identifying FOG. To account for this, the NFOG-Q allocates a single
question to act as a screening tool for the presence or absence of
FOG. Given the lack of standardized and effective community-based
identification of FOG, the NFOG-Q has become a valuable tool for the
assessment of freezing.

Clearly, the ability to accurately monitor FOG episodes is of great
importance, especially in the evaluation of future therapeutic
interventions. For example, the response of FOG symptoms to deep
brain stimulation in novel target regions, such as the pedunculo-
pontine nuclei [11], will require sensitive and specific outcome
measures to determine benefits. However, to date no studies have
sought to demonstrate the ability of the NFOG-Q (or the FOG-Q) to
reflect actual FOG episodes experienced by patients. This study
sought to determine whether scores on these questionnaires
correlated with the frequency and/or duration of freezing episodes
measured objectively in PD patients reporting FOG.

2. Methods

2.1. Recruitment

Twenty-four patients who were attending the Parkinson’s Disease Research
Clinic at the Brain and Mind Research Institute, University of Sydney were identified
for this study by severe self-reported freezing behavior. All patients satisfied UKPDS
Brain Bank criteria [12], had a Mini-Mental State Examination (MMSE) [13] score of
�24 and were deemed unlikely to have dementia or major depression according to
DSM-IV criteria by consensus rating of a Neurologist (SJGL) and a Neuropsychologist
(SLN). Clinical details are presented in Table 1. The study was approved by The
University of Sydney Human Research and Ethics Committee and written informed
consent was obtained.

2.2. Clinical evaluation and questionnaires

Patients were assessed in the practically-defined ‘off’ state following overnight
withdrawal of dopaminergic therapy. Six patients also had Deep Brain Stimulation
(five Subthalamic Nuclei and one Pedunculopontine Nuclei), which were turned off
for 1 h prior to assessment. They were evaluated on the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale e Section III (MDS-UPDRS-III) [14] and
Hoehn and Yahr stage score [15]. None of the patients described any increase in
freezing behavior following the administration of their usual dopaminergic therapy.
Upon arrival at the clinic, patients were administered the FOG-Q and the NFOG-Q.
The NFOG-Q was subsequently separated into two parts, Section 1 for screening
and Sections 2 and 3 were taken to represent the severity and frequency of FOG [10].

2.3. Timed up-and-go (TUG) tasks

Patients performed a series of timed up-and-go tasks on a standardized course
(Fig. 1A) to provoke FOG. All TUG tasks started from a sitting position, from which
patients walked along the center of a large open corridor. Five meters (5 m) from
the chair was a 0.6 m � 0.6 m target box marked on the floor with yellow tape, in
which turning movements were performed. The standard TUG required a 180� turn
within the box and a return to the starting chair. Three enhanced TUG assessments

were also carried out (Fig. 1B); ‘540� ’ TUG in which patients performed two
revolutions within the box; ‘walk-around the box’ TUG in which patients were
instructed to walk around the outside of the box making tight turns without
touching the tape; and ‘narrow gap’ TUG, entailing lateral movement of the chair at
the start position (after the patient had begun the TUG) to create a <1 m gap with
the wall, alternately to the left or right side, that the patients were required to
negotiate on the return journey. All TUG tasks were performed with turns to the
patient’s left and right. In addition, dual-tasking (vocalizing the months of the year
forwards and backwards whilst walking) was utilized on two trials per patient. The
requirements for each TUG task were explained just prior to the trial. If a patient
had failed to fully comprehend the requirements of a specific trial it was aban-
doned and performed again from the start. The beginning of each TUG trial was
signaled by a request from the investigator to begin and was completed on return
to the seated position.

2.4. Video assessment

All trials were video recorded from a consistent vantage point 3 m from the
‘taped-box’ (STM, TRM and VD; see Fig. 1A). All videos were independently reviewed
by two clinicians with an interest inMovement Disorders (JMS and SJGL) for freezing
episodes, which were defined as the paroxysmal cessation of a patient’s normal
progress through a specific routine, as described elsewhere [16]. The end of each

Table 1
Demographic, neurological, cognitive and freezing characteristics of the sample.

Range Mean SD

N ¼ 24
Age, years 56e84 69.00 8.41
Hoehn and Yahr 2e4 2.66 0.53
UPDRS III 19e65 40.24 11.06
Mini-Mental State Examination 24e30 28.57 1.61
Freezing questionnaires
FOG-Q total 10e22 14.96 3.58
NFOG-Q: 2 and 3 0e25 17.72 5.61
Clinical Assessment
Frequency of freezing episodes 1e63 21.71 17.61
Percentage of time freezing 0.3e75.7 23.70 23.02

