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Prevalence of tick-borne pathogens in
questing Ixodes ricinus ticks in urban and
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Abstract

Background: Throughout Europe, Ixodes ricinus transmits numerous pathogens. Its widespread distribution is not
limited to rural but also includes urbanized areas. To date, comprehensive data on pathogen carrier rates of I. ricinus
ticks in urban areas of Switzerland is lacking.

Results: Ixodes ricinus ticks sampled at 18 (sub-) urban collection sites throughout Switzerland showed carrier rates
of 0% for tick-borne encephalitis virus, 18.0% for Borrelia burgdorferi (sensu lato), 2.5% for Borrelia miyamotoi, 13.5%
for Rickettsia spp., 1.4% for Anaplasma phagocytophilum, 6.2% for "Candidatus Neoehrlichia mikurensis", and 0.8% for
Babesia venatorum (Babesia sp., EU1). Site-specific prevalence at collection sites with n > 45 ticks (n = 9) significantly
differed for B. burgdorferi (s.l.), Rickettsia spp., and "Ca. N. mikurensis", but were not related to the habitat type. Three
hundred fifty eight out of 1078 I. ricinus ticks (33.2%) tested positive for at least one pathogen. Thereof, about 20%
(71/358) were carrying two or three different potentially disease-causing agents. Using next generation sequencing,
we could detect true pathogens, tick symbionts and organisms of environmental or human origin in ten selected
samples.

Conclusions: Our data document the presence of pathogens in the (sub-) urban I. ricinus tick population in
Switzerland, with carrier rates as high as those in rural regions. Carriage of multiple pathogens was repeatedly
observed, demonstrating the risk of acquiring multiple infections as a consequence of a tick bite.

Keywords: Ixodes ricinus, Borrelia, Rickettsia, Anaplasma, "Candidatus Neoehrlichia mikurensis", Babesia, Tick-borne
encephalitis virus, "Candidatus Midichloria mitochondrii", Urban, NGS

Background
Ixodes ricinus is the most frequent tick species through-
out Europe. Its life-cycle proceeds through three devel-
opmental stages, larvae hatching from eggs, nymphs,
and adult males or females. Ixodes ricinus may act as a
parasite on more than 200 different species, including
humans. It serves as a vector for numerous human and
animal pathogens of bacterial, viral, or protozoic origin
[1, 2].

Tick-borne encephalitis virus (TBEV) causes disease
of variable severity, ranging from subclinical infections
to severe disease with neurological involvement and
potentially fatal outcome. TBEV is taxonomically classi-
fied into European, Siberian and Far Eastern subtypes;
I. ricinus is the principal vector for the European
subtype of the virus [3, 4]. Multiple species of rodents,
insectivores and carnivores serve as reservoir hosts of
TBEV [5, 6]. Although the virus is transmitted transo-
varially in I. ricinus ticks, this transmission is not effect-
ive enough in sustaining viral circulation in nature [7].
Co-feeding is essential for TBEV maintenance in nat-
ural foci [8]. Mean prevalence in endemic regions
ranges from < 0.1 to 5% in Europe and 4 to 39% in Asia
[9]. In Switzerland, 38/165 rural sites screened for the
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presence of TBEV in I. ricinus ticks were shown to harbor
natural foci, with a mean virus prevalence of 0.46% [10].
Lyme borreliosis is a multisystemic disease that causes

local infections in the skin or disseminates to various tis-
sues, including joints, the central nervous system and
the heart [11]. It is prevalent in North America, Europe,
parts of North Africa, and northern Asia. Within the B.
burgdorferi (sensu lato) complex, B. afzelii, B. burgdorferi
and B. garinii are confirmed agents of localized, dissemi-
nated and chronic manifestations of Lyme borreliosis,
whereas B. spielmanii, B. bissettii and B. valaisiana have
only been associated with few cases of Lyme borreliosis
[11]. Ixodes ricinus is the predominant vector of B.
burgdorferi (s.l.) in Europe and small mammals and
ground-foraging birds serve as reservoir hosts [2, 12].
Transovarial transmission of B. burgdorferi (s.l.) in I.
ricinus is limited [13]. Mean carrier rates are higher in
adults (18.6%) than in nymphs (10.1%), and highest car-
rier rates are found in central Europe [14]. In questing
I. ricinus ticks in (sub-) urban areas of Europe, carrier
rates range between 2 and 40.8% [2]. In rural areas of
Switzerland, prevalence ranges between 9 and 40% for
nymphs and from 22 to 47% in adults [15].
Borrelia miyamotoi may cause a febrile illness possibly

presenting as relapsing fever. In immunocompromised
patients, it may cause severe disease including meningo-
encephalitis. The prevalence of B. miyamotoi in I. ricinus
ticks in Europe ranges between 0 and 4%. In urban areas
of France, a prevalence of 4% was found, whereas the
carrier rate was much lower (2/428) in a study con-
ducted in peri-urban and urban areas in southern
England [16–20]. Potential reservoir hosts include spe-
cies of rodents and birds. Different tick species such as
Ixodes scapularis and I. ricinus transmit B. miyamotoi
transovarially [13, 18, 21–23].
Various Rickettsia species are transmitted by hard

ticks in Europe, including R. helvetica, R. monacensis,
R. conori and R. slovaca implicated in human disease
[2, 24, 25]. In Switzerland, R. helvetica and R. monacen-
sis appear to be of particular importance [26, 27].
Clinical signs of infections with R. helvetica include
fever, headache and myalgia [28]. Rickettsia monacensis
may cause Mediterranean spotted-fever like illness [29].
The prevalence of R. helvetica and R. monacensis in I.
ricinus ticks in Europe ranges from 0.5 to 66%, or 0.5
to 34.5%, respectively [2, 30–32]. In Germany and
Slovakia, prevalence of Rickettsia spp. in urban sites
ranged between 2.2 and 30.1% [30, 31, 33, 34]. Ticks
serve as both the vector and main reservoir of Rickettsia
spp., with transstadial and transovarial transmission being
documented [2].
Anaplasma phagocytophilum causes disease in domes-

tic ruminants and horses [35], but may also infect other
mammalian species, including humans [36]. Clinical

manifestation in humans ranges from mild self-limiting
febrile illness to fatal infections [36–39]. Anaplasma
phagocytophilum is not transmitted transovarially in I.
ricinus ticks [40]. Its epidemiological cycles involving
mammalian hosts and vectors are complex and com-
prise different bacterial ecotypes. Carrier rates of I. rici-
nus in Europe range between < 1% and about 20% [36].
At urban sites (Austria, France, Slovakia, Hungary), car-
rier rates between 0.7 and 8.8% have been documented
[20, 41–44].
"Candidatus Neoehrlichia mikurensis" has been de-

tected in I. ricinus ticks in various European countries,
with carrier rates ranging from 0.95 to 23.5% [42, 45–48].
The reservoir role of several rodent species has been
proven [49–52]; transovarial transmission in I. ricinus has
not yet been reported [2]. In urban habitats in Slovakia,
"Ca. N. mikurensis" has been detected in both I. ricinus
ticks and rodents, with prevalence in I. ricinus ranging be-
tween 1.0–2.4% [44, 53]. Only a limited number of severe
human disease cases associated with fever, septicemia,
malaise and weight loss have been described so far, most
often but not exclusively affecting patients with immune
deficiency [54–57].
Babesia spp. are best known to cause animal illness.

