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ABSTRACT
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when
energy demands arise and cannot be covered by feed intake. This review mainly focuses
on the role of long chain fatty acids in disturbed energy metabolism of the bovine
species. Long chain fatty acids regulate energy metabolism as ligands of peroxisome
proliferator-activated receptors. Carnitine acts as a carrier of fatty acyl groups as long-
chain acyl-CoA derivatives do not penetrate the mitochondrial inner membrane. There are
two different types of disorders in lipid metabolism which can occur in cattle, namely the
hypoglycaemic-hypoinsulinaemic and the hyperglycaemic-hyperinsulinaemic type with the
latter not always associated with ketosis. There is general agreement that fatty acid
b-oxidation capability is limited in the liver of (ketotic) cows. In accord, supplemental L-
carnitine decreased liver lipid accumulation in periparturient Holstein cows. Of note,
around parturition concurrent oxidation of fatty acids in skeletal muscle is highly
activated. Also peroxisomal b-oxidation in liver of dairy cows may be part of the hepatic
adaptations to a negative energy balance (NEB) to break down fatty acids. An elevated
blood concentration of nonesterified fatty acids is one of the indicators of NEB in cattle
among others like increased b-hydroxy butyrate concentration, and decreased
concentrations of glucose, insulin, and insulin-like growth factor-I. Assuming that liver
carnitine concentrations might limit hepatic fatty acid oxidation capacity in dairy cows,
further study of the role of acyl-CoA dehydrogenases and/or riboflavin in bovine ketosis is
warranted.
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1. Introduction

In mammals, excess energy is stored primarily as tria-
cylglycerols (TAGs) also known as triglycerides, which
are mobilized when energy demands arise beyond cur-
rent nutrient supply via feed (Nakamura et al. 2014).
TAG is an ester derived from glycerol and three fatty
acids (FAs), mostly found in the various adipose tissue
depots of the body which provides high dense energy
storage. FAs are the major source of energy for most
tissues during periods of negative energy balance
(NEB) although FA can, in some circumstances, have
pathological effects. In addition, if blood nonesterified
fatty acid (NEFA) levels are elevated for prolonged peri-
ods, as may occur during lactation or obesity, TAG can
accumulate in other tissues including liver, oocytes,
regenerating endometrium and muscle cells (myo-
cytes) (Rukkwamsuk, Kruip, Wensing, et al. 1999;
Vernon 2005; Wathes et al. 2012). This can have patho-
logical consequences such as the development of fatty
liver and ketosis (Herdt et al. 1981; Grummer 1993;
Herdt 2000; Drackley et al. 2001; Bobe et al. 2004; Gross
et al. 2013), impairment of the immune system (Rukk-
wamsuk, Kruip, Wensing, et al. 1999; Zerbe et al. 2000),

or gynaecological disorders and reduced reproductive
efficiency (Rukkwamsuk, Kruip, Meijer, et al. 1999;
Zerbe et al. 2000; Jorritsma et al. 2003; Jorritsma et al.
2005; Roche 2006; Raboisson et al. 2014; Rutherford
et al. 2016).

Cells package TAG into cytoplasmic lipid droplets
for storage. New emerging data, however, shows the
lipid droplets as a highly dynamic storage pool of FA
that can be used for energy reserve. Lipid excess pack-
aging into lipid droplets can be seen as an adaptive
response to fulfilling energy supply without hindering
mitochondrial or cellular redox status and keeping low
concentration of lipotoxic intermediates (Aon et al.
2014). The ability to store energy in the form of
energy-dense TAG and to mobilize these stores rapidly
during times of low carbohydrate availability (e.g. fast-
ing) or during increased metabolic demand (e.g. exer-
cise) is a highly conserved process essential for survival
(Watt and Steinberg 2008; Lampidonis et al. 2011).

At rest, plasma NEFA are trafficked largely to intra-
myocellular TAG before they enter long-chain acylcar-
nitines oxidative pools. Thus, intramyocellular TAGs are
an important central pool that regulates the delivery of
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FA to the intracellular environment (Kanaley et al. 2009).
Medium-chain TAGs are triacylglycerols with a FA chain
length varying between 6 and 10 carbon atoms and
they differ from long-chain TAG as they are relatively
soluble in water and, hence, rapidly hydrolysed and
absorbed. Medium-chain TAGs are transported in the
blood through the portal system. As a consequence,
they bypass adipose tissue that makes them less sus-
ceptible to hormone-sensitive lipase (HSL) and deposi-
tion into adipose tissue stores. Due to these properties,
medium-chain TAGs have been researched for both
benefits to exercise performance and health. However,
only two studies to date have shown an improvement
in exercise performance (Clegg 2010).

Conceptus energy and nitrogen demands in late
pregnancy are mostly met by placental uptake of
maternal glucose and amino acids. Within a few days
after parturition, mammary demands for glucose,
amino acids, and FA are several-fold those of the preg-
nant uterus before term. Even postparturient feed
increases in voluntary intake cannot satisfy this
increased nutrient demand. Therefore, rates of hepatic
gluconeogenesis and adipose fat mobilization are
greatly accelerated (Bell 1995). As a consequence, mas-
sive mobilization of NEFA from adipose tissue starting
already prior and considerably after parturition in high-
yielding dairy cows is the metabolic hallmark of the
transition from pregnancy to lactation (Bell 1995; Ade-
wuyi et al. 2005) associated with the phenomenon of
NEB when energy requirements (needed for milk pro-
duction and maintenance) exceed energy intake (Ade-
wuyi et al. 2005). Of note, muscle protein mobilization
occurred in advance of fat mobilization periparturient
in Holstein cows until approximately four weeks of lac-
tation (van der Drift et al. 2012).

An elevated blood concentration of NEFA is one of
the indicators of NEB in cattle among others like
increased blood b-hydroxy butyrate (BHB) concentra-
tion (Bell 1995; Ferraretto et al. 2014), and decreased
concentrations of blood glucose, insulin, and IGF-I (Vaz-
quez-A~non et al. 1994; Grum et al. 1996; Rukkwamsuk,
Kruip, Wensing, et al. 1999; Butler et al. 2003; Adewuyi
et al. 2005; Gross, van Dorland, Bruckmaier, et al. 2011;
Gross, van Dorland, Schwarz, et al. 2011). It has been
advised that blood total ketone body concentration
should be evaluated in parallel with blood glucose and
NEFA with reference to ketosis (Fukao et al. 2014).

This review mainly focuses on the potential role of
long chain FAs (over 12 carbon atoms) in disturbed
energy metabolism of the bovine species.

2. Lipolysis

Lipolysis is the biochemical pathway responsible for
the catabolism of TAG stored in cellular lipid droplets
and subsequent release of FA and glycerol into the
bloodstream so that they can be used by other tissues.

The hydrolytic cleavage of TAG generates NEFA, which
are used as energy substrates, essential precursors for
lipid and membrane synthesis, or act directly or indi-
rectly as signaling molecules and, when bonded to
amino acid side chains of peptides, anchor proteins in
biological membranes. Consistent with its central
importance in lipid and energy homeostasis, lipolysis
occurs in essentially all tissues and cell types; it is most
abundant, however, in white and brown adipose tissue
(Zechner et al. 2009; Chaves et al. 2011; Lass et al.
2011; Lampidonis et al. 2011). Endocrine and auto-
crine/paracrine factors cooperate and lead to a fine
regulation of lipolysis in adipocytes (Wang 2008; Lafon-
tan and Langin 2009; Zimmermann et al. 2009; Aon
et al. 2014), whereas mitochondria and lipid droplets
exhibit metabolic interactions (Aon et al. 2014).

