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The curve from which the data are obtained is shown in 
fig. 1, Plate IV., the value of one division being equal t’o & 
of a square therein represented. 

In fig. 2, Plate IV., the results obtained above are mul- 
t.iplied by 100 and represented graphically. Fig. 3 repre- 
sents the curves registered by the recording apparat,us under 
varying conditions of light from June 13 to 16. It will be 
seen that such an instrument as this will record continuously 
the actinic intensity of the light under all conditions of 
weather throuuhout the year, and requires no attention 
further than winding the clock whereby the motion of the 
drum is maintained. 

? 

XXVI. The Injrtence of Smfuce-Lottding on the Flexure qf 
B e a m .  By Prof. C. A. CARUS WILSON*. 

[Plate V.] 

THE practical treatinen t of the problem of beam-flexure at 
the present time is based on the hypothesis enunciated by 
Bernoulli and Euler t, that the bentling-moment is propor- 
tional to  the curvature. 

This assumes that the cross sections remain plane after 
flexure and neglects the surface-loading effect. 

Saint-Venant has shown$ that the first assum,ption is 
untenable ; hut that, neglecting the surface-loading, Ber- 
noulli’s results are strictly true for one particular case of 
loading, that, nninelp, of a beam doubly supported and cnrry- 
ing a single isolated load, where, although the cross sections 
are distorted, the cent,rnl displacement is zero. 

I propose in this paper to describe some experiments made 
with a view to  determining the actual state of strain in a 
beam doubly supported and centrally loaded, the surface- 
loading effect being taken into account. 

The method of investigation adopted is based upon the 
following assumptions :- 

* Read June 26, 1891. 
t Todhunter and Pearson’s ‘ History of Elasticity,’ vol. i. 
$ Pearson’e Elastica1 Researches of Saint-Venant.’ 
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(1) The true E ate of strain at the centre of the beam may 
be found by superposing on the state of strain due to bending 
only, that due to surface-loading without bending. 

(2) The state of strain due to surface-loading only niay be 
found, with close approximntion to truth, by resting the beam 
on a flat plane instead of on two supports, 

(3) The strains due to bending only may be obtained from 
the Bernoulli-Saint-Venant resalts ; viz. :- 
(a) The stretch for any cross section varies as the distance 

froin the neutral axis. 
(6) The central axis is unstretched. 
( y )  For the same point in different cross sections the 

stretch varies as the bending-moment. 
Saint-Venant has dealt with the shearing-strains at  some 

little distance from the load in the case of a beam doubly 
supported and cen-trally loaded* ; and Professor Pearson has 
shownt that, in the case of beams continuously loaded, the 
results of the Bernoulli-Eulerian theory can only be con- 
sidered as giving approximate formuls when the span of the 
beam is not less than ten times its depth $. 

The mathematical determination of the state of strain pro- 
duced by the loading of a beam as it rests on a flat plane is 
one of considerable analytical difficulty. 

MM. Laind and Clapeyron bave attempted the solution of 
a more general problem in their ‘‘Memoire sur 1’Cquilibre 
intdrieur des corps solides hoxnog&nes.”§ The object of this 
paper is stated to be “ to  investigate the way in which the 
interior of a body is affected by the transmission through it 
of the action of forces.” Here they treat the problem of a 
solid extending to infinity on one side of a plane, on which is 
a given distribution of tractive load, and also of a solid con- 

* Pearson’s ‘ Elastica1 Researches of Saint-Venast,’ $ 3  69-99. 
t Pewson, ‘‘ On the Flexure of Heavy Beams subject to continuous 

Bystems of Load,” Quarterly Journal of Mathematics, No. 93 (1889). 
$ Rankine assumed that the surface-loading effect might be neglected. 

See his ‘Applied Mechanics,’ 311. 
See also R . L ? ~ U ~  de8 Lepons &c. by Navier (Paris: Dunod, 1864), 

vol. i. p. 41 :-‘( Observation sur le mode d’application et de distribution 
des forces qui font fldchir,” where the same assumption ia made. 

5 Crelle’s Jotctnal, vol. vii. p. 146 et seq. 
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kined between two parallel infinite planes. They obtain as 
a result a set of definite integrals giving the displacements, 
introducing a function involving the distribution of tractive 
load, from which the stresses may be deduced, but concerning 
wliich they add : (‘Lea formules prkckdentes, pour etre 
obtenues en skries numkriques et immddintement applicables, 
exigent la connaissance des valeurs d’un genre particulier 
d’intkgrales dkfinies, dont il ne nous paralt que les gdomhtres 
se soient encore occupks.” 

The most successful attempt at a solution of this probIem is 
to be found in a more recent work by Professor Boussincsq, 
published in 1885“. The following is a brief account of the 
results obtained. 

Fig. 1. 

r>q P’ 

E‘ 
M 

6 

S S‘ being the surface of the solid (infinite below in length, 
width, and depth), M a point within, situate a t  a distance 
M N =x  below the surface, K any element of the surface, 
situate at the distance K M=T from the point M, and subject 
to a given exterior pressure K P =p, having the component 
K P’=p’ along K’M, the pressure which a plane element E E‘ 
taken through M parallel to the surface S S’ will support, per 
unit of area, in consequence of the pressurep, will be found 
directed along the direction of K M produced, and wjll be 
equal to 

(1) 
3p‘x ME’=- 
%?‘’‘ * * * * - * 

* Application des Potentieb it PJtude de l ’I3piEbe et du Mocroement 
des B l i d e s  6laetipzces (Uauthier-Vilhm, Paris, 1886). 