Three species are currently recognized to be involved
in human disease in Europe: B. divergens, B. venatorum
(Babesia sp., EU1), and B. microti, with the bovine parasite
B. divergens being thought to be responsible for most
cases. Clinical signs of babesiosis such as flu-like symp-
toms or hemolytic anemia are usually but not exclusively
limited to immunocompromised patients [2, 58, 59].
Carrier rates of I. ricinus ticks in Europe range around 0.2
to 3.0% for B. divergens and 0.4 to 1.3% for B. venatorum
[2, 60–62]. There is evidence for circulation of B. divergens
and B. venatorum in urban areas, given that the respective
host species (cattle, ungulates) are present [2, 30, 63]. In
Germany, Poland and Slovakia, prevalence in urban habi-
tats ranges from 0.4 to 4.5% [33, 64, 65]. In rural areas of
Switzerland, a prevalence of 1.9% has been documented
[27]. Babesia spp. are generally known to be transmitted
both transstadially and transovarially in ticks [66]. How-
ever, transovarial transmission could so far not be experi-
mentally demonstrated for B. microti [67].
In Switzerland, several studies on the prevalence of

all of the above-described tick-borne pathogens in
questing ticks have been performed [10, 27, 68–73].
However, data on the carrier rate of ticks in suburban
areas of Switzerland are scarce [60, 74], and data on
tick-borne pathogens in questing ticks in urban areas
were not available to date. In this study, we analyzed
1078 questing I. ricinus ticks sampled at (sub-) urban
collection sites throughout Switzerland for the presence
of TBEV, B. burgdorferi (s.l.), B. miyamotoi, Rickettsia
spp., A. phagocytophilum, "Ca. N. mikurensis" and
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Babesia spp. Additionally, we analyzed ten tick DNA
samples using next generation sequencing (NGS), in-
cluding two positive samples as well as eight randomly
selected samples negative for the investigated patho-
gens. In these latter eight samples, we searched for
pathogens potentially missed using specific screening
PCRs as well as for members of the tick microbiota.

Methods
Tick sampling
A total of 45 (sub-) urban study areas were defined in
collaboration with the respective authorities. Within the
areas, similar collection sites of at least 100 square me-
ters were chosen. Collection sites in urban parks, river
sides, cemeteries or open air swimming pool areas were
characterized by the presence of bushes or trees and
some kind of litter layer. Within urban forests sur-
rounded by built-up areas and within suburban forests
located at the border of the city, collection sites were
situated at the edge of deciduous forest with high recre-
ational frequentation. Sampling was performed between
10:00 am and 16:00 pm but not on rainy days. Most
collection sites were visited only once in June 2016, with
a monthly average temperature of about 16 °C. At 11
collection sites in the city of Zürich, ticks were collected
throughout the year at 6 different time points (June, July,
September and November 2015, April and May 2016).
These sites were selected to be visited several times in
the framework of another study, where the presence of
ticks was related to the number of registered tick bites
(unpublished data). Temperature at the collection days
for these sites ranged between 13–30 °C, with a relative
humidity ranging between 50–85%. Ticks were collected
by flagging low vegetation using a terry towel of 1 m of
width and length fixed to a wooden stick. Time invested
for tick collection at one collection site ranged between
3 and 5 h. Tick collection was not standardized, since
this study did not focus on the tick density in the inves-
tigated sites, but rather on the pathogen prevalence
found within the analyzed ticks. Collected ticks were
kept alive at 4 °C. Following identification based on
morphological characteristics [75, 76], ticks were indi-
vidually sorted into collection microtubes (Qiagen,
Hilden, Germany) and stored at -20 °C.

Sample preparation
Tick samples were homogenized in 600 μl of pre-cooled
PBS using the TissueLyser system (Qiagen, Hilden,
Germany). After a short centrifugation step, 400 μl of
the supernatant were transferred to a Deepwell plate
(Eppendorf, Hamburg, Germany), 60 μl of glycerin were
added per well and the plates stored at -80 °C for further
use. 100 μl of the supernatant were used for nucleic acid
extraction.

Nucleic acid (NA) extraction
100 μl of tick homogenate supernatant were lysed in 400
μl of AVL buffer supplemented with InhibitEX Tablets
(Qiagen, Hilden, Germany) in a 96-well MagNA Pure
processing cartridge (Roche, Penzberg, Germany). NA
extraction was performed with the MagNA Pure 96
instrument and the MagNA Pure 96 DNA and Viral NA
Large Volume kit, using the Pathogen Universal LV 2.0
protocol, a sample volume of 500 μl and an elution vol-
ume of 100 μl. NA quality was randomly controlled
using the Agilent 2100 Bioanalyzer system with the
Agilent High Sensitivity DNA Kit (Agilent Technologies
Inc., Santa Clara, California, USA).

Real-time (reverse transcription-) PCR
The real-time (RT-PCR) systems used for screening the
tick samples on the presence of TBEV, Borrelia spp., B.
miyamotoi, Rickettsia spp., A. phagocytophilum, "Ca. N.
mikurensis" and Babesia spp. are summarized in Table 1.
For Rickettsia spp. and Babesia spp., two screening sys-
tems were used.

