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424 Mr. S. R.  Cook on t],e _Distribution of 

Table IV .  is a comparison of the results of  other experi-  
menters  with those given in this paper.  

TABL~ IV. 

Value of :Poisson's l~atio. 

Mild Steel ......... 

Wrought Iron ... 

Brass Rod ......... 

Copper Rod ...... 

Cast Iron ........ 

~aterial. 

:Bauschinger. Stromeyer. From Table II. 

"29 

"26 to 
'31 

�9 1 6  to "19 
(Tension) 
�9 32 to "38 

(Compression) 

�9 273 to 
"300 

"279 to 
"301 

�9 283 to 
'357 

"325 

"14~ to 
"269 

�9 271 to 
"281 

�9 270 to 
"289 

�9 320 to 
'351 

�9 310 to 
"340 

�9 228 to 
"270 

I n  conclusion I must  acknowledge m y  indebtedness to m y  
colleague, :Mr. E.  L.  Watk in ,  M.A., for his valuable assistance 
in ca r ry ing  out  these experiments,  which were made in the 
Eng inee r ing  Labora to ry  at Univers i ty  College, Bristol. 

L V I .  On the _Distribution o) z Pressure around Spheres in a 
I~scous _Fluid. B V S. R.  COOK, M'.S., A.3I., Former 
-Fellow in Physics in the U'niversity of 2Vebraska, Instructor 
in Physics, Case School of Applied Science*. 

[Plate XVIII.J 

1. T H E  motion of a sphere in an incompressible fr ict ion- 
_ ] -  less fluid, at  rest at infinity, has been discussed by 

Poisson, Stokes, t iayleigh,  Kelvin,  Koenig ,  and others. The 
solution in its present  form was first given by Stokes in his 
celebrated paper " O n  Some Cases of F lu id  Mot ion,"  read 
before the Cambridge Phi losophical  Society in 1 8 4 3 t .  

On the principle that  the mutual  force ac t ing  between two 
adjacent  elements of a fluid is normal  to the surface which 
separates them, Stokes finds that  the kinetic e n e r g y  T of a 
sphere moving in an incompressible frictionless fluid at rest 

* Communicated by Prof. D. B. Brace: read before the American 
Association for the Advancement of Sciences at Washington~ January 1, 
1903. 

t Camb. Trans. vol. viii. p. 184 ; Math. Papers~ vol. i. p. 41. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 0
4:

46
 1

4 
Ju

ne
 2

01
6 



_Pressure around Spheres in a Viscous Fluid. 425 

at infinity is increased by an inertia term equivalent to one- 
half the mass of the fluid displaced times the square of the 
velocity: 

2 T : - - p  ~ f  d?~ds=~oa~u ~ . . . . .  (1) 

When the sphere moves in a straight line, its motion being 
accelerated, and there are no external forces acting on the 
fluid, the resultant pressure is equivalent to a force 

') 3 d u  - ~ ' p a  3 ~ '  " . . . . .  (2) 

in the direction of motion. I f  the velocity of the sphere is 
constant, there being no external forc% the force acting on 
the sphere is zero, the pressure is symmetrical with respect 
to any axis, and the sphere will move with uniform velocity 
through the fluid. 

The problem of the motion of two spheres in a perfect 
fluid was discussed by Stokes in the paper already referred 
to, and a method for obtaining the solution was suggested. 
Later a solution was obtained by W. M. Hicks and presented 
to the Royal Society in 1879 in his paper " On the Motion 
of Two Spheres in a Fluid *. 

