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The curve from which the data are obtained is shown in
fig. 1, Plate IV., the value of one division being equal to {4
of a square therein represented.

In fig. 2, Plate IV., the results obtained above are mul-
tiplied by 100 and represented graphically. Fig. 3 repre-
sents the curves registered by the recording apparatus under
varying conditions of light from June 13 to 16. It will be
seen that such an instrument as this will record continuously
the actinic intensity of the light under all conditions of
weather throughout the year, and requires no attention
further than wmdmd the clock wheleby the motion of the
drum is maintained.

XXVI. The Influence of Surface-Loading on the Flezure of
Beams. By Prof. (. A. CaArus WiLsox*.

[Plate V.]

THE practical treatment of the problem of beam-flexure at
the present time is based on the hypothesis enunciated by
Bernoulli and Eulert, that the bending-moment is propor-
tional to the curvature.

This assumes that the cross sections remain plane after
flexure and neglects the surface-loading effect.

Saint-Venant has showni that the first assumption is
untenable ; but that, neglecting the surface-loading, Ber-
noulli’s results are strictly true for one particular case of
loading, that, namely, of a beam doubly supported and carry-
ing a single isolated load, where, although the cross sections
are distorted, the central displacement is zero.

I propose in this paper to describe some experiments made
with a view to determining the actual state of strain in a
beam doubly supported and centrally loaded, the surface-
loading effect being taken into account.

The method of investigation adopted is based upon the
following assumptions :—

% Read June 26, 1891.
t Todhunter and Pearson’s ¢ History of Elasticity,” vol. i.
1 Pearson’s ¢ Elastical Researches of Saint-Venant.’
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SURFACE-LOADING ON THE FLEXURE OF BEAMS. 195

(1) The true ¢ ate of strain at the centre of the beam may
be found by superposing on the state of strain due to bending
only, that due to surface-loading without bending.

(2) The state of strain due to surface-loading only may be
found, with close approximation to truth, by resting the beam
on a flat plane instead of on two supports.

(8) The strains due to bending only may be obtained from
the Bernoulli-Saint-Venant results ; viz. :—

(«) The stretch for any cross section varies as the distance
from the neutral axis,

(B) The central axis is unstretched.

(y) For the same point in different cross sections the
stretch varies as the bending-moment.

Saint-Venant has dealt with the shearing-strains at some
little distance from the load in the case of a beam doubly
supported and centrally loaded* ; and Professor Pearson has
shown } that, in the case of beams continuously loaded, the
results of the Bernoulli-Eulerian theory can only be con-
sidered as giving approximate formula when the span of the
beam is not less than ten times its depth {.

The mathematical determination of the state of strain pro-
duced by the loading of a beam as it rests on a flat plane is
one of considerable analytical difficulty.

MM. Lamé and Clapeyron have attempted the solution of
a more general problem in their “ Mémoire sur I’équilibre
intérieur des corps solides homogénes.””§ The object of this
paper is stated to be “to investigate the way in which the
interior of a body is affected by the transmission through it
of the action of forces.” Here they treat the problem of a
solid extending to infinity on one side of a plane, on which is
a given distribution of tractive load, and also of a solid con-

* Pearson’s ¢ Elastical Researches of Saint-Venant,” §§ 69-99.

+ Pearson, ¢ On the Flexure of Heavy Beams subject to continuous
systems of Load,” Quarterly Journal of Mathematics, No. 93 (1889).

1 Rankine assumed that the surface-loading effect might be neglected.
See his ‘Applied Mechanics,” § 311.

See also Résumé des Legons &c. by Navier (Pans Dunod, 1864),
vol. i. p. 41 :—* Observation sur le mode d’application et de distribution
des forces qui font fléchir,” where the same assumption is made.

§ Crelle’s Journal, vol. vii. p. 145 et seq.



196 PROF. G, A. CARUS WILSON ON TBE INFLUENCE OF

tained between two parallel infinite planes. They obtain as
a result a set of definite integrals giving the displacements,
introducing a function involving the distribution of tractive
load, from which the stresses may be deduced, but concerning
which they add: “Les formules précédentes, pour é&tre
obtenues en séries numériques et immédiatement applicables,
exigent la connaissance des valeurs d’un genre particulier
d’intégrales définies, dont il ne nous parait que les géométres
se soient encore occupés.”

The most successful attempt at a solution of this problem is
to be found in a more recent work by Professor Boussinesq,
published in 1885%. The following is a brief account of the
results obtained.

Fig. 1.

B § being the surface of the solid (infinite below in length,
width, and depth), M a point within, situate at a distance
MN =2z below the surface, K any element of the surface,
situate at the distance K M=+ from the point M, and subject
to a given exterior pressure K P=p, having the component .
K P’=p’ along KM, the pressure which a plane element B B/
taken through M parallel to the surface S8’ will support, per
unit of area, in consequence of the pressure p, will be found
directed along the direction of KM produced, and will be
equal to

wr=22

2ary

* Application des Potenticls & Détude de I Equilibre et du Mowvement
des Solides élastiques (Gauthier-Villars, Paris, 1885).

