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1. Introduction 
 
Developments in simulation methods, and the computational power that is now 
available, have enabled open-form discrete choice models such as mixed logit to be 
estimated with relative ease (see Train 2003, Hensher et al. 2005). The popular random 
parameter (RP) form has been used to identify preference heterogeneity1, which can be 
mapped to specific individuals through re-parameterisation of the mean and/or variance 
of each RP’s distribution (Greene et al. 2005). However this formulation depends on the 
selection of random parameters to reveal such heterogeneity, with any residual 
heterogeneity resident in the constant variance condition of the EV1 distribution of the 
multinomial logit model. In this paper we enhance the mixed logit model to capture 
additional alternative-specific unobserved variation not subject to the constant variance 
condition, which is independent of sources revealed through random parameters. It can 
be mapped to specific individuals through deep parameterisation of the variance. Some 
of the features build on developments by Brownstone and Train (1999) that were 
extended by Ben-Akiva et al. (2001) and Gopinath et al. (2004). This further extension 
of mixed logit may offer the way forward in empirically separating scale from variance 
in open-form choice models.  
 
The paper is organised as follows. In Section 2 we set out the extensions of the mixed 
logit model to highlight the extended set of sources of preference heterogeneity across 
individuals and alternatives. Section 3 presents an application of the full model to a 
stated mode choice experiment for commuter trips in Sydney in 2003 with empirical 
evidence set out in Section 4. Conclusions are drawn in Section 5.  

 
2.  Heteroscedastic Control for Random Coefficients 
and Error Components in Mixed Logit  
 
We assume that sampled individuals q = 1,...,Q face a choice among J alternatives, 
denoted j = 1,...,J in each of T choice settings, t = 1,...,T.2  The canonical random utility 
model associates utility for individual q 
 
 Uq,j,t = β′xq,j,t + εq,j,t (1) 
 
with each alternative in each choice situation.  We assume the individual considers the 
full choice set in each situation and makes the choice associated with the highest utility.  
The K×1 vector xq,j,t defines the full set of explanatory variables including attributes of 
the choices, socioeconomic characteristics of the individual and descriptors of the 
decision context and choice task3 itself in situation t. For convenience, define Xq,t to be 
the full set of explanatory variables for all choices in choice situation t, and Xq likewise 
                                                           
1 Heterogeneity refers to differences across individuals in their preferences. From an econometric perspective there are two types 
of heterogeneity; that which is related to observed attributes of the individual, called observed heterogeneity, and that which 
cannot be related to the observed attributes of the individual, called unobserved heterogeneity. Observed heterogeneity is 
captured by entering the relevant attributes of the individual while unobserved heterogeneity is captured by entering random 
terms. We acknowledge the request from a referee to explicitly clarify the meaning of heterogeneity. 
2 In our implementation of this model, J may vary across q and t and T may vary across q.  But it is notationally convenient to 
assume both are fixed for now. 
3 If a stated choice experiment is the data source, then the complexity of the choice task as defined by the number of choice 
situations, number of alternatives, attribute ranges, data collection method, etc. can also be included to condition specific 
parameters associated with attributes of alternatives.   
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for the full set of choice situations, t=1,…,T. The components β and ε are not observed 
by the analyst. The conventional departure point for analysis of this model is the 
assumption of identical independent (IID) type 1 extreme value distributions (EV1) for 
εq,j,t, which gives rise to the multinomial logit (MNL) probability model, 
 

 Prob[choice j|individual q, Xq,t, choice setting t] = . .

. .1

exp( )

exp( )
q j t

J
q j tj=

′

′∑
x

x

β

β
 . (2) 

 
There are (at least) two major problems with this model.  First, the IID-EV1 assumption 
is extremely restrictive and induces the ‘independence from irrelevant alternatives’ 
(IIA) property in the model.  This is a well known major shortcoming of the MNL 
model. The second issue is that the canonical MNL model as stated fails to capture 
preference heterogeneity of any sort not embodied in the individual characteristics and 
the IID-EV1 disturbances.  Various models have been proposed to extend the MNL 
model in this direction.  The mixed logit model provides a rich set of features that will 
allow the analyst to accommodate observed and unobserved heterogeneity from a 
variety of sources4. 
 
We introduce preference heterogeneity in the model by specifying the individual 
specific random parameters, in equation (3). 
 
 βq,k = kβ  +  δk′zq  +  γq,kvq,k, k = 1,…,K (3) 
 
where 
 
 vq,k  =  a random variable with E[vq,k]=0 and Var[vq,k] = ak

2, a known constant 
γq,k    =  σk×exp[ηk′hq]. 

 
The parameters are randomly distributed over individuals with means and variances that 
can depend on individual characteristics, zq and hq.  The components of this random 
parameters model are 
 
 ,q kβ = fixed mean (in name only, since the mean includes δk′zq), 
 
 δk′zq = observed heterogeneity around the mean, 
 
 σk  =  fixed part of the standard deviation of the random parameter βq,k, 
 
 exp[ηk′hq] = observed heterogeneity associated with the distribution of βq,k. 
 
