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Abstract. We consider two-player zero-sum games on graphs. Thesesgame
be classified on the basis of the information of the playes @nthe mode of
interaction between them. On the basis of information thedification is as fol-
lows: (a) partial-observation (both players have partielwof the game); (b)
one-sided complete-observation (one player has completereation); and (c)
complete-observation (both players have complete vienhefgame). On the
basis of mode of interaction we have the following classifiza (a) concurrent
(both players interact simultaneously); and (b) turn-dgbeth players interact in
turn). The two sources of randomness in these games aremaeds in transition
function and randomness in strategies. In general, rarmihsitrategies are more
powerful than deterministic strategies, and randomnessitsitions gives more
general classes of games. In this work we present a comlatacterization for
the classes of games where randomness is not helpful imdajansition func-
tion (probabilistic transition can be simulated by detenistic transition); and
(b) strategies (pure strategies are as powerful as randdrsizategies). As con-
sequence of our characterization we obtain new undecitjat#isults for these
games.

1 Introduction

Games on graphsGames played on graphs provide the mathematical framework t
analyze several important problems in computer scienceedlssmathematics. In par-
ticular, when the vertices and edges of a graph represestdles and transitions of a
reactive system, then the synthesis problem (Church’si@nmobasks for the construc-
tion of a winning strategy in a game played on a gragh 5.1/&3]5Game-theoretic
formulations have also proved useful for the verificat(dly féfinement[10], and com-
patibility checking[[7] of reactive systems. Games playrdjmphs are dynamic games
that proceed for an infinite number of rounds. In each rouralptayers choose moves;
the moves, together with the current state, determine tbeessor state. An outcome
of the game, called play, consists of the infinite sequence of states that are visited
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Strategies and objectivesA strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can Isifieldss follows:pure
strategies, which always deterministically choose a movextend the play, vsan-
domizedstrategies, which may choose at a state a probability bligtan over the avail-
able moves. Objectives are generally Borel measurablaifinsc[12]: the objective for

a player is a Borel s&® in the Cantor topology o8“ (whereS is the set of states), and
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the player satisfies the objective iff the outcome of the gsmaenember of3. In verifi-
cation, objectives are usually-regular languagesThew-regular languages generalize
the classical regular languages to infinite strings; theguo@n the low levels of the
Borel hierarchy (they lie in¥3 N I13) and they form a robust and expressive language
for determining payoffs for commonly used specifications.

Classification of gamesGames played on graphs can be classified according to the
knowledge of the players about the state of the game, anddiefichoosing moves.
Accordingly, there are (apartial-observationgames, where each player only has a
partial or incomplete view about the state and the movesebther player; (bpne-
sided complete-observatigzames, where one player has partial knowledge and the
other player has complete knowledge about the state andsvduwhe other player;
and (c)complete-observatiogames, where each player has complete knowledge of the
game. According to the way of choosing moves, the games grhgrean be classi-
fied into turn-basedand concurrentgames. In turn-based games, in any given round
only one player can choose among multiple moves; effegtitie¢ set of states can be
partitioned into the states where it is player 1's turn toypénd the states where it is
player 2's turn. In concurrent games, both players may hawiéipte moves available

at each state, and the players choose their moves simultsigesmd independently.

Sources of randomnessThere are two sources of randomness in these games. First is
the randomness in the transition function: given a curretné®nd moves of the players,
the transition function defines a probability distributiover the successor states. The
second source of randomness is the randomness in strafegies the players play
randomized strategies). In this work we study when rand@sican be obtained for
freg i.e., we study in which classes of games the probabilistissition function can

be simulated by deterministic transition function, andd¢teesses of games where pure
strategies are as powerful as randomized strategies.

Moativation. The motivation to study this problem is as follows: (a) if forclass of
games it can be shown that randomness is free for transitibes all future works
related to analysis of computational complexity, strateggnplexity, and algorithmic
solutions can focus on the simpler class with determinisdicsitions (the randomness
in transition may be essential for modeling appropriatelsdstic reactive systems, but
the analysis can focus on the deterministic subclass)t {tw) & class of games it can be
shown that randomness is free for strategies, then alldwtorks related to correctness
results can focus on the simpler class of deterministid¢esiias, and the results would
follow for the more general class of randomized strategied;(c) the characterization
of randomness for free will allow hardness results obtafioetdhe more general class
of games (such as games with randomness in transitions)¢arbed over to simpler
class of games (such as games with deterministic transjtion

Our contribution. Our contributions are as follows:

1. Randomness for free in transitiode show that randomness in the transition func-
tion can be obtained for free for complete-observation oomnt games (and any
class that subsumes complete-observation concurrentsjaane for one-sided
complete-observation turn-based games (and any classuhatimes this class).
The reduction is polynomial for complete-observation eonent games, and ex-
ponential for one-sided complete-observation turn-bgseaes. It is known that for



complete-observation turn-based games, a probabilistisition function cannot
be simulated by deterministic transition function (seedssion at end of Section 3
for details), and thus we present a complete charactayizathen randomness can
be obtained for free for the transition function.

2. Randomness for free in strategié¥e show that randomness in strategies is free
for complete-observation turn-based games, and for cageppartial-observation
games (POMDPSs). For all other classes of games randomidgies are more
powerful than pure strategies. It follows from a result of rita[12] that for
one-player complete-observation games with probaldlisgtinsitions (MDPS) pure
strategies are as powerful as randomized strategies. \Wernira generalization of
this result to the case of one-player partial-observatiames with probabilistic
transitions (POMDPs). Our proof is totally different fromalin’s proof and based
on a new derandomization technique of randomized stragegie

3. New undecidability resultsAs a consequence of our characterization of random-
ness for free, we obtain new undecidability results. Inipalar, using our results
and results of Baier et al.[[2] we show for one-sided compddtservation deter-
ministic games, the problem of almost-sure winning for Boli“objectives and
positive winning for Biichi objectives are undecidableu$twe obtain the first
undecidability result for qualitative analysis (almostesand positive winning) of
one-sided complete-observation deterministic gameswwitbgular objectives.