See ale0 TMo& de CNaatkit4 des Cwpa nalides, Clebech; trtLnslafed and 
annotated by MM. de Saint-Venmt and Flamant. (Paris : Dunod, lW, 
p. 374, note t o  art. 48.) 
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If, as a particular case, the pressure KP=p be normal, then 

X p' =p cos NMK=p - and 
T' 

If, further, i t  is required t,o find the vertical component of 

MF, we have (MF) :, or 

. . . (3) 

The treatment of this particular problem is not pursued any 
further in this work ; but Professor Boussinesq has kindly 
furnished me with a solution more near17 applicable to the 
case id point, and one which will be found to agree closely 
with the experimental results I bad previously arrived at, and 
which are given later on. 

Suppose there to be a uniform pressure p exerted over every 
element du of bearing-surface between two extreiiiities A, AI 

(see figure), having abscissae U =  -NA=-U, u=NA'= +a, 
and let p=Pdu,  calling P the constant exterior pressure per 
unit of length AA'= 2a. 

The total pressure over unit of surface of an element E E' 
will be, from equation (8), 

7L 

,E 
Putting - =a, du= x dcr, we get as the normal pressure per 

unit of area on E E', 
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or, very nearly, if ix is much smaller than a, 
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between t.he limits a =O and a = 0 0 ,  becomes 2 3' Thus 

2P the pressure per unit of area on an element E E' becomes - 
VX,) 

or 

(4) 
P 0.64 -. . . , .. . . . z 

This expression has the form of that given below, though, 
inasmuch as the problem is not altogether the same as that 
treated experimentally*, a difference in the coefficients is only 
what might have been espected. 

The value of the integral between the limits a = 0 and a = x, 

is, as has been stated, 3, or 0.667. For 0=5, i. e.  for u=5x 

as the upper limit, the integral = 0.666, and for u=2x the 
integrtl= 0.656 ; so that this solution is approximately correct 
for elements lying at a distance of & the width of the beam 
from the point of contact. 

Hence for a beam where the length AA' is 5.5 millim., 
this solution would be applicable up to points lying at a 
distance of about 1.4 millim. from the top surface. 

I have investigated the law up to within 0.5 millim. of the 
top surface, and find it to  be 

2 

D 

The investigation of the state of strain in glass beams by 
means of polarized light was first suggested by Sir David 
Brewster t, and his experiments are usually quoted as proving 

* The mathematical solution aasumes the length of bearing A A' on an 
infinite s d w .  

f Phil. Trana. 1818, p. 166. 
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the truth of the Bernoulli-Eulerian theory of flexure. It is, 
however, easy to show experimentally that these experiments 
must have been made under conditions where the surface- 
loading eflect was inappreciable ; though very accurate reason- 
ing on this point i s  impossible, as the drawings abcompanying 
Sir David Brewster’s paper are not to scale, and the span of 
the beams and the precise method of application of the loads 
are not indicated. 

M. Neumann developed a theory of the action of strained 
glass in the polariscope*, and found that the velocity of light 
in a medium is increased by compressing it. H e  bases his 
calculations on the measurement of the deflexions of glass 
beams supposed to  obey the Bernoulli-Eulerian theory ; the 
beams are doubly supported and centrally loaded, having the 
proportions 66 x 8.5 x 2, the latter being the depth. I t  is not 
in all cases stated what spans were employed, so it is impos- 
sible to say how far the results were influenced by surface 
loading. 

Professor Clerk-Maxwell t has examined the state of strain 
in pieces of unannealed glass of various shapes, the lines of 
equal intensity of strain being deduced from the isochromatic 
lines. 

The lines of Principal Stress are found from those of Equal 
Inclination in the manner described later on in this paper. 

It has already beeq pointed outl$ that ‘‘ Neither Neumann 
nor Maxwell seems to have remarked that the difference of the 
velocities of the ordinary and extraordinary rays depends 
solely on the maximum slide of planes perpendicular to the 
wave-front.” 

An important work on this subject is found in a paper b,y 
Dr. John Rem$. He establishes the fact that “ I f  a plate of 
glass, compressed or extended in  one direction parallel to its 
faces, be traversed normally by two pencils of light, which 
are polarized in planes respectiveIy parallel and perpendicular 
to the direction of strain, then both pencils are.retarded by 

* Abhandlungen de? k. Akademie der N‘isseuachaftwi ztc Berlin, 1811, 
vol. ii. pp. 60-61. 

t Trans, Roy. Soc. Edinburgh, vol. XX. (1853) p. 117. 
$ Hist. of.Elrtsticity, vol. i. p. 643. 
5 Phil. Mag. October 1888. 
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the strain in the case of compression, and both are accelerated 
by the strain in the case of tension.” Also that “strain- 
generated retardations, absolute as well as relative, are Rensibly 
proportional to the strain,’’ thus confirming Wertheim’s 
results. 

Dr. Kerr omploys in his experiments a bent gIass beam, 
doubly supported and centrally loaded, having the ratio of 
span to depth* of 8.4 to 1, and assumed to obey the Ber- 
noulli-Eulerian theory. 

I would draw attention to the disagreement between the 
results arrived at by M. Neumann and Dr. Kerr, the former 
stating that the velocity of light in a medium is increased by 
cornpressing it, whila the latter states that the velocity is 
diminished. 