Sanger (capillary electrophoresis) sequencing
Samples positive for Borrelia spp., Rickettsia spp. and
Babesia spp. were further examined by sequence
analyses to identify the respective species. A subset of
samples, where tick species identification based on
morphological characteristics was unclear (mainly
larvae, n = 75), were analyzed by Sanger sequencing as
well. Nested PCR amplifications and sequence analyses
were done by Microsynth (Balgach, Switzerland) using
the primers and annealing temperatures summarized in
Table 2. First-step PCR reactions were run with 2.5 μl
of template DNA in a total volume of 12.5 μl including
0.5 μM of each primer, 200 μM dNTPs, 1.5 mM MgCl2
and 0.02 U/μl KAPA2G Robust polymerase (Axon Lab,
Baden, Switzerland). Fourty cycles were run for each
PCR (denaturation: 20 s, 95 °C; annealing: locus-
specific temperatures, 20 s; elongation: 100 s, 72 °C;
final elongation step: 45 s, 72 °C). First-step PCR prod-
ucts were diluted 1:100 for the second-step PCRs,
which were run under the same PCR conditions as
described for the first-step PCR using the nested
primers described in Table 2. Successful amplification
was verified on a 1.5% agarose gel. PCR products were
purified and uni-directionally Sanger sequenced. Se-
quences were quality-trimmed and manually edited, then
locus-wise subjected to alignment and phylogenetic ana-
lysis using the Phylogeny.fr website [77]. Species identifi-
cation was done using BLASTn comparison (NCBI
nucleotide database) [78, 79]. The sequences obtained
from this study have been deposited in the GenBank data-
base (MF121944–MF121977).
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Reverse line blot (RLB)
Samples positive for Borrelia spp. yielding mixed se-
quences in Sanger sequencing, indicating the presence
of multiple Borrelia species, were additionally analyzed
using RLB as described before [80–83]. The variable spa-
cer region between 2 repeated copies of the 23S and 5S
ribosomal genes was amplified by PCR with primers
23S-Bor and B-5S-Bor [80]. For species identification,
PCR products were hybridized to 15 oligonucleotide
probes [81–83] and blotted on an active Biodyne C
membrane using a Miniblotter 45 (Immunetics, Boston,
Massachusetts, USA). Hybridization was visualized by
incubating the membrane with enhanced chemilumines-
cence detection liquid and by exposing the membrane to
an X-ray film.

NGS and bioinformatics pipeline
Eight randomly chosen samples negative in all patho-
gen screening PCRs (samples 3–8), 1 sample positive in
Borrelia spp., R. helvetica and A. phagocytophilum
screening PCRs (sample 1), and 1 sample positive for R.
helvetica (sample 2) were subjected to NGS. With these
analyses, we aimed to (i) demonstrate the congruency
of detecting known pathogens using NGS and real-time
screening PCR, (ii) investigate whether some pathogens
may potentially be missed using specific screening PCR,

and (iii) analyze the microbiota of our I. ricinus tick
samples. The NGS workflow as well as the bioinformat-
ics pipeline used for data evaluation are described in
Additional file 1.

Pathogen prevalence
Individual carrier rates were assessed for collection
sites with more than 45 collected ticks (n = 9). Further-
more, since the carrier rates did not significantly differ
between habitat types (see statistical analysis), overall
prevalence was calculated. Larvae were only included
for calculation when the respective pathogen is trans-
mitted transovarially (B. miyamotoi, Rickettsia spp.,
Babesia spp.). As the samples size for the different
dates and collection sites was small, a statistical evalu-
ation of pathogen prevalence in dependence of collec-
tion dates was not possible.

Statistical analysis
The stats package of the R software (version 3.3.2) [84]
was used to assess differences in pathogen prevalence
between collection sites, habitats (cemetery, urban park,
urban forest, suburban forest), developmental stages
(larvae, nymphs, adults) and gender (male, female). A
generalized linear model (GLM) using the logit link
function under the binomial distribution was applied.

Table 2 Primer sequences and annealing temperatures of Sanger sequencing reactions

Species Primer sequences (5'–3') Amplicon
length (bp)

Amplicon position
(reference sequence)

Annealing
T (°C)

Reference

Fist-step PCR

Borrelia spp. locus: 5S-23S intergenic spacer (forward: GAG TTC
GCG GGA GAG TAG GTT ATT; reverse: TCA GGG
TAC TTA GAT GGT TCA CTT CC

420 3063–3483 (JX564636.1) 64 [111]

Babesia spp. locus: 18S ribosomal RNA gene (forward: GTC TTG
TAA TTG GAA TGA TGG; reverse: TAG TTT ATG
GTT AGG ACT ACG)

489 466–955 (AJ439713) 58 [112]

Rickettsia spp. locus: 23S–5S intergenic spacer (forward: GAT AGG
TCR GRT GTG GAA GCA C; reverse: TCG GGA YGG
GAT CGT GTG TTT C)

388 1–388 (AY125012) 68 [113]

Ticks locus: cytochrome c oxidase (forward: ACW AAY
CAY AAA GAC ATT GGA AC; reverse: WGG ATG
CCC RAA RAA TCA AAA T)

704 1242–1946 (KF197132) 48 [114]

Second-step PCR

Borrelia spp. locus: 23S-5S intergenic spacer (forward: GGA
GAG TAG GTT ATT GCC AG; reverse: GGT TCA
CTT CCC CTG GTA TC)

396 3073–3468 (JX56436.1) 64 –

Babesia spp. locus: 18S ribosomal RNA gene (forward: GTA
ATT GGA ATG ATG GTG AC; reverse: GTT AGG
ACT ACG ACG GAA TC)

475 471–946 (AJ439713) 58 –

Rickettsia spp. locus: 23S-5S intergenic spacer (forward: CAG
TAA TGT GTG TAG CTA AC; reverse: ATC GTG
TGT TTC ACT CAT GC)

356 22–378 (AY125012) 58 –

Ticks locus: cytochrome c oxidase (forward: AYC AYA
AAG ACA TTG GAA CWA T; reverse: GCC CRA
ARA ATC AAA ATA RAT G)

686 1245–1933 (KF197132) 48 –
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Chi-square tests were performed to assess significance
levels. Pathogen prevalence with respect to developmental
stages were analyzed using collection site as an interacting
explanatory variable and the Chi-square test was used to
compare the main (Stage/Gender*Collection site) model
to the reduced model (only collection site). For all
analyses, larvae were only included when the respective
pathogen is transmitted transovarially (B. miyamotoi,
Rickettsia spp., Babesia spp.). To evaluate the frequency of
certain pathogen combinations, a GLM was applied
comparing the prevalence of each pathogen in either
mono- or multi- (≥ 2) infected ticks. Since only R. helve-
tica were found in larvae, developmental stage was
included as an interacting explanatory variable. Finally,
Chi-square significance testing was used to compare total
count of collected ticks according to season (spring or fall)
for sites where multiple collections had been performed.
For this purpose a GLM under the Poisson distribution
was applied using collection site as an interacting ex-
planatory variable. After applying the Bonferroni correc-
tion for multiple comparisons (n = 5), a P-value < 0.05
was regarded as significant.

Results
Tick sampling and species identification
A total of 1,079 ixodid ticks (66 larvae, 740 nymphs, 138
adult males and 135 adult females) were collected at 18
collection sites (Fig. 1, Table 3); at 27 sites, no ticks were
found. Tick collection was not standardized with respect
to collection time and area, with exception of the sites

where flagging was done at multiple time points. There-
fore, the collection success in this study must not be
equated to questing tick density in the sampling regions.
At the collection sites where flagging was done at six
different time points, collection was significantly more
successful in spring (June 2015, April and May 2016)
than in summer or fall (July, September, November
2015) (Chi-square test with Bonferroni correction, χ2 =
52.62, df = 2, P < 0.0001) (Table 4). Except one female
Ixodes hexagonus, all ticks were identified as I. ricinus
based on morphological criteria or Sanger sequencing
results of the cytochrome c oxidase locus.