Fig. 1. (A) The Timed Up and Go (TUG) task utilized for FOG assessment. Each TUG trial
started with the patient seated in a chair, which was placed 5 m from a 0.6 � 0.6 m
square target defined by a taped box on the floor. A video camera was placed on
a tripod and situated 3 m from the end of the taped box at an angle offset approxi-
mately 20� from the runway. (B) Clinical assessment trials. (1) Standard TUG trial with
a 180� turn inside the taped box then return to the chair; (2) a 540� turn inside the
taped box; (3) walking around the outside of the box making tight turns without
touching the tape; (4) negotiation of a narrow gap (<1 m) on the return portion of the
trial. All tasks were performed with turns to the patient’s right and left.
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FOG episode was defined as the ability of the patient to perform an effective step
with gait-parameters similar to their normal stride. The presence of ‘trembling in
place’ was not used as an identification criteria. Freezing episodes were logged
according to their time of onset and offset. The frequency and duration of episodes
were determined for each patient utilizing a video FOG tagging program developed
by the investigators (TRM and STM). Each video observer was instructed to tag the
onset of a freeze by pressing the ‘T’ key and holding down the key throughout the
duration of the event. Video editing tools enabled the observers to drag the ends of
a horizontal bar representing the duration of the tagged freeze (which also moved
backwards or forwards through the video by a corresponding amount of time) to
accurately log the onset and offset of each FOG event. To facilitate accurate assess-
ment of freeze duration, the raters were instructed to repeatedly view the video
footage and adjust onset/offset points until entirely satisfied. An intra-class corre-
lation analysis (ICC) established the reliability (ICC ¼ 0.9) of the video FOG scores
from the two raters for both frequency and duration of freezing episodes. The total
duration of all trials was calculated as the sum total of the time taken from the
beginning to the completion of each individual trial. Percentage time spent freezing
was defined as the total duration of FOG episodes (regardless of type of freezing)
over the total test duration.

In accordance with previous research [16], we also distinguished a number of
sub-types of FOG relating to the clinical situation in which they occurred, and
calculated the relative frequency of each sub-type.

(i) Turn hesitations, in which one of the patient’s legs failed to complete the
normal turning circle or a tight turn during any of the routines;

(ii) Runway freezes, which were defined as FOG episodes occurring in the absence
of turns, targets or gaps;

(iii) Freezing during narrow gaps, defined as freezing occurring during the navi-
gation of a narrow portion of the routine;

(iv) Target hesitations, which occurred upon the arrival (within 2 m) to a defined
target, such as a line of tape on the ground;

(v) Start hesitations, where patients had difficulty initiating gait at the start of
a TUG task in any of the routines.

2.5. Statistical analysis

Results from the questionnaires were tabulated and compared statistically with
the outputmeasures of the video assessments. The datawere analyzed through pair-
wise parametric correlations using Statistical Package for the Social Sciences soft-
ware (SPSS Inc., Chicago IL).

3. Results

The TUG tasks were highly successful in eliciting FOG. The total
number of FOG events was 530, averaging 21.7 (SD 17.6) per subject
(range 1e63). This is consistent with a recent study [17] in which
the mean number of FOG events was 23.7 (SD 20.7), ranging from
0 to 66 episodes per subject. The mean percentage of time freezing
was 23.7% (SD 23.0), ranging from 0.3 to 75.7%. There was a large
variability in the frequency and duration of FOG episodes across
subjects, which allowed for a robust correlation analysis with the
rating scales.

The proportion of the sub-types of FOG (Fig. 2) was generally
similar to those previously reported [16]. Patients were most
likely to freeze during turns (299 FOG events; 56.4% of total) and
22 of the 24 patients (92%) suffered a freeze during a turn, making
it the most sensitive measure for eliciting a freezing episode.
There were a substantial number of runway freezes (141 events;
26.6% of total; 58% of patients), however the vast majority
(120 events) occurred in only 4 patients, with the balance (21)
occurring infrequently in the rest of the cohort. We also observed
freezing during narrow gaps (56 events; 10.6% of total; 42% of
patients) as well as target (22 events; 4.2% of total; 38% of
patients) and start hesitations (12 events; 2.3% of total: 33% of
patients). Marked ‘trembling in place’ was observed on a number
of trials, however the presence or absence of this feature was not
analyzed in this study.

The correlations between the percentage of time spent ‘frozen’
during the TUG tasks and ratings on the FOG-Q (r ¼ 0.30, p ¼ 0.150)
and NFOG-Q (r¼ 0.35, p¼ 0.095) were not significant (Fig. 3A). The
correlation was even weaker (Fig. 3B) between the number of FOG

events per subject and ratings on the FOG-Q (r ¼ 0.11, p ¼ 0.613)
and NFOG-Q (r ¼ 0.30, p ¼ 0.150). There was a trend for a single
question on the FOG-Q (question 3 e Do you feel that your feet get
glued to the floor while walking, making a turn or when trying to
initiate walking (freezing)?) to be associated with frequency of
freezing episodes (r ¼ 0.40, p ¼ 0.052) but not with the percentage
of total time spent frozen (r ¼ 0.29, p ¼ 0.178). However, this data
was poorly distributed for a correlation analysis with only one
subject scoring less than 2 on FOG-Q question 3.

4. Discussion

The major finding of this study was that the FOG-Q and the
NFOG-Q rating scores did not correlate with actual clinical
measures of FOG severity (frequency and duration of freezing
episodes) in a cohort of PD patients with established FOG while in
the clinical ‘off’ state. A single item on the FOG-Q (namely, the third
question) trended towards significance when correlated with the
total frequency of freezing episodes experienced by patients. This
study also confirmed the utility of the TUG task as a reliable method
for provoking FOG in the clinical environment, particularly in the
‘off’ state [17,18]. The use of the TUG and associated turning and
obstacle avoidance tasks proved useful in demonstrating the
different sub-types of FOG, dominated by turning episodes (over
half of 530 FOG events), then (in decreasing order of frequency)
runway, narrow gaps, target and start hesitations. The similarity in
relative proportions of freeze sub-types with those previously
reported [16] suggests that the clinical tasks conducted in this
experiment were consistent with those utilized to study FOG across
different clinical centers.