Dr. Kerr esnmiiied n .benin having a span equal to 8.4 
depths, and at a point where the surface-loading effect would 
he least ; whereas M. Neuinann examined a beam-span to 
depth ratio not stated-immediately under the load. 
I can only attempt to account for tlie discrepancy by 

pointing out that if’ the span is diminished to less than four 
depths, the eleineiits of glass that M. Neumann assumed to 
be in a state of squeeze are actually, as will be shown later, 
in a state of‘ stretcb. 

The instrument with which the following experiments were 
made consists of a steel straining-frame in which the beam 
to be examined is placed ; tlie beam rests-for flexure-on 
two steel rollers, and is loaded by a micrometer-screw which 
hears on a third central roller. The base of the frame is 
divided, from tlie centre, in divisions of 2, millim. so that the 
supports can be set for any required span. A micrometer- 
screw is placed in the base of the frame opposite the load, so 
that deflexions can be measured to one ten thousandth of an 
inch. Two screws in the two sides of the frame enable 
lateral pressure to be applied. The ~ ~ l i o l e  frame can be moved 
in any direction in its owii plane, so that all parts of the beam 
may be examined. The optical arrangements consist of two 
iiicols, of which the upper is provided with st graduated disk on 
which the angle of rotation can be observed ; a inicroscope 

* According to the figure. 
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with micrometer-eyepiece can be fitted when it is desired to 
ineasure the fringes ; circularly polarized light can be used 
when required. 

The beams used were marked on one side with 2 millim. 
squares; they were covered with paraffin and marked in a 
dividing-engine and then etched ; the lines thus formed 
enabled the position of dark bands to be determined with 
accuracy. 

Pvoposilion I. 
I f  a beam of glnss be laid on a flat surface and loaded across 

its upper surface, the shear at any point on the nortnal a t  the 
point of contact of the load is inversely proportional to the 
distance from the point of contact. 

E q w i m e n t  1. A beam of annealed glass 6 1  rnilliin. x 6.5 
millim. x 20 millim. deep was placed in the steel straiaiiig- 
frame with its narrow side resting on a piece of thin paper. 

A steel roller 2 millim. in diameter, 10 millim. long, was 
placed across the middle of the top surface and loaded by the 
screw. 

The nicols were crossed and at 45" to the axis of the beam. 
A quarter-wave mica plate was placed between the beain 

and the analyser, with the plane containing the optic axes at 
right angles to the length of the beam. 

At  that point a on the norinal where the difference of phase 
between the ordinary and extraordinary pencils trayersing the 
beam is equal and opposite to the difference of phase produced 
by the mica plate-the effect will be as if there were no 
strained glass between the two nicols, and there will therefore 
be a black spot as the nicols are crossed. 

The position of this spot on the normal is plotted on a 
sheet of squared paper, and an ordinate parallel to the axis 
chosen to represent the shear. 

A second quarter-wave plate is now superposed on the first, 
and the black spot consequently moves up the normal to where 
the shear is twice what it was at a ; this point, b, is noted, the 
second mica plate removed, and the load reduced until the 
black spot with one mica plate is brought to b .  In  this way 
a series of points u,P, c, d on the normal ;Ire found at any one 
of which the shear is twice what it is a t  the point below. 

0 
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Now it is proved later on that the btrain at any point 
varies as the load on the beam ; hence by taking the ordinate 
a t  b twice that at a, at c four times, and at d eight times, and 
so on, we get points on the ciirve of loading along the normal 
for the load that give a difference of phase at  a equal to that 
of one-quarter wave-plate. 

The results are plot,ted 011 Plate V. fig. 1 : the observed 
points are indicated by circles, through one of which an 
hyperbola has been drawn taking the normal and the upper 
surface of the beam as asymptotes. 

It will be seen that the six upper circles lie very nearly on 
the hyperbola. 

It is clear that the upper surface of the beam is an asym- 
ptote oidy when the surface of contact between the benin and 
&e roller is a line-innking the stress there infinite ; but in 
practice this caiinot he so, the sinxllest pressure giving a 
bearing surface-as the roller indents tlie beam-inn king the 
stress there finite, i. e. the asymptote will be at some finite 
distance 8, say, above the point of contact, and 8 will vary 
with the lond. I have calculated below that with a load of 
115.3 lb. on this Same beam, the value of 8 is 0.044 millim. 

The apparently irregular position of the two lower points 
observed indicates the amount of error made in the assuiriptioii 
(2) above that tlie surface-loading effect inay be found by 
substituting a flat plane instead of two supports. 

This assumption would be correct only if the beam were 
of infinite depth and the surface-loading effect of the support 
infinitely sinall ; here, however, the steel frame itself pro- 
duces a surface effect, and this, added to that due to the load, 
makes tbe points observed lie off' the hyperbola, which would 
be the true curve (as drawn) if the benin were of infinite depth. 

The effect of the steel frame must be very small conipared 
with that due to the load for points in the upper half of the 
beam. I n  drawing the hyperbola I have considered it as 
negligible a t  the centre of the beam ; in other words, I con- 
sider that the correction of the position of the six upper 
points, required to allow for the surface effect of the frame, 
would not make them deviate seriously from the hyperbola. 

It must be noted, however, that when the beam is resiing 
011 two supports the surface effect of the frame disappears, 
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since the beam only touches the supports and surface effect 
can 01dy be caused by actual contact ; hence I conclude that 
the surface effect due to loading only is strictly represented 
by the hyperbola and is as i f  the beam were of infinite depth". 

I n  order to establish the hyperbolic law with greater 
certainty, experiments were iiiade enabling as many as seven 
points on the curve to be obtained within 3.5 ~nillim. of the 
point of contact, the highest point being about -5 millini. 
from the top of the beam. 