See also Théorse de I Elasticité des Corps solides, Clabsch ; translated and
annotated by MM. de Saint-Venant and Flamant. (Paris: Dunod, 1883,
P. 874, note to art, 46.)
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If, as a particular case, the pressure KP=pbe normal, then

p'=pcos NMK=p ‘-;, and

3pa?

MF=E2 . L@

If, further, it is required to find the vertical component of

MF, we have (MF) g, or

3pa?
N )

The treatment of this particular problem isnot pursued any
further in this work ; but Professor Boussinesq has kindly
furnished me with a solution more nearly applicable to the
case in point, and one which will be found to agree closely
with the experimental results I had previously arrived at, and
which are given later on.

Suppose there to be a uniform pressure p exerted over every
element du of bearing-surface between two extremities A, A’
(see figure), having abscissee u=—NA=—a, u=NA'=+q,
and let p=Pdu, calling P the constant exterior pressure per
unit of length AA’=2a.

The total pressure over unit of surface of an element E B’
will be, from equation (3),

3pa® _ (3Pa*du __ 8Pa*(+edu
D 9mr® " ) 2md T 2w ~

o —-a

8Pz ('* du _
- j 57 (VK =u].

™ 3 (P

Putting Z =a, du=2 de, We get as the normal pressure per
&r

unit of area on E E/,
d

LI b P
me o .
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or, very nearly, if # is much smaller than a,

_?’_Ej' (1+22) 73 da.
T 0 3
3+3a¢ 2+_2—
or
3(1+a)? 3(1+ l)

The value of the integral is p Which,

between the limits « =0 and « = «, becomes g Thus

the pressure per unit of area on an element E E' becomes %—I—,,
1
or

aaF .
064 . . . ... @

This expression has the form of that given below, though,
inasmuch as the problem is not altogether the same as that
treated experimentally*, a difference in the coefficients is only
what might have been expected.

The value of the integral between the limitsa=0and a=%

is, as has been stated, %, or 0'667. For a=35,4. e. for u=5z

as the upper limit, the integral = 0666, and for u=2z the
integral =0'656; so that this solution is approximately correct
for elements lying at a distance of } the width of the beam
from the point of contact.

Hence for a beam where the length A A’ is 55 millim.,
this solution would be applicable up to points lying at a
distance of about 14 millim. from the top surface.

I have investigated the law up to within 05 millim. of the
top surface, and find it to be

P
y=0726 —-
The investigation of the state of strain in glass beams by

means of polarized light was first suggested by Sir David
Brewster f, and his experiments are usually quoted as proving

#* The mathematical solution assumes the length of bearing A A’ on an
infinite surface.
+ Phil. Trans, 1818, p. 156.
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the truth of the Bernoulli-Eulerian theory of flexure. It is,
however, easy to show experimentally that these experiments
must have been made under conditions where the surface-
loading effect was inappreciable ; though very accurate reason-
ing on this point is impossible, as the drawings accompanying
Sir David Brewster’s paper are not to scale, and the span of
the beams and the precise method of application of the loads
are not indicated.

M. Neumann developed a theory of the action of strained
glass in the polariscope*, and found that the velocity of light
in a medium is increased by compressing it. He bases his
calculations on the measurement of the deflexions of glass
beams supposed to obey the Bernoulli-Eulerian theory ; the
beams are doubly supported and centrally loaded, having the
proportions 66 x 85 x 2, the latter being the depth. It is not
in all cases stated what spans were employed, so it is impos-
sible to say how far the results were influenced by surface-
loading.

Professor Clerk-Maxwell t has examined the state of strain
in pieces of unannealed glass of various shapes, the lines of
equal intensity of strain being deduced from the isochromatic
lines. .

The lines of Principal Stress are found from those of Equal
Inclination in the manner described later on in this paper.

It has already been pointed out} that ¢ Neither Neumann
nor Maxwell seems to have remarked that the difference of the
velocities of the ordinary and extraordinary rays depends
solely on the maximum slide of planes perpendicular to the
wave-front.”

An important work on this subject is found in a paper by
Dr. John Kerr§. He establishes the fact that “If a plate of
glass, compressed or extended in one direction parallel to its
faces, be traversed normally by two pencils of light, which
are polarized in planes respectively parallel and perpendicular
to the direction of strain, then both pencils are retarded by

% Abhandlungen der k. Akademie der Wissenschaften zu Berlin, 1841,
vol. ii. pp. 50-61.

+ Trans. Roy. Soc. Edinburgh, vol. xx. (1853) p. 117.

1 Hist. of Elasticity, vol. i. p. 643.

§ Phil. Mag. Octoher 1888,
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the strain in the case of compression, and both are accelerated
by the strain in the case of tension.”” Also that ‘ strain-
generated retardations, absolute as well as relative, are sensibly
proportional to the strain,” thus confirming Wertheim’s
results,

Dr. Kerr employs in his experiments a bent glass beam,
doubly supported and centrally loaded, having the ratio of
span to depth* of 84 to 1, and assumed to obey the Ber-
noulli-Eulerian theory.