In mammals, FAs are predominantly stored as TAG
within lipid droplets of white adipose tissue. Lipid
droplet-associated TAGs are also present in most non-
adipose tissues, including liver, cardiac muscle, and
skeletal muscle. The mobilization of FA from all fat
depots depends on the activity of TAG hydrolases. Cur-
rently, three enzymes are known to hydrolyze TAG,
HSL and monoglyceride lipase (MGL), as well as the rel-
atively recently identified adipose triglyceride lipase
(ATGL). It has been shown that the consecutive action
of ATGL, HSL, and MGL is responsible for the complete
hydrolysis of a TAG molecule (Zechner et al. 2009; Lass
et al. 2011). ATGL initiates lipolysis followed by the
actions of HSL on diacylglycerol, and MGL on monoa-
cylglycerol. HSL is regulated by reversible phosphoryla-
tion on five critical residues. Phosphorylation alone,
however, is not enough to activate HSL. Probably, con-
formational alterations and a translocation from the
cytoplasm to lipid droplets are also involved. In accor-
dance, perilipin (also known as lipid droplet-associated
protein or PLIN) functions as a master regulator of lipol-
ysis, protecting or exposing the triacylglycerol core of a
lipid droplet to lipases (Lampidonis et al. 2011; Locher
et al. 2011).

The classical pathway of lipolysis activation in adipo-
cytes is cAMP-dependent. The production of cAMP is
modulated by G-protein-coupled receptors of the Gs/
Gi family and cAMP degradation is regulated by phos-
phodiesterase. However, other pathways that activate
TAG hydrolysis are currently under investigation. Lipol-
ysis can also be started by G-protein-coupled receptors
of the Gq family, through molecular mechanisms that
involve phospholipase C, calmodulin and protein
kinase C. There is also evidence that increased lipolytic
activity in adipocytes occurs after stimulation of the
mitogen-activated protein kinase pathway or after
cGMP accumulation and activation of protein kinase G
(Chaves et al. 2011).

Additionally besides perilipin, adipophilin and other
proteins of the surface of the lipid droplets like Tip47
(PAT) family of lipid droplet binding proteins
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protecting or exposing the TAG core of the droplets to
lipases are also potent regulators of lipolysis. Consider-
able progress has been made in understanding the
mechanisms of activation of the various lipases. Lipoly-
sis is under tight hormonal regulation. The best under-
stood hormonal effects on lipolysis in adipose tissue
concern the opposing regulation by insulin and cate-
cholamines (Wang 2008; Lafontan and Langin 2009;
Zimmermann et al. 2009; Aon et al. 2014). The proto-
types for hormonal lipolytic control are beta-adrener-
gic stimulation and suppression by insulin, both of
which affect cyclic AMP levels and hence the protein
kinase A-mediated phosphorylation of HSL and perili-
pin. Newly recognized mediators of lipolysis include
atrial natriuretic peptide, cyclic GMP, the ketone body
3-hydroxybutyrate, AMP kinase and mitogen-activated
kinases (Wang 2008).

Of note, g-melanocyte stimulating hormone
(g-MSH), a peptide derived from the ACTH precursor,
pro-opiomelanocortin (POMC), and belonging to a
family of peptides called the melanocortins, is involved
in regulating the activity of HSL (Bicknell et al. 2009).

Nicotinic acid (niacin, NA) can suppress lipolysis, but
findings on responses to dietary NA in cattle are incon-
sistent (Minor et al. 1998; Morey et al. 2011). Small
intestinal absorption of NA averaged 98.5% in dairy
cows (Santschi et al. 2005). In line, in a dose-finding
study in nongestating, nonlactating Holstein cows it
was not possible to identify a dose of NA that reduced
plasma NEFA concentration and prevented the
rebound that occurs following termination of NA
administration (Pescara et al. 2010). Observations on
the NA-stimulated secretion of adiponectin and the
mRNA expression of chemerin in bovine adipocytes
were suggestive of G-protein coupled receptor signal-
ing-dependent improved insulin sensitivity and/or adi-
pocyte metabolism in dairy cows (Kopp et al. 2014).

It should be realized that lipolysis must be inter-
preted in its physiological context since similar rates of
basal or stimulated lipolysis occur under different con-
ditions and by different mechanisms (Wang 2008).

3. b-oxidation

Beta-oxidation is the process by which FA molecules
are broken down in the mitochondria or peroxisomes
to generate acetyl-CoA, which enters the tricarboxylic
acid (TCA) cycle (also known as citric acid cycle or
Krebs cycle), as well as NADH and FADH2, which are
used by the electron transport chain. Thiolase enzyme
catalyzes the release of the first two carbon units, as
acetyl CoA, and a fatty acyl CoA minus two carbons.
This process continues until all of the carbon atoms in
the FA are broken down into acetyl CoA. In compari-
son, a-oxidation is the process located in peroxisomes
by which certain FA are broken down by removal of a

single carbon atom from the carboxyl end (Greven-
goed et al. 2014).

Regarding b-oxidation, it is puzzling that hydrogen-
rich FAs are used scarcely as fuel in the brain in con-
trast to glucose. It has been stated that the disadvan-
tages related to using FA as fuel in the brain have
created evolutionary pressure on lowering the expres-
sion of the b-oxidation enzyme equipment in brain
mitochondria to avoid extensive FA oxidation and to
favor glucose oxidation in brain. This has been associ-
ated with three particular problems: (1) ATP generation
linked to b-oxidation of FA demands more oxygen
than glucose, thereby enhancing the risk for neurons
to become hypoxic; (2) b-oxidation of FA generates
superoxide, which, taken together with the poor anti-
oxidative defense in neurons, causes severe oxidative
stress; (3) the rate of ATP generation based on adipose
tissue-derived FA is slower than that using blood glu-
cose as fuel. Thus, in periods of extended continuous
and rapid neuronal firing, FA oxidation cannot guaran-
tee rapid ATP generation in neurons (Sch€onfeld and
Reiser 2013).

Of note, in severely ketotic cows a decrease in the
profile density of mitochondria per one mm2

field and
an increase of the volume occupied by mitochondria
were shown although not significant (Grohn and Lind-
berg 1985).

3.1. Mitochondrial b-oxidation

FA oxidation in the mitochondrial matrix is a major
source of energy and not only fuels the TCA cycle and
oxidative phosphorylation, but also stimulates hepatic
synthesis of the ketone bodies (R)¡3-hydroxybutyrate
and acetoacetate, especially when physiological
energy demand is increased and exceeds what can be
provided via feed, through glycolysis and glycogenoly-
sis (Liang and Nishino 2010; van Houten et al. 2016). A
series of enzymes, transporters, and other facilitating
proteins are involved in FA oxidation. More specific,
approximately 20 different proteins play specific roles
in FA oxidation (van Houten et al. 2016). This system
requires L-carnitine and is composed of two acyltrans-
ferases, carnitine palmitoyltransferases 1 and 2 (CPT1
and CPT2), and carnitine acylcarnitine translocase
(CACT), which is a member of the mitochondrial carrier
family of proteins. CACT carries out the transport of
acylcarnitines across the inner mitochondrial mem-
brane in exchange for a free carnitine molecule (van
Houten et al. 2016). Carnitine acts as a carrier of fatty
acyl groups from the cytoplasm to the mitochondrion.
Long-chain acyl-CoA derivatives do not penetrate the
inner mitochondrial membrane. CPT1, located on the
external surface of the mitochondrial inner membrane,
catalyzes the conversion of cytoplasmic long-chain
acyl-CoA and carnitine into acylcarnitine followed by
its transport into the mitochondrial matrix in exchange
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for free carnitine as mediated by the inner mitochon-
drial membrane protein CACT. The acylcarnitine is
reconverted to intramitochondrial acyl-CoA by the
action of CPT2 located in the inner membrane. Now,
the acyl-CoA is available for b-oxidation in the matrix.
In liver, malonyl-CoA, the first committed intermediate
produced during FA synthesis, is proposed to regulate
the activity of CPT1 (Hoppel 1982; Drackley et al. 2001;
Bartlett and Eaton 2004; van Houten et al. 2016).
Malonyl-CoA decreases in response to lowered blood
concentrations of insulin and glucagon/adrenalin and
increases in line with enhanced blood insulin concen-
tration in ruminants (Bell 1995; Brindle et al. 1985;
Knapp and Baldwin 1990). The most pronounced
effects of various hormones are on the supply of NEFA
to the liver rather than on its intracellular disposal
(Drackley et al. 2001).