Pathogen prevalence
Table 5 summarizes the number of positive I. ricinus
ticks found per collection site. Pathogen prevalence was
not significantly different between collection sites be-
longing to different habitat types (i.e. cemetery, urban
park, urban forest, suburban forest) (P-values with Chi-
square test using Bonferroni correction > 0.1 for B.
burgdorferi (s.l.), B. miyamotoi, A. phagocytophilum and
B. venatorum, > 0.05 for "Ca. N. mikurensis"). We there-
fore calculated overall prevalence, which was 0% for
TBEV, 18.0% for B. burgdorferi (s.l.) (8.2% for B. afzelii,
1.3% for B. burgdorferi (sensu stricto), 2.8% for B. garinii,
0.9% for B. valaisiana, 2.3% for multiple Borrelia spp.,
see below), 2.5% for B. miyamotoi, 13.5% for Rickettsia
spp. (13.2% for R. helvetica, 0.3% for R. monacensis),
1.4% for A. phagocytophilum, 6.2% for "Ca. N. mikuren-
sis" and 0.8% for B. venatorum. In addition to overall

Fig. 1 Urban areas in Switzerland analyzed for the presence of pathogens in questing I. ricinus ticks. Tick collection was successful at 18 collection
sites: (a) Basel (2 sites), (b) Bern (1 site), (c) Geneva (2 sites), (d) Lausanne (1 site), (e) Lugano (1 site), (f) Luzern (1 site), (g) Neuchâtel (2 sites), (h) Sion (1
site), (i) St. Gallen (1 site), (j) Winterthur (1 site), and (k) Zürich (5 sites)

Oechslin et al. Parasites & Vectors  (2017) 10:558 Page 7 of 18



Table 3 Overview of ticks collected at the different collection sites

Collection sites Number of I. ricinus ticks collecteda Non-I. ricinus

City Name Description Total Larvae Nymphs Adult males Adult females

Basel Friedhof Hörnli Cemetery 246 1 230 6 9 –

Basel Margrethenpark Urban park 83 – 66 10 7 –

Bern Allmend Urban park 123 – 9 53 61 –

Bern Gaswerkareal Urban park – – – – – –

Bern Monbijoupark Urban park – – – – – –

Chur Schwimmbad obere Au Open air swimming pool – – – – – –

Chur Spielplatz Böschengut Urban park – – – – – –

Geneva Bois de la Bâtie Urban forest – – – – – –

Geneva Bois des frères Suburban forest 135 1 98 18 18 –

Geneva Parc des Croppettes Urban park 2 – 2 – – –

Lausanne Parc de la Gottéttaz Urban forest – – – – – –

Lausanne Parc de l’Hermitage Urban park 103 1 42 32 28 –

Lugano Gentilino Pambio Urban forest – – – – – –

Lugano Parco San Michele Urban park 1 – 1 – – –

Lugano Parco Del Tassino Urban park – – – – – –

Lugano Via degli Abeti Urban forest – – – – – –

Luzern Allmend Urban park 2 – – 2 – –

Luzern Friedhof Friedental Cemetery – – – – – –

Luzern Tribschenhorn Urban park, lake side – – – – – –

Murten Lindensaal Urban park – – – – – –

Murten Stadtgraben Urban park – – – – – –

Neuchâtel Jardin du Prince Urban forest 49 1 44 – 4 1 I. hexagonus female

Neuchâtel Les Cadolles Suburban forest 115 – 115 – – –

Sion Place de la Planta Urban park – – – – – –

Sion Place du Scex Urban park – – – – – –

Sion Vissigen River side 1 – – – 1 –

St. Gallen Bildweiher Urban park 1 – – 1 – –

St. Gallen Turnhalle Hodlerstrasse Urban park – – – – – –

Winterthur Heiligberg Urban park 3 – 1 1 1 –

Winterthur Lindengut Urban park – – – – – –

Winterthur Rychenbergpark Urban park – – – – – –

Zürich Chüeweid, site B-1 Urban park – – – – – –

Zürich Chüeweid, site B-2 Urban park – – – – – –

Zürich Chüeweid, site B-3 Urban park – – – – – –

Zürich Friedhof Sihlfeld, sector C Cemetery – – – – – –

Zürich Friedhof Sihlfeld, sector E Cemetery 2 – 2 – – –

Zürich Limmatufer River side – – – – – –

Zürich Rieterpark Urban park – – – – – –

Zürich Schärrenwiese, site C-1 Urban park – – – – – –

Zürich Schärrenwiese, site C-2 Urban park – – – – – –

Zürich Schärrenwiese, site C-3 Urban park – – – – – –

Zürich Staudenweg Suburban forest 5 – 3 1 1 –
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prevalence, we calculated individual carrier rates for col-
lection sites where more than 45 I. ricinus ticks had
been collected (Table 6). Site-specific carrier rates were
was significantly different for B. burgdorferi (s.l.) (χ2 =
50.04, df = 8, P < 0.0001), Rickettsia spp. (χ2 = 56.85,
df = 8, P < 0.0001) and "Ca. N. mikurensis" (χ2 = 27.86
df = 8, P = 0.006). Pathogen carrier rates did not sig-
nificantly differ in relevance to tick developmental
stages (P-values Chi-square test with Bonferroni cor-
rection > 0.08). Larvae were exclusively found to be
positive for Rickettsia spp. at a percentage of 32.8%.

Samples with multiple pathogens
Out of 1078 ticks, 358 (33.2%) were carrying at least one
pathogen. 287 ticks (26.6%) were infected with one, 64
(5.9%) with two, and seven (0.7%) with three different
pathogens (Figs. 2, 3). For this analysis, we regarded
samples with mixed sequences for B. burgdorferi (s.l.) in
the respective Sanger sequencing reaction as being in-
fected with two different B. burgdorferi (s.l.) species. The
prevalence of R. helvetica in mono-infected ticks was
significantly higher than the prevalence in multi-infected
ticks (Chi-square test with Bonferroni correction, χ2 =
9.34, df = 2, P = 0.023) (Fig. 2).

RLB for samples with suspected carriage of multiple B.
burgdorferi (s.l.) species
Carriage of multiple B. burgdorferi (s.l.) species, indi-
cated by mixed sequences in Sanger sequencing ana-
lyses, was found in 23 I. ricinus ticks (13 nymphs, four
males, six females). Using RLB, however, only five of
these samples were found to be positive for B. garinii
and one sample was found to be positive for B. afzelii.
The remaining 17 samples were negative in RLB ana-
lysis. Carriage of multiple Borrelia spp. could not be
confirmed in any of the samples using RLB.