The data vectors zq and hq contain individual specific characteristics such as socio-
demographic factors5 which may overlap or be identical.  Parameters to be estimated 
are kβ , δk, σk and ηk, k = 1,…,K.  The structural random variable vq,k endows the random 
parameter with its statistical properties.  In principle, all K parameters may be random 
and heterogeneously distributed in this fashion, although in the typical model, not all 
                                                           
4 Revelt and Train (1998) and Train (1998) developed the first mixed logits on repeated choices. Revelt and Train (1998) were the 
first authors, to our knowledge, to introduce the term ‘mixed logit’.  
5 In general these characteristics can be any source that is observation specific (as distinct from alternative specific). 
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parameters will be random.6  In some cases, the model may also specify certain 
restrictions on δk, σk and/or ηk.  For example, homoscedasticity is achieved by imposing 
ηk= 0, while a hierarchical model specification with non-random parameters is specified 
with σk= 0 (which implies that ηk = 0).  The assumption that Var[vq,k] is known is not 
substantive, as the unknown scaling is contained in γq,k.  For example, if vq,k is normal, 
ak equals 1; if it is standard uniform, it equals 1/12. 
 
Collecting all K parameters in a column vector, we have 
 
 βq  =  β   +  Δzq  +  Γqvq (4) 
 
where E[vq] = 0 and Var[vq] = A, where A is a known diagonal matrix.  For example, if all parameters are 
normally distributed, then A = I.  We now allow two additional elements to enter this random parameters 
specification.  First, the parameters may be correlated, accommodated by specifying a mixing of the 
primitive underlying random variables: 
 
 vq  =  Rvq* (5) 
 
where R is a lower triangular matrix with ones on the main diagonal and vq* is the vector of independent 
variables, with zero means and known variances ak

2.   The correlation is parameterized by the nonzero 
elements below the diagonal.  These below diagonal elements are additional parameters to be estimated.  
The covariance matrix of the random parameter vector is then 
 
 Var[βq | zq,hq]  =  ΓqRAR′Γq. (6) 
 
This is an unrestricted matrix, subject to the structural form specified earlier for Γq.  A 
second extension allows preferences to evolve over ‘time’ or over the sequence of 
choices in a repeated choice experiment setting.  The ‘autocorrelation’ is specified as: 
 
 vq,k,t* =  ρk vq,k,t-1* + wq,k,t*. (7) 
 
where wq,k,t* is now the underlying structural random variable. This adds K 
autocorrelation parameters, ρ1,…,ρK, to the model, also to be estimated.7  Since βq can 
contain alternative-specific constants which may be correlated, this specification can 
induce correlation across alternatives.  It follows immediately that the model does not 
impose the IIA assumption.8  Restrictions can be imposed at numerous points in the 
model to produce a wide variety of specifications.   
 
For convenience, we collect all the structural parameters,β , Δ, R, (σk,ηk,ρk, k=1,…,K), 
in a parameter set Ω.  The marginal distribution of βq is induced by the distribution of 
vq, which we denote as9: 
 
 fβ(βq | Ω,zq,hq)  =  fv(β   +  Δzq  +  Γqvq|Ω,zq,hq). (8) 

                                                           
6 This selection of a subset of random parameter is potentially a weakness of the pure random parameter specification of mixed 
logit in that all sources of preference heterogeneity are totally dependent on the random parameter selection. Additional sources 
of preference heterogeneity that are not dependent on the random parameters for their revelation that are specified herein is an 
appealing extension. 
7 With this change, assuming stationarity, the matrix A in Var[βq | zq,hq]  is replaced with A(ρ) = diag[ak2/(1-ρk2),k=1,…,K]. 
8 See McFadden and Train (2000) for details.   
9 The Jacobian of the transformation Γq-1, from v to β would appear in the density as well. 
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where Γq =  the matrix of structural parameters, Γ multipled by a diagonal matrix, say Λq 
which contains the observation specific standard deviations on the diagonals.  This is 
how we build heteroscedasticity in the parameters into the model. 
 
The reduced form of the choice model is now 
 
 Uq,j,t = βq′xq,j,t + εq,j,t (9) 
 
 and 

 Probq,t [j|Xq,t,Ω,zq,hq,vq ] = . .

. .1

exp( )

exp( )
q q j t

J
q q j tj=

′

′∑
x

x

β

β
 . (10) 

 
Any remaining heterogeneity not already accounted for is treated as unobserved and 
resides in εj,t,q.  This will also capture misspecification effects such as treating as fixed a 
parameter which should be random.  
 
The ‘kernel logit’ model suggested by Ben-Akiva et al. (2001), based on an idea first 
proposed by Brownstone and Train (1999)10, incorporates additional unobserved 
heterogeneity through effects that are associated with the individual’s preferences 
within the choices.  These appear as M < J additional random effects, 
 
 Uq,j,t = βq′xq,j,t + εq,j,t  +  cj1Wq,1 + cj2W q,2 + … + cjMWq,M, (11) 
 
where the Wm,q are normally distributed effects with zero mean, m = 1,…,M < J and cjm 
= 1 if m appears in utility function j.11  This specification can produce a simple ‘random 
effects’ model if all J utilities share a single error component,  
 
 Uq,j,t = βq′xq,j,t + εq,j,t  +  Wq,  j = 1,…,J. (12) 
 
or an error components sort of model if one and only one alternative-specific parameter 
appears in each utility function, as in (13). 
 
 Uq,j,t = βq′xq,j,t + εq,j,t  +  Wq,j, j = 1,…,J. (13) 
 
If groups of utility functions each contain a common subset of the error components 
across specific nests of alternatives, then we can specify the ‘nested’ system in (14): 
 
 Uq,1,t = βq′xq,1,t + εq,1,t  +  Wq,1  
  
 Uq,2,t = βq′xq,2,t + εq,2,t  +  Wq,1  (14) 
 
 Uq,3,t = βq′xq,3,t + εq,3,t  +  Wq,2  
 
 Uq,4,t = βq′xq,4,t + εq,4,t  +  Wq,2  

                                                           
10 The Ben-Akiva et al paper was a reaction to the suggestion in Brownstone and Train, pointing out that 
identification can be difficult to assess in mixed models with these kinds of error components for 
alternatives and nests. 
11 Issues of specification and identification are discussed in Ben-Akiva et al. (2001).   
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and even a cross nested model if the groups of error components overlap, as in the 
following example (15), 
 
 Uq,1,t = βq′xq,1,t + εq,1,t  +  Wq,1 + Wq,2, 
 
 Uq,2,t = βq′xq,2,t + εq,2,t  +  Wq,1 + Wq,2, 
  (15) 
 
 Uq,3,t = βq′xq,3,t + εq,3,t  +  Wq,2 + Wq,3 + Wq,4, 
 
 Uq,4,t = βq′xq,4,t + εq,4,t  +  Wq,3 + Wq,4. 
 