I would draw attention to the disagreement between the
results arrived at by M. Neumann and Dr. Kerr, the former
stating that the velocity of light in a medium is increased by
compressing it, while the latter states that the velocity is
diminished.

Dr. Kerr examined a -beam having a span equal to 84
depths, and at a point where the surface-loading effect would
be least; whereas M. Neumann examined a beam—span to
depth ratio not stated—immediately under the load.

I can only attempt to account for the discrepancy by
pointing out that if the span is diminished to less than four
depths, the elements of glass that M. Neumann assumed to
be in a state of squeeze are actually, as will be shown later,
in a state of stretch.

The instrument with which the following experiments were
made consists of a steel straining-frame in which the beam
to be examined is placed ; the beam rests—for flexure—on
two steel rollers, and is loaded by a micrometer-screw which
hears on a third central roller. The base of the frame is
divided, from the centre, in divisions of 2 millim. so that the
supports can be set for any required span. A micrometer-
screw is placed in the base of the frame opposite the load, so
that deflexions can be measured to one ten thousandth of an
inch. Two screws in the two sides of the frame enable
lateral pressure to be applied. The whole frame can be moved
in any direction in its own plane, so that all parts of the beam
may be examined. The optical arrangements consist of two
nicols, of which the upper is provided with a graduated disk on
which the angle of rotation can be observed ; a microscope

# According to the figure.
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with micrometer-eyepiece can be fitted when it is desired to
measure the fringes; circularly polarized light can be used
when required.

The beams used were marked on one side with 2 millim.
squares ; they were covered with paraffin and marked in a
dividing-engine and then etched ; the lines thus formed
enabled the position of dark bands to be determined with
accuracy.

Proposition 1.
If a beam of glass belaid on a flat surface and loaded across
 its upper surface, the shear at any point en the normal at the
point of contact of the load is inversely ploportlonal to the
distance from the point of contact.

Experiment 1. A beam of annealed glass 61 mllhm. x 65
millim. x 20 millim. deep was placed in the steel straining-
frame with its narrow side resting on a piece of thin paper.

A steel roller 2 millim. in diameter, 10 millim. long, was
placed across the middle of the top surface and loaded by the
sCrew, ‘

The nicols were crossed and at 45° to the axis of the beam.

A quarter-wave mica plate was placed between the beam
and the analyser, with the plane containing the optic axes at
right angles to the length of the beam.

At that point a on the normal where the difference of phase
between the ordinary and extraordinary pencils traversing the
beam is equal and opposite to the difference of phase produced
by the mica plate—the effect will be as if there were no
strained glass between the two nicols, and there will therefore
be a black spot as the nicols are crossed.

The position of this spot on the normal is plotted on a
sheet of squared paper, and an ordinate parallel to the axis
chosen to represent the shear.

A second quarter-wave plate is now superposed on the first,
and the black spot consequently moves up the normal to where
the shear is twice what it was at a; this point, b, is noted, the
second mica plate removed, and the load reduced until the
black spot with one mica plate is brought to 4. In this way
a series of points a, b, ¢, d on the normal are found at any one
of which the shear is twice what it is at the point below.

o
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Now it is proved later on that the strain at any point
varies as the load on the beamn ; hence by taking the ordinate
at b twice that at «, at ¢ four times, and at d elght times, and
so on, we get pomts on the curve of loading along the normal
for the load that give a difference of phase at a equal to that
of one-quarter wave-plate.

The results are plotted on Plate V. fig. 1: the observed
points are indicated by circles, through one of which an
hyperbola has been drawn taking the normal and the upper
surface of the beam as asymptotes.

1t will be seen that the six upper circles lie very nearly on
the hyperbola.

It is clear that the upper surface of the beam is an asym-
ptote only when the surface of contact between the beam and
‘the roller is a lme—-makmg the stress there infinite ; but in
practice this cannot be so, the smallest pressure giving a
bearing surface—as the roller indents the beam—making the
stress there finite, ¢. e. the asymptote will be at some finite
distance 6, say, above the point of contact, and 8 will vary
with the load. I have calculated below that with a load of
115:31b. on this same beam, the value of @ is 0-044 millim.

The apparently irregular position of the two lower points
observed indicates the amount of error made in the assumption
(2) above that the surface-loading effect may be found by
~substituting a flat plane instead of two supports.

This assumption would be correct only if the beam were
of infinite depth and the surface-loading effect of the support
infinitely small ; here, however, the steel frame itself pro-
duces a surface effect, and this, added to that due to the load,
makes the points observed lie off the hyperbola, which would
be the true curve (as drawn) if the beam were of infinite depth.

The effect of the steel frame must be very small compared
with that due to the load for points in the upper half of the
.beam. In drawing the hyperbola I have considered it as
negligible at the centre of the beam ; in other words, I con-
sider that the correction of the position of the-six upper
points, required to allow for the surface effect of the frame,
would not make them deviate seriously from the hyperbola.