NGS
NGS was done with a total of ten samples. Although
most of the taxonomically classified reads (Kraken out-
put) were assigned to ixodid ticks (96.5–99.9%), which is
expected in untreated metagenomics samples of eukary-
otes, the read numbers of the pathogens previously iden-
tified by screening PCRs were clearly distinguishable
from the background noise in sample 1 and 2. The reads
assigned to R. helvetica denoted 76.3 and 82.6%. The
reads of sample 1 classified to A. phagocytophilum and
B. afzelii represented 1.7 and 0.1%, respectively (Fig. 4a).
In the remaining eight samples (3–8), no known patho-
gens could be detected using NGS, which is in agree-
ment with the negative screening PCRs. However, a total
of 8 samples (2 adult female, 1 adult male and 5
nymphal ticks) were positive for the tick endosymbiont
"Candidatus Midichloria mitochondrii" [85] (Fig. 4a, b).
In the adult female ticks, the reads classified to "Ca. M.
mitochondrii" represented 74 and 92% of all bacterial
reads. For the male and nymphal ticks, the percentages
of bacterial reads classified to this endosymbiont were
0.1% or 0.5–25%, respectively. In addition, every sample
contained variable proportions of organisms known to
be residents of soil and water, plant associated bacteria,
or normal human microbiota (Fig. 4b)

Discussion
Throughout Europe, I. ricinus transmits numerous human
and animal pathogens. Its widespread distribution in-
cludes urbanized areas. Most wildlife species found in ur-
banized areas in Europe act as maintenance hosts for I.
ricinus, but may also serve as reservoirs of tick-borne
pathogens. In urban sites, these hosts may be rodents,
hedgehogs, shrews, birds, lizards, dogs and cats. In peri-
urban areas, larger animals such as foxes, roe deer, and
wild boars may act as tick-maintenance and pathogen res-
ervoir hosts. As a consequence of increasing urbanization
and the behavior of humans increasingly encroaching on
their peri-urban surroundings, the exposition of humans
to vector ticks and tick-transmitted pathogens is increas-
ing [2, 86]. Whereas several studies on the prevalence of
various tick-borne pathogens in questing I. ricinus ticks
have been done in Switzerland so far [10, 27, 68–73], only
limited research has focused on ticks collected in subur-
ban areas [60, 74]. Here, we analyzed questing I. ricinus

Table 3 Overview of ticks collected at the different collection sites (Continued)

Collection sites Number of I. ricinus ticks collecteda Non-I. ricinus

City Name Description Total Larvae Nymphs Adult males Adult females

Zürich Waldrand Waid, Chäferberg Suburban forest 47 1 38 6 2 –

Zürich Waidberg Wald Suburban forest 143 60 74 7 2 –

Zürich Witikon Suburban forest 17 1 15 1 – –
aCollection was done in June 2016 at all collection sites except for Waldrand Waid, Chäferberg and Waidberg Wald

Table 4 Tick collection success with respect to collection dates
for sites with multiple collection attempts
Collection sites Number of I. ricinus ticks collected

City Name June
2015

July
2015

September
2015

November
2015

April
2016

May
2016

Zürich Waldrand Waid,
Chäferberg

8 0 6 0 13 20

Zürich Waidberg Wald 9 21 19 3 42 49
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ticks collected at (sub-) urban sites for the presence of
various pathogens. Furthermore, we analyzed ten DNA
samples using NGS, thereby detecting true pathogens, tick
symbionts, as well as organisms of environmental or hu-
man origin.
Tick collection was successful in about 40% (18/45) of

the areas flagged during this study. As the focus of our

study was the investigation of pathogen prevalence
rather than tick density, our tick collection method was
not highly standardized. Therefore, the number of
collected ticks at the different collection sites does not
necessarily reflect the tick density in these areas. As an
exception, tick collection effort was approximately
standardized at eleven collection sites in the city of

Table 5 Pathogen screening results of I. ricinus ticks from 18 urban collection sites

Collection sites Number of I. ricinus ticks positive for:

City Name Description n TBEV B.a. B.b.(s.s.) B.g. B.va. B.b.(s.l.) B.m. R.h. R.m. A.p. B.ve. N.m.

Basel Friedhof Hörnli Cemetery 246 0 15 3 5 1 1 8 37 0 3 5 24

Basel Margrethenpark Urban park 83 0 4 2 0 0 0 1 20 0 0 1 0

Bern Allmend Urban park 123 0 27 0 7 3 7 2 13 0 4 0 12

Geneva Bois des frères Suburban forest 135 0 5 2 10 2 6 4 7 1 3 0 4

Geneva Parc des Croppettes Urban park 2 0 0 0 0 0 0 0 1 0 0 0 0

Lausanne Parc de l’Hermitage Urban park 103 0 4 1 2 2 1 2 6 2 1 0 4

Lugano Parco San Michele Urban park 1 0 0 0 0 0 0 0 0 0 0 0 0

Luzern Allmend Urban park 2 0 0 0 0 0 0 0 0 0 0 0 0

Neuchâtel Jardin du Prince Urban forest 49 0 2 0 1 1 1 4 2 0 0 0 5

Neuchâtel Les Cadolles Suburban forest 115 0 8 0 2 0 6 4 3 0 1 0 4

Sion Vissigen River side 1 0 0 0 0 0 0 0 0 0 0 0 0

St. Gallen Bildweiher Urban park 1 0 0 0 0 0 0 0 0 0 0 0 0

Winterthur Heiligberg Urban park 3 0 1 0 0 0 0 0 2 0 0 0 0

Zürich Friedhof Sihlfeld, sector E Cemetery 2 0 0 0 0 0 0 1 0 0 0 0 0

Zürich Staudenweg Suburban forest 5 0 2 0 1 0 0 0 2 0 0 0 0

Zürich Waldrand Waid, Chäferberg Suburban forest 47 0 7 0 0 0 0 0 11 0 0 0 5

Zürich Waidberg Wald Suburban forest 143 0 7 3 0 0 1 1 35 0 1 0 5

Zürich Witikon Suburban forest 17 0 1 2 0 0 0 0 3 0 1 0 0

Abbreviations: TBEV, Tick-borne encephalitis virus; B.a., Borrelia afzelii; B.b.(s.s.), Borrelia burgdorferi (s.s.); B.g., Borrelia garinii; B.va., Borrelia valaisiana; B.b.(s.l.), Borrelia
burgdorferi (s.l.), multiple species; B.m., Borrelia miyamotoi; R.h., Rickettsia helvetica; A.p., Anaplasma phagocytophilum; B.ve., Babesia venatorum (EU1); N.m,
"Candidatus N. mikurensis"