FOG-Q and NFOG-Q have been validated in large cohorts of PD
patients [9,10]. However, this validation did not utilize objective
clinimetric tools that can distinguish specific freezing episodes in
a clinical environment, but relied purely on subjective patient and
carer responses to the questions, as well as self-reporting and
clinician-mediated questionnaires for the comparative analysis.
The lack of any correlation between FOG-Q and NFOG-Q scores
and actual freezing in PD patients suggests that such subjective
‘validation’ techniques are inadequate and may not in fact validate
rating scales in an objective or clinical sense. Although our find-
ings do not undermine the validity of the FOG questionnaires to
act as screening tool for the presence of FOG in a sample of
patients with PD, our results suggest that a single question (FOG-Q
question 3) may be sufficient for this task. The ability to accurately

Fig. 2. Relative proportion of FOG sub-types observed during the TUG trials. Patients
were more likely to experience FOG during turning, followed by runway freezes,
navigation of narrow gaps, target freezes and start hesitations.
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assess FOG severity is fundamental to the future evaluation of
interventions aimed at decreasing the frequency and duration of
FOG events. The results of our study suggest that existing FOG
questionnaires are unsuited to this task and may in fact provide an
inaccurate estimate of FOG severity, which may be exacerbated in
patients with more advanced disease who spend longer periods in
the ‘off’ state [1].

One interpretation of the findings in this study is that the
questionnaires are probing a more general freezing phenomenon,
rather than freezing confined to the domain of gait [19,20]. In
keeping with this viewpoint, a number of studies have shown that
scores on these questionnaires correlate with specific impairments
in cognition [21,22], particularly under temporal pressure [23,24].
Other research has shown specific links between self-reported
freezing and panic attacks in patients with PD [25]. This explana-
tion suggests that the pathophysiological mechanism of FOG may
not operate independently in one specific domain, such as motor
function. As such, neural regions responsible for domain-general
functions, such as the subcortical nuclei and brainstem structures,
may be responsible for these clinical correlations. If correct, this
would suggest that freezing behavior occurring across walking,
handwriting or even thinking may be due to an underlying and
unifying mechanism [26].

Given the potential limitations of questionnaire ratings there is
a pressing need for the development of novel tools that can be used
to objectively assess FOG. Members of our research team have
previously developed and validated an ambulatory objective
technique for identifying the presence and duration of a FOG event
based on a frequency analysis of the vertical acceleration of the leg
[27], and other groups have further validated this freeze detection
algorithm [28]. FOG is identified with an accuracy of 80e90% based
on the appearance of high-frequency ‘trembling’ in a 3e8 Hz
‘freeze’ band and a corresponding decrease in power in the loco-
motor (0e3 Hz) band [27]. This technique is also capable of iden-
tifying FOG sub-types (start hesitation, turning, runway freeze)
based on context (i.e., did the FOG event occur after a period of
standing or sitting still, in conjunction with angular velocity indi-
cating a turn, or whilst walking). The high-frequency lower limb
oscillations, known clinically as ‘trembling in place’, are often (but
not always) visible to the naked eye [27]. Ambulatory monitoring of
FOGwith inertial sensor arrays will likely prove more accurate than
clinical observation and allows the possibility to extend objective
monitoring from the clinic to the community. However, further
work is required to validate objective freeze monitoring, particu-
larly in the absence of simultaneous clinical observation.
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SUMMARY
The benefits of sleep for the consolidation of procedural motor skills are less
robust in older adults, although the precise reasons for this remain unclear.
To date, even less is known about these processes in older adults with
neurodegenerative diseases, particularly those which impact on motor
functioning. While sleep disturbance and motor symptoms are frequent
disabling features of Parkinson’s disease, no known studies have directly
probed sleep-dependent memory consolidation for motor skill learning in
Parkinson’s disease. Forty patients with idiopathic Parkinson’s disease
(age = 63.7 years � 7.7; disease duration 4.1 years � 4.4) completed a
motor skill learning task pre- and post-sleep and were compared to 20 age-
and sex-matched controls recruited from the community. Polysomnography
was undertaken during the post-training night and measures of sleep
architecturewerederived.Parkinson’sdiseasepatients did not demonstrate
any apparent deficits in within-session learning and overnight stabilization
compared to controls, with both groups failing to demonstrate offline
improvements in performance (i.e. memory consolidation). In controls,
longer duration in slow wave sleep was associated with improved next-day
session learning (P = 0.007). However, in Parkinson’s disease, no rela-
tionships between sleep parameters and learning measures were found.
Slow wave sleep microarchitecture and the use of dopaminergic medica-
tions may contribute to impaired sleep-dependent multi-session acquisition
of motor skill learning in Parkinson’s disease.