Hicks finds that the kinetic energy T of two spheres 
moving in a perfect fluid may be expressed as a very simple 
function of their relative velocities ul, u2 : 

2T-=Alul~--2BulU2 + A.~u2~; . . (3) 

and that the rate of change of the distance between the 
centres of gravity of the two spheres is given by the expres- 
sion 

br A /'~Tp--a ~ 
b-T ---- +- V A ,  A~-- B' . . . . .  (4) 

the positive or negative sign being taken according as the 
spheres are separating or approaching one another. The 
spheres will therefore move as though they repelled or 
attracted one another according as 

b ~ 2Tp--a 1 

is positive or negative. This condition does not depend on 
the relative motion of the two spheres at any time, but only 
on their distance apart and the ratio of the constant energy 

* Phil. Trans. p. 4-55 (1880). 
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426 3[r. S. R. Cook on the Distribution of 
(/2 

to the constant momentum. Since K =  2"T is always positive 
5r K is always positive, and ~ tends to decrease, i. e. when 

moving i n line of centres, the spheres tend to repel each 
other. When the two spheres are moving perpendicular to 
the line of their centres, Hicks finds that for a perfect fluid 
the spheres tend to attract each other. 

Koenig* solving the same problem finds that the mutual 
forces between two spheres moving in a perfect fluid are 

X -- "~pa~b'~- sin 0 (1 -- 5 cos-"0) (5) 

Z =  - ,~ cosO(:~--hcos~0) . (6) 

Y=-0, 

where a and b are the radii, e the distance apart, and 0 the 
angle which the line of eentres makes with the direction of 
motion, Y vanishing on account of symmetry. 

nTT 
When 0 =  ~-2' n being an integer, 

3,/7 3~3 '.j , p a  o u . 

X =  ~ . . . . . . .  ( 7 )  

when 0=nTr, 
Z = 37rpa~b~w 

~ , . . . . . .  (8) 

giving repulsion parallel and attraction perpendicular to the 
stream-lines. 

As these results have been obtained on the assumption that 
the medium is a perfect flnid, it is not possible to obtain ex- 
perimental data to test their validity. All known fluids are 
TSUSCe p tible to ehanges of density, and possess internal friction 

he kinetic energy of a system moving in them may, ac- 
cordingly, be transferred to the medium itself, thereby 
necessitating the introduction of a term in the equation of 
motion that will represent this transfer of kinetic energy. 

On the condition that the velocity of the sphere is small so 
that the square of the velocity may be neglected, Stokes first 
obtained the solution for a sphere in a viscous fluid in terms 
of the potential 

f 3a  l a~( .  
4 / =  - ~ V  j Z--~Tr + 2 , , / j  . . . . .  (9) 

* Wied. Ann. Band xlii. pp. 356, 549 ; Band xliii, p. 43. 
t Camb. Trans. ix. p. 8 (1850) ; Math. and Physical Papers, vol. iii. 

p. 56. 
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Pressure around St)heres in a Viscous Fluid. 427 

The expression for the resistance of a pendulmn moving in 
a viscous fluid is, according to the same author*, 

. /  ( ,,,a9 ~)ev/_lnt, . 9  - (10) = --+ 

which, when the conditions for steady motion are applied, 
becomes 

-- ])' = 67r/~'paV, . . . . .  (11) 

for the resultant force on a sphere parallel to the direction of 
motion. 

These results are obtained on the assumption that there is 
no slip at the surface, and that the inertia term 

~u 
u DX 

may be neglected in comparison with the viscous term 

VV~-u. 

The general form of the results obtained by StokesJ" from 
theory has been recently verified by Mr. H. S. Allen :~. Mr. 
Allen allowed air-bubbles of various size to escape from a 
small opening under water. The size of the bubble was 
varied until the velocity with which the bubbles rose in the 
water or other fluid became constant. The force on the 
sphere due to its motion in the viscous fluid could then be 
measured in terms of gravity. Mr. Allen also allowed 
bicycle bearing-balls to fall through viscous fluids, varying 
the diameter until constant velocity was obtained. From 
results thus obtained Mr. Allen concludes that for very small 
velocities the motion agrees with that deduced theoretically 
by Stokes. 