This extension of the mixed logit model entails capturing additional unobserved variance 
that is alternative-specific through a mixture formulation which imposes a normal 
distribution on such information across the sampled population. The standard deviation of 
these normals can be parameterised for each alternative with special cases in which there 
are cross-alternative equality constraints on the estimated standard deviations. Through 
cross-alternative constraints we can permit an alternative to appear in more than one subset 
of alternatives, giving it the appearance of a nested structure.  
 
Our generalization extends the Brownstone and Train (1999) model in two respects.  
First, we allow the same kind of variance heterogeneity in the error components for 
alternatives and nests of alternatives as in the random parameters part: 
 
 Var[Wm,q]  =  [θm exp(τm′hq)]2 (16) 
 
Second, we combine this specification with the full random parameters model laid out 
earlier.12  Collecting all results, the full mixed logit model is given by equations (17-22). 
 
 Uq,j,t = βq′xq,j,t + εq,j,t  +  , ,1

M
j m q mm

c W
=∑  (17) 

 
 βq  =  β   +  Δzq  +  Γqvq (18) 
 
 vq  =  Rvq* (19) 
 
 vq,k,t* =  ρk vq,k,t-1* + wq,k,t* (20) 
 

Var[vq,k*]   = [σk×exp(ηk′hq)]2 (21) 
 
 Var[Wm,q]  =  [θm exp(τm′hq)]2 (22) 

 
The conditional choice probability is now 
 

                                                           
12 Ben-Akiva et al (2001) extend the basic model somewhat by imposing a factor analytic structure on the set of kernels.  This 
achieves a small amount of generality in allowing the variables that appear in the utility functions to be correlated.  With respect to 
the behavioural model, little is actually obtained by this, since the assumed independent kernels above may be mixed in any 
fashion in the utility functions. 
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 Lq,j,t  =  Probq,t [j| Xq.t,Ω, zq,hq,vq,Wq ] = . . 1

. . 11

exp( )

exp( )

M
q q j t m jm mq

J M
q q j t m jm mqj

c W

c W
=

==

′ + Σ

′ + Σ∑
x

x

β

β
 . (23) 

 
The unconditional choice probability is the expected value of this logit probability over all 
the possible values of βq and Wq, that is, integrated over these values, weighted by the joint 
density of βq and Wq.  We assume that vq and Wq are independent, so this is just the 
product.  Thus, the unconditional choice probability is 
 
 Pjtq(Xt,q,zq,hq,Ω)  =    Probq,t [j |Xt,q,Ω, zq,hq]    =  
 
 , , ,( | , , ) ( | , , ) ( | , )

q q
q j t q q t q q q q q q q q q q qL f f d d∫ ∫W

X z h v W z h W h W
β

β ,Ω , , β Ω Ω β .  (24) 

 
Thus, the unconditional probability that individual q will choose alternative j given the 
specific characteristics of their choice set and the underlying model parameters, is equal to 
the expected value of the conditional probability as it ranges over the possible values of βq. 
and Wq. Finally, the contribution of individual q to the likelihood for the full sample is the 
product of the T conditionally (on vq and Wq) independent choice probabilities.  The log 
likelihood is then formed as usual.  The contribution of individual q is 
 
 Pq (Xq,Ω,zq,hq)     = 

 

, , ,1
( | , , , ) ( | , , ) ( | , )

q q

T
q j t q q t q q q q q q q q q q qt

L f f d d
=∏∫ ∫W

X z h v W v z h h v W
β

β ,Ω, Ω ΩW   (25) 

 
and the full log likelihood is 
 

 logL(Ω) = 
1
logQ

q=∑ , ,1
( | , , , )

( | , ) ( | , )q q

T
q j t q tq q q q qt

q q

q q q q q

L
d d

f f
=

×∏∫ ∫W

X z h v W
v W

v z h W hβ

β ,Ω,

Ω, Ω
 (26) 

The integrals in (26) cannot be computed analytically because there are no closed forms 
solutions.  However, the full expression is in the form of an expectation, which suggests 
that it can be approximated satisfactorily with Monte Carlo integration.  Let vqr denote the 
rth of R random draws from the population of vq and Wqr be an accompanying random 
draw from the M-variate standard normal population. Using these draws, the logit 
probability is calculated. This process is repeated for many draws, and the mean of the 
resulting simulated likelihood values is taken as the approximate choice probability giving 
the simulated log likelihood, 
 

 logLS (Ω)  =   
1
logQ

q=∑ , , ,1 1

1 ( | , , , , )TR
q j t q q t q q qr qrr t

L
R = =∑ ∏ X z h v Wβ ,Ω,  

 

    =   
1
logQ

q=∑ , , , 1 , , ,
1 1

, , . 1 , , ,1

exp[( ) ]1
exp[( ) ]