2 Definitions

In this section we present the definition of concurrent gaofigartial information and
their subclasses, and related notions of strategies aedtolgs. Our model of game is
essentially the same as in [9] and is equivalent to the mddgbehastic games with
signals [14,8]. Aprobability distributionon a finite setA is a functions : A — [0, 1]
such thaty . , x(a) = 1. We denote byD(A) the set of probability distributions on
A.

Concurrent games of partial observation.A concurrent game of partial observation
(or simply agamg is a tupleG = (S, A1, Az, 6,01, O2) with the following compo-
nents:

1. (State space)s is a finite set of states;

2. (Actions).A; (1 = 1, 2) is afinite set of actions for Player

3. (Probabilistic transition function)s : S x A; x A2 — D(S) is a concurrent
probabilistic transition function that given a currenttets, actionsa; anda, for
both players gives the transition probabiliifs, a1, a2)(s’) to the next state’;

4. (Observations)O; C 2° (i = 1,2) is a finite set of observations for Playethat
partition the state space These partitions uniquely define functiosts; : S —
O; (¢ = 1,2) that map each state to its observation such thatobs;(s) for all
s€S.

Special casesdlVe consider the following special cases of partial obséwatoncurrent
games, obtained either by restrictions in the observatithrssmode of selection of
moves, the type of transition function, or the number of play



— (Observation restriction)The games witlone-sided complete-observatiare the
special case of games whetd = {{s} | s € S} (i.e., Player 1 has com-
plete observation) 00, = {{s} | s € S} (Player 2 has complete observa-
tion). The games of complete-observatiane the special case of games where
01 =02 ={{s} | s € S} ie., everystate is visible to each player and hence both
players have complete observation. If a player has completervation we omit
the corresponding observation sets from the descriptidheofjame.

— (Mode of interaction restriction)A turn-based statés a states such that eithefi)
d(s,a,b) = d(s,a,b’) foralla € A; and allb, b’ € A (i.e, the action of Player 1
determines the transition function and hence it can bepnééed as Player 1's turn
to play), we refer tos as a Player-1 state, and we use the notadigna, —); or
(13) 0(s,a,b) = d(s,a’,b) for all a,a’ € A; and allb € A,. We refer tos as a
Player-2 state, and we use the notatign —, b). A states which is both a Player-1
state and a Player-2 state is callepgrababilistic statg(i.e., the transition function
is independent of the actions of the players). We writejifse—, —) to denote the
transition function ins. Theturn-based gameare the special case of games where
all states are turn-based.

— (Transition function restriction)The deterministic gameare the special case of
games where for all statesc S and actions € A; andb € A,, there exists a state
s’ € S'such that(s,a,b)(s") = 1. We refer to such statesas deterministic states.
For deterministic games, it is often convenient to assumgithS x A; x A; — S.

— (Player restriction). The 1lh-player games also calledpartially observable
Markov decision process¢sr POMDP), are the special case of games whéie
or A, is a singleton. Note that4-player games are turn-based. Games without
player restriction are sometimes calleth-player games.

The 1k-player games of complete-observation are Markov decigionesses (or
MDP), and 1;-player deterministic games can be viewed as graphs (andftme
called one-player games).

Classes of game graph®ve will use the following abbreviations: we will udea
for partial observation©Os for one-sided complete-observatio@p for complete-
observationC for concurrent, and for turn-based. For exampl€oC will denote
complete-observation concurrent games, &sI will denote one-sided complete-
observation turn-based games. Eoe {Pa, Os, Co} x {C, T}, we denote byj. the
set of allC games. Note that the following strict inclusion: partiakebvation Pa) is
more general than one-sided complete-observa@im) &nd Os is more general than
complete-observatio), and concurrent) is more general than turn-basdg.(We
will denote byGp, the set of all games with deterministic transition function

Plays.In a game structure, in each turn, Playethooses an actiom € A;, Player2
chooses an action ihe A, and the successor of the current staechosen according
to the probabilistic transition functiof(s, a, b). A playin G is an infinite sequence of
statesp = sgs1 ... such that for al > 0, there exists;; € A; andb; € As with
0(si,a4,bi,8:41) > 0. Theprefix up tos,, of the playp is denoted by(n), its length
is |p(n)] = n + 1 and itslast elemenis Last(p(n)) = s,. The set of plays irG
is denotedPlays(G), and the set of corresponding finite prefixes is den®ets(G).



The observation sequena p for playeri (i = 1,2) is the unique infinite sequence
obs;(p) = 0po1 ... € OY suchthats; € o; forall j > 0.

StrategiesA pure strategyin G for Playerl is a functiono : Prefs(G) — A;. A
randomized strategin G for Playerl is a functiono : Prefs(G) — D(A;1). A (pure
or randomized) strategy for Player1 is observation-based for all prefixesp, p’ €
Prefs(G), if obsy(p) = obsi(p’), theno(p) = o(p’). We omit analogous definitions
of strategies for Playe?. We denote byXq, XS, XL, I, 11§ and 1} the set of
all Playerd strategies, the set of all observation-based Playstrategies, the set of all
pure Playert strategies, the set of all Playistrategies iz, the set of all observation-
based Playe?-strategies, and the set of all pure Plagestrategies, respectively. Note
that if Playerl has complete observation, th&ly) = Y.