When, however, the velocity is greater than a certain 
definite velocity given by the formula 

~ p # ~ + 3 ~  . . . . .  (12) 
V = ~ ga: t ~ fla + 2Is 

the resistance is proportional to the radius to the three- 
halves power, and when the velocities are considerably 
greater than the critical velocity the resistance follows the 
law deduced by Sir Isaac :Newton: 

R=kpa~V ~ . . . . . . .  (13) 

*. Math. and 1)hysical Papers, vol. iii. p. 33. 
t L. ~. p. 4) 
$ Phil. Mag. [5] vol. 1. pp. 338, 519 (1900). 
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428 Mr. S. R. Cook on tlte Distribution of 

2. The Method.--The method of allowing air-bubbles to 
ascend or solid spheres to descend in a viscous fluid gives only 
the total resultant pressure on the sphere, and does not give 
the distribution of the'pressure over the surface of the sphere. 
I t  occurred to the writer while experimenting with spheres 
in a Kundt-tube that the distribution of pressure around a 
sphere might be obtained by using a hollow sphere in which 
there ~'as a small opening,'the interior of the sphere being 
connected to a manometer. 

3. Apparatus.--A glass sphere of uniform diameter was 
blown on a capillary tube. At a point in one of the equators 
of the sphere a small hole was drilled, and it was then 
mounted in a tube 160 cms. in length and 3"5 cms. in 
diameter, through which a constant flow of air was maintained. 
The arrangement in general is shown in Plate X V I I I .  
fig. 1. 

Great care was taken that all sharp edges which would 
tend to form surfaces of discontinuity around the opening o 
(fig. 2) were rounded*, The diameter of the capillary tube c 
leading to the manometer m (fig. 4) was small compared with 
the diameter of the sphere, being in general less than one- 
twentieth. The sphere was inserted into the tube through an 
opening in the side, which was so closed that the inner 
surface of the tube was smooth and continuous. A constant 
current of air was maintained in the tube by keeping the two 
ends of the tube at a constant difference of pressure, the 
end B (fig. 1) being open to the atmosphere while the end A 
was connected to a mercury manometer m, not shown in the 
figure. The air was furnished from a gas-reservoir maintained 
at constant pressure by means of weights. 

4. ~lethods of .Determining the Pressure.--The pressure in 
the interior of the spheres was determined by water-mano- 
meters (fig. 4) made from glass of uniform diameter and 
connected to the sphere through the capillary tube c, the 
difference between the levels of the two columns of water 
being read .by a cathetometer reading to O'l ram. The 
manometers were so arranged that the difference between 
the pressure normal to the inner surface of the tube AB 
at the point at which the spheres were situated, and the 
pressure in the sphere could be determined. The differenae 
of pressure between two spheres at any time could also be 
measured. 

* Von Helmholtz, "Ueber Discontinuirliche Flussigkeitsbewegungen," 
.Berl. Monatsber. April 1868; Phil. Ma C. Nov. 1868. (See La~mb's 
' Hydrodynamics,' pp. 100 to 102, reference.) 
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Pressure around Spheres in a Viscous Fluid. 429 

5. Distribution of Pressure around a Single Sphere.--A 
glass sphere five millimetres in diameter with an opening 
two-tenths millimetre in diameter was mounted in the tube; 
the opening was in the equator whose plane was parallel to 
the direction of the stream-lines in the tube~ and could be 
rotated through 360 ~ in this plane (fig. 2). The pressure over 
unit surface of the sphere at all points in this equator could 
then be observed; and since by syunnetry this plane is 
identical with any other equatorial plane parallel to the same 
straight lines, the total distribution of pressure around the 
sphere may be obtained by rotating the pressure-distrlbution 
curve obtained in this plane through 180 ~ around an axis 
parallel to the axis of the tube. 

The full-line curve ram, Plate XVII[ .  fig. 9, shows the 
distribution of pressure in a plane parallel to the stream- 
lines, in terms of the pressure normal to the surface of the 
~ube. 

In all the diagrams~ unless otherx~'ise stated, the curves of 
the observed pressures are plotted to a scale in which the 
pressure of one millimetre of' water is represented by each 
5 ram. circle measured from the double circle marked a.p. in 
the diagram. 