M
TR q q q r q j t m j m q m r

Jr t M
q q q r q m t m j m q m rm

c W
R c W

=

= =
==

′+ + + Σ

′+ + +Σ
∑ ∏

∑
z v x

z v x

β Δ Γ

β Δ Γ
. (27) 

 
This function is smooth and continuous in the elements of Ω and can be maximized by 
conventional methods. Gourieroux and Monfort (1996) or Train (2003) provide a 
discussion of this form of maximum simulated likelihood estimation.  With sufficiently 
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large R (number of draws), the simulated function provides an adequate approximation 
to the actual function for likelihood based estimation and inference.13 

 

3. An Empirical Application 
 
Our empirical study uses a mode choice data set of commuting trips of a sample of 
residents of the north-west sector of the Sydney metropolitan area interviewed in 2003. 
The principle aim of the study was to establish the preferences of residents within the 
study area for private and public transport modes for commuting.  Once known, the 
study called for the preferences to be used to forecast patronage levels for currently non-
existing transport modes, specifically possible new heavy rail, light rail or busway 
modes. Independent of the ‘new’ mode type, the proposed infrastructure is expected to 
be built along the same corridor. 
 
To capture information on the preferences of residents, a stated choice (SC) 
experiment14 was generated and administered using computer aided personal interview 
(CAPI) technology.  Sampled residents were invited to review a number of alternative 
main and access modes (both consisting of public and private transport options) in terms 
of levels of service and costs within the context of a recent trip and to choose the main 
mode and access mode that they would use if faced with the same trip circumstance in 
the future.  Each sampled respondent completed 10 choice tasks under alternative 
scenarios of attribute levels, choosing the preferred main and access modes in each 
instance.   
 
The experiment was complicated by the fact that alternatives available to any individual 
respondent undertaking a hypothetical trip depended not only on the alternatives the 
respondent had available at the time of the ‘reference’ trip, but also on the destination of 
the trip.  If the trip undertaken was intra-regional, then the existing busway  and heavy 
rail modes could not be considered viable alternatives as neither mode travels within the 
bounds of the study area.  If on the other hand, the reference trip was inter-regional 
(e.g., to the CBD), then respondents could feasibly travel to the nearest busway or heavy 
rail train station (outside of the origin region) and continue their trip using these modes.  
Furthermore, not all respondents had access to a private vehicle for the reference trip, 
either due to a lack of ownership or non-availability at the time when the trip was made.  
Given that the objective of the study was to derive an estimate of patronage demand, the 
lack of availability of privately-owned vehicles (either through random circumstance or 
non ownership) should be accounted for in the SC experiment. More details are given in 
Hensher and Rose (in press). 
 
The mode choice experimental design has 47 attributes (46 in four levels and one in six 
levels for the blocks) in 60 runs; that is there are six blocks of ten choice sets each. The 
design is D-optimal and almost orthogonal, with correlations between ± 0.06. This 
design allows the estimation of all alternative-specific main effects, assuming linear 
marginal utilities. Within each block the order of the runs has been randomised to 
control for order effect biases.  
                                                           
13 In our application, we use Halton sequences rather than random draws to speed up and smooth the simulations.  See Bhat 
(2001), Train (2003) or Greene (2003) for discussion. 
14 Readers unfamiliar with stated choice methods should consult Louviere et al. (2000) or Hensher et al. (2005). 
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The trip attributes associated with each mode are summarised in Table 1. Whereas the 
times and costs associated with currently available modes15 are obtained from the 
respondents in earlier survey screens, the attribute levels for the currently non-existent 
public transport modes are established from other sources. The levels shown in Table 2 
were provided by the Ministry of Transport as their best estimates of the most likely fare 
and service levels. To establish the likely access location to the new modes, respondents 
were also asked to view a map that listed potential new stations and asked to choose a 
particular station, which is used in the software to derive the access and linehaul travel 
times and fares. 

 
Table 1:  Trip Attributes in Stated Choice Design 

 
For existing public 
transport modes 

For new public transport 
modes 

For the existing car mode 

Fare (one-way) Fare (one-way) Running Cost 
In-vehicle travel time In-vehicle travel time In-vehicle Travel time 
Waiting time Waiting time Toll Cost (One way) 
Access Mode:   Walk time Transfer waiting time Daily Parking Cost 

            Car time Access Mode:   Walk time Egress time 
             Bus time             Car time  
           Bus fare              Bus time  

Egress time Access Mode Fare (one-way)  
            Bus fare  
 Egress time  
 
All design attributes had four levels. These were chosen as the following variations 
around the base level: -25%, 0%, +25%, +50%. An example of a stated choice screen is 
shown as Figure 1, derived as one row of a D-optimal stated choice design. Each 
respondent was asked to review the access modes and choose one associated with each 
main mode alternative, and then to choose the preferred main mode. This was repeated 
10 times. 
 

Table 2:  Base times and costs for new public transport modes  
 

 Dollars Busway Heavy rail Light Rail 
Station Location:  $ min min min 
Mungerie Park 1.8 33 22 33 
Burns Road 1 27 18 27 
Norwest Business Park 1 22.5 15 22.5 
Hills Centre 1 18 12 18 
Castle Hill 0.2 13.5 9 13.5 
Franklin Road 0.2 7.5 5 7.5 
Beecroft         

 

                                                           
15 Respondents were shown generic pictures to assist them in understanding the modes. 
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Figure 1:  Example stated preference choice screen 
 
The sample comprises 223 commuters or 2230 observations for model estimation. Table 
3 shows the descriptive statistics for the work segment. The average age is 43.1 years 
with a mean personal income of $Aud64,100. 89.24 percent of the sample had access to 
a car for the surveyed trip.  
 