INTRODUCTION

There is robust evidence that motor skill learning benefits
from sleep (Korman et al., 2007; Maquet, 2001; Maquet
et al., 2003; Spencer et al., 2007; Stickgold et al., 2002;
Wilson et al., 2012; Walker et al., 2002, 2005). The consol-
idation of procedural motor skills is thought to comprise an
early period of acquisition and rapid learning followed by a
period of stabilization, and a late post-training performance
enhancement which is apparent in some motor tasks if
learning is followed by a period of sleep (Korman et al., 2007;
Maquet et al., 2003; Walker, 2005). While this effect has
been investigated widely in younger adults (Fischer et al.,
2002; Walker et al., 2002, 2003), recent studies have
suggested that this effect is less pronounced and frequently

absent in older adults over the age of 45 years (Spencer
et al., 2007; Wilson et al., 2012).

Further work elucidating the mechanisms by which sleep
disturbance in older adults impair motor skill learning is
needed. In the literature, particular focus has been placed on
the contribution of slow wave sleep (SWS), rapid eye
movement (REM) sleep and Stage 2 sleep characterized
by the presence of sleep spindles, as mediators of perfor-
mance enhancement (Karni et al., 1994; Payne, 2011;
Stickgold, 2005; Walker et al., 2002). While a longer duration
of Stage 2 non-rapid eye movement (NREM) sleep has been
found to improve procedural motor skill consolidation in
younger adults (Walker et al., 2002, 2003), preliminary
studies in older adults (without dementia) have failed to
demonstrate any relationships between sleep-dependent
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consolidation of a motor skill task and any measure of sleep
architecture (Peters et al., 2008; Tucker et al., 2011). While
the reasons for this remain unclear, it is hypothesized that
with advancing age sleep-dependent memory consolidation
is degraded by changes in sleep quantity or quality, declines
in the integrity of specific neural networks and/or other sleep
or disease related factors (Spencer et al., 2007). More
specifically, age-related changes in SWS and a change in
cholinergic tone are believed to play a role in differentially
impacting memory consolidation (Harand et al., 2012). Fur-
ther, atrophy of particular brain regions within the neostriatal
and cerebellar region, changes in fronto–striatal circuitry and
reduced dopaminergic neurotransmission have all been
shown to mediate the incremental acquisition of skilled motor
behaviours (see review by Hornung et al., 2005).
These inter-relationships between sleep physiology and

motor skills learning may, however, be difficult to tease out in
healthy older adults who have only minimal disruption to these
brain regions and who generally perform the task with a high
degree of accuracy. To date, there is a paucity of research
exploring these relationships in patients with more severe
disruption to these neural networks such as those with neuro-
degenerative conditions (see review by Naismith et al., 2011a).
This is due partly to the fact that knowledge of sleep-related
changes in neurodegenerative disorders remains in its infancy,
but also because our understanding of lifespan changes in
sleep-dependent memory consolidation is still evolving.
Oneneurodegenerativedisease that is known tohavedeficits

in motor skill learning is Parkinson’s disease (PD). In PD
complaints of both sleep disturbance and cognitive impairment
are frequent (Gunn et al., 2010), and strong inter-relationships
between markers of sleep disturbance and memory perfor-
mance have been demonstrated (Naismith et al., 2010;
Naismith and Lewis, 2011; Naismith et al., 2011b). Notably,
with increased disease duration there appears to be a progres-
sive reduction in SWS and REM sleep (Diederich et al., 2005).
Of particular interest is the ability of these patients to learn and
consolidate motor skills, as this aspect of functioning is affected
strongly by the disorder (Muslimovic et al., 2007), and may
relate to disrupted cortico–striato–thalamic circuitry and
changes in dopaminegic neurotransmission. In a recent study
in PD, Scullin et al. (2012) demonstrated that improvements in
memory consolidation on a working memory task following a
period of sleep were correlated positively with the amount of
SWSbetween trainingsessions.Thereare, however, nostudies
that have directly probed sleep-dependent procedural memory
consolidation in PD by evaluating cognitive performance
following a period of sleep, with concomitant polysomnographic
measures of sleep architecture. By evaluating motor skill
learning in PD, we might be better able to characterize age-
related decline of sleep-dependent consolidation for this skill,
and afford new insights into the determinants of memory
consolidation for motor tasks in PD. Furthermore, this may
elucidate aspects of sleep that support this cognitive skill in the
wider population, as well as providing novel insights into future
treatment strategies.

The current study sought to explore whether particular
aspects of sleep architecture as measured by polysomno-
graphy (PSG)were related to the ability of patients with PDand
healthy older adults to learn and consolidate a procedural-
based motor skill learning task (sequential finger-tapping).
Based on preliminary work in healthy older adults, we
predicted that sleep-dependent memory consolidation would
be impaired in older healthy adults, leading to no overnight
gains in performance, and that this would be even more
pronounced in PD patients who have reduced dopaminergic
neurotransmission and disruptions to fronto–striatal circuitry
implicated in motor skill learning and consolidation. Further-
more, it was hypothesized that features of SWSwouldmediate
this relationship, and that that this effect would be most
prominent in healthy older adults who have more preserved
neural networks and less prominent sleep disturbance.