1t must be noted, however, that when the beam is resting
on two supports the surfuce effect of the frame disappears,
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since the beam only touches the supports and surface effect
can only be caused by actual contact ; hence I conclude that
the surface effect due to loading only is strictly represented
by the hyperbola and is as if the beam were of infinite depth*.

In order to establish the hyperbolic law with greater
certainty, experiments were made enabling as many as seven
points on the curve to be obtained within 3:5 millim. of the
point of contact, the highest point being about '5 millim.
trom the top of the beam.

Within this range the effect due to the steel frame may
with accuracy be neglected.

“wperiment 2. A beam of annealed glass, 61 millim. x 65
millim. x 20 millim. deep, was placed in the steel straining-
frame, on a piece of thick paper, and loaded as before with the
steel roller 2 millim. in diameter.

Nicols crossed and at 45° to the axis of the beam.

The screw load was applied until six interference-fringes
appemed under the roller ; these were examined throu(rh
microscope with a micrometer-eyepiece divided to thousandths
of an inch. Light from a sodium-flame was used, and the
distance between the point of contact and the intersection of
each fringe with the normal was measured in micrometer-
divisions.

I. Distances in micrometer-divisions to successive fringes :

11-0 135 17-0 230 350 713,

but the shears areas 6.5.4.8.2. 1, since there is a difference
of phase of only 4 a wave-length required to produce a fringe,
hence taking the products of distances into shears we get

66°0 675 68:0 690 700 71-5.

But we have so far neglected the value of 8, the distance of
the axis of shears from the point of contact. |

By taking the two most reliable observations, where the
distance from the point of contact is large and yet where the

* According to this reasoning there appears to be a shear of finite
amount at the bottom of the beam—when deubly supported—due to
loading cnly, but this does not seem to me to be inconsistent with the
surface conditions,
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fringes are well defined, we should have, if the law is
hyperbolic,

3(23+6)=4(17+6),
or
6=1*,
Correcting the original readings by adding @ to each, we get
12 14-5 18 24 36 725,
and the products become
72 72°5 72 72 72 72-5.

I1. Same beam, &c., as before, roller and load readjusted.
Distance to successive fringes :—

115 14-25 1775 240 36-0 750
To find 0, take

3(24+60)=4(1775+6), or 6=1.

Correcting the distances, we have
125 1525 1875 250 370 760,
and the products of the distances into the shears become
750 7625 750 750 740  76:0.

III. Same beam, &c., as before, roller and load readjusted.
Distance to successive fringes :—

10-756 125 1525 1925 206:0° 390 80-5.
To find @ take 3(26+6)=4(1925 +8), whence 8=1.
Correcting the distances, we have.
11-75 135 1625 2025 270 400 81'5,
and the products become -
8225 810 8125 810 810 800 815.

The law of variation of shear along the normal is thus
hown to be hyperbolic.

* One micrometer-division = 0:044 millim.
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Experiment 3. The steel straining-frame was removed from
the instrument and—by a screw inserted in the place of the
straining-screw—hung from a balance, which could be loaded
with shot and had a leverage of 50 to 1: a steel stirraup
was hung over the frame with two hardened points resting
on the two guiding-pins; one lower end of the stirrup was
sccured to the body of the balance, the beam inserted and
bualanced, and shot put in the pan. This lifted the straining-
frame and loaded the beam.

Beam [B] 56 millim. x 20 millim. x 65 millim. placed on
the base of the steelframe on a piece of thin paper : loaded by
a steel roller 2 millim. in diameter. Viewed through nicols
crossed and at 45° to the horizontal axis of the beam.

The balance was loaded until the first blue fringe was
brought down to a given position on the beam,and the weight
of shot observed ; the same fringe was then brought down to
a lower given position, and the weight of shot again observed,
and so on for successive points.

Distance (&) of given ;

points on normal from Load (f 13 Oz?iog%;gn(‘fgjght of Be.

top of beatn, in millim.

i
| C 2. Mean.

1-15 40 : 39 395 3434
32 4 | 105 1095 3122
42 145 | 149 147 3500
52 182 180 181 34-80
62

218 1 ... 218 l 3516

t

If the shear at 4°2 millim. with 147 lb. be taken as unity,
the shear at 52 millim. with this same load will be }#7, since
the same shear is produced at 52 millim. with 181 lb. as is
produced at 4:2 millim. with 147 lIb. Hence if the curve of
loading is an hyperbola, we should have

42x1= -}%{ x 5:2 or B/« a constant.

From the third column given above the values of 8/ will
be seen to be nearly equal in each case; the value of @ has
here been neglected ; if we put =004 millim., the values of

B/x become
346 33:8 34-7 345 349,
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Proposition 11,

Things being arranged as in Proposition 1., it is required to
determine the locus of points of equal intensity of shear, and
to show that at any point whatever the shear is inversely pro-
portional to its distance from the point of contact.