Table 3:  Descriptive statistics for Commuters 
 

 Mean Std. Deviation Minimum Maximum 
Age  43.1 12.5 24 70 
Hours worked per week 37.6 14.6 0 70 
Annual Personal Income  64.1 41.8 0 140 
Household size 3.78 2.30 1 8 
No. of children in HH 1.05 1.09 0 4 
Gender 50.4 - 0 1 

 

4. The Results  
 
Five mixed logit models were estimated, beginning with the base model and building up 
to the most general model. The models are identified as follows and the results 
summarised in Table 4: 
 
ML1: Base model with random parameters only 
ML2: ML1 plus observed heterogeneity around the mean of random parameters 
ML3: ML2 plus heteroskedasticity around the standard deviations of random parameters 
ML4: ML3 plus standard deviation of error components for alternatives and nests of 
alternatives  
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ML5: ML4 plus heterogeneity in variance of error components for alternatives and nests 
of alternatives 
 

Table 4:   Summary of Empirical Results16: Commuter Trips 
 

Note: All public transport = (new heavy rail, new light rail, new busway, bus, train, busway); time is in 
minutes; fares and cost is in dollars ($2003). T-values in brackets  2230 observations, 200 Halton draws. 
Attribute Alternatives ML1 ML2 ML3 ML4 ML5 
New light rail constant New light rail 2.411 

(5.0) 
3.313 
(6.1) 

2.978 
(5.7) 

4.442 
(4.68) 

5.011 
(5.3) 

New busway constant New busway 1.019 
(2.1) 

1.933 
(3.5) 

1.561 
(2.8) 

2.939 
(3.1) 

3.487 
(3.7) 

Existing bus constant Bus 1.393 
(3.0) 

2.273 
(4.4) 

1.852 
(3.6) 

3.255 
(3.5) 

3.808 
(4.1) 

Train constant Existing and new 
Train 

1.709 
(3.6) 

2.609 
(4.9) 

2.246 
(4.4) 

3.657 
(3.9) 

4.213 
(4.5) 

Existing busway 
constant 

busway 1.266 
(2.7) 

2.183 
(4.1) 

1.801 
(3.4) 

3.178 
(3.4) 

3.714 
(4.0) 

Random parameters -
constrained triangular: 

      

Main mode fares  All public transport -0.2505 
(-12.1) 

-0.3536 
(-10.1) 

-0.3512 
(-10.4) 

-0.3723 
(-9.3) 

-0.3853 
(-9.4) 

Car mode running and 
toll cost  

Car -0.1653 
(-3.3) 

-0.1764 
(-3.3) 

-0.1876 
(-3.4) 

-0.2152 
(-2.8) 

-0.2182 
(-2.9) 

Car parking cost  Car -0.0340 
(-2.7) 

-0.0377 
(-2.7) 

-0.0443 
(-3.0) 

-0.0571 
(-2.7) 

-0.0558 
(-2.8) 

Main mode in-vehicle 
time  

All public transport -0.0640 
(-19.3) 

-0.0744 
(-14.4) 

-0.0713 
(-18.5) 

-0.0773 
(-15.3) 

-0.0785 
 (-15.1) 

Access  and wait time  All train and light 
rail 

-0.0699 
(-9.5) 

-0.0716 
(-9.5) 

-0.0762 
(-9.8) 

-0.0811 
(-9.1) 

-0.0828 
(-9.2) 

Access time  All bus and busway -.0756 
(-6.9) 

-0.0808 
(-7.1) 

-0.0839 
(-6.5) 

-0.0929 
(-6.4) 

-0.0942 
(-6.3) 

Wait time All bus and busway -0.0882 
(-3.1) 

-0.0907 
(-3.06) 

-0.1026 
(-3.2) 

-0.1034 
(-3.0) 

-0.1048 
(-3.0) 

Main mode in-vehicle 
time 

Car -.0728 
(-6.2) 

-0.0791 
(-6.2) 

-0.0859 
(-7.0) 

-0.0796 
(-5.2) 

-0.0732 
(-4.8) 

Egress travel time  All public transport -0.0145 
(-2.6) 

-0.0142 
(-2.5) 

-0.0151 
(-2.7) 

-0.0169 
(-2.8) 

-0.0181 
(-3.0) 

Egress travel time Car -0.0814 
(-3.5) 

-0.0876 
(-3.5) 

-0.0892 
(-2.8) 

-0.1193 
(-2.5) 

-0.1084 
(-2.5) 

                                                           
16 A referee comments that “multiple mixture runs must be conducted and a measure of variation in parameter coefficients must 
be report (e.g., std. deviation in parameter estimates). Theoretically, we cannot make statistical inference from a distribution using 
a single point.”  Unfortunately, this suggestion does not address a relevant issue in our estimations.  We used Halton draws to 
perform our integrations, so there is no simulation variance.  If we repeated the estimation, we would get the exact same 
estimates.  In fact, there is no simulation variance because the estimates are not based on simulations.  We have used the Halton 
technique to evaluate certain integrals.  There will be an approximation error, of course.  Our only control over that is to use many 
Halton draws, which we have done.  The interpretation of the estimates as a sample of one is not correct, however.  There are 
many other settings in which researchers must resort to approximations to evaluate integrals, such as random effects probit 
models which use Hermite quadrature to approximate integrals, and even the most mundane univariate probit model which uses a 
ratio of polynomials to approximate the standard normal cdf.  The MLEs obtained in these settings are not samples of one; they 
are maximisers of an approximation to the log likelihood function which cannot be evaluated exactly. 
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Access bus mode fare Where bus is access 
mode 

-0.1067 
(-2.9) 

-0.1916 
(-3.65) 