6. Pressure around two Spheres whose Line of Centres is 
Parallel to the Stream-lines.--Two similar spheres of 5 mxn. 
diaineter were placed in the tube with the line of their 
centres parallel to the direction of flow, the distance apart 
of their surfaces being 1"5 cm. They were first placed with 
their openings up stream, making 0 = 0  (fig. 5). The openings 
were then rotated through an angle of 180 ~ Readings of 
the pressure normal to the surface of the spheres, as given 
by the water-manometer m, were taken for each 15 ~ The 
velocity of the air-current, as measured by the pressure a~ 
the ends of Lhe tube, being the same for each reading. 

In the following table columns 2 and 3 give the pressure 
normal to the surface of the sphere, in millimetres of water~ 
for a normal pressure in the tube of three millimetres of water. 
Columns 4 and 5 give the same for a pressure in the tube of 
one and eight-tenths millimetres of water. 

The pressure diagrams plotted from these readings are 
exhibited in fig. 10. 

"The general form for the pressure-distribution around 
Sphere A is similar to that for a single sphere. The distri- 
bution around B is slightly modified by the presence of A. 
The distributions for the two normal pressures (curves mm 
and mira t) are similar. 
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430 Mr. S. R. Cook on the Distribution o] 

TABLE I.  

Angle 
0. 

1. 

15 
30 
45 
60 
75 
90 

105 
120 
135 
150 
165 
180 

Normal Pressure 3 ram. 

Sphere A. Sphere B. 
P. P. 

2. 3. 

5'5 4'5 
5"3 4"2 
4"7 3"7 
4"3 3"5 
3"4 2"3 
2'9 2"3 
2"1 1"8 
2 "4 2 "4 
2"5 2'5 
2"5 2"5 
2 '5 2"5 
2"5 2"5 
2'5 2"5 

Normal Pressure 1'8 mm. 

Sphere A. Sphere B. 
P. P. 

4. 5. 

3'5 2'0 
3'3 2"0 
3"1 1'7 
2'5 0"9 
1'5 0"5 
1"6 ? 0"5 
0 5  0'9 ? 
0'5 0"6 
O'7 O'9 
0'7 1"1 
0'6 1"0 
0'8 1"2 
0'8 0"5 ? 

The two spheres were then moved until their distance 
apart was one-tenth the former distance, i. e. 1"5 mm., making 
the distance apart less than half the diameter of the spheres. 

The following table obtains at the normal pressures 2"8 nun. 
and 1"4 mm. of water. 

TABLE II. 

Normal Pressure2"8 m m  ~orma l  Pressure 1"4 mm. 
Angle 

0. 

1. 

15 
3O 
45 
60 
75 
9O 

105 
120 
135 
150 
165 
180 

Sphere A. Sphere ]3. 

2. 3. 

4"7 2'7 
4"1 2"9 
3"8 2"9 
2"9 ? 2'9 
2'8 3"2 
2"3 3"3 
2"0 3 0  
2"1 2 4  
2"1 2"1 
2"0 2"3 
2"1 2"2 
2"1 2"1 
2"2 2'2 

Sphere A. Sphere B. 

4. 5. 

3'7 0"5 
3'0 0"6 
1"5 ? 0"6 
1"0 1'0 
1"0 l"1 
1 '0 1 "4 
1 "0 1 "0 
1"0 0'6 
1"0 1 '0 
0'9 0"9 
1"0 0"7 
!'0 1"0 
0-9 0"9 
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Pressure around Spheres in a ~5"scous Flaid. 431 

The pressure-curves plotted from the readings for normal 
pressure 2"8 mm. are given by the full-line curve mm~ 

f i g .  11. The pressure-distribution around sphere A is 
quite similar to the pressure-distribution around a single 
sphere. The pressure-distribution around sphere B differs 
from that of a single sphere owing to the proximity of 
sphere A. 

7. The Pressure 2)istributio~ around two Spheres w]wse 
Line of Centres is Perpendicular to t/~e Stream-llnes.--Two 
glass spheres of five millimetres diameter were mounted so 
that their line of centres was perpendicular to the directiou 
of flow, the distance apart of their surfaces being 2 nlm., 
Plate X V I I I .  fig. 3. 