Within this range the eRect due to the steel frame may 
with accuracy be neglected. 

Experiment 2. A beam of annealed &ss, GI millim. x G.5 
inillim. x 20 millim. deep,  US placed in the steel straining- 
frame, on a piece of thick paper, and loaded as before with the 
steel roller 2 millim. in diameter. 

Xicols crossed and at 45Oto the axis of the beam. 
Tho screw load wns applied until six ii7terference-fi.inges 

appeared under the roller ; these were ex;iminecl through a 
microscope with a micrometer-eyepiece divided to thousandths 
of an inch. Light from a sodiuiii-flame was used, and the 
distance between the point of contact and the intersection of 
each fringe with the normal W:IS ineasurecl in micrometer- 
divisions. 

I. Distances in  micrometer-dirisious to successive fringes : 

11.0 13.5 1i.q 23.0 35.0 71.5, 

\)ut the shears :ire as 6 . 5  . 4  . 3 . 2 . 1, since there is a difference 
of phase of only 6 a wave-length required to produce a fringe, 
hence taking the products of distances into shears we get 

W O  67.5 68.0 69.0 , 700 71.5. 

But we have so far neglected the value of 8, the distance of 
the axis of shears from the point of contact. 

By taking the two most reliable observations, where tho 
distance from the point of contact is large and yet where the 

* According t o  this reasoning there appears t o  be a shear of finite 
amount at the bottom of the beam-when doubly supported-due to 
loading cnly, but this does not soein to me to be inconsistent with the 
surfwe conditione. 
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fringes are well defined, we should have, if the law is 
hyperbolic, 

or 

Correcting the original readings by adding 8 to each, we get 
12 14.5 18 24 36 7'2.5, 

3(2;3+ e) =4(17+ 81, 

e=i*. 

and the products bwoine 
72 72.5 72 72 72 72.5. 

11. Same beam, &c,, as before, roller and load readjnsted. 
Distance to successive fringes :- 

11.5 14-25 17.75 24.0 36.0 75.0 
To find 8, take 

3 (24 + 8) = 4 (1 7.75 + B j ,  or 8 = I . 
Correcting the distances, we have 

12.5 15.25 18-75 25.0 37.0 7ti.0, 

and the products of the distances into the shears become 

75.0 76.25 75.0 75.0 74.0 76.0. 

111. Same beam, &c., :is before, roller and load rcndjiustecl. 
Distance to snccessive fringes :- 

10.75 12.5 15.25 19.25 26.0 3 9 0  80.5. 

TO find B take 3(26+8)=4(19.25+8), whetice 8 4 .  

Correcting the distances, we have 

11.75 13.5 16-25 20.25 27.0 40.0 81.5, 

and the products bucoine 

82-25 81.0 81.25 81.0 81.0 80.0 81.5. 

The law of rwiation of shear along the norind is tliiis 
hown to be hyperldiu. 

* One micrometer-division = 0.044 milliin. 
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Experiment 3. The steel straining-frame was removed froin 
the instrument and-by a screw inserted in the place of the 
straining-screw-hung froin a balance, which could be loaded 
with shot and had a leverage of 50 to 1 : a steel stirrup 
was hung over the frame with two hardened points resting 
on the two guiding;piiis ; one lower end of the stirrup was 
secured to the body of the balance, the beam inserted and 
balanced, and shot put in the pan. This lifted the straining- 
frame and loaded the beam. 

Beam [B] 56  millim. x PO millim. x 6.5millim. placed on 
the base of the steelframe on a piece of thin paper : loaded by 
a steel rol!er 2 millim. in diameter. Viewed through nicols 
crossed and at 45' to the horizontal axis of the beam. 

The balance was lottded until the first blue fringe was 
brought down to a gieen position on the beam, and the weight 
of shot observed ; ihe same fringe \vas then brought down to 
a lowe: given position, and the weight of shot again observed, 
and so on for successive points. 

Load (@) on roller (weight of 
shot) x 50 in lb. 

Distance (a) of given 
poiiita on normal from 

top of beam, in milliiu. 

1. . ~ 2. M a n .  1 
1'15 40 39 39.5 I 

PI.. 

34.34 

If  the shear at 4.2 iidlim. with 147 lb. be taken as unity, 
the shear at 5.2 millim. with this same load will be +$:-, since 
the same shear is produced at 5.2 milliin. 1vit.h 181 lb, as is 
produced at 4.~2 millim. with 147 lb. Hence if the curve of 
loading is an hyperbola, we should have 

4.2 x 1 = E7 x 5.2 or p/a a constant. 181 
From the third column given above the values of B/a will 

be seen to be nearly equal in each case ; the value of 8 lins 
here been neglected ; if we put #=O.Od r i i i l I h ,  the values of 
&/a become 

34.6 33.8 34.7 34.5 84.9. 

3.2 
4.2 
52 
6 2  

114 1 105 3 P J J  
145 149 

181 34.80 

I I 35.16 I ...... 218 
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Yi*cy.wsitiun 11. 
Things being arrmgect as in Proposition I., it is required to 

determine the locus of points of equal intensity of shear, and 
to show that a t  any point whatever the shear is.inverse1-y pro- 
portional to its distance from the point of contact. 
E,cperiment 4. The beam was examined under circularly 

polarized light, as in Clerk-Maxwell’s experiments, in order 
to obtain the variations in the amount of the strain uiicoin- 
l~licated by variations in the directions of the principal stress- 
axes ; white light was used. 