-0.1981 
(-3.8) 

-0.2118 
(-3.8) 

-0.2167 
(-3.8) 

Non-random 
parameters: 

      

Inside Study area New heavy rail -1.119 
(-2.8) 

-1.207 
(-2.9) 

-1.300 
(-3.3) 

-1.497 
(-3.4) 

-1.419 
(-3.2) 

Inside Study area New light rail -1.104 
(-3.1) 

-1.164 (-
3.2) 

-1.249 
(-3.6) 

-1.443 
(-3.7) 

-1.383 
(-3.5) 

Personal income All public transport -0.0122 
(-4.1) 

-0.0278 
(-6.2) 

-0.0211 
(-4.9) 

-0.0266 
(-4.2) 

-0.0326 
(-5.0) 

Gender (male = 1) All Public transport 1.905 
(7.1) 

1.969 
(6.9) 

2.662 
(7.6) 

3.437 
(6.2) 

3.493 
(6.7) 

Heterogeneity around 
Mean: 

      

In-vehicle time * 
personal income 

All public transport  0.000124 
(2.6) 

   

Main mode fares * 
personal income 

All public transport  0.00135 
(3.8) 

0.00078 
(1.90) 

0.00079 
(1.8) 

0.00090 
(2.0) 

Access bus fare * 
personal income 

All public transport 
except existing bus 

 0.00143 
(2.4) 

0.00146 
(2.3) 

0.00160 
(2.3) 

0.00164 
(2.4) 

Heterogeneity around 
Standard deviation: 

      

In-vehicle time *gender All public transport   0.4007 
(4.3) 

0.4195 
(4.5) 

0.4270 
(4.6) 

Main mode fares * 
gender 

All public transport   0.6384 
(4.4) 

0.7049 
(4.4) 

0.6727 
(4.2) 

Error components for 
alternatives and nests of 
alternatives parameters: 

      

Standard deviation  New light rail, new 
heavy rail, new 
busway, existing 
busway 

   0.8659 
(2.2) 

1.010 
(2.9) 

Standard deviation  Existing bus and 
heavy rail 

   0.2068 
(.32) 

0.0814 
(.13) 

Standard deviation  Car    3.021 
(4.0) 

11.158 
(2.3) 

Heterogeneity around 
standard deviation of 
error components effect: 

      

Age of commuter  Car     -0.0366 
(-2.3) 

Log-likelihood at 
convergence 

 -2464.3 -2451.7 -2442.1 -2435.9 -2428.7 

Pseudo-R2  0.3101 0.3135 0.3161 0.3176 0.3195 
 
The access mode travel time relates to the chosen access mode associated with public 
transport main mode. 
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Table 5 summaries the mean and standard deviation of the parameter estimates 
associated with each of the specifications for each attribute and its associated 
decomposition.  
 
Table 5: Mean and Standard deviation of random parameter estimates for entire 
representation of each attribute from relatively simple to more complex models (note: 
except for ML1 which has a single parameter, the other models are complex 
representations of multiple parameters from Table 4) 

 
Mean invtpt costpt acwt eggt crpark accbusf waittb acctb crcost crinvt creggt
Ave ML1 -0.0640 -0.2505 -0.0699 -0.0145 -0.0340 -0.1067 -0.0882 -0.0756 -0.1653 -0.0727 -0.0814
Std Dev ML1 0.0245 0.1003 0.0278 0.0059 0.0139 0.0435 0.0359 0.0306 0.0670 0.0283 0.0329
Ave ML2 -0.0680 -0.2744 -0.0733 -0.0148 -0.0407 -0.1125 -0.0916 -0.0831 -0.1821 -0.0869 -0.0907
Std Dev ML2 0.0287 0.1385 0.0291 0.0060 0.0166 0.1014 0.0373 0.0336 0.0738 0.0367 0.0366
Ave ML3 -0.0788 -0.3581 -0.0819 -0.0258 -0.0558 -0.1241 -0.1071 -0.0859 -0.2789 -0.1146 -0.1297
Std Dev ML3 0.0391 0.2771 0.0269 0.0465 0.0075 0.1112 0.0664 0.0002 0.1868 0.0556 0.0034
Ave ML4 -0.0923 -0.4232 -0.0942 -0.0286 -0.0763 -0.1366 -0.1231 -0.1006 -0.3866 -0.0864 -0.1735
Std Dev ML4 0.0476 0.3374 0.0299 0.0489 0.0373 0.1157 0.0979 0.0007 0.3003 0.0016 0.0161
Ave ML5 -0.0923 -0.4152 -0.0941 -0.0348 -0.1151 -0.1340 -0.1137 -0.1001 -0.2678 -0.1140 -0.1524
Std Dev ML5 0.0473 0.3236 0.0317 0.0620 0.1165 0.1051 0.0837 0.0006 0.1445 0.0602 0.0061  
invtpt = invehicle time for public transport (PT); costpt = public transport fares; acwt = access and wait 
time for light and heavy rail; eggt = aggress time for PT; crpark = car parking cost; accbusf =access bus 
mode fare; waittb = wait time for bus and busway; acctb =access time for bus and busway; crcost = car 
running cost; crinvt = car invehicle time; creggt = egress time from car. 
 