Three isoforms of CPT1 exist in mammalian tissues,
namely the liver isoform (CPT1A or CPT1-L), the muscle
isoform (CPT1B or CPT1-M), and the brain isoform
(CPT1C) (Lavrentyev et al. 2004). Muscle CPT1a and b

mRNA were shown to be upregulated in early lactation
in dairy cows (Sch€aff et al. 2013). With respect to acyl-
carnitine synthesis in rat mitochondria, the linolenate
(C18:2) pool always had the highest fractional turnover
rate. Conversely, the stearate (18:0) pool had the low-
est fractional turnover rate (Gavino et al. 2003).

Acyl-CoA dehydrogenases are a class of at least 11
enzymes most of which play a role in FA oxidation or
amino acid catabolism in the mitochondria of cells
(Swigonova et al. 2009; van Houten et al. 2016). Their
action results in the introduction of a trans double-
bond between C2 (a) and C3 (b) of the acyl-CoA thio-
ester substrate (Thorpe and Kim 1995). Acyl-CoA dehy-
drogenases have been identified in animals (nine
major eukaryotic classes) with five of these nine classes
involved in FA b-oxidation (SCAD, MCAD, LCAD,
VLCAD, and VLCAD2), and the other four involved in
branched chain amino acid metabolism (i3VD, i2VD,
GD, and iBD) (Thomas and Sampsom 2013; Wipperman
et al. 2013). They can be categorized into three distinct
groups based on their specificity for short-, medium-,
or long-chain FA acyl-CoA substrates (Kim et al. 1993).

Inside the mitochondrion, acyl-CoAs are degraded
via b-oxidation, a cyclic process consisting of four enzy-
matic steps. Each cycle shortens the acyl-CoA by releas-
ing the two carboxy-terminal carbon atoms as acetyl-
CoA. The cycle is initiated by dehydrogenation of the
acyl-CoA to trans-2-enoyl-CoA by an acyl-CoA dehydro-
genase. This step is followed by ahydration catalyzed
by an enoyl-CoA hydratase, generating (S)¡3-hydrox-
yacyl-CoA, which is subsequently dehydrogenated to
3-ketoacyl-CoA in a reaction performed by (S)¡3-
hydroxyacyl-CoA dehydrogenase. Finally, a thiolase
cleaves the 3-ketoacyl-CoA into a two-carbon chain–
shortened acyl-CoA and an acetyl-CoA (van Houten
et al. 2016).

On the basis of the different substrate specificities of
the individual FA oxidation enzymes, it is assumed that
the long-chain acyl-CoAs first undergo two to three
b-oxidation cycles by the membrane-bound enzymes
VLCAD and mitochondrial trifunctional protein (MTP).
The resulting medium-chain acyl-CoAs are then han-
dled by the matrix-localized enzymes MCAD, croto-
nase, SCHAD, and MCKAT. Finally, the short-chain acyl-
CoAs are metabolized by SCAD, crotonase, SCHAD, and
MCKAT (van Houten et al. 2016). SCAD is a mitochon-
drial enzyme that catalyzes the dehydrogenation of
short chain FAs (four to six carbons in length) thereby
initiating the cycle of b-oxidation. This process gener-
ates acetyl-CoA, the key substrate for hepatic ketogen-
esis or ATP production by the TCA acid cycle (Turpin
and Tobias 2005). MTP harbors enoyl-CoA hydratase,
(S)¡3-hydroxyacyl-CoA dehydrogenase, and 3-keto-
thiolase activities that are specific for long-chain inter-
mediates (van Houten et al. 2016).

In addition, the sirtuins represent a family of NAD
(+)-dependent protein deacetylases that regulate cell
survival, metabolism, and longevity. Three sirtuins,
SIRT3-5, localize to mitochondria. Expression of SIRT3 is
selectively activated during fasting and calorie restric-
tion. SIRT3 regulates the acetylation level and enzy-
matic activity of key metabolic enzymes, such as
acetyl-CoA synthetase, long-chain acyl-CoA dehydro-
genase, and 3-hydroxy-3-methylglutaryl-CoA synthase
2, and enhances fat metabolism during fasting (New-
man et al. 2012). Furthermore, SIRT3 deacetylates
FOXO3 to protect mitochondria against oxidative stress
(Tseng et al. 2013). The existence of the SIRT1-peroxi-
some proliferator-activated receptor (PPAR) GC1A-axis
has been demonstrated in dairy cows and indicates a
functional relationship between SIRT1 and adiponectin
type 1 receptor in bovine adipose tissue (Weber et al.
2016).

Facilitation of b-oxidation of NEFA, by ‘sparing’ glu-
cose for oxaloacetate formation in the major peripheral
tissues, increases the diversion of pyruvate to oxaloace-
tate formation which facilitates the entry of acetyl-CoA
derived from FA b-oxidation into the TCA cycle
through citrate formation (Eaton et al. 1996; Sugden
et al. 2001). However, if the TCA cycle gets overloaded
(e.g. by capacious drainage of oxaloacetate for gluco-
neogenesis), the acetyl-CoA is shunted off to produce
ketone bodies (acetoacetic acid, acetone, and
b-hydroxy butyrate) in order to prevent cessation of
the TCA cycle and accumulation of acetyl-CoA (Sato
et al. 1999; Block and Sanchez 2000; Sugden et al.
2001).

3.2. Peroxisomal b-oxidation

Peroxisomes are subcellular organelles which are pres-
ent in virtually every eukaryotic cell and catalyze a
large number of metabolic functions. The importance
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of peroxisomes for humans is stressed by the existence
of a large group of genetic diseases in which either the
biogenesis of peroxisomes is impaired or one of its
metabolic functions. Thanks to the work on Zellweger
syndrome which is the prototype of the group of per-
oxisomal disorders, much has been learned about the
metabolism and biogenesis of peroxisomes in humans.
These metabolic functions include: (1) FA b-oxidation;
(2) etherphospholipid biosynthesis; (3) FA a-oxidation,
and (4) glyoxylate detoxification. Since peroxisomes
lack a TCA cycle and a respiratory chain, peroxisomes
are relatively helpless organelles which rely heavily on
their cross-talk with other subcellular organelles in
order to metabolize the end products of metabolism
as generated in peroxisomes (Wanders 2013, 2014;
Hunt et al. 2014). Many of the metabolites which
require peroxisomes for their homeostasic regulation
are involved in signal transduction pathways. These
include the primary bile acids, platelet activating factor,
plasmalogens, N-acylglycines and N-acyltaurines, doco-
sahexaenoic acid as well as multiple prostanoids
(Wanders 2013).

It has been stated that peroxisomal b-oxidation in
liver of dairy cows may be a part of the hepatic adapta-
tions to NEB (Grum et al. 2002). Peroxisomal b-oxida-
tion capacity and the ratio of peroxisomal to total
b-oxidation in Holstein cows decreased from week 3 to
12 after parturition and then increased at week 42
post-partum (Grum et al. 2002). When hepatic peroxi-
somal b-oxidation rates were compared in liver homo-
genates from cows and rats during different nutritional
and physiological states, peroxisomal oxidation in liver
homogenates from cows represented 50% and 77% of
the total capacity for the initial cycle of b-oxidation of
palmitate (16:0) and octanoate (8:0), respectively, but
only 26% and 65% for rats, whereas lactation or food
deprivation did not alter rates of hepatic peroxisomal
b-oxidation of palmitate or octanoate in cows (Grum
et al. 1994).

Long-chain FAs regulate energy metabolism as
ligands of PPARs. PPAR-a expressed primarily in liver is
essential for metabolic adaptation to starvation by
inducing genes for b-oxidation and ketogenesis and
by downregulating energy expenditure through fibro-
blast growth factor 21. PPAR-d is highly expressed in
skeletal muscle and induces genes for long chain FAs
oxidation during fasting and endurance exercise.
PPAR-d also regulates glucose metabolism and mito-
chondrial biogenesis by inducing FOXO1 and PGC1-a.
Genes targeted by PPAR-g in adipocytes suggest that
PPAR-g senses incoming non-esterified long chain FAs
and induces the pathways to store long chain FAs as
triglycerides. Adiponectin, another important target of
PPAR-g may act as a spacer between adipocytes to
maintain their metabolic activity and insulin sensitivity
(Nakamura et al. 2014).