ObjectivesAn objectivefor Playerl in G is a setp C S“ of infinite sequences of states.
A play p € Plays(G) satisfieghe objectivep, denotedh = ¢, if p € ¢. Objectives are
generally Borel measurable: a Borel objective is a Borelrsétie Cantor topology on
S« [11]. We specifically considew-regular objectives specified as parity objectives
(a canonical form to express all-regular objectives [17]). For a play = sgs; ...
we denote bynf(p) the set of states that occur infinitely oftengdnthat is,Inf(p) =

{s | s; = sforinfinitely manyj's}. Ford € N, letp : S — {0,1,...,d} be a
priority function which maps each state to a non-negative integer prioritg.pgrity
objectiveParity(p) requires that the minimum priority that occurs infinitelytesf be
even. FormallyParity(p) = {p | min{p(s) | s € Inf(p)} is ever}. The Buchi and
coBiuichi objectives are the special cases of parity oljestivith two prioritiesp : S —
{0,1} andp : S — {1, 2} respectively. We say that an objectiyés visiblefor Playeri

if for all p, p’ € S«,if p = ¢ andobs;(p) = obs;(p’), theny’ = ¢. For example if the
priority function maps observations to priorities (ig: O; — {0,1,...,d}), thenthe
parity objective is visible for Playet

Almost-sure winning, positive winning and value functidn.eventis a measurable set
of plays, and given strategiesandr for the two players, the probabilities of events are
uniquely defined [18]. For a Borel objective we denote byPr? ™ (¢) the probability
that¢ is satisfied by the play obtained from the starting statdaen the strategiesand

m are used. Given a game struct@*eand a state, an observation-based strategyor
Player1 is almost-sure winning (almost winning in shoftesp.positive winning for
the objectivep from s if for all observation-based randomized strategidsr Player2,

we havePr?™(¢) = 1 (resp.Pr?™(¢) > 0). Thevalue function(1)&¢, : S — R

for Player 1 and objective assigns to every state the maximal probability with which
Player 1 can guarantee the satisfactio @fith an observation-based strategy, against
all observation-based strategies for Player 2. Formallyaxe

(1)Ga(@)(s) = sup inf PrI7(g).

0628 7T€H8

For ¢ > 0, an observation-based strategysi®mptimal for ¢ from s if we have
inf e o Pr{™(¢) = (1Y€ (¢)(s) — . An optimalstrategy is @-optimal strategy.

val

Example 1.Consider the game with one-sided complete observatiogéPldas com-
plete information) shown in Fi@l 1. Consider the Biichi atijee defined by the state



Fig. 1. A game with one-sided complete observation.

Pa - partial observation
) ‘ ] C - concurrent
Os - one-sided complete observation ‘

| ‘
! _ T - turn-based
Co - complete observation
Th.[3

Th.[2

Fig. 2. The various classes of game graphs. The curves materiaizdeasses for which
randomnessis for free in transition relation (Theotém 2Emebreni B). Fo? 1/>-player
games, randomness is not free only in complete-observatiorbased games.

s4 (i.e., states, has priority0 and other states have priority. Because Player has
partial observation (given by the partitid® = {{s1}, {s2, 5}, {s3,54},{s4}}), she
cannot distinguish between ands) and therefore has to play the same actions with
same probabilities in, ands’, (while it would be easy to win by playing; in s anda,
in s5, this is not possible). In fact, Playgrcannot win using a pure observation-based
strategy. However, playing; anda, uniformly at random in all states is almost-sure
winning. Every time the game visits observatien for any strategy of PlayeZ, the
game visitsss and s; with probability%, and hence also reaches with probability
L. It follows that against all Playe? strategies the play eventually reachgswith

2
probability 1, and then stays there.

3 Randomness for Free in Transition Function

In this section we present a precise characterization ofldsses of games where the
randomness in transition function can be obtainedre in other words, we present
the precise characterization of classes of games with pilidtac transition function
that can be reduced to the corresponding class with detstioitransition function.
We present our results as three reductions: (a) the firsttieduallows us to separate
probability from the mode of interaction; (b) the secondugtbn shows how to simu-



late probability in transition function wit€oC (complete-observation concurrent) de-
terministic transition; and (c) the final reduction showsvito simulate probability in
transition withOsT(one-sided complete-observation turn-based) detertitirirainsi-
tion. All our reductions aréocal: they consist of a gadget construction and replacement
locally at every state. Our reductions preserve valuestaxt¢e ot-optimal strategies

for e > 0, and also existence of almost-sure and positive winnirajesjies. A visual
overview is given in Fig.12.

3.1 Separation of probability and interaction

A concurrent probabilistic game of partial observat@rsatisfies theénteraction sep-
aration condition if the following restrictions are satisfied (sdsoaFig.[4): the state
spaceS can be partitioned int¢S 4, Sp) such that (1) : S4 x A; x A; — Sp, and
(2)6 : Sp x A1 x A2 — D(S4) such that for alls € Sp and alls’ € S4, and for
all a1, as, ay, ah, we haved (s, a1, az)(s’) = d(s, al,dh)(s") = d(s,—, —)(s’). In other
words, the choice of actions (or the interaction) of the ptayakes place at statesin
and actions determine a unique successor staie jrand the transition function &p

is probabilistic and independent of the choice of the playkrthis section, we reduce
a class of games to the corresponding class satisfyingictten separation.

Reduction to interaction separation.Let G = (S, A1, A2, §, O1, O2) be a concurrent
game of partial observation with an objectiveWe obtain a concurrent game of partial
observatiorG = (S5 U Sp, A1, A2,0,071,02) whereS, = S, Sp =5 x Ay x Ag,
and:

— ObservationFori € {1,2},if O; = {{s} | s € S}, thenO; = {{s'} | s’ €
SaUSp}; otherwiseD; contains the observation {(s, a1, a2) | s € o} for each
0 c Ol

— Transition functionThe transition function is as follows:

1. We have the following three cases: (a} is a Player 1 turn-based state, then
pick an actiona’ and for all as let 8(s,a1,az) = (s,a1,a3); (b) if sis a
Player 2 turn-based state, then pick an actipand for alla; leté(s, ay, az) =
(s,a%,az); and (c) otherwisei(s, a, az) = (s, a1, az);

2. forall(s,as,as2) € Sp we haved((s, a1, az), —, —)(s') = &(s, a1, az)(s").