As the pressure-dlstribution around the two spheres is not 
symmetrical with respect to the horizontal and vertical planes 
containing the line of centres, the distribution was obtained 
in these two planes; the distribution in the horizontal plane 
is given in Table I l L  

Since the distribution of pressure is not symmetrical with 
respect to any plane, the opening was rotated through 360 ~ 
readings being taken for each 10 ~ for the first 90 ~ and for 
each 30 ~ thereafter. 

TABLE I I I .  

Angle O. Pressure in ram. Angle O. Pressure in ram. 
of water, of water. 

O 

0 
lO 
20 
3o 
40 
50 
6o 
70 
80 
90 

1 "50 
1"40 

.1'20 
1'20 
1"20 
1 "05 
0"60 
0'30 
0"15 
0"05 

o 

120 
150 
180 
210 
240 
270 
300 
330 
360 

o.o,~ 
0"15 
0"22 
0'15 
0"15 
005 
0"50 
1'10 
1 "50 

The distribution of the pressure according to the above data 
is exhibited in Plate X V I I I .  fig. 12, curve ram. As the curve 
about B would be the image of that about A the readings 
were only taken over A. 

The curves of the distribution of pressure around these 
spheres differ from the curve around a single sphere in pro- 
truding slightly at a position between 30 ~ and 60 ~ from the 
line of centres on the side nearest the companion sphere. 

The curves are plotted" to a scale of one centimetre to one 
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432 Mr. S. R. Cook on the Distribution of 

millimetre of water pressure. The double circle ap being 
taken as atmospheric pressure. 

The distribution of the pressure in a vertical plane is given 
in Table IV. The manometers were arranged to give the 
differential effect, the excess of the pressure on sphere A 
over the pressure on sphere B in the line of centres being 
recorded. The arrangement is shown in Plate XVII I .  fig. 6. 

TABLE I V .  

Angle 

0 
10 
20 
30 
40 
50 

60 to 120 
130 
140 
150 
160 
170 
180 

Difference in pressure 
0. in ram. of water. 

Px - Ps .  
i 

0"30 
: 0"40 

0'40 
0"50 
0'34 
0"30 
0'00 
0"30 
0"34 
0"50 
0"40 
0"40 
0-30 

I 

Angle 0. 

190 
200 
210 
220 

230 to 310 
320 
330 
340 
350 
360 

I 
Difference in pressure 

in mm. of water. 
Px- -P~ .  

0'25 
0"20 
0"15 
0'05 
0'00 
0"05 
0"15 
0"20 
0"25 
0"30 

8. The .Distribution of Pressure for a Perfect -Fluid.--The 
-velocity potential for a single sphere moving through a 
perfect fluid, at rest at infinity, with velocity u is 

63 
qS----lu ~cos  0, . . . . . .  (15) 

where 0 is measured from the direction of motion of the 
sphere. The pressure at any point of the sphere is 

d6 1 "  -P = F ( t ) 4  ~ -  --~q', . . . .  (16) 
P 

where F (t) is a function of the time. 

d~ ~r ~r ~6de 
dt -- ~t + ~ [ [  + ~0 dt 

and 

~q=zA~) + 2\~0/" 
Where the velocity is constant 

(17) 

. . . .  ( i s )  

~ 6  
~ = o  . . . . . . . .  (19) 
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Pressure around Spheres in a Viscous Fluid. 433 

From (15) ~q~ a ~ 
- cos O, (20) 5 ~ - ~  - -  ~ St r-- 3- . . . . . .  

a :~ 

and ~ 6  �89 r-Tsin O, (21) 

also ~ r  
~ - / =  - -u  cos 0, . . . . . . .  (22) 

and ~0 usin 0 . . . . . . . .  (23) 
~ t -  r 

From (16) the pressure around ~ single sphere moving in 
a perfect fluid is 

P - ~ cos'S0- ~. (24) _..r ~ o o o o 
p 

The broken-line curve nn in Plate X V I I I .  fig. 9 exhibits 
the pressure of a perfect fluid around a single sphere when 
moving with constant velocity. 