Saturated long-chain FAs (mainly 16:0 and 18:0 fed
at 250 g/day) were effective in upregulating the bovine
adipose tissue PPARg-gene network. In contrast, only
saturated long-chain FAs led to sustaining that
response. Overall, the observed expression patterns
are suggestive of an adipogenic regulatory mechanism
particularly responsive to saturated long-chain FAs
(Schmitt et al. 2011). Overfeeding energy upregulates
peroxisome PPARg-controlled adipogenic and lipolytic
gene networks but does not affect proinflammatory
markers in visceral and subcutaneous adipose depots
of Holstein cows. Overfeeding energy also may predis-
pose cows to greater lipolytic potential by stimulating
expression of TAG hydrolysis genes while inhibiting
signaling via hydroxycarboxylic acid receptor 1, which
is a novel antilipolytic regulator (Ji et al. 2014). In line,
liver from overfed cows (1.62 Mcal/kg BW) responded
to postpartal NEB by up-regulating expression of
PPARa-targets in the FA oxidation and ketogenesis
pathways, along with gluconeogenic genes. Hepato-
kines (fibroblast growth factor 21 and angiopoietin-like
4) and apolipoprotein A-V were up-regulated postpar-
tum to a greater extent in overfed than controls (1.34
Mcal/kg BW)( Khan et al. 2014). Although overfeeding
compared with restricted feeding did not significantly
alter the in vitro lipolytic response to 3-hydroxybuty-
rate or glucose, adipose tissue from overfed cows
tended to be less inhibited by these substances, which
may contribute to higher lipolytic rates in vivo and a
greater triacylglycerol accumulation in the liver after
parturition (Rukkwamsuk et al. 1998).

The mRNA abundance of muscle PPARg increased in
early lactation and was higher in cows with high mean
liver fat content compared to low mean liver fat con-
tent, whereas the abundance of PPARa continuously
decreased after parturition. The mRNA abundance of
muscle PPARd, uncoupling protein 3, and the b-oxida-
tive enzymes 3-hydroxyacyl-coenzyme A dehydroge-
nase, very long-chain acyl-CoA dehydrogenase, and 3-
ketoacyl-CoA was greatest at day three after parturi-
tion, whereas the abundance of PPARg coactivator 1a
decreased after parturition (Sch€aff et al. 2013).

Of note, peroxisomal b-oxidation in liver of dairy
cows was not affected by feeding supplemental fat or
NA during weeks 4–42 of lactation (Grum et al. 2002).

4. Carnitine

Carnitine is an amino acid derivative of lysine and
methionine found in high energy demanding tissues
(skeletal muscles, myocardium, the liver and the adre-
nal glands). It is essential for the intermediary metabo-
lism of FAs and is indispensable for b-oxidation of
long-chain FAs in the mitochondria but also regulates
CoA concentration and removal of the produced acyl
groups. Acyl-CoA acts as restraining factor for several
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enzymes participating in intermediary metabolism.
Transformation of acyl-CoA into acylcarnitine is an
important system also for removing the toxic acyl
groups (Hoppel 1982; Evangeliou and Vlassopoulos
2003). In rodents and pigs, it has been shown that car-
nitine synthesis and uptake of carnitine into cells are
also regulated by PPARa, a transcription factor which is
physiologically activated during fasting or energy dep-
rivation (Schlegel et al. 2012). Feed restriction downre-
gulated BBOX, a key enzyme involved in L-carnitine
biosynthesis in cows (Akbar et al. 2013). Schlegel et al.
(2012) showed that the expression of hepatic genes of
carnitine synthesis and cellular uptake of carnitine is
enhanced in dairy cows during early lactation. These
changes might provide an explanation for increased
hepatic carnitine concentrations observed in the first
postpartum period and might be regarded as a physio-
logic means to provide liver cells with sufficient carni-
tine required for transport of excessive amounts of
NEFA during a NEB (Schlegel et al. 2012).

As L-carnitine is required for mitochondrial FA oxi-
dation, abomasal infusion of L-carnitine indeed
increased in vitro hepatic FA oxidation, decreased liver
lipid accumulation, and supported higher fat-corrected
milk yield in feed-restricted lactating Holstein cows
(Carlson et al. 2006; Akbar et al. 2013), whereas infusion
of up to 12 g/day of carnitine into the abomasum did
not improve milk yield or nutrient digestibilities
(LaCount et al. 1996). More specific, abomasal infusion
of L-carnitine (from day 25 relative to expected calving
date until 56 days in milk at 6, 50, or 100 g/day)
decreased liver total lipid and triacylglycerol accumula-
tion on day 10 after calving. In addition, carnitine-sup-
plemented cows had higher liver glycogen during
early lactation. In general, carnitine supplementation
increased in vitro palmitate (C16:0) b-oxidation by liver
slices, with medium and high treatments affecting in
vitro palmitate metabolism more potently than did
lower treatment, whereas the concentration of NEFA in
serum was not affected by carnitine. As a result of
greater hepatic FA b-oxidation, plasma BHB was higher
for the medium and high treatments. By decreasing
liver lipid accumulation and stimulating hepatic glu-
cose output, carnitine supplementation might improve
glucose status and diminish the risk of developing
metabolic disorders during early lactation (Carlson,
McFaden, et al. 2007). Similarly, in liver slices from
cows during early lactation, carnitine increased oxida-
tion and total utilization of palmitate and decreased
palmitate esterification (Drackley et al. 1991). Abomasal
L-carnitine infusion (at 20 g/day during nine days in
midlactation) increased total carnitine in plasma, liver,
muscle, and milk during feed restriction, whereas feed
restriction alone increased carnitine concentrations in
muscle and milk but not in the liver. Carnitine infusion
increased the concentration of each milk carnitine frac-
tion as well as milk carnitine output on days five to six

after start of the infusion. Remarkably, on the last two
days of the nine-day infusion period, all carnitine frac-
tions were increased in carnitine-infused, feed-restricted
cows, whereas all except short-chain acylcarnitine were
increased in milk from water-infused, feed-restricted
cows. As a consequence, it has been concluded that
liver carnitine concentrations might limit hepatic FA oxi-
dation capacity in dairy cows during the periparturient
period. Therefore, supplemental L-carnitine has been
advocated in order to decrease liver lipid accumulation
in periparturient cows (Carlson, Woodworth, et al. 2007).

5. Riboflavin

Vitamin B2 (or riboflavin) is an essential dietary com-
pound used for the enzymatic biosynthesis of flavin
mononucleotide (FMN) and flavin adenine dinucleo-
tide (FAD). The human genome contains 90 genes
encoding for flavin-dependent proteins, six for ribofla-
vin uptake and transformation into the active coen-
zymes FMN and FAD as well as two for the reduction
to the dihydroflavin form. Flavoproteins utilize either
FMN (16%) or FAD (84%) while five human flavoen-
zymes have a requirement for both FMN and FAD. The
majority of flavin-dependent enzymes catalyze oxida-
tion-reduction processes in primary metabolic path-
ways such as the TCA cycle, b-oxidation and
degradation of amino acids. Flavin-dependent proteins
also play an important role in the biosynthesis of other
essential cofactors and hormones such as coenzyme A,
coenzyme Q, heme, pyridoxal 5'-phosphate (the active
form of vitamin B6), steroids and thyroxine (Henriques
et al. 2010; Lienhart et al. 2013).

Little is known about riboflavin in relation to fat
metabolism in the bovine species. Small intestinal
absorption in calves averaged 25% (Zinn et al. 1987) and
99% in dairy cows (Santschi et al. 2005). Given the fact
that riboflavin is an essential dietary compound used for
the enzymatic biosynthesis of FMN and FAD, and that
flavoproteins utilize either FMN or FAD in order to cata-
lyze processes in primary metabolic pathways such as
the b-oxidation (Henriques et al. 2010; Lienhart et al.
2013), its role in bovine ketosis needs further study.