Thus the states i¥' are S, where the interaction takes places, and the states in
S x Ay x As are the purely probabilistic statés.

— Objective mappingGiven the objectivep in G we obtain the objectived =
{(sos(s18)--.) | (sos1...) € 6} inG.

Itis easy to map observation-based strategies of the gato®bservation-based strate-
gies inG and vice-versa that preserves satisfaction ahd¢ in G andG, respectively.
Let us refer to the above reductionReduction: i.e., Reduction(G, ¢) = (G, ¢). Then
we have the following theorem.

Theorem 1. Let G be a concurrent game of partial observation with an objectly

and let(G, ¢) = Reduction(G, ¢). Then the following assertions hold:



1. The reductionReduction is restriction preservingif G is one-sided complete-
observation, then so i§; if G is complete-observation, then soGs if G is turn-
based, then so i§'.

2. Forall s € S, there is an observation-based almost-sure (resp. pe3itiwnning
strategy for¢ from s in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy fop from s in G.

3. The reduction is objective preservinguiis a parity objective, then so i; if ¢ is
an objective in thé:-the level of the Borel hierarchy, then sods

4. For all s € S we have(1)¢ ,(¢)(s) = (1)S ,(¢)(s). Forall s € S there is an

observation-based optimal strategy forfrom s in G iff there is an observation-
based optimal strategy fef froms in G.

Since the reduction is restriction preserving, we have aggoh that separates the
interaction and probabilistic transition maintaining ttestriction of observation and
mode of interaction.

Uniform-n-ary concurrent probabilistic games. The class olniform-n-ary proba-
bilistic gamesare the special class of probabilistic games such that etatgs € Sp
hasn successors and the transition probability to each succés%o It follows from
the results ofl[19] that ever@oC probabilistic game with rational transition probabili-
ties can be reduced in polynomial time to an equivalent pmiyial size uniform-binary
(i.e.,n = 2) CoC probabilistic game for all parity objectives. The reduntis achieved
by adding dummy states to simulate the probability, and #uaiction extends to all
objectives (in the reduced game we need to consider thetolgechose projection in
the original game gives the original objective).

In the case of partial information, the reduction to unifeloimary probabilistic
games of[[19] is not valid. To see this, consider [Eig. 3 whem probabilistic states
s1, 52 have the same observation (i.ebs; (s1) = obs;(s2)) and the outgoing proba-
bilities are(1, 3) from s; and(, 2) from s,. The corresponding uniform-binary game
(given in Fig.[3) is not equivalent to the original game bessathe number of steps
needed to simulate the probabilities is not always the saom §; and froms,. From
s1 two steps are always sufficient, while frammore than two steps may be necessary
(with probabilityi). Therefore with probability}, Player 1 observing more than 2 steps
would infer that the game was for sureds, thus artificially improving his knowledge
and increasing his value function.

Therefore in the case of partial observation, we can onlyceé probabilistic game
G to a uniformsn-ary probabilistic game with, = 1/r wherer is the greatest common
divisor of all probabilities in the original gam& (a rational- is a divisor of a rationgb
if p = ¢ - r for some integey). Note that the number = 1/r is an integer. We denote
by [n] the set{0,1,...,n — 1}. For a probabilistic state € Sp, we define the:-tuple
Succ(s) = (sg,...,s),_1) in which each state’ € S occursn - §(s, —, —)(s’) times.
Then, we can view the transition relatiéfs, —, —) as a function assigning the same
probabilityr = 1/n to each element Bucc(s) (and then adding up the probabilities
of identical elements).

Note that the above reduction is worst-case exponentiab{is® so can be the least
common multiple of all probability denominators). This iscessary to have the prop-
erty that all probabilistic states in the game have the sammeber of successors. We
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Fig. 3. An example showing why the uniform-binary reduction canbetused with
partial observation.

Fig.4. Example of interaction separation fod(s,a1,b1)(s1) = 5 and
6(8,&1,1)1)(82) = %

will see that this property is crucial because it determthesnumber of actions avail-
able to Player 1 in the reductions presented in Seéfidn 3Bdh and the number of
available actions should not differ in states that have émeesobservation.

3.2 Simulation of probability with complete-observation oncurrent
determinism

In this section, we show that probabilistic states can beisitad byCoC deterministic
gadgets (and hence also &sC andPaC deterministic gadgets). By Theorérh 1, we
focus on games that satisfy interaction separation.

Theorem 2. Leta € {Pa, Os,Co} andb € {C, T}, and letC = abandC’' = aC. Let
G be a game i§¢ with probabilistic transition function with rational pratbilities and
an objectivep. A gameG € G N Gp (in the class that subsumég with concurrent



interaction) with deterministic transition function cae bonstructed in (a) polynomial
time ifa = Co, and (b) in exponential time i = Pa or Os, with an objectives such
that the state space 6f is a subset of the state space®tind the following assertions
hold.

1. For all s € S there is an observation-based almost-sure (resp. pojitivening
strategy froms for ¢ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy fop from s in G.

2. Forall s € S we have(1)% (¢)(s) = (1)S ,(#)(s). For all s € S there is an

observation-based optimal strategy forfrom s in G iff there is an observation-
based optimal strategy fef froms in G.