Table 6 Pathogen prevalence in I. ricinus ticks collected at 9 urban or suburban collection sites

Collection sites Prevalence (%)

City Name Description nb TBEV B.b.(s.l.)a B.m. R.spp.a A.p. B.v. N.m.a

Basel Friedhof Hörnli Cemetery 245 (246) 0 17.1 3.3 15.0 1.2 2.0 9.8

Basel Margrethenpark Urban park 83 0 7.2 1.2 24.1 0 1.2 0

Bern Allmend Urban park 123 0 35.8 1.6 10.6 3.3 0 9.8

Geneva Bois des frères Suburban forest 134 (135) 0 18.5 3.0 5.9 2.2 0 3.0

Lausanne Parc de l’Hermitage Urban park 102 (103) 0 9.7 1.9 6.7 1.0 0 3.9

Neuchâtel Jardin du Prince Urban forest 48 (49) 0 10.2 8.2 4.1 0 0 10.2

Neuchâtel Les Cadolles Suburban forest 115 0 13.9 3.5 2.6 0.9 0 3.5

Zürich Waldrand Waid, Chäferberg Suburban forest 46 (47) 0 14.9 0 23.4 0 0 10.6

Zürich Waidberg Wald Suburban forest 83 (143) 0 14.5 0.7 24.5 1.2 0 6.0

Abbreviations: TBEV, Tick-borne encephalitis virus; B.a., Borrelia burgdorferi (s.l.); B.m., Borrelia miyamotoi; R. spp., Rickettsia spp.; A.p., Anaplasma phagocytophilum;
B.ve., Babesia venatorum (EU1); N.m, "Candidatus N. mikurensis"
aPathogens with significantly different carrier rates at the different collection sites
bThe number in parentheses represents the sample size including larvae. Larvae were only included for the calculation of prevalence for pathogens being
transmitted transovarially: B. miyamotoi, Rickettsia spp., B. venatorum (EU1)
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Zürich, where tick sampling was done throughout the
year at six different time points (June, July, September
and November 2015, April and May 2016) (Table 4).
When comparing collection success between collec-
tions done in spring (April, May, June) to collections
done in summer or fall (July, September, November),
we found that collection was significantly more suc-
cessful in spring than in summer or fall (P < 0.0001).
These findings are in agreement with the results of a
study focusing on seasonality of I. ricinus ticks on the
vegetation in two regions in Switzerland, where a signifi-
cant decline of questing activity in June was observed [87].
Also, they are explained by the conditions for tick activity
(temperature and humidity), which are more likely ful-
filled in spring than in summer or fall.
TBEV-infected ticks are distributed in a patchy man-

ner in so-called natural foci. In Europe, within these foci,
carriage rates of I. ricinus ticks range between < 0.1%
and 5% [9] (Switzerland: 0.46% [10]). In the present
study focusing on urban areas, we could not detect any
TBEV-positive I. ricinus ticks. However, given the low
expected carrier rates, the sample sizes per collection
site are too small to allow for a reliable estimation of
TBEV prevalence. Accordingly, the prevalence of 0% has
to be interpreted with caution, and more extensive stud-
ies are needed to precisely estimate the carrier rate of
(sub-) urban I. ricinus ticks with TBEV in Switzerland.

In studies focussing on urban or peri-urban regions of
other European countries (Germany, Poland), TBEV has
been detected with carrier rates of 0.31% or 0.1%,
respectively [88, 89]. On the other hand, other authors
estimate the risk for contracting TBE in urban areas to
be low [4].
Four different species belonging to the B. burgdorferi

(s.l.) complex were detected in questing I. ricinus ticks
in our study: B. afzelii (8.2% of ticks), B. garinii (2.8%),
B. burgdorferi (s.s.) (1.3%) and B. valaisiana (0.9%). All
of them are confirmed agents of Lyme borreliosis [11]
and have already been detected in I. ricinus ticks in
other studies in Switzerland [15, 27]. In agreement with
previous observations, we found that B. afzelii and B.
garinii are the most prominent species, and that adult
ticks are more often infected with B. burgdorferi (s.l.)
than nymphs. The latter observation is explained by the
fact that adult ticks had two blood meals with the possi-
bility of acquiring B. burgdorferi (s.l.), whereas nymphs
only had one [14]. The overall prevalence of B. burgdor-
feri (s.l.) in the present study was 18.0% (11.7% for
nymphs, 25% for adults), with site-specific prevalence
being significantly variable (7.2–35.8%, P < 0.0001).
These observations are in agreement with a study real-
ized in rural areas of Switzerland, where carriage rates
ranged between 9–40% for nymphs and from 22 to 47%
in adults [15]. The overall prevalence of B. burgdorferi

Fig. 2 Number of ticks positive for different tick-borne pathogens. The overall height of the bars represents the percentage of infected ticks
tested positive for the respective pathogen. The proportions at which the pathogens were detected alone or in combination with one or two
others are shown in light gray, dark gray, and black, respectively. Abbreviations: B.g., B. garinii; B.a., B. afzelii; B.b.(s.s.), B. burgdorferi (sensu stricto);
B.va., B. valaisiana; B.m., B. miyamotoi; R.h., R. helvetica; R.m., R. monacensis; A.p., A. phagocytophilum; B.ve., B. venatorum (Babesia sp., EU1); N.m.,
"Candidatus N. mikurensis"; B.b.(s.l.), two (or more) different B. burgdorferi (sensu lato) species. R. helvetica was significantly more often detected
alone than in association with another pathogen (GLM with developmental stage as a dependent variable; Chi-square test with Bonferroni
correction, P = 0.023)
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(s.l.) in questing I. ricinus ticks in our study is highly
comparable to carriage rates found in urban areas of
neighboring countries, ranging from 2.4 to 26.6% in
Germany, 10 to 30% in France, and 10.4% in Italy [2, 20,
90–92]. In Sanger sequence analyses of the 5S-23S

intergenic spacer region, mixed sequences indicating the
presence of multiple B. burgdorferi (s.l.) species were ob-
tained for 23 samples (13 nymphs, four males, six fe-
males). In confirmatory analyses using RLB, however,
only 6 of these samples gave positive results (five B.
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Fig. 4 NGS results for 10 I. ricinus tick samples. Two samples positive in one or more pathogen screening PCR (a) and 8 samples negative in all
screening PCRs (b) were analyzed. Whole genome amplified samples were sequenced on an Ion S5™, Kraken was used for taxonomic profiling of
trimmed reads, and species with low read support were filtered out. Species pathogenic for humans, i.e. R. helvetica (R.h.), A. phagocytophilum
(A.p.), B. afzelii (B.a.), as well as the tick endosymbiont "Candidatus Midichloria mitochondrii" (C.M.m.), are represented individually. The remaining
species are grouped in Pseudomonas spp. (P.spp.), other residents of soil and water, commensals, human microbiota, and plant associated
bacteria. The bars indicate the percentages of reads assigned to the respective species or groups in a logarithmic scale