6. Ketogenesis

Ketogenesis is the branch of mammalian metabolism
concerned with the synthesis of ketone bodies. In this
process, the small, water-soluble compounds acetoace-
tate, D-3-b-hydroxybutyrate and propanone are pro-
duced by the liver in response to reduced glucose
availability. Although ketone bodies are always present
at a low level in healthy individuals, dietary manipula-
tion and certain pathological conditions can increase
the levels of these compounds in vivo (McPherson and
McEneny 2012). Rather than metabolization via the
TCA cycle, acetyl-CoA might also be used instead in
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biosynthesis of ketone bodies via acetoacetyl-CoA and
b-hydroxy-b-methylglutaryl-CoA (HMG-CoA). Ketone
bodies are important vectors of energy transport from
the liver to extrahepatic tissues, especially during fast-
ing, when glucose supply is low. Blood total ketone
body levels should be evaluated in parallel with blood
glucose and free FAs (Fukao et al. 2014).

It has been shown that ketone bodies inhibit protein
degradation and thereby gluconeogenesis and also are
able to spare glucose by inhibiting glucose utilization
(Zarrin et al. 2013; Zarrin et al. 2014a, 2014b; Zarrin
et al. 2017). They also can inhibit lipolysis and function
as a regulatory safety system, replacing insulin, in situa-
tions when the activity of this hormone is low, as in
type I bovine ketosis. Ketone bodies thus have impor-
tant functions as substrates replacing glucose in many
tissues including the immune system and also as signal
substances in the regulation of energy metabolism
(Holtenius and Holtenius 1996; Zarrin et al. 2014a,
2014b).

Under fasting conditions, hepatic FA binding pro-
tein (L-FABP) contributes to hepatic long chain FAs oxi-
dation and ketogenesis by a nontranscriptional
mechanism, whereas L-FABP can activate ketogenic
gene expression in fed mice. Thus, the mechanisms
whereby L-FABP affects FA oxidation may vary with
physiological status (Erol et al. 2004).

Messenger RNA and protein levels of long-chain
acyl-CoA synthetase were significantly higher in livers
of ketotic cows than those in nonketotic cows. In con-
trast, mRNA levels of CPT1 and mRNA and protein lev-
els of CPT2, long chain acyl-CoA dehydrogenase, 3-
hydroxy-3-methylglutaryl-CoA synthase, and acetyl-
CoA carboxylase were decreased in the liver of ketotic
cows. Serum NEFA concentrations positively correlated
with long chain acyl-CoA synthetase protein levels and
negatively correlated with protein levels of CPT2, long
chain acyl-CoA dehydrogenase, 3-hydroxy-3-methyl-
glutaryl-CoA synthase, and acetyl-CoA carboxylase. In
addition, serum BHB concentration negatively corre-
lated with protein levels of CPT2, acyl-CoA dehydroge-
nase long chain, and 3-hydroxy-3-methylglutaryl-CoA
synthase. Overall, FA b-oxidation capability was
reduced in the liver of ketotic compared with nonke-
totic cows (Murondoti et al. 2004; Carlson, Woodworth,
et al. 2007; Li et al. 2012; Gross et al. 2013). It should
also be realized that deficiencies of various acyl-CoA
dehydrogenases lead to FA oxidation disorders involv-
ing episodes of metabolic derangement in man (Wan-
ders et al. 1989, Wanders et al. 1992, van Houten et al.
2016). Of note, around parturition oxidation of FA in
skeletal muscle is highly activated in dairy cows, which
may contribute to diminish the FA load on the liver.
The decline in muscle FA oxidation within the first four
weeks of lactation accompanied with increased feed
intake refer to greater supply of ruminally derived ace-
tate, which as the preferred fuel of the muscle, saves

long-chain FAs for milk fat production (Sch€aff et al.
2013).

Of note, it cannot be excluded that reduced phe-
nolics from the rumen inhibit metabolism in liver cells
including b-oxidation. Benzoic acid, 3-phenylpropionic
acid, trans-cinnamic acid, and 3-(4-hydroxyphenyl)pro-
pionic acid in ruminal fluid are presumed to be the
products of chemical reduction of dietary phenolic
monomers by ruminal microorganisms. These reduced
phenolics, which are representative of those in ruminal
fluid, inhibited metabolism of bovine liver tissue in vitro
at supraphysiological concentrations (Cremin et al.
1994).

7. Pathophysiology of ketogenesis

In dairy cows, overfeeding during the dry period leads
to overcondition at calving and to depression of appe-
tite after calving. As a consequence, at calving over-
conditioned high-producing dairy cows inevitably go
into a more severe NEB postpartum than cows that
have a normal appetite. During the period of NEB, the
energy requirements of the cow are satisfied by lipoly-
sis and proteolysis. Lipolysis results in an increased
concentration of NEFA in the blood. In the liver, these
NEFA are predominantly esterified to TAGs that are
secreted in very low density lipoproteins (VLDL). In
early lactation in cows with a severe NEB, the capacity
of the liver to maintain the export of the TAG in the
form of VLDL in balance with the hepatic TAG produc-
tion is not always adequate. As a result, the excess
amount of TAG accumulates in the liver, leading to
fatty infiltration of the liver (hepatic lipidosis or fatty
liver) (Rukkwamsuk, Kruip, Wensing, et al. 1999) and
ketosis (Herdt et al. 1981; Herdt 2000).

Reported defects in human ketogenesis include
mitochondrial HMG-CoA synthase deficiency and
HMG-CoA lyase deficiency. Mitochondrial HMG-CoA
synthase deficiency should be considered in non-
ketotic hypoglycemia if a FA b-oxidation defect is sus-
pected, but cannot be confirmed. Human patients with
HMG-CoA lyase deficiency can develop hypoglycemic
crises and neurological symptoms even in adolescents
and adults. Succinyl-CoA-3-oxoacid CoA transferase
(SCOT) deficiency and b-ketothiolase (T2) deficiency
are two defects in ketolysis. Permanent ketosis is
pathognomonic for SCOT deficiency. However,
patients with ‘mild’ SCOT mutations may have non-
ketotic periods. T2-deficient patients with ‘mild’ muta-
tions may have normal blood acylcarnitine profiles
even in ketoacidotic crises. T2 deficient patients cannot
be detected in a reliable manner by newborn screen-
ing using acylcarnitines (Fukao et al. 2014). Further-
more, acetylcarnitine accounts for a major fraction of
the acylcarnitines excreted in the ketotic conditions.
The contribution of acetylcarnitine to the change in
acylcarnitines as ketosis appears or disappears is
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significantly less in obese human subjects than in nor-
mal-weight subjects or in diabetic patients. This differ-
ence may reflect an alteration in the production or
disposition of acetyl-CoA and acetylcarnitine in obesity
(Hoppel and Genuth 1982).

Although primary carnitine deficiency is unusual,
depletion due to secondary causes, such as a disease
or a medication side effect, can occur. Primary carnitine
deficiency is caused by a defect in the plasma mem-
brane carnitine transporter (OCTN2) in muscle and kid-
neys. Secondary carnitine deficiency is associated with
several inborn errors of metabolism and acquired med-
ical or iatrogenic conditions (Hoppel 1982; Evangeliou
and Vlassopoulos 2003).

The most likely cause of bovine ketosis is the limited
capacity of the bovine liver for complete oxidation of
NEFA, leading to an increased formation of ketone
bodies, reesterification, and accumulation of triglycer-
ides in the liver (Murondoti et al. 2004; Carlson, Wood-
worth, et al. 2007; Li et al. 2012; Gross et al. 2013;
Sch€aff et al. 2013). Of note, no inborn errors in ketolysis
and primary carnitine deficiency have been reported in
the bovine species yet.

8. (Subclinical) Ketosis

The beginning of lactation requires huge metabolic
adaptations to meet increased energy demands for
milk production of dairy cows (Bell 1995; Rukkwamsuk,
Kruip TA, Wensing, et al. 1999; Vernon 2005; Wathes
et al. 2012; Gross et al. 2013; Sch€aff et al. 2013). Dairy
cows pass through a period of NEB as they transition
from late gestation to early lactation (Herdt et al. 1981;
Bell 1995; Rukkwamsuk, Kruip, Wensing, et al. 1999;
Gross, van Dorland, Bruckmaier, et al. 2011; McArt et al.
2013) during which they are highly susceptible to
developing ketosis and liver lipidosis, which are costly
diseases to farmers (Loor et al. 2007). Subclinical keto-
sis is usually defined as a blood BHB concentration
beyond 1.2 mmol/L (McArt et al. 2012).