Experiment 4. The beam was examined under circularly
polarized light, as in Clerk-Maxwell’s experiments, in order
to obtain the variations in the amount of the strain uncom-
plicated by variations in the directions of the principal stress-
axes ; white light was used.

Fig. 2,

o,
)

(P

The loci of points of equal shear were found to be circles,
as in the figure ; circles of equal shear were obtained up to
8 millim. diameter with this beam.

Hence the shear at any point a equals the shear at &, if
oba is a circle, and 0 b the normal at o ;. 7. e. shear at a

P _ pcosd
—kob—k oa ’

k being some constant, but p cos @ is the resolved part of the
pressure at o™ along oa; hence the shear at any point is
inversely proportional to its distance from the point of contact.

¢ See Professor Boussinesq's results quoted already.
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Proposition 11,
The state of strain at the centre of the beam when doubly
supported may be found by superposing on the state of strain

Fig. 8.
lo /D

£ T /x

-2 -
\

due to bending only, that due to surface-loading without
bending.

It has been proved that the state of strain along the normal
at the point of contact due to the surface-loading may be
represented by an hyperbola whose asymptotes are re-
spectively the normal itself and a line parallel to the axis of
the beam at a distance € from the point of contact. Let
0C, OD in fig. 3 represent these asymptotes, O E=6 ; let an
hyperbola be drawn whose ordinates parallel {0 O D represent
the shear at any point along E C for a given load : since the
shear is proportional to the compressive stress, these ordinates
may be considered as proportional to the compressive stress at
any point along E C.

By our («) assumption we may represent the stresses at any
point along E C, due to bending, by a right line drawn through
C, the centre of the depth.

Let C K be such a line, drawn on the same scale as the
hyperbola, so that E K represents the shear (vertical stretch)
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at E due to bending *, while E M represents the shear (vertical
squeeze) due to loading.

These two curves must intersect at some point N ; at the
corresponding point P on the normal the shear (vertical
squeeze) due to the loading is equal to the shear (vertical
stretch) due to the bending : an element of volume at P will
therefore be subject to voluminal compression only, and the
shear will be zero, there will therefore be no birefringent
action, and when viewed with crossed nicols there should be
a dark spot on a white field.

If the load is kept constant and the span diminished, E K
will decrease until C K cuts the hyperbola at a second point ;
we should now get two points of darkness. As the span is
still diminished these dark points should rise and full re-
spectively until they coincide, when CK is a tangent to the
hyperbola ; after this they should separate out at right
angles.

Plate V. fig. 2 gives the results of an experiment (5) made
with constant load and varying spans. The beam was 128
millim. x 19 millim. deep x 55 millim. thick, supported on
two steel rollers 2 millim. in diameter and centrally loaded
over a similar roller : the nicols were crossed and at 45° to
the axis. The following table gives the spans :—

Curve. Span in millim. Ra:‘;o d(;;: ).nn
1. 120 631
2 100 526
L BT 88 463
4 80 4-21
G5 RN 78 410
6 oiinns 72 379

This experiment shows that there are, generally, two points

* The compressive stress due to bending, at any point on C E, produces
a shear (vertical stretch) and a voluminal compression, and both are pro-
portional to the stress, similarly for the shear (vertical squeeze) and
voluminal compression produced by the stress due to the loading; so for
this purpose it is indifferent whether the ordinates of the two curves
represent the compressive stresses or the shears produced.
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of zero shear which close up as the span diminishes and then
open at right angles.

The same phenomena may be observed by placing a beam
on a flat surface and loading it, and then placing over this
beam a second, which may be bent with a very long span, or
by two couples at the end ; the effect is the same for different
degrees of bending as for varying spans in the former
experiment.

Thus for spans of four to five depths the normal under the
load is divided into three parts by two points of zero shear,
elements between these points being subject to shear (vertical
stretch), while elements above and below them are subject to
shear (vertical squeeze).

When, however, the span is less than four depths, every
element in the cross section under the load is subject to shear
(vertical squeeze) and the greatest strained element is im-
mediately under the load.

These results may be further checked and conﬁnned by
examining each part of the normal by placing over it a beam
bent in the hand ; if the part under examination is in shear,
say (vertical squeeze), darkness may be produced by super-
posing a part ot the second beam oppositely strained; if the
strains were similar, increased brightness would result.

I exhibit also the results of experiments made to determine
the position of the black bands for lower ratios of span to
depth.

The dimensions of the beam were 124 millim. x 20 millim.
deep x 6'5 millim. thick, loaded on rollers like the others ;
nicols crossed and at 43° to the axis.

Here the effect of the supports is very marked, so that
when p=2 the black band only just touches the axis.

It must be remembered that at the point where the black
band cuts the normal the shear is zero, but that everywhere
else on the band all that is indicated is that the directions of
resultant tension and compression are at 45° to the axis of the
beam.

FEzperiment 6 was made to establish Proposition IIL. with
greater certainty.

Beam 128 millim. x 19 millim. x 5:5 millim. was placed
on the base of the straining-frame, on a piece of thin paper
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and loaded with shot until the first blue fringe came down to
a point 1*7 millim. from the top. The load was 65 Ib.