Fig. 3 Correlation-plot showing the pathogen combinations observed in urban I. ricinus ticks in Switzerland. The more frequent a pathogen
combination, the bigger the respective circle in the plot. In addition, the absolute counts of ticks with the particular pathogen combination
are given in numbers. Abbreviations: B.g., B. garinii; B.a., B. afzelii; B.b.(s.s.), B. burgdorferi (sensu stricto); B.va., B. valaisiana; B.m., B. miyamotoi; R.h.,
R. helvetica; R.m., R. monacensis; A.p., A. phagocytophilum; B.ve., B. venatorum (Babesia sp., EU1); N.m., "Candidatus N. mikurensis"; B.b.(s.l.), two (or
more) different B. burgdorferi (sensu lato) species, not distinguishable. Other combinations of three different pathogens are not shown in this
plot; these were 1× B. afzelii + R. helvetica + A. phagocytophilum and 1× B. afzelii + B. venatorum (Babesia sp., EU1) + "Ca. N. mikurensis"
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garinii, one B. afzelii), and carriage of multiple Borrelia
spp. could not be confirmed in any of the samples. Since
many of these samples contained only very small
amounts of Borrelia DNA with cycle threshold values in
screening PCR ranging between 36–40 (data not
shown), false-negative results in RLB cannot be ex-
cluded. In Sanger sequencing, we were able to raise the
sensitivity of the test by adding a second-step PCR
using nested primers. Since this was not possible in
RLB, we expect this test to have a slightly lower sensi-
tivity, accounting for the discrepancy between RLB and
Sanger sequencing results. Therefore, the 23 samples,
representing 14.9% of ticks positive for B. burgdorferi
(s.l.), are regarded as being infected with more than one
B. burgdorferi (s.l.) species despite the negative RLB
results. This proportion is in agreement with the per-
centage of carriage of multiple B. burgdorferi (s.l.)
found previously [14].
Human disease cases caused by B. miyamotoi, usually

presenting as febrile illness have been reported in
Russia, USA, the Netherlands and Japan [18]. In I.
ricinus, the pathogen is found at a prevalence ranging
between 0–3.5% in Europe [17–19]. Borrelia miyamotoi
has been shown to be present in I. ricinus ticks in
Switzerland in rural areas at a prevalence of about 1%
[27]. In our study 2.5% of I. ricinus ticks (2.7% of
nymphs, 2.6% of adult ticks) were infected with B.
miyamotoi, which is slightly less than the prevalence
described for urban I. ricinus ticks in France (4%) [20],
but higher than the number of B. miyamotoi positive
ticks (2/428) reported in a study focusing on urban and
peri-urban areas in southern England [16]. Thus, al-
though no disease cases have been reported so far, there
is a potential of acquiring such an infection, in urban as
well as in rural regions in Switzerland.
Studies investigating I. ricinus ticks collected from

vegetation or animals in Switzerland revealed Rickettsia
spp. carriage rates of 7.3 to 14% [21, 26, 93]. In accord-
ance with these results and with the detection of Rickett-
sia spp. in urban areas in other studies in Germany and
Slovakia at carrier rates ranging between 2.2–30.1% [30,
31, 33, 34], we found R. helvetica-positive I. ricinus ticks
at a prevalence of 13.2% in urban areas of Switzerland.
We observed significant differences in site-specific car-
rier rates (2.6–24.5%, P < 0.0001), which is in agreement
with a study in Germany, where prevalence of Rickettsia
spp. in I. ricinus ticks ranged between 0–50% [31].
Unlike the frequent detection of R. helvetica in I. ricinus,
the documentation of human infection with this agent
in different countries, including Switzerland, remains
rare [25]. In addition to R. helvetica, three samples were
found to be positive for R. monacensis, which has been
detected for the first time in Switzerland in 2009 [26]
and is known to be present in I. ricinus ticks in at least

18 European countries [25]. R. monacensis has already
been discovered in I. ricinus ticks in some urban and
peri-urban sites in different European countries [2],
which is in accordance with our findings.
Anaplasma phagocytophilum has been detected in I.

ricinus ticks in Europe at a prevalence between < 1% and
about 20%. In Switzerland, carrier rates between 1.2–2%
have been found [27, 36, 93–97]. Corresponding to these
findings we found a carrier rate of 1.4% in urban I. ricinus
ticks. This rate is in agreement with carrier rates found in
urban areas of Austria and France (1.0 and 0.7%, respect-
ively) [20, 41], but is rather low compared to the preva-
lence found in Slovakia or Hungary (4.5–5.5% and 8.8%,
respectively) [42–44]. In Switzerland, human granulocytic
anaplasmosis (HGA) is a rarely diagnosed disease so far.
However, considering the repeated detection of the causa-
tive agents in ticks and knowing that the seroprevalence
in humans bitten by I. ricinus ticks is 17.1% [98], HGA
may increasingly be included in the diagnostic workup of
patients with a history of a tick bite. In our study, we
merely focused on the detection of A. phagocytophilum,
without considering the four different ecotypes. So far, all
human cases clustered in ecotype I. The different ecotypes
are known to have significantly different host ranges, with
ecotype I hosts including numerous urban species [2, 50].
We would therefore expect many of the A. phagocytophi-
lum isolates detected by real-time PCR in our study to be-
long to ecotype I. However, the respective analyses have
not been done so far.
Neoehrlichiosis is a rare human disease. In Switzerland,

a close geographic association of disease cases with I.
ricinus populations carrying "Ca. N. mikurensis" has been
shown for the region of Zürich, where pool carrier rates of
0–8% were found [99]. In our study we could confirm the
presence of "Ca. N. mikurensis" in I. ricinus ticks in the
region of Zürich, focusing on (sub-) urban areas. In
addition, we could show the pathogen to be present in the
cities of Basel, Bern, Geneva, and Neuchâtel, with an over-
all prevalence of 6.2%. This is a higher rate of carriage
compared to findings from urban habitats in Slovakia,
where prevalence ranged between 1–2.4% [44, 53]. Site-
specific carrier rates for "Ca. N. mikurensis significantly
differed in our study, ranging from 0 to 10.6% (P < 0.006).
This is in agreement with the variation found in the Swiss
study in the rural region of Zürich (pool carrier prevalence
between 0–8%) [99]; variable carriage rates ranging be-
tween 1.1–4.5% were also found in (sub-) urban habitats
in a study conducted in Slovakia, the Czech Republic and
Austria [42].
Three Babesia species, B. divergens, B. venatorum and