METHODS

Participants

Forty participants with idiopathic PD (11 female) and 20
healthy controls (12 female) were recruited from the Brain
and Mind Research Institute (BMRI) Parkinson’s Disease
Research Clinic, University of Sydney. Demographics details
are presented in Table 1. All patients satisfied UK Parkin-
son’s Disease Society (UK PDS) Brain Bank criteria (Gibb
and Lees, 1988), were non-demented according to myelo-
dysplastic syndrome (MDS) criteria (Dubois et al., 2007) and
had, on average, only minimal or mild depressive symptoms
[Beck Depression Inventory–II (BDI-II) score of <19; Beck
et al., 1996]. Exclusion criteria were: history of stroke;
neurological disorder other than PD; head injury with loss
of consciousness >30 min; medical conditions known to
affect cognition (e.g. cancer); other psychiatric illness; shift-
workers; transmeridian travel within the prior 60 days; and
use of medications other than those for PD known to affect
sleep and/or melatonin secretion including beta-blockers,
lithium or benzodiazepines. Permission for the study was
obtained from the University of Sydney research ethics
committee and all participants provided written informed
consent.

Measures

Clinical measures

As described in full previously (Naismith et al., 2011a,b), a
neurologist recorded Hoehn & Yahr staging and disease
duration (years). L-Dopa equivalent daily dose (DDE) for
each patient was calculated using previously published
guidelines (Katzenschlager et al., 2008) (Table 1). Within
the Parkinson group, 13 patients were drug-naive and 27
were taking one or more dopaminergic agents, including
levodopa (n = 22), dopamine agonist (n = 2) and levodopa
and dopamine agonist (n = 3). No differences in finger-
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tapping performance or any sleep measures were found
between those of dopaminergic medication and those who
were drug-naive (data not shown). All patients underwent
assessment and testing in their ‘on’ state (showing response
to usual medication) and remained on their usual medication
for the duration of the study. Basic demographics including
age, years of formal education, depressive symptom severity
as measured by the BDI-II (Beck et al., 1996) and general
cognitive status as measured by the Mini Mental State
Examination (MMSE) (Folstein et al., 1975) were recorded
for all participants. All participants underwent formal
neuropsychological testing undertaken by a trained clinical
neuropsychologist to exclude dementia. All participants
completed the Horne €Ostberg Morningness–Eveningness
Questionnaire as a measure of circadian preference.

Finger-tapping motor sequencing task (FTT)

A standard FTT task (see Walker et al., 2003) was used as a
measure of procedural motor skill learning. Participants

attempted the FTT on two consecutive days that took place
pre- and post-sleep. The first administration took place 2 h
before habitual bedtime (range 19:08–21:39 hours) and
required subjects to repeatedly tap a sequence of five
numbers (4-1-3-2-4) ‘as quickly and as accurately as possi-
ble’ across 12 intervals of 30 s (trials 1–12), interrupted by a
30-s pause, using their non-dominant hand (see Fig. 1).
During tapping trials, the numerical sequence was displayed
in red against a white background at the top of the screen to
minimize any working memory requirement. Each key press
produced a square box concealing the accuracy of the
responses, forming a row from left to right. Each interval was
scored as either correct or incorrect. Key-press times were
not recorded. Changes in motor performance were measured
across a six-trial retest session (trials 13–18) following a night
of sleep, divided into early retest (trials 13–15) and late retest
(trials 16–18). Participants were not told that they would be
readministered the FTT the following morning, thereby
minimizing deliberate rehearsal of the task. Outcome vari-
ables for the FTT included the following:

1. Pre-training learning score (mean number of correctly
tapped sequences averaged across the first three trials in
the pre-sleep training session) and pre-training error rate
(mean number of errors averaged across the first three
trials of the pre-sleep training session).

2. Post-training learning score (mean number of correctly
tapped sequences averaged across the last three trials of
the pre-sleep training session) and post-training error rate
(mean number of errors averaged across the last three
trials of the pre-sleep training session)

3. Early retest learning score (mean number of correctly
tapped sequences averaged across the first three trials of
the post-sleep training session) and early retest error rate
(mean number of errors averaged across the first three
trials of the post-sleep training session)

4. Late retest learning score (mean number of correctly
tapped sequences averaged across the last three trials of
the post-sleep training session) and late retest error rate
(mean number of errors averaged across the last three
trials of the post-sleep training session)

5. Overnight early motor skill improvement (the percentage
overnight improvement in motor skill defined as the early
retest learning score/post-training learning score 9 100),
also termed offline memory consolidation.

6. Overnight late motor skill improvement (the percentage
overnight improvement in motor skill defined as the late
retest learning score/post-training learning score 9 100)
(Fig. 1).