The same beam was then supported on two steel rollers
2 millim. in diameter and 120 millim. apart, and centrally
loaded over a similar roller until the same blue fringe appeared
at the bottom of the beam. The load was 55 Ib.

An hyperbola has been drawn (see fig. 1, Plate V.) of con-
venient proportions, cutting the horizontal through the above-
mentioned point at 285 divisions from the normal ; the shear
corresponding to the blue fringe is thus represented by 285
di5vi.ls)ions, and there is that shear at the point with a load of
65 b,

Now the stress due to bending, at the extreme bottom fibre
of a beam 19 millim. deep, 120 millim. span, and 5'5 millim.
thick, with a load of 55 lb., is 1'436 tons per square inch.

The vertical compressive stress at this point, due to the
load of 55 1b., is, as is shown later on, 0:121 ton per square
inch ; -but we are not justified in superposing the shears pro-
duced by these two stresses, being tensile and compressive at
right angles, and the former as much as twelve times the
latter, so I shall take the stress at the blue fringe as 1'436
tons per square inch.

Hence the compressive stress produced by 65 1b. over a
span of 120 miliim., at the top fibre, is

and the corresponding value in scale-divisions is

65 285

1-436 Xv-5—5 X IZ&B

= 337 divisions.

This distance is set off along the top surface in the figure,
and the point so found joined to the centre of the middle
section : where it cuts the hyperbola we should get darkness
on the normal with a span of 120 millim. We can also
draw lines representing the bending-stresses for other spans
for the same load of 65 Ib.

The position of the black bands on the normal, as found by
experiment for spans of 120 and 100 millim., are indicated on
the normal, and will be found to agree very closely with those
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points found independently by the intersection of the two
curves,

The curve of bending-stresses is a tangent to the curve of
loading at a span of 73 millim., as measured from the figure,
whereas it is apparently 82 millim. when actually observed ;
it would appear more correct to determine this span by draw-
ing the curve through two points which can bé observed with
accuracy, and then drawing the tangent and measuring the
intercept, since the experimental determination of the span
giving coincidence of the two dark bands is one liable to
considerable error.

By drawing lines from the centre to the points along the
top surface corresponding to longer spans we see that the
deviation of the so-called ¢ neutral axis” from the centre is
considerable : thus even at a span = 10 depths = 190 millim.
it should be 1 millim. above the centre.

Proposition IV.

The strain at every point along the normal due to loading
varies directly as the load.

Eaxperiment 7. The beam is placed on two supports ag
before, with a small central load, and the points of intersection
of the black bands with the normal are noted. The load is
now increased up to the safe limit when the points of inter-
section are observed to remain unaltered.

We know that the strain at any point on the normal due to
bending is proportional to the load ; hence if the point of
intersection of the curves of bending and loading remains the
same when the load is increased, we know that the strain at
any point due to the loading must vary as the load.

Proposition V.

To determine the constant in the equation to the curve of
loading along the normal for any beam.

Let O X represent the vertical through the centre of a
beam centrally loaded, E the point of contact of the load with
the top of the beam EK ; OY the axis of shear, OE=6;
K A M the hyperbola of loading for any given load, CAHD
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the line of stresses due to bending along CE, for the same
load, the span being chosen so that C A H is a tangent to the
hyperbola at A; 7. e. so that the dark bands coincide at B.
Then O Y and O X are the asymptotes of the hyperbola.

It has been proved that the equation is of the form

y=k£, where y is the compressive stress at a point on the

normal E C at a distance X from O. If W is the load and 0

Fig. 4.

the width of the beam = length of bearing of loaded roller,
we have

y=Fk g —for the given beam.

Then OD=BA = 2k§—-§2(since BA represehts the stress

at B due to the load W). Also EH = g%, where E H re-

presents the stress at E due to a load W on a beam of depth
k and width & and span /; and

EH CE oD
op=co’ - C0=CE gp
L n W 2% 2 I’k

or

5 4—0=§ X2k'[):v_x :‘_“_ S T
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13k

';25, T [since 2=31CO0] ;
3(3+9)

3 (1 6 6
t=ge(y+ 7+ )

To find % the beam is placed on two supports and centrally
loaded ; the two points where the black bands cross the
normal are observed (the span being longer than four depths),
and plotted, and an hyperbola drawn through them ; a tangent
is then drawn to this curve from the centre of the section
and its intercept on the upper edge measured, the span giving
coincidence of the black bands can then be calculated.

Ezperiment 8. For a beam 128 millim. x 19 millim. deep
x 55 millim, I find this span to be 73 millim. ; hence

p= 12— 384,
Taking 6 at 0-04 millim.,%: 0002 millim., and neglecting
02
e have
’ =% x 384 x 0:252=0726.

Proposition V1.

To verify the equation to the curve of loading.

Ezperiment 9. Beam 128 millim. x 19 millim. x 5-5 millim.