In order to obtain the pressure-distribution around two 
spheres ia a perfect fluid we determine the velocity potential 
and solve equation (16). The velocity potential for two 
spheres moving in their line of centres may be obtained ap- 
proximately by the theory of images*. Using only the 

obtain for the velocity potential of two spheres moving in 
their line of eentres, fig. 7, 

a ~ b 3 ~ ~ ,~=~ur~cosO+~v ~ ( c - r cos0 )  ,. l + 3 j e o s 0  

+3c5r~ cos20--12 + 5 C 7 e ~ 1 7 6  2 , (25) 

where a and b are the radii of the spheres, r the distance from 
the centre of sphere A, c the distance apart of the two spheres, 
and u and v are the respective velocities. For constant 
velocity u=v and at the sur[aco of sphere A, r----b=a and 

~--7 = - u c o s  0 - - � 8 9  1 2 

5a'~7cos~O--3cosO} a%(~ ) ~  a 
+ '  d 2 # �89 3-eos0c 

a~5 eos~0 - 1 a '~ 7 cos~0--3 cos O ! 
+ 6  :~ +15c,, j (26) e 2 2 ' 

Stokes, 1. c. p. 1 ; Hicks, I. e. p. 2. 
Phil. Mug. S. 6. u  6. No. 34. Oct. 1903. 2 F 
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434 Mr. S. R. Cook on the Distribution of 
and 
~dp_ �89 sin a3 a a ~ 5 cos~0 - 1 Vt?---- O+{a~ s i n 0 { l + 3 a c o s 0 + 3 ~  - 2 

+ 5~7 c~176 _�89 (c_acosO) { 3asin O 
"2 ) c 

a '~ 7 c o g 0 - 1  sin0 +3c'Se~ 2 _~ ' (27) 

The broken-line curve nn in Plate XVlI I .  fig. 11 exhibits 
the distribution of pressure as given by equation (16), to the 
approximation indicated, for two spheres moving with con- 
stant velocity in the line of their centres. 

For two spheres whose direction of motion is perpendicular 
to the Sine joining their centres (fig. 8) to the same degree of 
approximation 

aa ~)3 ~,2 
dp={u~cosO+{v~rcostg~lL +~ 5sin~--llt 

+ 5 r~ 7 sin30-- 3 sin 0 "~ 
j 2 + . . . .  (28) 

~ _ a ~ { 3 a a ~ 5 s i n : 0  - 1 3~:----ucosS+�89 1-~ sin 0-r 3 ~  
c 2 

a3 l - + b ~ a~ 7 sin~0--2 3 sin 0 ~ + �89 cos 0 3 ca sin 0 
.J 

+ ~-6a:5sin:~9"2 - 1 +  ~5  a~7sin*o-23sinS~'~, 
(29) 

and 
~(~ 1 u a 3 = O-- u sin O{ 1 + 0 + 5 sin O-- 1 

2 

a 3 7 s in~0-3 sin O} a ~ 0{3ca cos 0 + 5 ~  Z . + ~ u j a c o s  

a ~ 5 sin~0- 1 a ~ 7 sin38 - 1 sin 8 
+ 3~  2 + 15 c~ 2 }. (30) 

The broken-line curve nn in fig. 12 exhibits the approxi- 
mate distribution of pressure for two spheres in a perfect 
fluid moving perpendicular to their line of centres. 

For each set of spheres observations were made when the 
distance apart of the spheres was somewhat less than three 
times their radius. The ratio of the radius to the distance 
apart of the spheres used in computing the curves for the 
distribution of pressure in a perfect fluid was 1/3. All terms 
in the expansion of the second image will contain this ratio 
to the sixth and higher powers, but all terms in the first 
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Pressure aro,nd Spheres in a Viscous Fluid. 435 

image containing this ratio to a higher power than the sixth 
were neglected; that is, terms containing a factor less than 
8"6X 10 -4 have been omitted in the computation of the 
broken-line curves in figs. 11 and 12. 