Proof. To prove the desired result we show how an unifotrary probabilistic state
can be simulated by @oC deterministic gadget. For simplicity we present the dstalil
for the case when = 2, and the gadget for the general case is given in the Appendix.
Our reduction will be as follows: we consider a uniform-bin@oC probabilistic game
such that there is only one probabilistic state, and redute & CoC deterministic
game. For uniform-binarZoC probabilistic games with multiple probabilistic states
the reduction can be applied to each state one at a time andwld abtain the desired
reduction from uniform-binarZoC probabilistic games t€oC deterministic games.
Hence we prove the following claim.

Claim. Consider a uniform-binarfCoC probabilistic game& with a single proba-
bilistic states* with two successors; ands,. Consider theCoC deterministic game
G’ obtained fromG by transforming the state* to a concurrent deterministic state
as follows: the actions available for player 1 &t are a; and a; and the actions
available for player 2 at* areb; andb,; and the transition function is as follows:
6(8*, ai, bl) = 6(8*, a9, bg) = S andé(s*, ai, bg) = 6(8*, as, bl) = So. Then for all
objectivesp, the following assertions hold.

1. For alls € S there is an observation-based almost-sure (resp. pgsitivéing
strategy froms for ¢ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy for from s in G’.

2. Foralls € S we have((1)G,,(6)(s) = (1), (¢)(s). For alls € S there is an

observation-based optimal strategy fofrom s in G iff there is an observation-
based optimal strategy fgrfrom s in G'.

The reduction is illustrated in Figuté 5. We prove the cla#rfalows. Let the value

for the objectivep player 1 at a state bewv(s) andv’(s) in G andG’, respectively, and

let the value for player 2 be(s) andw’(s) in G andG’, respectively. By determinacy
of CoC games[[1R] we haver(s) = 1 — v(s) andw’(s) = 1 — v'(s). We present two

inequalities to complete the proof.

1. Consider a strategy for player 2 inG and we construct a strategy for player 2
in G as follows: the strategy’ follows the strategyr for all histories other than
when the current state i§; and if the current state is", then strategy:’ plays the
actionsb; andbs uniformly with probability%. Given the strategy’, if the current
state iss*, then for any probability distribution over andas, the successor states
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Fig. 5. The reduction of uniform-binar€oC probabilistic games.

ares; ands, with probability% (i.e., it plays exactly the role of stat& in G). It
follows that the value for player 1 i@’ is no more than the value @, i.e., for all
s we havev'(s) < v(s).

2. Consider a strategyfor player 1 inG and we construct a strategyfor player 1 in
G’ as follows: the strategy’ follows the strategy for all histories other than when
the current state is*, and if the current state is, then the strategy’ plays the
actionsa; andas uniformly with probability%. Given the strategy’, if the current
state iss*, then for any probability distribution ovég andb,, the successor states
ares; ands, with probability% (i.e., it plays exactly the role of stat& in G). It
follows that the value for player 2 i@’ is no more than the value i@, i.e., for all
s we havew’(s) < w(s).

It follows from above thab(s) = v’(s) for all statess, and the desired result follows.
Observe that the reduction also ensures that from an opstrategy inG we can
construct an optimal strategy @&’ and vice-versa. Our proof shows how probabilistic
states can be simulated BoC deterministic states, and it follows that probabilistic
states can be simulated BsC deterministic states arfaC deterministic states. The
result follows

3.3 Simulation of probability with one-sided complete-obervation turn-based
determinism

We show that probabilistic states can be simulateddsf (one-sided complete-
observation turn-based) states, and by Thediem 1 we corgadees that satisfy in-
teraction separation. The reduction is illustrated in Bigeach probabilistic stateis
transformed into a Play&state withn successor Playdr-states (where is chosen
such that the probabilities in are integer multiples of /n, heren = 3). Because alll
successors of have the same observation, Playédras no advantage in playing after
Player 2, and because by playing all actions uniformly atioam each player can uni-
laterally decide to simulate the probabilistic state, thiig and properties of strategies
of the game are preserved.

Theorem 3. Leta € {Pa,0s,Co} andb € {C, T}, and leta’ = a if a # Co, and
a’ = Os otherwise. Let = ab andC’ = d'b. LetG be a game i with probabilistic
transition function with rational transition probabildgis and an objective. A game
G’ € Ger N Gp (in the class that subsumes one-sided complete-obsematio-based
games and the clagg:) with deterministic transition function can be construtia
exponential time with an objectivg& such that the state space Gfis a subset of the
state space afi’ and the following assertions hold.



1. For all s € S there is an observation-based almost-sure (resp. pojitivening
strategy froms for ¢ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy fop’ froms in G.

2. Forall s € S we have(1)S, (6)(s) = (1)S.,(¢')(s). Forall s € S there is an

observation-based optimal strategy forfrom s in G iff there is an observation-
based optimal strategy faf’ fromsin G'.

Proof. First, we present the proof far # Co, assuming that Playex has complete
observation. Letz = (S4 U Sp, 41, A, 5, O1) and assume w.l.0.g. (according to The-
orem1) that7 satisfies interaction separation (i.e., state$ jmare deterministic states,
andSp are probabilistic states) ar@ is uniform-n-ary, i.e. all probabilities are equal
to 1. For each probabilistic statec Sp, let Succ(s) = (s, ..., s,_,) be then-tuple

of states such that(s, —, —)(s}) = % foreachl < i < n.