Sleep architecture

Participants underwent two consecutive nights of conventional
polysomnography in the Chronobiology and Sleep Laboratory
at the Brain and Mind Research Institute. Nocturnal polysom-
nography (PSG) recordings were collected on an ambulatory

Table 1 Clinical measures, sleep parameters and motor skill
performance for all participants

Clinical measures

Parkinson’s
disease n = 40

Control
n = 20

t-value/
v2Mean SD Mean SD

Age, years 63.6 7.6 66.1 9.5 1.023
Gender
(male : female)

29 : 11 – 8 : 12 – 9.157*

Formal
education, years

13.6 2.8 13.8 3.3 0.242

Hoehn & Yahr,
stage

1.7 0.5 – – –

Disease duration,
years

4.1 4.4 – – –

L-Dopa
equivalent daily
dose, mg day�1

401.5 451.9 – – –

Beck Depression
Inventory II

6.9 5.1 6.8 6.0 �0.079

Mini Mental State
Examination

28.6 1.6 29.2 0.9 1.172

Sleep architecture
Total sleep
time, min

393.7 70.6 377.6 70.7 �0.836

Stage 2 sleep
duration, min

231.1 56.7 219.8 59.5 �0.717

Slow wave
sleep duration,
min

64.8 48.8 57.6 31.6 �0.685

Rapid eye
movement sleep
duration, min

82.8 27.2 80.5 28.2 �0.313

Wake after
sleep onset

89.1 44.5 91.1 45.3 0.176

Sleep
efficiency

77.4 10.2 77.2 2.8 0.192

SD, standard deviation. * indicates the significance P < 0.05
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recording system (Compumedics Siesta, Melbourne, Vic,
Australia) using a six-channel electroencephalographic
(EEG) montage (C3-M2, O2-M1, Fz-M1, Pz-M2, Fpz and
Cz); two electro-oculographic (EOG) channels (left and right
outer canthi) and electromyogram (EMG) (submentalis). EEG
data were sampled at 250 Hz. Night 1 was considered an
adaptation night and included pulse oximetry recordings.
Measures of sleep architecture and administration of the FTT
took place onnight 2, allowing us to examine sleeparchitecture
as well as measures of sleep efficiency and fragmentation.
Sleep architecture stages were scored manually in 30-s
epochs by an experienced sleep technician using Rechtschaf-
fen and Kales standardized scoring criteria (Rechtschaffen
and Kales, 1968), with modifications for older participants
(Webb and Dreblow, 1982). While in the laboratory, partici-
pants were monitored physiologically and behaviourally at all
times under controlled conditions, with fixed light levels (<50
lux during waking; <1 lux during scheduled sleep periods) and
ambient temperature (24 � 1 °C). Patients were required to
maintain their usual bedtime and wake-up schedule during the
study, and asked to abstain from caffeinated beverages.
Outcome variables from the PSG assessment used in analy-
ses included: (i) total sleep time (TST) (min); (ii) Stage 2 sleep
duration (min); (iii) SWSduration (min); (iv)REMsleepduration
(min); (v) wake after sleep onset (WASO) (min); and (vi) sleep
efficiency (TST/time in bed 9 100).

Statistical analysis

All analyses were conducted using SPSS version 18.0 (PASW
statistics, SPSS Inc., Chicago, IL, USA) for Macintosh.
Univariate correlations were used to determine the associa-
tions between performance on the motor sequencing task
and sleep architecture, utilizing non-parametric analyses as
appropriate. Comparative analyses of experimental perfor-

mance were carried out using repeated measures across
pre-training, post-training, early and late retest sessions and
partial correlations between sleep measures and post-sleep
finger-tapping performance after controlling for pre-sleep
performance. All analyses were two-tailed and employed an
alpha level of 0.05, with a Bonferroni correction applied for
multiple comparisons.

RESULTS

Basic demographics, disease characteristics and measures
of sleep architecture averaged across each group are
presented in Table 1. PD participants were, on average,
4.1 years post-diagnosis, with a mean Hoehn & Yahr score of
1.7 [standard deviation (SD) = 0.5]; 88% of PD participants
had disease durations of fewer than 3 years, while only five
patients had much longer disease durations of 6, 7, 9, 13 and
20 years, respectively. There were no significant differences
between patient and control participants in terms of age,
years of formal education, general cognitive status, circadian
preference (data not shown) and depressive symptoms
(Table 1), but there was a greater proportion of males in
the PD group compared to controls (P = 0.027). The two
groups did not differ on any sleep parameter, including TST
(Table 1). Across both groups, no significant differences
were observed in sleep parameters as a function of gender.

Initial learning

As illustrated in Fig. 2, both controls and PD patients
performed the motor skill task well in the initial trials, with
their average pre-training error rate (i.e. the first three trials in
the testing session) low, at 1.9 and 2.1%, respectively. The
error rate did not differ between the groups in the either the
pre-training (t58 = 0.56, P = 0.58) or post-training (t58 = �1.28,

.

Pre-sleep procedure 
• Sequential finger tapping task 4-1-3-2-4
• Approximately 2 hours before habitual

bedtime
• 12 Learning trials (Trials 1-12) divided into

pre-training (Trial 1-3) and post-training
(Trials 9-12) 

• 30-s each trial

Post-sleep procedure
• Sequential finger tapping task 4-1-3-2-4
• >30 min after wake time
• 6 Retest trials (Trials 13-18) divided into

early retest (Trials 13-15) and late retest
(Trials 16-18)

• 30-s each trial
• 30-s pause between trials

> 30 min after
wake timeWake Sleep (PSG) WakeHabitual bedtime 

(range 7 pm -12 pm)

Num
Lock
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Figure 1. Schematic representation of the
motor skill learning protocol.
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P = 0.21) sessions. In terms of motor skill performance,
mean pre-training and post-training learning did not differ
between PD patients and controls (pre-training: t58 = 0.67,
P = 0.51; post-training: t58 = 0.49, P = 0.63). Overall, these
findings suggest that performance of the motor skill learning
task was at a group level comparable between PD and
controls.