The stress corresponding to the blue fringe with this beam
was found, as already explained, by loading the beam over a
span of 120 millim., until the blue fringe appeared at the
bottom of the beam ; the load required was 55 1b. ; hence the
corresponding stress is 1'436 tons per square inch*,

* From the equation y-—k E there is a compressive stress of 0-121 ton

per square inch here due to the load I have not added the effect of this
to that of the bending, as there is no proof that the superposition of small
strains holds when the strains themselves are so unequal.
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When laid on the base of the steel frame, the same fringe
was observed at 1°7 millim. from the top with a load of 65 1b.

From the equation to the curve of loading, taking £=0-726,
6=0'04 millim., we ought to have a stress at 1'7 millim.
from the top equal to

, 9254 65 _ 1 .. . :
y=0726 x 3930 X T74 X 53 =1"419 tons per square inch.

The lines of Principal Stress afford a convenient means of
studying the condition of strain in a bent beam.

In a memoir published in 1838* .Lamé discussed the
problem of the equilibrium of an elastic solid, and investi-
gated the properties of what he termed *isostatic suriaces,”
or surfaces where only normal “actions’” are applied.

In 1870 Suint-Venantt examined the differential equations
to which the subject of ““isostatic surfaces” gave rise, and in
1872 Professor Boussinesqi gave a geometric method for
constructing isostatic lines passing through any given point.
This memoir was shortly followed by a second §, treating of
the integration of the equations involved.

Rankine has examined the form of the curves of Principal
Stress, and given an expression from which the curves can be
drawn||. He neglects the surface-loading effect as “in most
cases practically of small 111ten51ty when compared with the
other elements of stress.” On comparing his curves with
those in Plate V. it will be noticed how closely the curves of
tension agree, while the curves of compression are very
dissimilar.

Sir George Airy has calculated and drawn the curves of
principal stress for several cases of flexure, including that of
a beam doubly supported and centrally loaded¥. He assumes
“ that there is a neutral point in the centre of the depth ; that
on the upper side of this neutral point the forces are forces of
tension, and on the lower side are forces of compression, and
that these forces are proportional to the distances from the

% Comptes Rendus, vol. vii. p. 778: ‘“Mémoire sur les surfaces iso-
statiques dans les corps solides en équilibre d'¢lasticité.”

t Ibid. vol. Ixx. 1 Ibid. vol. lxxiv. p. 242. § Ibid. vol.lxxiv,p. 818.

i ¢ Applied Mechanics,” §§ 310 and 311.

€] Phil. Trans, 1863, part- 1.
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neutral point;” but he says ‘“ These suppositions seem to imply
that the actual extensions or compressions correspond exactly
to the curvature of the edge of the lamina.” The surface-
loading effect is not here taken into account; and it woulc
have been interesting to compare the results as shown in
fig. 6, for a beam in which the span equals ten depths, with
the actual curve as found by experiment. This comparison,
however, would lead to erroneous conclusions, since it has
been shown* that the results arrived at are not consistent
with the fundamental equations, and the form of the curves
~can be accepted only as a very general approximation.

Proposition VII.

To determine the lines of Principal Stress in a glass beam
doubly supported and centrally loaded.

Eaxperiment 10.—A glass beam, 128 millim. x 19 millim.
deep x 55 millim. thick, was placed in the steel straining-
frame on two steel rollers 2 millim. in diameter, and centrally
loaded over a similar steel roller.

The span chosen was 60 millim., giving for p the value 3-15.

The nicols were crossed and set at an observed angle, and
the black band plotted on squared paper corresponding to the
squares on the glass beam. This band of course represents
the locus of points where the axes of principal stress are
parallel to ‘he directions of the planes of the nicol.

The nicols were then turned through a small angle «, the
new position of the black bands plotted, and so on for several
different angles. These curves are shown in Plate V. The
lines of principal stress are easily deduced from these and are
shown in Plate V. fig. 4.

Since communicating the above, Sir George Stokes has
gone very fully into this problem, and has kindly allowed me
to quote the following extracts from letters [ have recvived
from him on the subject :—

“Let A be the point in the upper surface where the pres-

% See criticism on Sir George Airy’s solution in Ibbotson’s ¢ Mathe-
-natical Theory of Elasticity,’ note on p. 358.
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sure (P) is applied ; B, C the points of support below, which I
suppose to be equidistant from A ; D the middle point of BC.
Let y be measured downwards from A ; denote BD or DC
by a, and ABby b. Youhave the expressions for the stresses

produced by P in an infinite -solid (.z_ 2P ?_]/. , and the
question is, What system must we superpose on this to pass
to the actual case? This, as 1 showed you, is the system of
stresses produced by a system of forces applied to the surface.
The forces consist— (1) of the two pressures £ P at B and C;
(2) of a continuous oblique tension below, represented in
drawing by a fan of tensions directed at every point of the
lower surface from the point A.

“Imagine now the beam cut into two by a plane along
A D. Consider one half only, say that on the B side. Every-
thing will remain the same as before, provided we supply to
the surface A D forces representing the pressures or tensions
which existed in the undivided beam. On account of the
symmetry, the direction of these must be normal.