We present a reduction that replaces the probabilistiestats by a gadget with
Player-1 and Player-2 turn-based states. Ffgme construct the one-sided complete-
observation gamé&”’ where Player-2 has complete observation. A similar conston
where Player-1 instead of Player-2 has complete obsenviatmbtained symmetrically.
The game&y’ = (S', A, A}, ¢, 04) is defined as followsS” = SU (S x [n]) U {sink},

Al = A1 U[n], AL, = AsU[n], O] = {oU{(s,7) | s € 0} | 0 € O1}, andy’ is obtained
from ¢ by applying the following transformation for each state S:

1. if sis a deterministic state i¥, thend’(s, a,b) = 6(s,a,b) foralla € A;,b € A,,
andd’(s, —,j) = ¢'(s,i,—) = sink forall i, j € [n];

2. if s is a probabilistic state i, thens is a Player-2 state i6” and for alli, j € [n]
we defined’ (s, —, i) = (s,i) andd’((s,4), j, —) = s}, such that), is the elementin
positionk in Succ(s) with k = i+5 mod n (andletd’(s, —,b) = §'((s,i),a, —) =
§'(sink, —,—) = sinkforalla € A1,b € Aj).

Note that turn-based states @hremain turn-based i’ and the stategs, -) are
Player-1 states with the same observation. #ssequence of observation, . . . , 0, In
G corresponds to the sequengeos, 0z, 03, 04, 04, . . . , 0, IN G’ because deterministic
and probabilistic states alternate@) and inG’, transitions from probabilistic states
have intermediate states with duplicated observation. dijective ¢’ is defined as
the set{oy, 02, 02, 03,04,04, ... | 01,02, ... € ¢}. Intuitively, each player i7" has the
possibility to force faithful simulation of the probabtiisstates of+ by playing actions
in [n] uniformly at random. For instance, if Player 1 does so, thesspective of the
(possibly randomized) choice of Playzamong the states, 1), .. ., (s, n), the states
in Succ(s) are reached with probability/n, as inG. And the same holds if Playéer
plays in[n] uniformly at random, no matter what Player 1 does. Therefdlgyerl can
achieve the objectivé’ in G’ with the same probability as farin G, but not more.

The above reduction can be easily adapted to thecas®a of games with partial
information for both playerd

Role of probabilistic transitionin CoT games andPOMDPs.We have already shown
that forCoC games an®sT games, randomness in transition can be obtained for free.
We complete the picture by showing that 60T (complete-observation turn-based)
games randomness in transition cannot be obtained forlfréslows from the result



Fig. 6. For the probabilistic state (on the left), we hav&ucc(s) = (s, s}, s;) and
n = 3 is the gcd of the probabilities denominators. Thereforeamely the reduction
of Theoreni B to obtain the turn-based game on the right, whizra Player-2 states.

215-player 11h-player

complete| one-sided partial| MDP | POMDP
turn-based  not free free | not not
concurrent  free free free | (NA) | (NA)

Table 1. When randomness is for free in the transition function. Irtipalar, proba-
bilities can be eliminated in all classes of 2-player game&gpt complete-observation
turn-based games.

of Martin [12] that for allCoT deterministic games and all objectives, the values are
either 1 or 0; howeveMDPs with reachability objectives can have values in the irgerv
[0,1] (not value 0 and 1 only). Thus the result follows fooT games. It also follows
that “randomness in transitions” can be replaced by “rantEsa in strategies” is not
true: inCoT deterministic games even with randomized strategies thiesare either 1
or 0 [12]; wherea$/DPs can have values in the interyél 1]. ForPOMDPs, we show

in Theorenib that pure strategies are sufficient, and it\lthat forPOMDPs with
deterministic transition function the values are 0 or 1, sindeMDPs with reachability
objectives can have values other than 0 and 1 it follows #adlomness in transition
cannot be obtained for free f(#BOMDPs. The probabilistic transition also plays an
important role in the complexity of solving games in cas€ofl games: for example,
CoT deterministic games with reachability objectives can beesbin linear time, but
for probabilistic transition the problem lies in NP coNP and no polynomial time
algorithm is known. In contrast, f@oC games we present a polynomial time reduction
from probabilistic transition to deterministic transitioTabld_l summarizes our results
characterizing the classes of games where randomnesssitiwa can be obtained for
free.



4 Randomness for Free in Strategies

It is known from the results of [8] that i€oC games randomized strategies are more
powerful than pure strategies; for example, values actibyeure strategies are lower
than values achieved by randomized strategies and randdraimost-sure winning
strategies may exist whereas no pure almost-sure winniatggy exists. Similar results
also hold in the case @sT games (see [6] for an example). By contrast we show that
in one-player games, restricting the set of strategieste gimategies does not decrease
the value nor affect the existence of almost-sure and pesitinning strategies. We
first start with a lemma, then present a result that can bgatbfiom Martin’s theorem

for Blackwell games [12], and finally present our resultcsely in a theorem.

Lemma 1. LetG be aPOMDP with initial states, and an objective® C S“. Then for
every randomized observation-based strategy Yo there exists gureobservation-
based strategyp € X'p N Yo such that:

Pr{ (¢) < Prif(¢) . 1)

Proof. Let G = (S, A,9,0) a POMDP. Leto : O* — D(A) be a randomized
observation-based strategy anddixe S an initial state.

To simplify notations, we suppose that= {0, 1} contains only two actions, and
that given a state € S and an actior € {0, 1} there are only two possible successors
L(s,a) € S andR(s,a) € S chosen with respective probabilitié&s, a, L(s, a)) and
0(s,a, R(s,a)) = 1—4(s,a, L(s,a)). The proof is for an arbitrary finite set of actions
and more than two successors is essentially the same, witangomplicated notations.

There is a natural way to “derandomize” the randomizedegsat. Fix an infinite
sequence = (z,)nen € [0,1]* and define the deterministic strategy as follows.
For everyog, 01, ..., 0, € OF,

0 ifz, <o(og,01,...,0,)(0)
1 otherwise.

UI(Oo,Ol,...,On) = {

Intuitively, the sequence fixes in advance the sequence of results of coin tosses used
for playing witho.