Motor skill learning over time and following a period of
sleep

Repeated-measures analysis of variance (ANOVA) compared
learning and error rates across the four different time-points:
pre-training, post-training, early and late retests for PD
patients and controls. In terms of learning, the main effect
of session type was significant (F3,174 = 49.70, P < 0.001).
Mean learning was highest in the late retest session
compared to the early retest session and pre- and post-
training sessions (see Fig. 2). The main effect of group was
not significant (F1, 58 = 1.13, P = 0.29), nor was the interac-
tion (F3,174 = 2.09, P = 0.11), suggesting that PD patients
and controls did not differ in their learning performance (see
also Fig. 1). In terms of error rates, the main effects of
session and group were both non-significant.

Exploring the within-group relationships further, controls
failed to demonstrate an improvement in overnight motor skill
performance in the early retest session compared to their
post-training baseline performance (t19 = 0.13, P = 0.90).
Conversely, however, controls performed significantly better
in the late retest session compared to their post-training

baseline performance (t19 = 3.14, P = 0.005). In PD patients,
no significant improvement in performance was found in
either the early or late retest sessions compared to their post-
training baseline performance (P > 0.05).
Offline consolidation of the task was measured by compar-

ing the relative performance on the motor skill learning task
before (post-training learning) and after (early retest) a period
of sleep. This measure takes into consideration the individ-
ual’s baseline level of performance, which can vary on
account of age or other factors (see Spencer et al., 2007 for
a discussion of this issue). No significant difference in terms of
offline consolidation was observed in either group.
In controls, however, there was evidence of within-session

improvement, with enhanced performance in the late retest
condition compared to PD patients (t58 = 2.45, P = 0.018).
Inspection of the data indicated that in the early retest phase
controls and PD patients were recalling 99 and 95%,
respectively, of what they had encoded in the post-training
session prior to sleep, and that these values increased to 115
and 103%, respectively, by the late retest session.

Sleep-dependent motor skill learning and its relationship
to sleep architecture

The relationship between motor skill learning and measures
of sleep architecture for all participants is presented in
Table 2. No significant relationships were found between
early improvement in performance following sleep (i.e. offline
consolidation) and any sleep measure in either the control or
PD group.
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In control participants, late improvement in performance
following sleep was correlated positively with duration spent
in SWS (P = 0.007) (Fig. 2). Partial correlational analyses
revealed that this relationship remained significant even
when controlling for age (r = �0.64, P = 0.003). Interest-
ingly, in the PD group the amount of time spent in SWS was
not correlated with any late improvement in the motor skill
task following a period of sleep. In order to compare the
difference in correlations between the groups, a Fisher r–z
transformation was undertaken, demonstrating a significant
difference between the groups (z = �2.09, P = 0.037).
Furthermore, the amount of time spent in SWS did not

differ between controls and PD patients, nor did time spent in
SWS correlate with any disease variable in the PD group.
There was, however, a significant positive correlation
between late improvement in the motor skill task relative to
baseline performance with disease duration (r = �0.38,
P = 0.031) and DDE (r = �0.37, P = 0.023). Multiple regres-
sion analyses exploring the relative contribution of both
disease duration and DDE to offline consolidation in PD
found DDE to be the only significant independent predictor
(P = 0.039).

After correcting for multiple comparisons, no other signif-
icant correlations between motor skills learning and sleep
architecture measures were observed in either the PD or
control groups.

DISCUSSION

The current study is the first to explore the specific contri-
butions of sleep architecture to motor skill learning and
consolidation in PD, comparing this directly to performance in
a healthy ageing sample.
The main finding of this study is that PD patients do not

demonstrate any apparent deficit in within-session learning
and overnight stabilization of a motor skill task compared to
healthy older adults, as evidenced by the non-significant
difference between post-training and early retest perfor-
mances in both groups. While both groups failed to
demonstrate offline improvements in performance, neither
showed a significant decline in performance, suggesting
that both groups had stabilization of the memory trace
following sleep. If patients with PD had impaired memory
stabilization processes, then we would have predicted

Table 2 Correlations between polysomnographic sleep measures and motor skill performance for patients with Parkinson’s disease (n = 40)
and healthy control subjects (n = 20)

Sleep
variables

Parkinson’s disease Healthy ageing

Early retest
(average of
first three
blocks
following
sleep)

Late retest
(average of
last three
blocks
following
sleep)

Early
improvement
in motor skill
learning
following
sleep

Late
improvement
in motor skill
learning
following
sleep

Early retest
early
(average of
first three
blocks
following
sleep)

Late retest
(average of
last three
blocks
following
sleep)