I?ie loci of points of equal shear mere found to be circles, 
:is in tho figure ; circles of equal shear were obtained up to 
8 millim. dinmet,er with this beam. 

Hence the shear at any point a equals the shear a t  6, if 
o ZJ a is a circle, and o b the normal at  o ;. i. e. shcar at a 

k being some constant’, but p cos 6 is the resolved part, of‘ tlie 
pressure at o* along o a ;  hence the shear at any point is 
inversely proportional to its distance from the point of contact. 

See Professor Boussinesq’s results quoted already. 
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Proposition 111. 
The state of strain at  the centre of the beam when doubly 

supported may be found by superposing on the state of strain 

Fig. 3. 

due to bending only, that due to surfhe-loading without 
bending. 

It has been proved that the state of strain alona the normal 
at the point of contact due to t8he surface-loading may be 
represented by an hyperbola whose asymptotes are re- 
spectively the normal itself and a line parallel to the axis of 
the beam at R distance 0 from the point of contact. Let 
0 C, 0 D in fig. 3 represent these asymptotes, 0 E=8  ; let an 
hyperbola be drawn whose ordinates parallel io  0 I) represent 
the shear at any point along E C for a given load : since the 
shear is proportional to the compressive stress, these ordinates 
may be considered as proportional to the compressive stress a t  
any point along E C. 

By our ( B )  assumption we mag represent the stresses at  any 
point along E C, due to  bending, by a right line drawn through 
C, the centre of the depth. 

Let C K Le such x line, drawn on the same scale as the 
hyperbola, so that E K represents the shear (vortical etretch) 

? 
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ut E due to bending*, while E M represents the shear (vertical 
squeeze) due to loading. 

These two curves must intersect at some point N ; at the 
corresponding point P on the normal the shear (vertical 
squeeze) due to  the loading is equal to the sliear (vertical 
stretch) due to the bending : an element of volume at P will 
therefore be subject to volutninal compression only, and the 
shear will be zero, there will tberefore be no birefringent 
action, and when viewed with crossed nicols there should be 
a dark spot on a ~ h i t e  field. 

If the load is kept constant and the span diminished, E K 
will decrease until C K cuts the hyperbola. at  a second point ; 
we shonld now get two points of darkness. As the span is 
still diininislied these dack points should rise and fill re- 
spectively until they coincide, when C K is a tangent to the 
hyperbola ; after this they should separate out at riglit 
a n  g 1 e s. 

Plate V. fig. 2 gives the results of an esperiiiicnt (5) made 
with constant load ailcl varying spins. The beam w;is 128 
iiiilliin. x 1 9  rnilliin. deep x 5.5 inilliin thick, snpiborted on 
two steel rollers 2 niilliin. in diameter nntl ccntrally loutled 
over :L silnilar roller : the nicols were c roesd  aiitl at 45' to 
the axis. The following tablo gives tlie spaiis :- 

Curve. 

--- 
1 ........ 
2 ........ 
3 ........ 
4 ........ 
5 ........ 
G ........ 

Ratio o f  s )an 
to dept t . i Span in millim. 

This experiment sliows that there are, generally, two poiiitu 

* The compressive atress due to bending, a t  any point on C E, produces 
a shear (vertical stretch) axd a voluminnl compression, m d  both are pro- 
portiounl to the stress, similarly for the shear (vertical squeeze) and 
voluniiiial compression produced by the stress due to the lorrding ; SO for 
this purpose it is indiflerent whether the ordinates of the tlvo cuves 
represent the compressive cltresses or the shears poduced. 
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of zero shear which close up as the span diminishes and then 
open at right angles. 

The same phenomena may be observed by placing a beam 
on R flat surface and loading it, and then placing over this 
beam a second, which may be bent with n very long span, or 
by two couples a t  the end ; the effect is the same for different 
degrees of hending as for varying spans in the former 
experiment. 

Thus for spans of four to five depths the normal under the 
load is divided into three parts by two points of zero slmw, 
elements between these poiiits being subject to shear (vertical 
stretch), while elements above and below thein are subject to 
shear (vertical squeeze). 

When, however, the span is less than four depths, every 
element in the cross section under the load is sut'ject to  shear 
(vertical squeeze) and the greatest strained eleineiit is im- 
mediately uiider the load. 

These resulls may be further checked and confirmed by 
examining each part of the norinnl by placing over it a beam 
bent in the hand ; if' the part under esnininntion is in shear, 
say (vertical squeeze), darkness rnay be prodnced by super- 
posing a part of the second beam oppositely strained; if the 
strains were similar, increased brightness would result. 

I exhibit also the results of experiments made to  determine 
the position of the black bards for lower ratios of span to 
depth. 

The dimensions of the bcain were 124 niilliin. x 20 millim. 
deep x 6.5 millim. thick, londecl on rollers like tho others ; 
nicols crossed and at 49" to the axis. 

Here the effect of the supports is very marked, 50 that 
when p =  2 the black band only just touches tlie axis:. 

It iiiust be remembered that at the point d i e r e  the black 
baud cuts the normal the shear is zero, but that everywhere 
else on the band all that is indicated is that the directions of 
resultant tension and compression are nt 45' to the axis of'the 
benni. 

Eclpem'n/ent G was made to establish Proposition 111. with 
greater certainty. 

Benin 128 niilliin. x 19 milhn. x 5.5 millim. was pIwed 
on the base of the str~iliing-friime, on R piece of thin paper 
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and loaded with shot until the first blue fringe came down to 
a point 1.7 rnillim. from the top. 