Of interest, a ketosis model can be induced in dairy
cows by restricting feed intake plus feeding 1,3-buta-
nediol. Increases in BHB in blood result from metabo-
lism of the 1,3-butanediol. Production of BHB from
butyrate by the tissues was greatest for liver and
rumen and much less for kidney in nonlactating, non-
pregnant Holstein cows (Drackley et al. 1990). By using
this model, ketosis begun at day 15 postpartum,
caused ketonemia and gradual development of clinical
ketosis by day 40–45 in cows. Concentrations of NEFA
in plasma of cows that became ketotic increased 3.0-,
2.6-, and 1.9-fold at three weeks before, two weeks
before, and at ketosis, respectively, but increased non-
significantly for glucose-treated cows. Concurrently,
BHB increased 3.5-, 5.8- and 8.4-fold for cows that
became ketotic but 1.6-fold or less for glucose-treated
cows. Plasma acetate increased dramatically two weeks

before ketosis. Liver glycogen content decreased to
nearly 0 by two weeks before ketosis occurred, but it
increased to prepartal values in glucose-treated cows.
Liver triglycerides averaged 2.0% of wet weight at day
five for all cows but increased to 8%–10% for about
two weeks before ketosis occurred. Hepatic in vitro glu-
coneogenic capacity decreased significantly for ketosis
induction protocol cows when clinical ketosis was
detected. Results indicate that experimental ketosis
was preceded by metabolic abnormalities up to two
weeks before clinical ketosis occurred (Veenhuizen
et al. 1991). In addition, the increased lipolysis after
parturition led to a vast increase in the hepatic triacy-
glycerol concentration and to a shift in hepatic FA
composition. In cows with fatty liver, the percentages
of two of the four major bovine FAs palmitic (C16:0)
and oleic (C18:1) acids were higher at 0.5 week after
parturition than at one week before parturition,
whereas percentages of stearic (C18:0) and linoleic
(C18:2) acids decreased (Rukkwamsuk, Kruip, Meijer,
et al. 1999). However, different feeding regimens dur-
ing the dry period do not influence the composition of
FAs in adipose tissue (Rukkwamsuk et al. 2000).

Of interest, a total of 2415 genes were altered by
ketosis in dairy cows with downregulation of genes
associated with oxidative phosphorylation, protein
ubiquitination, and ubiquinone biosynthesis. Other
molecular adaptations included upregulation of genes
and nuclear receptors associated with cytokine signal-
ing, FA uptake/transport, and FA oxidation. Genes
downregulated during ketosis included several associ-
ated with cholesterol metabolism, growth hormone
signaling, proton transport, and FA desaturation (Loor
et al. 2007).

Field studies have shown that subclinical ketosis
often affects 40% of cows in a herd although the inci-
dence can be as high as 80% (McArt et al. 2013). Both
peak incidence and prevalence of subclinical ketosis
occurred at five days in milk with values of 22% and
29%, respectively (McArt et al. 2012). Herds with more
than a 15%–20% prevalence of excessively elevated
concentrations of NEFA and BHB in early lactation have
higher rates of negative subsequent events (McArt
et al. 2013; Raboisson et al. 2014). Cows first testing
subclinical ketosis positive from three to five days in
milk were 6.1 times more likely to develop a displaced
abomasum than cows first testing subclinical ketosis
positive at six days in milk or later, whereas cows first
testing subclinical ketosis positive from three to seven
days in milk were 4.5 times more likely to be removed
from the herd, were 0.7 times as likely to conceive to
first service, and produced 2.2 kg less milk per day for
the first 30 days in milk than cows first testing positive
at eight days in milk or later. Each 0.1 mmol/L increase
in BHB at first subclinical ketosis-positive test increased
the risk of developing a displaced abomasum by a fac-
tor of 1.1, increased the risk of removal from herd by a
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factor of 1.4, and was associated with a decrease in
milk production by 0.5 kg/day for the first 30 days in
milk. These results show that time of onset and BHB
concentration of first subclinical ketosis-positive test
are important indicators of individual cow performance
(McArt et al. 2012).

Besides increased lipolysis, low insulin/glucagon
ratios and malonyl-CoA concentrations are prerequi-
sites for ketogenesis. From an etiological viewpoint,
there are two quite different types of metabolic disor-
ders in which ketosis can occur, the hypoglycaemic-
hypoinsulinaemic and the hyperglycaemic-hyperinsuli-
naemic type. The former, type I, generally occurs 3–6
weeks after calving in cows whose milk secretion is so
extensive that the demand for glucose exceeds the
capacity for glucose production. To protect the body
from hazardous protein degradation by a high rate of
gluconeogenesis, this process is inhibited and the
increased energy requirements are met by the ele-
vated utilization of ketone bodies. The hyperglycae-
mic-hyperinsulinaemic form, type II, generally occurs
earlier in lactation. An important etiologic factor is
overfeeding in the dry period, which can lead to distur-
bances in the hormonal adaptation of metabolism at
calving with increased plasma levels of insulin and glu-
cose and often out not always also with hyperketonae-
mia (Holtenius and Holtenius 1996).

By defining subclinical ketosis as (1) BHB concentra-
tion >1.4 mM; (2) NEFA concentration > 0.4 mM pre-
partum; or (3) NEFA concentration > 1.0 mM,
postpartum corrected the underestimated risk of
developing various diseases, reproductive disorders,
and changes in milk production (Raboisson et al. 2014).
Subclinically ketotic cows also showed an elevated pro-
portion of C18:1 cis-9 in milk fat (van Haelst et al. 2008),
thereby potentially indicating a acyl-CoA dehydroge-
nase deficiency.

The pathway for oxidation of energy involves a bal-
anced oxidation of C2 and C3 compounds. During early
lactation in dairy cattle, this C2/C3 ratio is out of bal-
ance, due to a high availability of lipogenic (C2) prod-
ucts and a low availability of glycogenic (C3) products
relative of the C2 and C3 products required for milk
production. It is clear that dietary energy source can
affect the balance of the C2/C3 ratio, as indicated by
plasma NEFA, BHB, and glucose levels. It has been
shown that glycogenic nutrients increase glucose and
insulin concentrations and decrease NEFA and BHB
plasma levels. Extra lipogenic nutrients elevate NEFA
and b-hydroxybutyrate and decrease plasma glucose
concentrations. Lipogenic nutrients generally increase
milk fat percentage and decrease milk protein percent-
age, suggesting a surplus of C2 compounds. The
inverse is the case for feeding extra glycogenic
nutrients, implying reduced deamination and oxida-
tion of glycogenic amino acids. Feeding extra glyco-
genic nutrients improved the energy balance, in

contrast to ambiguous results of lipogenic nutrients on
energy balance. Moreover, glycogenic feed may
reduce the severity of ketosis and fatty liver, but
increased the incidence of (sub)clinical acidosis (van
Knegsel et al. 2005).

9. Conclusions

The capacity of the bovine liver for complete oxidation
of NEFA is limited, leading to an increased formation of
ketone bodies, reesterification, and accumulation of tri-
glycerides in the liver when dairy cows pass through a
period of NEB as they transition from late gestation to
early lactation. As no inborn errors in ketolysis have
been reported in the bovine species yet, secondary
deficiencies are regarded more likely to occur. For
instance, mRNA levels of CPT1 and long chain acyl-CoA
dehydrogenase were decreased in the liver of ketotic
cows pointing towards the role of long chain acylcarni-
tines in bovine ketosis. As a consequence, further study
of the role of acyl-CoA dehydrogenases in bovine keto-
sis is warranted as deficiencies of these enzymes lead
to FA oxidation disorders in other species. Further-
more, it has been shown that carnitine administration
to dairy cows decreased liver total lipid and triacylgly-
cerol accumulation in vitro and as a consequence the
role of potential carnitine deficiency in bovine ketosis
needs further study as well. Carnitine synthesis and
uptake of carnitine into cells might be regulated by
PPARa. In line, the abundance of PPARa continuously
decreased after parturition. Given the fact that ribofla-
vin is an essential dietary compound used for the enzy-
matic biosynthesis of FMN and FAD, and that
flavoproteins utilize either FMN or FAD in order to cata-
lyze processes in primary metabolic pathways such as
b-oxidation its role in bovine ketosis needs further
study too.
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Cardoso F, Loor JJ. 2014. Overfeeding dairy cattle during
late-pregnancy alters hepatic PPARa-regulated pathways
including hepatokines: impact on metabolism and periph-
eral insulin sensitivity. Gene Regul Syst Bio. 8:97–111.