B. microti are currently known to cause human disease,
and all of them have been found to circulate in urban
areas [2, 30, 63]. In 2012 other authors found Babesia
spp. to be present in 1.9% of I. ricinus ticks collected in

Oechslin et al. Parasites & Vectors  (2017) 10:558 Page 13 of 18



deciduous forests in Western Switzerland. Thereof, 64.3%
were identified as B. venatorum and 17.9% as B. divergens
[27]. Here, we found a carriage rate of questing urban I.
ricinus ticks of 0.83%. All positive samples were classified
as B. venatorum using Sanger sequencing. The prevalence
of 0.8% is in accordance with I. ricinus carrier rates with
this parasite in different urban regions in European coun-
tries (Germany, Poland and Slovakia), ranging from 0.4%
to 4.5% [33, 64, 65]. Since B. divergens is a bovine parasite,
it would only be expected in areas where cattle are found
concurrently with I. ricinus ticks [2]. To our knowledge,
none of the collection sites of our study represent areas
where cattle are present, wherefore the absence of B.
divergens is plausible. Human babesiosis is a rare but pos-
sibly emerging disease in Europe, with about 50 disease
cases reported so far [2, 100].
Site-specific pathogen prevalence significantly differed

for B. burgdorferi (s.l.), Rickettsia spp., and "Ca. N.
mikurensis" (P < 0.0001 for B. burgdorferi (s.l.) and
Rickettsia spp., < 0.006 for "Ca. N. mikurensis"). How-
ever, these differences were not attributable to the habitat
type (i.e. cemetery, urban park, urban forest, suburban
forest) (P > 0.1 for B. burgdorferi (s.l.), B. miyamotoi, A.
phagocytophilum, and B. venatorum, > 0.05 for "Ca. N.
mikurensis"). When comparing the carrier rates from our
study focusing on (sub-) urban areas to carrier rates found
in rural areas of Switzerland, no obvious differences were
found for most pathogens (prevalence in urban vs rural re-
gions for B. burgdorferi (s.l.) 18.0 vs 9.0–47.0% [15], for
Rickettsia spp. 13.5 vs 7.3–14.0% [21, 26, 93], for A. phago-
cytophilum 1.4 vs 1.2–2.0% [27, 36, 93–97], and for "Ca.
N. mikurensis" 6.2 vs 0–8.0% [99]). For B. miyamotoi, the
overall prevalence was 2.5%, which is higher than the
prevalence of about 1% assessed in a study focusing on
rural areas of Switzerland. For Babesia spp., the overall
prevalence assessed in our study focusing on (sub-) urban
areas was lower than the prevalence found in the rural
area (0.8 vs 1.9%) [21]. This latter finding is in agreement
with a study comparing the carrier rates between urban
and natural habitats in Slovakia [64] and might be in asso-
ciation with the presence of competent reservoir hosts.
Altogether, the potential of pathogen transmission as a
consequence of a tick bite is highly comparable between
urban and rural areas.
In our study, 358 I. ricinus ticks (33.2%) were carrying

at least one potentially disease-causing agent: 287
(26.6%) were infected with one, 64 (5.9%) with two, and
seven (0.7%) with three different pathogens (Figs. 2, 3).
In a study investigating about 270 female I. ricinus ticks
in the French Ardennes, 45% of infected ticks were car-
rying multiple pathogens [101]. In our study involving
I. ricinus ticks of all developmental stages, about 80%
of infected ticks were positive for only one pathogen,
giving a lower proportion of multiple carriage rates.

Nevertheless, carriage of multiple pathogens by ticks
and therewith co-transmission of pathogens to humans
might have important consequences with respect to
disease severity and treatment [101–104]. The most
frequent pathogen combinations in our study were B.
afzelii + R. helvetica (n = 11) and B. afzelii + "Ca. N.
mikurensis" (n = 8). Interestingly, the same pathogens
have been found to be predominantly involved in coin-
fections in a study focusing on mixed deciduous forests
in the western part of Switzerland. In both, the present
and the previous study, B. afzelii and R. helvetica were
the pathogens with the highest prevalence, possibly ac-
counting for the frequent combination of these two
bacteria within ticks. B. afzelii and "Ca. N. mikurensis"
share common reservoir hosts, which might account
for their concurrent detection in individual I. ricinus
ticks [27, 105, 106].
Using NGS, we could confirm the presence of all path-

ogens previously detected by screening PCRs in 2 sam-
ples (Fig. 4a, b). In the eight samples negative in all
pathogen screening PCRs (samples 3–8), we did not
identify any known pathogen using NGS. However, in
six of these samples as well as in samples 1 and 2, we
could detect the tick endosymbiont "Ca. M. mitochon-
drii", a member of the order Rickettsiales (Fig. 4a, b).
This bacterium is localized in the mitochondria of ovar-
ian cells in I. ricinus female ticks and is transmitted to
all offspring. It has been shown to be highly prevalent in
I. ricinus ticks, with a mean carrier rate of females of
95%, but a lower prevalence in other developmental
stages [85, 107]. Our results agree with these findings
with both female, but only five out of seven nymphal I.
ricinus ticks being positive for "Ca. M. mitochondrii".
Also, the number of reads was much higher in female
ticks than in male or nymphal ticks, which is in agree-
ment with the described lower bacterial load in male
than in female I. ricinus ticks [107].
Besides known pathogens (R. helvetica, A. phagocyto-

philum, B. afzelii) and tick endosymbionts, we detected
various organisms known to be residents of soil and
water, plant associated organisms or members of the
normal human microbiota in NGS analyses of ten tick
samples (Fig. 4a, b). Since we did not wash the surface
of the collected ticks prior to sample preparation and
nucleic acid extraction, these findings are easily explain-
able by the presence of these organisms on the exterior
of the ticks. While plant, soil and water organisms ori-
ginate from the collection sites, members of the human
microbiota were transmitted to the tick surface during
the collection and sorting procedure.

Conclusions
In this study we documented the presence of B. burgdor-
feri (s.l.), B. miyamotoi, R. helvetica, R. monacensis, A.
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phagocytophilum, "Ca. N. mikurensis" and B. venatorum
in the (sub-) urban I. ricinus tick population in
Switzerland. The pathogen prevalence was as high as the
one in rural regions and thus there is a risk of contracting
tick-transmitted diseases in urban areas of Switzerland.
Carriage of multiple pathogens was observed in about
20% of infected I. ricinus ticks, and therefore there is a
true risk of acquiring multiple infections as a consequence
of a tick bite.

Additional file

Additional file 1: NGS protocol, bioinformatics pipeline, detailed NGS
results and discussion. (DOCX 22 kb)
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