The same beam was then supported on two steel rollers 
2 millim. in diameter and 120 millim. apart, and centrally 
loaded over a similar roller until the same blue fringe appeared 
at the bottom of the beam. 

An hyperbola has been drawn (see fig. 1, Plate V.) of con- 
venient proportions, cutting the horizontal through the above- 
mentioned point at 28.5 divisions from the normal ; the shear 
corresponding to the blue fringe is thus represented by 28.5 
divisions, and there is that shear at the point with a load of 
65 Ib. 

Now the stress cllie to bending, at the extreme bottom fibre 
of a beam 19 millim. deep,, 120 millim. span, and 5.5 millim. 
thick, with a load of 55 Ib., is 1.436 tons per square inch. 

The vertical compressive stress at  this point, due to the 
load of 55 Ib., is, as is shown later on, 0.121 ton per square 
inch ; .but we are not justified in superposing the shears pro- 
duced by these two stresses? heing tensile and conipressive a t  
right angles, and the former as much as .twelve times the 
latter, so I shall take the stress at the blue fringe as 1,436 
tons per square inch. 

Hence the conipressive stress produced by 65 lb. over a 
span of 120 niiliim., at  the top fibre, is 

The load was 65 lb. 

The load was 55 lb. 

and tbe corresponding value in scale-divisions is 

65 28.5 
55 1,436 1.436 x - x --- = 33.7 divisions. 

This distance is set off along the top surface in the fiwre,  
and the point so found joined to the centre of tlie middle 
section : where i t  cuts the hyperbola we shonld get darkness 
on the norinal with a span of 120 niilliin. W e  can also 
draw lines representing the bending-stresses for other spans 
for the mine load of 651b. 

The position of the black bands on the normal, a s  found by 
esperinient for spans of 120 and 100 niillini., are indicated on 
the normal, and will be found to agree very closely with those 

? 
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points found independently by the intersection of the two 
curves. 

The curve of bending-stresses is a tangent to the curve of 
loading at a span of 73 millim., as inensured froin the figure, 
whereas it is apparently 82 milliin. when actually observed ; 
it, would appear more correct to determine this span by draw- 
i n g  the curve through two points which can be observed with 
accuracy, and then drawing the tangent and measuring the 
intercept, since the experiinental deternnination of the span 
giving coincidence of the two dark bands is one liable to 
considerable error. 

By drawing lines from the centre to the points along the 
top surface corresponding to longer spans we see that the 
deviation of the so-called " neutral axis " from the centre is 
considei4able : thus even a t  ft span = PO depths = 190 milliin. 
it should be 1 millim. above the centre. 

Pvoposition IV. 
The strain at every point along the normal due to loading 

varies directly- as the load. 
Zzpei*iniestt 7 .  The beain is placed on two supposts as 

before, with R sm:rll central load, and the points of intersectioii 
of the black bands with the normal are noted. The load is 
now increased up to  the safe limit when the points of inter- 
section are observed to remain unaltered. 

We know that the strain at any point on the normal due to 
bending is proportional to the load; hence if the point of 
intersection of the curves of bending and loading remains the 
same when the load is increased, we know that the strain at 
any point due to the loading must vary as the load. 

Proposition V. 
To determine the constant in the equation to the curve of 

loading along the normal for any beam. 
Let O X  represent the vertical through the centre of a 

beaiii centrally loaded, E the point of contact of the load with 
the top of the beam E K ; 0 Y the axis of shear, 0 E = B  ; 
K A M the hyperbola of loading for any given load, CA H D 
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the line of stresses clue to bending along C: E, 'for the same 
loud, the span being chosen so that C A H  is a tangent to the 
hyperbola at 9; i. e. so that the dark hands coincide at B. 
Then 0 Y and 0 X are the asymptotes of the hyperbola. 

It has been proved that the equation is of the form 

y = k  -,where y is the compressive stress at a point on the 
norinal E C at n distance X from 0. If W is the load and I 

1 
A' 

Fig. 4. 

x 

the width of the beam = length of bearing of loaded roller, 
we have 

y = k . b -  -for the given beam. w 

W 
b;c: Then 0 D = I3 A = 2k - (since B A  represents the stress 

at B due to the load W). Also E H = - where E H re- 

presents the stress at E due to a load W on a beam of depth 
h and width b and span I ; and 

3 Wl 
3 ?&%' 

OD :. CO=CE -- 
EH CE 
0 D - W ;  EH' 
-- 
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[since a=+CO] ; 2 PI4 - -  
- 3 1  I1 

-2 ( 2  + 8) 

1 0 9* 4 h  I .  
*a. - + -. + -* = - S .  j . k ;  p u t - = p ;  I6 

I1 I& ) 3 1 8 8 2  :. k= a p ( a  + - + 
To find k t'he beam is placed on two supports and centrally 

loaded ; the two points where the black bands cross the 
noriiial are observed (the span being longer than four depths), 
and plotted, and an hyperbola drawn through them ; a tangent 
is then drawn to this curve from the centre of the section 
and its intercept on the upper edge measured, the span giving 
coincidence of the black bands can then be calculated. 

Expevimnt 8. For a beam 128 millim. x 19 millim. deep 
x 5.5 millim. I find this span to be 73 millim. ; hence 

73 
19 

p= - = 8.84. 

e Taking 6' :it 0.04 niillim.,- = 0.002 millim., and neglecting 

e= - we have 12, 

m 

Ii = 9 x 3.84 x 0*252=0*726. 