“ At D the vertical pressure on a horizontal plane in the
infinite solid is compounded with an equal vertical tension
due to the fan. Hence, of the vertical pressure in A D which
must be superposed on the vertical pressure in the infinite
solid, we know thus much without obtaining a complete solu-
sion of the problem, namely, that it must equal minus 2P/ab
at D and O at A. If we suppose it to vary uniformly between,
we are not likely to be far wrong.

¢ This leads to the following expresblon for the vertical
pressure in A D :(—

2P1 Y

7ry 62)

“ Now for the horizontal. We know that the complete
system of external forces must satisfy the conditions of equi-
‘librium of a rigid body. The direction in each element of the
fan passes through A, about which therefore the fan has no
moment. Hence the moment of the horizontal forces along
A D taken about A must equal 4 Pa. Again, the resultant of
the semi-fan is a force passing through A, and its vertical



SURFACE-LOADING ON THE FLEXURE OF BEAMS. 217

component is $P. Its horizontal component is the integral
of
2P0 wdn
T ()

taken from O to infinity, or %

¢ Hence of the horizontal forces along A D we know these
two things :—

(1) The sum must equal —71;,

(2) The moment round A must equal % Pa.

¢ In default of a knowledge of the law according to which
the force varies with y, it is natural to take it, for a more or
less close approximation, to be expressed by the linear func--
tion A+ By, or say Y. To determine the arbitrary censtants

A, B, we have only to equate the integral of Y . dy to 17—:, and

that of Yy .dy to 3 Pa, the limits being 0 to 5. Wo thus get
for the expression for the tension at a’ny point of A D,

=+ T G-k

“ At ncutral points the vertical pressurc cquals minus the
horizontal tension, giving

(6—2’3—8) +(4 8mayy 19=0-

or, putting for shortness 3%L —4=m,

0¥ — 420, o Y=lya/I°L
2m(b) my +2=0, “b—4i 16

For the neutral points to be real and different, we must have
2a _ 40

%~ 3

When the neutral points coalesce into one, we have i equal

m>16,

1G,y equal %; and for the ratio of the span to the depth,

P
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,‘Zb_a equal g—?—r, equal 4'245, or, say, the span is 4} times the

depth.

“ As regards the horizontal tension at points along A D,
you take a linear function of y as I do, and your condition of
moments is the same as my (2), but in lieu of my (1) you
do what is equivalent to taking the total tension nil. You
further omit the correction to the vertical pressure when we
pass from a solid of infinite depth to one terminated by a

plane below. You further take the coefficient of%/)- as k, a

constant to be determined by the observations, instead of '-’2—1_

“ Paking the place of the neutral point (at one fourth of the
depth) and the ratio of span to depth as given by my formule,
and then treating them as if they had been the results of
experiment, and substituting in your formulse for the deter-
mination of %, I got 0-7947 instead of 0-64. The largeness
of your coefficient is I think fully accounted for by the
employment of the formulse which you used.

“ In your method you take the stress belonging to the solid
supposed infinitely deep, and superpose it on the stress corre-
sponding to a pure bend.

“This comes to the same thing as retaining three terms

only in the equation I gave in my letter for determining the
y of the neutral points.

“ The equation thus becomes

bra y* _3ma y _
7 w5 H2=0
or
Y —_
2mb2 m b+2—0’
where
m= :—3—;— instead of ‘_3_;_9 —4,

“ When the two neutral points merge into one, we have in
both cases alike y equal 4 b, and the only difference is that

37% equals m instead of m plus 4.
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“If you had supposed the coefficient for the infinite solid to
be an unknown quantity %, and had applied your observations
to determine it, using my formula instead of your own, you
would have got something very close indeed to 0-64.

“ It is noteworthy that in your problem, taken as one in
two dimensions, the theoretical stresses in the planes of dis-
placement are independent of the ratio between the two
elastic constants ; in other words, independent of the value
of Poisson’s ratio.”

I bave calculated the positions of the neutral pomts from
Sir George Stokes’s formula
y=1 1_1
b +

4= 6 m

for spans of 88, 100, and 120 millim. in a beam 128 millim.
long x 5°5 millim. wide x 19 millim. deep. These are given
in the following Table in the 2nd and 3rd columns. The
results of actual observations (see p. 192) are given in columns
4 and 5 ; while columns 6 and 7 give the same points as found
by plotting the intersection of the curves of pure bending and
loading (infinite solid assumed) :—

Distance of Neutral Points from top edge, by
Span Sir George Stokes's : Intersection of
formula. Observation. curves.
88.......0. 63 32 64 33 69 27
100......... 70 25 72 25 73 238
120......... 77T 18 78 18 78 175

The error by the intersection method is greater in pro-
portion as the span is smaller, as might have been expected.

If the observed positions of the neutral points are inserted
in Sir George Stokes’s formula, the value 0'64 is obtained for

the constant £ in the equation z= —-P !'

L
M‘Gill University, Montreal,
October 12, 1891.
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