Kim JJ, Wang M, Paschke R. 1993. Crystal structures of
medium-chain acyl-CoA dehydrogenase from pig liver
mitochondria with and without substrate. Proc Natl Acad
Sci U S A. 90(16):7523–7527.

Knapp JR, Baldwin RL. 1990. Regulation of ketogenesis in
dairy cattle. J Animal Sci. 68(suppl.):522.

Kopp C, Hosseini A, Singh SP, Regenhard P, Khalilvandi-Beh-
roozyar H, Sauerwein H, Mielenz M. 2014. Nicotinic acid
increases adiponectin secretion from differentiated
bovine preadipocytes through G-protein coupled receptor
signaling. Int J Mol Sci. 15(11):21401–21418.

LaCount DW, Emmert LS, Drackley JK. 1996. Dose response of
dairy cows to abomasal administration of four amounts of
L-carnitine. J Dairy Sci. 79(4):591–602.

Lafontan M, Langin D. 2009. Lipolysis and lipid mobilization in
human adipose tissue. Prog Lipid Res. 48(5):275–297.

Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ.
2011. The resurgence of Hormone-Sensitive Lipase (HSL)
in mammalian lipolysis. Gene. 477(1–2):1–11.

Lass A, Zimmermann R, Oberer M, Zechner R. 2011. Lipolysis -
a highly regulated multi-enzyme complex mediates the
catabolism of cellular fat stores. Prog Lipid Res. 50(1):14–
27.

Lavrentyev EN, Matta SG, Cook GA. 2004. Expression of three
carnitine palmitoyltransferase-I isoforms in 10 regions of
the rat brain during feeding, fasting, and diabetes. Bio-
chem Biophys Res Commun. 315(1):174–178.

Li P, Li XB, Fu SX, Wu CC, Wang XX, Yu GJ, Long M, Wang Z,
Liu GW. 2012. Alterations of fatty acid b-oxidation capabil-
ity in the liver of ketotic cows. J Dairy Sci. 95(4):1759–1766.

Liang WC, Nishino I. 2010. State of the art in muscle lipid dis-
eases. Acta Myol. 29(2):351–356.

Lienhart WD, Gudipati V, Macheroux P. 2013. The human fla-
voproteome. Arch Biochem Biophys. 535(2):150–162.

Locher LF, Meyer N, Weber EM, Rehage J, Meyer U, D€anicke S,
Huber K. 2011. Hormone-sensitive lipase protein expres-
sion and extent of phosphorylation in subcutaneous and
retroperitoneal adipose tissues in the periparturient dairy
cow. J Dairy Sci. 94(9):4514–4523.

Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, Oliveira R,
Rodriguez-Zas SL, Drackley JK, Lewin HA. 2007. Nutrition-
induced ketosis alters metabolic and signaling gene net-
works in liver of periparturient dairy cows. Physiol Geno-
mics. 32(1):105–116.

McArt JA, Nydam DV, Oetzel GR. 2012. Epidemiology of sub-
clinical ketosis in early lactation dairy cattle. J Dairy Sci. 95
(9):5056–5066.

McArt JA, Nydam DV, Oetzel GR, Overton TR, Ospina PA. 2013.
Elevated non-esterified fatty acids and b-hydroxybutyrate
and their association with transition dairy cow perfor-
mance. Vet J. 198(3):560–570.

McPherson PA, McEneny J. 2012. The biochemistry of keto-
genesis and its role in weight management, neurological
disease and oxidative stress. J Physiol Biochem. 68(1):141–
151.

Minor DJ, Trower SL, Strang BD, Shaver RD, Grummer RR.
1998. Effects of nonfiber carbohydrate and niacin on peri-
parturient metabolic status and lactation of dairy cows. J
Dairy Sci. 81(1):189–200.

Morey SD, Mamedova LK, Anderson DE, Armendariz CK, Tit-
gemeyer EC, Bradford BJ. 2011. Effects of encapsulated
niacin on metabolism and production of periparturient
dairy cows. J Dairy Sci. 94(10):5090–5104.

Murondoti A, Jorritsma R, Beynen AC, Wensing T, Geelen MJ.
2004. Unrestricted feed intake during the dry period
impairs the postpartum oxidation and synthesis of fatty
acids in the liver of dairy cows. J Dairy Sci. 87(3):672–679.

Nakamura MT, Yudell BE, Loor JJ. 2014. Regulation of energy
metabolism by long-chain fatty acids. Prog Lipid Res.
53:124–144.

Newman JC, He W, Verdin E. 2012. Mitochondrial protein acyl-
ation and intermediary metabolism: regulation by sirtuins
and implications for metabolic disease. J Biol Chem. 287
(51):42436–42443.

Pescara JB, Pires JA, Grummer RR. 2010. Antilipolytic and lipo-
lytic effects of administering free or ruminally protected
nicotinic acid to feed-restricted Holstein cows. J Dairy Sci.
93(11):5385–5396.

Raboisson D, Mouni�e M, Maign�e E. 2014. Diseases, reproduc-
tive performance, and changes in milk production associ-
ated with subclinical ketosis in dairy cows: A meta-
analysis and review. J Dairy Sci. doi: 10.3168/jds.2014-
8237.

Roche JF. 2006. The effect of nutritional management of the
dairy cow on reproductive efficiency. Anim Reprod Sci. 96
(3–4):282–296.

Rukkwamsuk T, Geelen MJ, Kruip TA, Wensing T. 2000. Inter-
relation of fatty acid composition in adipose tissue, serum,
and liver of dairy cows during the development of fatty
liver postpartum. J Dairy Sci. 83(1):52–59.

Rukkwamsuk T, Kruip TA, Meijer GA, Wensing T. 1999. Hepatic
fatty acid composition in periparturient dairy cows with
fatty liver induced by intake of a high energy diet in the
dry period. J Dairy Sci. 82(2):280–287.

Rukkwamsuk T, Kruip TA, Wensing T. 1999. Relationship
between overfeeding and overconditioning in the dry
period and the problems of high producing dairy cows
during the postparturient period. Vet Q. 21(3):71–77.

Rukkwamsuk T, Wensing T, Geelen MJ. 1998. Effect of over-
feeding during the dry period on regulation of adipose tis-
sue metabolism in dairy cows during the periparturient
period. Dairy Sci. 81(11):2904–2911.

Rutherford AJ, Oikonomou G, Smith RF. 2016. The effect of
subclinical ketosis on activity at estrus and reproductive
performance in dairy cattle. J Dairy Sci. 99(6):4808–4815.

272 J. H. VAN DER KOLK ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

itä
ts

bi
bl

io
th

ek
 B

er
n]

 a
t 0

7:
54

 0
2 

A
ug

us
t 2

01
7 

https://doi.org/10.3168&sol;jds.2014-8237
https://doi.org/10.3168&sol;jds.2014-8237


Santschi DE, Berthiaume R, Matte JJ, Mustafa AF, Girard CL.
2005. Fate of supplementary B-vitamins in the gastrointes-
tinal tract of dairy cows. J Dairy Sci. 88(6):2043–2054.

Sato H, Matsumoto M, Hanasaka S. 1999. Relations between
plasma acetate, 3-hydroxybutyrate, FFA, glucose levels
and energy nutrition in lactating dairy cows. J Vet Med
Sci. 61(5):447–451.

Sch€aff C, B€orner S, Hacke S, Kautzsch U, Sauerwein H, Spach-
mann SK, Schweigel-R€ontgen M, Hammon HM, Kuhla B.
2013. Increased muscle fatty acid oxidation in dairy cows
with intensive body fat mobilization during early lactation.
J Dairy Sci. 96(10):6449–6460.