Proposition VI. 
To verify the equation to the curve of loading. 
Expe?*iment 9. Beam 128 ndlim. x 19 millim. x 5.5 inillini. 
The stress corresponding to the blue fringe with this beam 

was found, as already explained, by loading the beam over U 

span of 120 millim., until the bhie fringe appeared at the 
bottom of' the beam ; the load required was 55 lb. ; hence the 
corresponding stress is 1.436 tons per square inch *. 

W 
b.T, * From the equation y=k - there is a compremive stress of 0121 ton 

per square inch here due to the load. I have not added the effect of this 
to that of the bending, 8s there is no proof that the superposition of small 
strnins holds when the strains themselres are so unequal. 
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When laid on the base of the steel frame, the same fringe 
was observed at 1-7 millim. froin the top with ( I  load of 65 lb. 

From the equation to the curve of loading, taking k=0.726, 
8=0.04 millim., we ought to  have a stress at 1.7 millim. 
froin the top equal to 

1 x - = 1.419 tons per square inch. 25.42 65 
2240 1 7 4  5.5 y=0.726~ y--- x - 

The lines of Principal Stress afford a convenient means of 
studying the condition of strain in a bent beam. 

I n  a memoir published in 1838” Lam4 discussed the 
problem of the equilibrium of an elustic solid, and investi- 
gated the properties of what he ternled “ isostatic suriaces,” 
or surfaces where only i io~mal “ actions” are applied. 

I n  1870 Saint-Venant f- exniniiied the differential equations 
to which the subcject of “ isostatic surfaces ” gave rise, and in 
1872 Professor Houssiiiesq $ gave a geometric method for 
constructing isostatic lilies passing through any given point. 
This memoir was shortly followed by a second 5, treating of 
the integration of the equations involved. 

Rankine has examined the form of the ciirves of Principal 
Stress, and given an expression from which the curves can be 
drawn 11. He neglects t’he surface-loading effect as I‘ in most 
cases practically of sinal1 intensity when comparcid with the 
other elements of stress.” On comparing his curves with 
those in Plate V. it will be noticed how closely the curves of 
tension agree, while the curves of coinpression are very 
diseimilar. 

Sir George Airy has calculated and drawn the curves of 
principal stress for several cases of flexure, including that of 
a beam doubly supported and centrally loaded7. He assumes 
‘‘ that there is a neutral point in the centre of the depth ; that 
on the upper side of this neutral point the forces are forces of 
tension, and on the lower side are forces of compression, and 
that these forces are proportional to  the distances from the 

* Conzptes Rendus, vol. Fii. p ,  778: “MBmoire sum les surfaces iso- 
statiques dans les corps soliiies en Bquilibre d%lasticit6.” + Ibid. vol. Ixx. f, Ibid. vol. lxsir.p. 318. 

11 ‘ Applied Mechanic;,’ 5 s  310 and 311. 
$ Ibid. vol. lxxiv. y. 242. 

Phil. Trans. 1863, part 1. 
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neutral point; ” but he says “ These suppositions seem to imply 
that the actual extensions or compressions correspond exactly 
to the curvature of the edge of the lamina.” The surface. 
loading effect is not here taken into account; and i t  woulc 
have been interesting to compare the results as shown i n  
fig. 6, for a beam in which the span equals ten depths, with 
the actual curve as found by experiment. This comparison, 
however, would Iead to  erroneous conclusions, since it has 
been shown* that the results arrived at  are not consistent 
with the fundamental equations, and the form of the curves 
can be accepted only as a very general approximation. 

Proposition VII. 
To determine the lines of Principal Stress in a glass beam 

doubly supported and centrally loaded, 
Experiment 10.-A glass beam, 125 niillim. x 19 millim. 

deep x 5.5 millim. thick, was placed in the steel straining- 
frame on two steel rollers 2 millim. in diameter, and centrally 
loaded over a similar steel roller. 

The span chosen was 60 millim., giving, for p the value 3-15. 
The nicols were crossed and set at an observed angle, and 

die black band plotted on squared paper corresponding to the 
squares on the glass beam. This band of course represents 
the locus of points where the axes of principal stress are 
parallel t o  he directions of the planes of the nicol. 

The nicols were then turned through a small angle 01, the 
new position of the black bands plotted, and so on for several 
different angles. These curves are shown in Plate V. The 
lines of principal stress are easily deduced from these and are 
shown in Plate V. fig. 4. 

Since communicating the above, Sir George Stokes has 
gone very fully into this problem, arid has kindly allowed me 
to quote the following extracts from letters I have received 
from him on the subject :- 

‘‘ Let A be the point in  the upper surface where the pres- 

* See criticism on Sir George Airy’s solution in Ibbctson’a (Mathe- 
matical Theory of Elasticity,’ note on p. 358. 
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sure (P) is applied ; B, C the points of support below, which I 
suppose to be equidistant from A ; D the middle point of BC. 
Let y be measured downwards from A ; denote BD or DC 
by a, and AB by b. You have the expressions for the stresses - -  

produced by P in an infinite .solid 2p .‘), and the 

question is, What system must we superpose on this to pass 
to the actual case? This, as 1 showed you, is the system of 
stresses produced b y a  system of forces applied to the surface. 
Tho forces consist-(1) of the two pressures 8 P a t  B and C ; 
(2) of r? continuous oblique tension below, represented in 
drawing by a fan of tensions directed at every point of the 
lowcr surface from the point A. 