All random parameters have a triangular distribution17. We investigated model 
specifications with unconstrained and constrained18 triangular distributions and found 
that the specification that constrained the standard deviation to equal the mean gave the 
better overall model fit, as well as ensuring a behaviourally meaningful sign for 
estimated parameters across the entire distribution19. The entire set of modal attributes 
are specified with random parameters and all are statistically significant and of the 
expected sign. The models progressively improve in overall goodness of fit from a 
pseudo-r2 of 0.3101 for the base model through to 0.3195 for the fully generalised 
model ML5. We find that personal income is a statistically significant source of 
influence on preference heterogeneity for main mode public transport fares and across 
all models (ML2-ML5), and for bus fares on the access mode (which is available to all 
public modes except current bus), reducing the marginal disutility of fares for all public 
transport modes as personal income increases. Although personal income has an 
influence on public transport in-vehicle time in ML2, it is statistically non-significant 
when we move to incorporate heterogeneity around the standard deviation of the 
random parameter and the error components for alternatives and nests of alternatives.  
 
When we add in observed heterogeneity around the standard deviations of random 
parameters, we find that gender has a statistically significant influence on in-vehicle 
travel time and fare for all public transport modes. The positive sign on both travel time 
and fares suggests that male commuters are much more heterogeneous in terms of the 

                                                           
17 The triangular distribution was first used for random coefficients by Train and Revelt (2000) and Train (2001), later incorporated 
into Train (2003). Hensher and Greene (2003) also used it and it is increasingly being used in empirical studies. Let c be the 
centre and s the spread. The density starts at c-s, rises linearly to c, and then drops linearly to c+s. It is zero below c-s and above 
c+s. The mean and mode are c. The standard deviation is the spread divided by 6 ; hence the spread is the standard deviation 
times 6 . The height of the tent at c is 1/s (such that each side of the tent has area s×(1/s)×(1/2)=1/2, and both sides have area 
1/2+1/2=1, as required for a density). The slope is 1/s2. 
18 The constrained triangular has only one parameters that is its mean and spread. 
19 The mean weighted average elasticities were also statistically equivalent. 
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marginal disutility associated with public mode travel time and fares compared to 
females.  
 
Adding in the error components for alternatives and nests of alternatives in model ML4 
is way of allowing for additional sources of preference heterogeneity that is not 
accounted for by the random parameterisation and its associated decomposition20. 
Importantly however, whereas the random parameters can account for differences 
across individuals and alternatives, the error components for alternatives and nests of 
alternatives focus is on the heterogeneity profile of additional unobserved effects 
associated with each alternative. The standard deviation parameters associated with 
each alternative capture this. Although each alternative can in theory have its own 
unique standard deviation parameter, grouping of the modes into car, existing bus and 
heavy rail and the ‘remaining modes’ produced the best model fit (the latter being the 
new modes and existing busway)21. However only two of the standard deviation effects 
are statistically significant, with the car having the largest standard deviation parameter.  
 
What this suggests is that there is a noticeable amount of preference heterogeneity 
associated with the car alternative that is not accounted for by the random parameters of 
car-specific attributes, compared to the public modes. The local environment in the 
North-West of Sydney has a high incidence of car usage compared to public transport 
use and so the heterogeneity across the population might be expected to be greater for 
the car segment. We have explored the possible reasons for the strong error components 
for alternatives and nests of alternatives for the car mode and its decomposition, to 
reveal sources of observed heterogeneity. We find that the age of the commuter has a 
statistically significant influence on preference heterogeneity. We could not find any 
significant effects for the public transport modes. All other effects being equal, the age 
effect suggests that as the age of the commuter increases, the standard deviation of the 
error components for alternatives and nests of alternatives decreases, leading to a 
reduction in preference heterogeneity from these unobserved effects.  
 
To gain a richer understanding of the behavioural implications of increasingly more 
complex models as we progress from Ml1 to ML5, we present the matrix of direct 
elasticities (Table 6)22. The direct elasticities take into account every element of 
equations (17) - (22) that contribute to the percentage change in the attribute and the 
percentage change in the choice probability. We have selected main mode in-vehicle 
time to illustrate the differences in behavioural response across the five models23. The 
absolute values for the direct elasticities should be treated with caution since they are 
derived from an un-calibrated24 stated choice model. Their purpose is simply to 
establish the behavioural response implications of alternative mixed logit specifications.  
 

 
                                                           
20 Ben Akiva et al (2001) show that a variance term can be estimated for each of the alternatives due to the fact that in the kernel 
logit model ‘…a perfect trade-off does not exist because of the slight difference between the Gumbel and Normal distributions’. By 
contrast probit, probit kernel and extreme value logit require that one of the variances is constrained. 
21 Existing busway is in one sense a relatively new mode and it is interesting how its variance effect aligns closer to modes under 
consideration, all of which have their own infrastructure, with new busway being no more than a geographical extension of the 
existing busway. 
22 Model fit on its own is not the best indicator of the advantages of a more complex structure. Indeed, the improvements in fit may 
be quite small, but the findings in terms of elasticities can be quite different. 
23 Evidence for other attributes is similar and available on request. 
24 Elasticities are strictly meaningful, in a behavioural sense, after a model has been calibrated to reproduce the known population 
shares. Stated choice models whose alternative-specific constants have not been calibrated after estimation to reproduce 
population (in contrast to sample) shares are related to sample shares only. 