Early
improvement
in motor skill
learning
following
sleep

Late
improvement
in motor skill
learning
following
sleep

Total sleep
time (TST)
min

�0.040 0.102 0.073 0.261 0.101 0.098 0.247 0.294

Stage 2
sleep
duration,
min

�0.076 �0.033 0.120 0.162 �0.050 �0.161 0.093 �0.067

Slow wave
sleep
duration,
min

0.044 0.115 0.260 0.058 0.015 0.084 0.245 0.586**

Rapid eye
movement
(REM)
sleep
duration,
min

0.264 0.246 0.223 0.139 0.449 0.421 0.301 0.142

Wake after
sleep
onset
(WASO),
min

�0.270 �0.327 �0.107 �0.122 �0.246 �0.454 �0.123 �0.352

Sleep
efficiency

0.270 0.394 0.198 0.313 0.179 0.292 0.150 0.290

**P < 0.001.

ª 2013 European Sleep Research Society

Sleep-dependent motor skill learning in ageing and PD 403

155



performance deficits in the early retest condition, which
were not found.
The second important finding of the study is that while

neither group demonstrated enhanced performance immedi-
ately following sleep, healthy older adults performed better in
the second half of the post-sleep retest session (termed late
retest learning) compared to their post-training learning, an
effect that was not observed in the PD group. This effect in
healthy older adults was also found to be associated with a
longer duration in SWS. No such improvement was observed
in the PD group. Our findings support the growing body of
evidence linking SWS to sleep-enhanced procedural and
declarative learning in the absence of cognitive decline
(Payne, 2011; Stickgold, 2005). In contrast to previous
studies in younger populations (Walker et al., 2002, 2003) no
relationships were found with Stage 2 sleep. Interestingly,
while it is well known that the proportion of SWS sleep
declines with advancing age (Floyd et al., 2000; Naismith,
2011), these findings demonstrate that in healthy older adults
longer duration spent in SWS during the post-training night
relates to within-session improvement post-sleep. As others
have proposed (e.g. Conte et al., 2012), pre-sleep learning
may have a beneficial reorganizing effect on sleep quality in
healthy older adults which, in turn, is beneficial for perfor-
mance on the next-day training session.
Conversely, in patients with PD, the relationship between

SWS duration and post-sleep learning performance was
absent. While PD patients can learn the task in the same way
as normal subjects, with comparable learning and error rates
in the pre-sleep learning sessions, they did not demonstrate
the within-session improvement observed in healthy older
adults following a period of sleep. Our findings contrast with a
recent finding by Scullin et al. (2012), which demonstrated
that the duration spent in nocturnal SWS enhanced a
different cognitive skill, working memory training, in Parkin-
son’s disease. There are a number of possible explanations
for our findings. It could be that the contribution of SWS to
memory consolidation in PD differs according to the cognitive
skill being learnt. Future studies could include a broader
range of cognitive tasks to determine whether factors such as
task design, level of difficulty and test modality play a role. An
alternative explanation is that sampling differences, such as
disease duration or disease severity, modify these relation-
ships. Our findings, however, do not support this explanation.
The total time spent in SWS did not differ between those with
and without PD and did not correlate with age, disease
severity, dopamine dose equivalence, depressive symptoms
or general cognitive functioning.
Another explanation, and the one most suggested by the

findings of this study, is that the optimal benefits of these
sleep stages on post-sleep motor skill learning in PD relate to
specific neurophysiological mechanisms that are predomi-
nantly, but not necessarily restricted to, SWS. Interestingly,
SWS is greatly reduced with advancing age and in dementia
relative to healthy younger adults (Bliwise, 1993), and has
been shown to be reduced in PD (Diederich et al., 2005).

Studies employing power spectral analyses have also found
a significant decrease in slow wave activity in PD patients
compared to healthy controls (Brunner et al., 2002). It is
plausible that disruption to cortico–striato–thalamic circuitry
and changes in dopaminergic neurotransmission drive
changes in SWS in this clinical population. Future studies
employing measures of sleep microarchitecture may prove
useful to delineate whether specific neurophysiological com-
ponents of SWS sleep are absent in PD, giving rise to
impaired consolidation.
Our findings also suggest that there is a specific interaction

between dopaminergic medication use and motor skill learn-
ing in PD. Specifically, a greater DDE was associated with
improved consolidation on the motor skill task, which
supports previous findings that dopaminergic medication
has benefits for offline sleep-specific cognitive improvements
in a range of cognitive skills (De Lima et al., 2011; Schicknick
et al., 2012; Scullin et al., 2012). While all patients were
tested in their ‘on’ state, there may also be an effect of
dopaminergic medication at an individual level on motor
sequence learning, which was not controlled for in this study.
This may have differed as a function of time of day, given that
pre-sleep learning took place in the evening and post-sleep
learning in the morning. Furthermore, no attempt was made
to control for disease lateralization or handedness, with all
participants completing the task using their non-dominant
hand, which is another possible limitation of this study.
The current findings add to the growing body of studies by

our group and others which propose that specific patterns of
sleep–wake disruption are linked to specific profiles of
cognitive performance in PD (Naismith et al., 2011a,b;
Scullin et al., 2012). These findings offer some promise for
improved clinical management of PD by offering insights into
methods by which motor skill learning can be enhanced in
PD. For example, optimal learning of new motor skills in
targeted fall prevention programmes may be enhanced by
the use of behavioural strategies aimed at increasing
components of nocturnal SWS (e.g. minimizing daytime
napping, increasing exercise, diet modification and control-
ling body temperature) which have beneficial effects for
learning in healthy ageing. The correction of underlying sleep–
wake disturbance may also improve the efficacy of cognitive
training programmes targeting specific cognitive deficits such
as motor skill learning in PD. As such, the current findings
may help to direct novel, more directed approaches that ease
the burden of this prevalent disease.
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