To prove the lemma, we show thiat 1] can be equipped with a probability mea-
surev such that the mapping— Pr7”(¢) from [0, 1]« to [0, 1] is measurable and:

P17 (¢) = / P19 () du(z) . @)
z€[0,1]w

Suppose thaf{2) holds. Then there existE [0,1]“ (actually manyz’s) such that
Pr? (¢) < Prl*(¢) and since strategy, is deterministic, this proves the lemma.

To complete the proof of Lemnid 1, it is thus enough to constauprobability
measures on [0, 1]“ such that[(R) holds.

We start with the definition of the probability measwtélhe sef0, 1]* is equipped
with the o-field generated bgequence-cylindemshich are defined as follows. For ev-
ery finite sequence = z, x1, ..., z, € [0, 1]* the sequence-cylindé€}(z) is the sub-
set[0, zo] x [0, z1] X ... % [0,2,] x[0,1]* C [0, 1]“. According to Tulcea’s theoremi[4],



there is a unique product probability measuren [0, 1] such that/(O(e)) = 1 and
for every sequencey, . . ., Ty, Tn41 N [0, 1],

YO0, Ty Tni1)) = Tasr - O, ., ,)) -

Now thatv is defined, it remains to prove that the mapping- PrJ*(¢) from
[0,1]* to [0, 1] is measurable and thafl (2) holds. For that, we introducedtexfing
mapping:

fseo 1 [0,1]* x [0,1]* — (SA)“,
that associates with every pair of sequen@@s,)nen, (¥n)nen) the infinite history
h = spais1az ... € (SA)¥ defined recursively as follows. Firs§ = s.., and for every
n €N,

0 if 2, < o(obs(spsy -+ sn))(0),
anp - .
i 1 otherwise.

s _ L(SnvanJrl) if Yn < 5(5naan+1aL(5naan+1))a
a R(sn,any1) Otherwise.

Intuitively, (x,)nen fixes in advance the coin tosses used by the strategy, while
(yn)nen takes care of coin tosses used by the probabilistic transitiandfs, . pro-
duces the resulting description of the play. Thanks to thppimg f;, ,, randomness
related to the use of the randomized strategg separated from randomness due to
transitions of the game, which allows to represent the remged strategyr by mean
of a probability measure over the set of deterministic sgis{c, | = € [0,1]“}.

We equip both set6SA)“ and[0, 1]¥ x [0, 1] with o-fields that makefs, , mea-
surable. First{SA)“ is equipped with ther-field generated by cylinders, defined as
follows. An action-cylinder is any subsét(h) C (SA)“ such thatO(h) = h(SA)¥
for someh € (SA)*. A state-cylinder is any subs&(h) C (SA)“ such that
O(h) = h(AS)v for someh € (SA)*S. The set of cylinders is the union of the sets
of action-cylinders and state-cylinders. Secoldd1]“ x [0, 1]« is equipped with the
o-field generated by products of sequence-cylinders. Chgdkatfs, . is measurable
is an elementary exercise.

Now we define two probability measurgsandy’ on (SA)“ and prove that they
coincide.

On one hand, the measurable mappfiag, : [0,1]* x [0,1]* — (SA)“ defines
naturally a probability measure on (SA)“. Equip the sef0, 1] x [0, 1] with the
product measure x v. Then for every measurable subgetC (SA4)~,

W(B) = (v xv)(f,(B)) -

On the other hand, the strategyand the initial state, naturally define another prob-
ability measurg: on (S A)“. According to Tulcea’s theorerl[4], there exists a unique
product probability measure on (SA)“ such thatu(O(s.)) = 1, u(O(s)) = 0 for

s € S\ {s.}, and forh = spa1s1az - s, € (SA)*S and(a,t) € A x S,

(O (ha)) = a(obs(so - 5,))(a) - L(O(R))
(O (hat)) = 8(sn,a.t) - p(O(ha)) .



We have defined, . in such a way that andy’ coincide. To prove that andy’
coincide, it is enough to prove thatandy’ coincide on the set of cylinders, that is for
every cylindetO(h) C (SA)“,

uO(h) = (v x v)(f . (O(h))) - 3)

Forh = s, orh = s € S\ {s.} then [3) is obvious. The general case goes by
induction. Leth = spaisiaz---s, € (SA)*S and(a,t) € A x S.LetI =[0,1]. Let

I, = [0,0(h)(a)] if a = 0andl, = [o(h)(a),1] if a = 1. LetI; = [0,3(sp,a,t)] if

t = L(sp,a)andly = [6(sn,a,t),1]if t = R(sp,a). Then:

#(O(ha) | O(h)) = a(h)(a)

(IxD™(IxL)IxI)*)
v)(fi o (O(hat)) | f5 15 (O(ha)))
which proves tha{{3) holds for every cylinder

Now all the tools needed to provel (2) have been introducedi vancan state the
main relation betweerf,, , andPr] (¢). Let ¢’ C (SA)“ be the set of histories
spaisy - -- such thatsgs; --- € ¢, and letly and 1,4 be the indicator functions of
¢ and¢’. Then:

Pr{ (¢) = / e 14(p) dPr (p) = / Csaye 14 (p) du(p) = / 14 (p) dp' (p)

pE(SA)~

-/ Lo o)) 0 0)(29)
(x,y)€[0,1]* x[0,1]«

-/ ( / 1¢/(fs*,a(a?,y))d1/(y)> dv(z) | )
z€[0,1]« y€[0,1]@

where the first and second equalities are by definitiofPxf (¢), the third equality
holds becausg = 1/, the fourth equality is a basic property of image measunes, a
the fifth equality holds by Fubini’s theorernl[4] that we caresincely o f;, » iS
positive.