Schlegel G, Keller J, Hirche F, Geißler S, Schwarz FJ, Ringseis R,
Stangl GI, Eder K. 2012. Expression of genes involved in
hepatic carnitine synthesis and uptake in dairy cows in
the transition period and at different stages of lactation.
BMC Vet Res. 8:28.

Schmitt E, Ballou MA, Correa MN, DePeters EJ, Drackley JK,
Loor JJ. 2011. Dietary lipid during the transition period to
manipulate subcutaneous adipose tissue peroxisome pro-
liferator-activated receptor-g co-regulator and target
gene expression. J Dairy Sci. 94(12):5913–5925.

Sch€onfeld P, Reiser G. 2013. Why does brain metabolism not
favor burning of fatty acids to provide energy? Reflections
on disadvantages of the use of free fatty acids as fuel for
brain. J Cereb Blood Flow Metab. 33(10):1493–1499.

Sugden MC, Bulmer K, Holness MJ. 2001. Fuel-sensing mecha-
nisms integrating lipid and carbohydrate utilization. Bio-
chem Soc Trans. 29(2):272–278.

Swigonova Z, Mohsen AW, Vockley J. 2009. Acyl-CoA dehy-
drogenases: dynamic history of protein family evolution. J
Mol Evol. 69:176–193.

Thomas ST, Sampson NS. 2013. Mycobacterium tuberculosis
utilizes a unique heterotetrameric structure for dehydro-
genation of the cholesterol side chain. Biochemistry. 52
(17):2895–2904.

Thorpe C, Kim JJ. 1995. Structure and mechanism of action of
the acyl-CoA dehydrogenases. FASEB J. 9(9):718–725.

Tseng AH, Shieh SS, Wang DL. 2013. SIRT3 deacetylates
FOXO3 to protect mitochondria against oxidative damage.
Free Radic Biol Med. 63:222–234.

Turpin B, Tobias JD. 2005. Perioperative management of a
child with short-chain acyl-CoA dehydrogenase defi-
ciency. Paediatr Anaesth. 15(9):771–777.

van der Drift SG, Houweling M, Schonewille JT, Tielens AG,
Jorritsma R. 2012. Protein and fat mobilization and associ-
ations with serum b-hydroxybutyrate concentrations in
dairy cows. J Dairy Sci. 95(9):4911–4920.

van Haelst YN, Beeckman A, Van Knegsel AT, Fievez V. 2008.
Short communication: elevated concentrations of oleic
acid and long-chain fatty acids in milk fat of multiparous
subclinical ketotic cows. J Dairy Sci. 91(12):4683–4686.

van Knegsel AT, van den Brand H, Dijkstra J, Tamminga S,
Kemp B. 2005. Effect of dietary energy source on energy
balance, production, metabolic disorders and reproduction
in lactating dairy cattle. Reprod Nutr Dev. 45(6):665–688.

Vazquez-A~non M, Bertics S, Luck M, Grummer RR, Pinheiro J.
1994. Peripartum liver triglyceride and plasma metabolites
in dairy cows. J Dairy Sci. 77(6):1521–1528.

Veenhuizen JJ, Drackley JK, Richard MJ, Sanderson TP, Miller
LD, Young JW. 1991. Metabolic changes in blood and liver
during development and early treatment of experimental
fatty liver and ketosis in cows. J Dairy Sci. 74(12):4238–4253.

Vernon RG. 2005. Lipid metabolism during lactation: a review
of adipose tissue-liver interactions and the development
of fatty liver. J Dairy Res. 72(4):460–469.

Wanders RJ. 2013. Peroxisomes in human health and disease:
metabolic pathways, metabolite transport, interplay with
other organelles and signal transduction. Subcell Bio-
chem. 69:23–44.

Wanders RJ. 2014. Metabolic functions of peroxisomes in
health and disease. Biochimie. 98:36–44.

Wanders RJA, Duran M, IJlst L, Jager JP, van Gennip AH,
Jakobs C, Dorland L, van Sprang FJ. 1989. Sudden infant
death and long-chain 3-hydroxyacyl-CoA dehydrogenase.
Lancet. 334:52–53.

Wanders RJA, IJlst L, Poggi F, Bonnefont JP, Munnich A, Brivet
M, Rabier D, Saudubray JM. 1992. Human trifunctional pro-
tein deficiency: a new disorder of mitochondrial fatty acid
ß-oxidation. Biochem Biophys Res Comm. 188:1139–1145.

Wang S, Soni KG, Semache M, Casavant S, Fortier M, Pan L,
Mitchell GA. 2008. Lipolysis and the integrated physiology
of lipid energy metabolism. Mol Genet Metab. 95(3):117–
126.

Wathes DC, Clempson AM, Pollott GE. 2012. Associations
between lipid metabolism and fertility in the dairy cow.
Reprod Fertil Dev. 25(1):48–61.

Watt MJ, Steinberg GR. 2008. Regulation and function of tria-
cylglycerol lipases in cellular metabolism. Biochem J. 414
(3):313–325.

Weber M, Locher L, Huber K, Rehage J, Tienken R, Meyer U,
D€anicke S, Webb L, Sauerwein H, Mielenz M. 2016. Longi-
tudinal changes in adipose tissue of dairy cows from late
pregnancy to lactation. Part 2: The SIRT-PPARGC1A axis
and its relationship with the adiponectin system. J Dairy
Sci. 99(2):1560–1570.

Wipperman MF, Yang M, Thomas ST, Sampson NS. 2013.
Shrinking the FadE proteome of Mycobacterium tubercu-
losis: insights into cholesterol metabolism through identi-
fication of an a2b2 heterotetrameric acyl coenzyme A
dehydrogenase family. J Bacteriol. 195(19):4331–4341.

Zarrin M, Grossen-R€osti L, Bruckmaier RM, Gross JJ. 2017. Ele-
vation of blood b-hydroxybutyrate concentration affects
glucose metabolism in dairy cows before and after partu-
rition. J Dairy Sci. 100(3):2323–2333.

Zarrin M, De Matteis L, Vernay MC, Wellnitz O, van Dorland
HA, Bruckmaier RM. 2013. Long-term elevation of
b-hydroxybutyrate in dairy cows through infusion: effects
on feed intake, milk production, and metabolism. J Dairy
Sci. 96(5):2960–2972.

Zarrin M, Wellnitz O, van Dorland HA, Bruckmaier RM. 2014a.
Induced hyperketonemia affects the mammary immune
response during lipopolysaccharide challenge in dairy
cows. J Dairy Sci. 97(1):330–339.

Zarrin M, Wellnitz O, van Dorland HA, Gross JJ, Bruckmaier
RM. 2014b. Hyperketonemia during lipopolysaccharide-
induced mastitis affects systemic and local intramammary
metabolism in dairy cows. J Dairy Sci. 97(6):3531–3541.

Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R,
Lass A. 2009. Adipose triglyceride lipase and the lipolytic
catabolism of cellular fat stores. J Lipid Res. 50(1):3–21.

Zerbe H, Schneider N, Leibold W, Wensing T, Kruip TA, Schu-
berth HJ. 2000. Altered functional and immunophenotypi-
cal properties of neutrophilic granulocytes in postpartum
cows associated with fatty liver. Theriogenology. 54
(5):771–786.

Zimmermann R, Lass A, Haemmerle G, Zechner R. 2009. Fate
of fat: the role of adipose triglyceride lipase in lipolysis.
Biochim Biophys Acta. 1791(6):494–500.

Zinn RA, Owens FN, Stuart RL, Dunbar JR, Norman BB. 1987. B-
vitamin supplementation of diets for feedlot calves. J
Anim Sci. 65(1):267–277.

VETERINARY QUARTERLY 273

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

itä
ts

bi
bl

io
th

ek
 B

er
n]

 a
t 0

7:
54

 0
2 

A
ug

us
t 2

01
7 


	Abstract
	1. Introduction
	2. Lipolysis
	3. β-oxidation
	3.1. Mitochondrial β-oxidation
	3.2. Peroxisomal β-oxidation

	4. Carnitine
	5. Riboflavin
	6. Ketogenesis
	7. Pathophysiology of ketogenesis
	8. (Subclinical) Ketosis
	9. Conclusions
	Acknowledgments
	Disclosure statement
	References