“Imagine now the be,am cut into two by a plane along 
AD. Consider one half only, say that on the B side. Every- 
thing will remain the same as before, provided we supply to 
the surface A D forces representing the pressures or tensions 
which existed in the undivided beam. On account of the 
symmetry, the direction of these must be normal, 

“ A t  D the vertical pressure on a horizontal plane in thc 
infinite solid is compounded with an equal vertical tension 
due to the fan. Hence, of the vertical pressure in A D which 
must be superposed on the vertical pressure in the infinitc 
solid, we know thus much without obtaining a complete solu- 
sion of the problem, namely, that it must equal minus ZP/d 
at D and 0 at  A. If we suppose it to vary uniformly between, 
WO are not likely to be far wrong. 

“This leads to the following expression for the vertical 
pressure in A D :- 

-(- 2P 1 - 5). 
IT Y 

“Now for the horizontal. We know that the completo 
system of external forces must satisfy the conditions of equi- 
librium of a rigid body. The direction in each element of the 
fan passes through A, about which therefore the fan has no 
moment. Hence the moment of the horizontal forces alonv 9 A D taken about A must equal +Pa. Again, the resultant of 
the semi-fan is a force passing through A, and its vertical 
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Its horizontal coinponcnt is thc integral coinpoucnt is 8 I?. 
O f  

2PL2 x d n  

P 

- .  
7r ( P + 2 ) 2 '  

taken from 0 to infinity, or - 0  

two things :- 

7r 

'' Hence of the horizontal forces along A D wc know theso 

P (1) The sum must equal - 7  

(2) The moment round A must equal + Pa. 
" I n  default of a knowledge of' the law according to which 

the force varies with y, it  is natural to take it, for a more or 
less close approximation, to be expressed by the linear func- 
tion A + By, or say Y. To determine thc arbitrary constunts 

P A, B, we havc only to equate the integral of Y .  t3y to - and d 
that of Yy . dy t o  6 Pa, the limits being 0 to b. WO thus got 
for the expression for the tension at  any point of AD, 

7r 

P -(,-%-)+ 4 3a F(;-;)/) 1 g. 
z, 

" At neutral points the vertical prcssurc cqunls ininus thtb 
horizontal tension, giving 

37ra 
b or, putting for shortness - -4=m, 

For the neutral points to be real and different, we must have 
2a 40 1 n > l 6 ,  - > -- b 37r 

When tho neutral points coalesce into one, we have in eqiw1 
b 16, y equal - and for the ratio of the span to the depth, 4; 

P 
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2a 40 - equal 7 equal 4.245, or, say, the spnn is 4& titnes the 
2, d r y  
depth. 

“As regards the horizontal tension at points along A D, 
you take n linear function of y as I do, and your condition of 
moments is the same as my (g), but in lieu of my (1) you 
do what is equivalent to taking the total tension nil. You 
further omit the correction to the vertical pressure when we 
pass from a solid of infinite depth to one terminated by a 

plane below. You further take the coefficient of - as k, a 

constant to be determined by the observations, instead of -. 
“ Taking the place ofthe neutral point (at one fourth of the 

depth) and the ratio of span to depth as given by my formuls, 
and then treating them as if they had been the results of 
experiment, and substituting in your formula for the deter- 
mination of k, I got 0.7947 instead of 0.64. The largeness 
of your coefficient is I think fully accounted for by the 
employment of the formulae which you used. 

“ In  your method you take the stress belonging to the solid 
supposed infinitely deep, and superpose it on the stress corre- 
sponding to a pure bend. 
“This comes to the same thing as retaining three terms 

only in the equation I gave in my letter for determining the 
y of the neutral points. 

P 
Y 

2 
r 

‘ I  The equation thus becomes 

or 
2 n z  2 Y  --m - + 2=0, 

62 b 
where 

37ra 3 r a  
m= - instead of - -4. b b 

“When the two neutral points mergo into one, we have in 
b, and the only difference is that both cases dike y equal 

37r 5 equals nt instead of m plus 4. a 
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" If you had supposed the coefficient for the infinite solid to 
he an unknown quantity k, and had applied your observations 
to determine it, using my formulae instead of your own, you 
would have got something very close indeed to 0.64. 

" It is noteworthy that in your problem, taken as one in 
two dimensions, the theoretical stresses in the planes of dis- 
placement are independent of the ratio between the two 
elastic constants ; in other words, independent of the value 
of Poisson'4 ratio." 

I have calculated the positions of the neutral points from 
Sir George Stokes's formula 

Sir George Stokes's 
formula. 

for spans of 88, 100, and 120 millim. in a beam 128 millim. 
long x 5.5 snillim. wide x 19 millim. deep. These are given 
in tho following Table in the 2nd and 3rd columns. The 
results of actual observations (see p. 192) are given in columns 
4 and 5 ; while columns 6 and 7 give the same points as found 
by plotting the intersection of the curves of pur0 bending and 
loading (infinite solid assumed) :- 

Observation. Intersection of curves. 

Span. 

6.3 3.2 

7.0 2 5  

7.7 1.8 

88.. ....... 
loo. ........ 
120.. ....... 

6.4 3.3 6.9 3.7 

7'2 2.5 7.3 2.3 

7.8 1.8 7.8 1-75 

Distance of Neutral Points from top edge, by 

The error by the intersection method is greater in pro- 
portion as the span is smaller, as might have been expected. 

If the observed positions of the neutral points are inserted 
in Sir George Stokes's formula, the value 0.64 is obtained for _ _  

2P 1 
a ion .T= - the constant ?c in the eqn t' Toy '  

M'Cfill University, Montreal, 
October 12,1801. 