Heteroscedastic Control for Random Coefficients and Error Components in Mixed Logit 
Greene & Hensher 
 

14 

 
Table 6:  Direct Elasticities (probability weighted) 

Main Mode In-vehicle Time 
 

Direct Elasticities 
Elasticity of  in-
vehicle time for 

With respect to  ML1 ML2 ML3 ML4 ML5 

New light rail New light rail -1.800 -1.778 -1.763 -1.781 -2.182 
New heavy rail New heavy rail -1.759 -1.764 -1.764 -1.720 -1.909 
New busway New busway -2.323 -2.311 -2.282 -1.366 -2.092 
Existing Bus Existing Bus -1.829 -1.798 -1.771 -2.316 -3.079 
Existing Busway Existing Busway -1.673 -1.676 -1.686 -2.379 -3.010 
Existing heavy rail  Existing heavy rail  -1.486 -1.495 -1.500 -2.000 -2.639 
Car Car -1.204 -1.214 -1.202 -1.129 -1.036 

 
The mean estimates of the direct elasticities vary marginally as we move from the base 
model (ML1) through to accounting for heterogeneity in the mean and standard 
deviations of random parameters (ML3).  However when we introduce the error 
components for alternatives and nests of alternatives (ML4), the elasticities change 
substantially for four public modes, with three increasing (existing bus, busway and 
heavy rail) and one decreasing (new busway).  When we account for the commuter age 
effect (ML5), all public mode direct elasticities further increase.  Although this 
empirical application is a single assessment of the extended mixed logit model, it does 
suggest that the introduction of the error components for alternatives and nests of 
alternatives and its decomposition has a (potentially) significant influence on the 
behavioural responsiveness of the model, in contrast to the refinements centred around 
the random parameters alone. The cross elasticity evidence (available on request) tells a 
similar story with some elasticities increasing and others decreasing as we include the 
error components for alternatives and nests of alternatives.  
 
In addition to elasticities, we derived willingness to pay (WTP) distributions for each 
random parameter. We have selected three WTP estimates (Table 7) to illustrate the 
influence of model specification on the mean, standard deviation, range and incidence 
of negative WTP for values of travel time savings (VTTS) for public transport in-
vehicle time, access wait time and egress time. The VTTS are based on the ratio of the 
parameter estimates associated with each individual observation as drawn from the 
distributions for the numerator attribute and the denominator attribute, the latter being 
the public transport main mode fare). The numerator varies in complexity in terms of 
deep parameterisation as we move from ML1 through to ML5. 
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Table 7:  Value of Travel Time Savings ($/person hour) 
  ML1 ML2 ML3 ML4 ML5 
Public transport in-
vehicle time 

Mean 18.63 18.52 18.29 18.53 18.47 

 Standard deviation 4.47 4.34 4.32 4.51 4.46 
 Minimum -3.13 -0.94 -5.77 -6.50 -6.31 
 Maximum  29.82 29.73 31.86 34.42 34.86 
 Percent Negative 0.2174 0.1630 0.3804 0.4891 0.4348 
Access walk time Mean 18.18 18.05 17.96 18.10 18.23 
 Standard deviation 0.69 0.63 0.67 0.62 0.72 
 Minimum 14.01 14.20 13.92 14.14 13.74 
 Maximum  20.28 19.99 20.02 19.95 20.63 
 Percent Negative 0 0 0 0 0 
Egress time Mean 6.61 6.61 6.65 6.32 6.46 
 Standard deviation 2.26 2.30 2.29 1.97 2.06 
 Minimum -8.71 -9.04 -9.04 -7.42 -7.78 
 Maximum  15.15 15.38 15.53 13.83 14.21 
 Percent Negative 1.739 1.739 1.739 1.630 1.684 

 
 

The evidence shows a very flat profile of values across the models, suggesting little if 
any behavioural enhancement when progressing from the relatively simple 
(‘parsimonious’) model I to the more complex model V. We might not expect any 
significant difference between models IV and V since the heterogeneity around the 
standard deviation of the error components for alternatives and nest of alternatives is 
car-specific. There are however statistically significant effects attributed to the 
enhancements across Models I-IV, which appear to ‘rearrange’ the contributing effects 
without changing the overall absolute values of travel time savings. What this suggests 
is that we might expect different valuation for specific segments of the sample 
(associated with the personal income and gender), which averages out to a similar 
overall estimate for the entire sample across all models. This is an important finding 
since it supports a position that there are systematic variations in tastes attribute to 
person-specific effects which, while not overly important when applying the findings to 
a sampled population as a whole, are important when evaluating the influence of policy 
of specific socio-economic segments. 
 

 

5.  Conclusion  
 
This paper has added additional behavioural dimensionality to the mixed logit model for 
a cross section to account for an increasing number of sources of preference 
heterogeneity in choice making. We have set out the econometric extensions of the 
model and empirically illustrated how the increased dimensionality of the utility 
expressions adds to the revelation of sources of preference heterogeneity. The extended 
mixed logit model has rich behavioural properties, increasing the analyst’s capability to 
investigate sources of heterogeneity around both the mean and variance of random 
parameters as well as alternative-specific variance effects.  
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We find that preference heterogeneity can and should be captured via both the mean and 
variance domains underlying the utility expressions for sampled individuals, and that 
influences often rejected in one domain (e.g., the influence of gender of mean parameter 
estimates), resurfaces through their influence on the standard deviation parameter 
estimate.  
 
The econometric feasibility now available to estimate such increasingly more complex 
models must be placed with the context of the gains in behavioural realism. Progressing 
from a base model up through additions of complexity provides a sensible way of 
revealing whether the increased generality of the model does make a difference in terms 
of the behavioural outputs of interest. In promoting this approach to good model 
estimation and interpretation practice, we recognise that the potential gains in 
behavioural realism may well be hampered by the quality of the data being used in 
estimation. Data that lacks the richness in variability in candidate influences as reflected 
in real markets or in experimental settings will almost always fail to offer an empirical 
setting within which the analyst can do justice to the increased realism available in the 
extended mixed logit model.  
 
As a final reminder, analysts should always be circumspect in the number of random 
elements and parameterizations that can be estimated from data. One particular issue 
that needs to be recognized clearly is that there is only so much random structure that 
can be extracted from things that we do not observe. 
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