To complete the proof, we prove that for eveng [0, 1],

P1o* (¢) = / Ly (fur o (2.9) doly) . (5)
y€[0,1]«

Equation[(#4) holds for every observation-based stratedyence in particular for strat-
egy o.. But strategyo, has the following property: for every’ €]0,1[% and every

€ (0,119, fs, 0. (2", y) = fs. o(x,y). Together with[(#), this give$¥5). This com-
pletes the proof, sinc€l(4) ard (5) immediately givie §2).



21h-player 11k-player
complete| one-sideq partial| MDP | POMDP
turn-based € >0 not not (e>0]| e>0

concurrent  not not not | (NA) | (NA)

Table 2. When deterministic €coptimal) strategies are as powerful as randomized
strategies. The case= 0 in complete-observation turn-based games is open.

Theorem 4 ([12]).Let G be aCoT stochastic game with initial state. and an ob-
jectivep C S“. Then the following equalities holdnf ¢, sup,¢ s, P17 (¢) =

SUDP, e 55, Mfremy Pre™ () = sup, e spns, infrem, P17 (4).

We obtain the following result as a consequence of Lefima 1.

Theorem 5. Let G be aPOMDP with initial states, and an objective) C S“. Then
the following assertions hold:

1. SUPsexo Prg* (¢) = SUPsexonsp Prg* (d))

2. Ifthere is arandomized optimal (resp. almost-sure wignpositive winning) strat-
egy for¢ from s,., then there is a pure optimal (resp. almost-sure winningitpee
winning) strategy for) from s..

Theoren{# can be derived as a consequence of Martin’s prodétefminacy of
Blackwell games/[12]: the result states that @oT stochastic games pure strategies
can achieve the same value as randomized strategies, anspasial case the result
also holds foMDPs. Theorerib shows that the result can be generalize@DPs,
and a stronger result (item (2) of Theorem 5) can be proveB@vDPs (andMDPs
as a special case). It remains open whether result simiiterto(2) of Theoremils can
be proved forCoT stochastic games. The results summarizing when randonoaass
be obtained for free for strategies is shown in Table 2.

Undecidability result for POMDPs. The results ofl[2] shows that the emptiness prob-
lem for probabilistic coBuichi (resp. Buichi) automata enthe almost-sure (resp. pos-
itive) semantics/[2] is undecidable. As a consequencelivd that forPOMDPs the
problem of deciding if there is a pure observation-basedatrsure (resp. positive)
winning strategy for coBuichi (resp. Biichi) objectivesiisdecidable, and as a conse-
guence of Theoreifd 5 we obtain the same undecidability résutandomized strate-
gies. This result closes an open question discussed in [#.uhdecidability result
holds even if the coBuichi (resp. Biichi) objectives aréolés

Corollary 1. Let G be aPOMDP with initial state s, and let7 C S be a subset of
states (or subset of observations). Whether there existeeaqr randomized almost-
sure winning strategy for Player 1 fromin G for the objectivecoBuchi(7) is unde-
cidable; and whether there exists a pure or randomized p@swinning strategy for
Player 1 froms in G for the objectiveBuchi(7) is undecidable.



Undecidability result for one-sided complete-observatio turn-based games.The
undecidability results of Corollafy 1 also holds f0sT stochastic games (as they sub-
sumePOMDPs as a special case). It follows from Theoidm 3 @sT stochastic games
can be reduced tOsT deterministic games. Thus we obtain the first undecid it
sult for OsT deterministic games (the following corollary), solvingetbpen question
of [6].

Corollary 2. LetG be anOsT deterministic game with initial state, and let7 C S
be a subset of states (or subset of observations). Whetrereists a pure or random-
ized almost-sure winning strategy for Player 1 fremn G for the objectiveoBuchi(7)

is undecidable; and whether there exists a pure or randotisitive winning strategy
for Player 1 froms in G for the objectiveBuchi(7T) is undecidable.

5 Conclusion

In this work we have presented a precise characterizatioolésses of games where
randomization can be obtained for free in transitions andtiategies. As a conse-
quence of our characterization we obtain new undecidgbégults. The other impact
of our characterization is as follows: for the class of gamégre randomization is

free in transition, future algorithmic and complexity aygé can focus on the simpler
class of deterministic games; and for the class of gamesevhedomization is free in

strategies, future analysis of such games can focus onrtipdesiclass of deterministic

strategies. Thus our results will be useful tools for simplealysis techniques in the
study of games.
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A Appendix

Gadget for uniform-n-ary probability reduction for Theorem 2] We now show how
to simulate a probabilistic state’, with n successorsy, s1, ..., s,_1 such that the
transition probability i9 /» to each of the successor, by a concurrent deterministie. stat
In the concurrent deterministic statethere are: actionsug, a4, . . ., a,_1 available for
player 1 andh actionsbg, by, . .., b,_1 available for player 2. The transition function
is as follows: for0 < i < n and0 < j < n we haved(s*,a;,b;) = S(i+j) mod n-
Intuitively, the transition function matrix is obtained fmlows: the first row is filled
with statessg, s1,...,s,_1, and from a row;, the row: + 1 is obtained by moving
the state of the first column of rowto the last column in row + 1 and left-shifting
by one position all the other states; the construction isitted on an example with
n = 4 successors i ]6). The construction ensures that in everanal every column
each statesg, s1,...,5,_1 appears exactly once. It follows that if player 1 plays all
actions uniformly at random, then against any probabilistribution of player 2 the
successor states asg, s1,. .., s,—1 With probability 1/n each; and a similar result
holds if player 2 plays all actions uniformly at random. Tloerectness of the reduction
for uniform-n-ary probabilistic state is then exactly as the proof of Tee®2.

S0 S1 S2 S3
S1 82 83 So
S2 83 So S1
S$3 S0 S1 S2

(6)
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