9. Comparison of the .Distribution of Pressure.for a Perfect 
Fluid with the -Pressure obtained for a Viscous _Fluid.--For a 
single sphere moving with constant velocity in a perfect 
fluid at rest at infinity the curve of distribution of pressure 
is symmetrical with respect to each plane of the three rect- 
angular axes whose origin is at the centre of the sphere. 
And hence the resulting force in any direction is zero. For 
the viscous fluid the curve is asymmetrical with respect to 
the plane perpendicular to the direction of motion, but sym- 
metrical with respect to the line of motion ; and the resultant 
force is such as would tend to bring the sphere to rest. 

For two spheres moving in their line of centres in a perfect 
fluid the curves of distribution of pressure are asymmetrical 
with respect to the axial planes which are perpendicular to 
their direction of motion, the force on the inner hemisphere 
being the greater. The normal pressure and the resultant 
component pressures along the line of motion over the inner 
and outer hemispheres at different points are given in the 
tbllowing table for sphere B. 

TABLE V .  

Angle. 

0 ~ 

30 

60 

90 

Inner  
hemisphere. 

"5028 

"2940 

-- "2550 

-- "5880 

Angle. 

la~ 

150 

120 

90 

Outer 
hemisphere. 

'499 

"220 

-- '320 

- -  "5880 

Di~ 
~renee. 

'0038 

"0540 

"0650 

'0000 

Resultant 
component 

'0038 

"0468 

"0320 

"0000 

?he resultant force on both spheres is tending to separate 
th~ spheres, i. e, gives repulsion. The results for the two 
spheres in a viscous fluid are exhibited in Table I., and it is 
evident that the two spheres would have a relative motion 
such that they would approach each other, i. e. attract. 

For two spheres moving in a perfect fluid perpendicular to 
their line of centres the curves of distribution of pressure are 
asymmetrical with respect to a plane perpendicular to the 
line jpining them, the pressure in the outer hemisphere being 
the greater. 

The following table gives the nornml pressures land] the 
resultant component pressures over the outer and  inner 

2 F 2  
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436 Distribution of Pressure around Splteres in Viscous Fluid. 

hemispheres of the two spheres at corresponding points. The 
curve being asymmetrical with respect to the line joining 
them, only the figures for the first quadrant are given. 

TABLE V I .  

360 

330 

300 

270 

Outer 
hemisphere. 

'5000 

'2202 

--'3480 

--'6340 

Angle. 

3O 

6O 

9O 

Inner 
hemisphere. 

"5000 

'1790 

- " 4 2 1 1  

--'7130 

Dif. I Resultant 
ferenee I component. 

�9 0412 '0206 

�9 0731 '0617 

�9 O79O "O79O 

Table I I I .  gives the results for a viscous fluid. The curve 
(fig. 12) is asymmetrical with respect to both axial planes, 
and it is clear from the form of the curve that the pressure 
in the inner hemisphere is greater than the pressure on the 
outer hemisphere. The pressure on the inner hemisphere is 
at 30 ~ 3"3 per cent. of the normal pressure at 0 ~ in excess of 
the pressure at 360 ~ and at 60 ~ it is 5"7 per cent. of the 
normal pressure greater than the corresponding pressure at 
300% 

For a perfect fluid, therefore, two spheres moving with 
constant velocity perpendicular to the line joining their centres 
attract, and for a viscous fluid they repel. 

I have shown in a former paper ~ that when two particles 
in a sound-wave are a certain critical distance apart they are 
attracted when their line of centres is parallel to the stream- 
lines and repelled when their line of centres is perpendicular 
to the stream-lines. The spheres used in these experiments 
were relatively large compared with particles or sphere that 
would form flutings in a sound-wave. The results, however, 
agree with the results obtained with the smaller sphere in a 
sound-wave. I hope soon to be able to determine the pres- 
sure around spheres small enough to form flutings in a 
sound-wave. 

The experimental work included in this paper was con- 
ducted under the direction of Dr. Brace in the Physical 
Laboratory of the University of Nebraska, and my sincere 
thanks are due to him for valuable suggestions during the 
progress of the experiments, and also for his assistance in 
determining the curves of distribution for a perfect fluid. 

Physical Laboratory, Case School of Applied Science, 
Cleveland, Ohio, April 23, 1903. 

* Phil. Mag. May 1902. 
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