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Criteria for the irreducibility of groups of linear homogeneous
transformations.

By

Henry TaBer of Worcester, U. 8. A.

§ L

In what follows G will denote an arbitrarily given group of linear
homogeneous transformations in % variables, and 4 the general trans-
formation
(1) wul=ax1x1+ax2x2+"'+aznxn (%=172:"’;%>
of G. The group can be either continuous or discontinuous. I shall
demonstrate a theorem (theorem 1 below), embodying conditions ne-
cessary and sufficient for the irreducibility of a group of linear homo-
geneous transformations, and supplementary to H. Maschke’s well known
theorem, that such a group is reducible if some one or more of the
non-diagonal coefficients of the group are zero throughout in all trans-
formations of the group.*) Further, I apply the theorem in question to
show, when G is generated by infinitesimal transformations, that certain
conditions not involving a knowledge of the invariants of the group, or
necessarily its finite equations, are sufficient for irreducibility. See
theorem 3. Finally, I show by the aid of the latter theorem that no
group in » variables ®,, @, - -+, &,, generated by r infinitesimal trans-
formations

X= b (@) +Es @t Ea@gs (=120,

whose constants of multiplication are ¢, (5,5, k=1,2,---, r), contains
a subgroup invariant to the adjoined of G, if an integer ¢ can be
found, for each pair of distinet integers j and k¥ from 1 to =, for
which ¢;;; 4= 0, and if, at the same time, the adjoined contains an infini-

*) Math. Ann., vol. 52 (1899), p. 363.
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»

tesimal transformation 29,. 8"% in which the coefficients g¢,, g5, ' * *, 9,
i=1
are all distinet. See theorem 4.

Conformally with the notion set forth by Cayley in his ‘Memoir on
Matrices’*), linear homogeneous transformations, or their matrices, will
be regarded as capable of being subjected to the fundamental operations
of algebra; and, in general, a linear homogeneous transformation will be
identified with ifs matrix.

We may consider equations (1) as representing a group of deforma-
tions (linear homogeneous strains) of #n-fold space; and G is termed
reducible if there is a »-flat (0 <v < %) invariant to G, otherwise drre-
ducible. When G 1s reducible, but not otherwise, the matrices of the
collective transformations of G, for a proper choice of coordinates, take
the form '

o |4y 0
Agy, Ay
where 4,, and 4, are square matrices of order » and # — v respectively,
and 4,, is a rectangular matrix with #» — v rows and % columns; and,
thus, we have

(3) A=CA4C1,

where O represents the fransformation of coordinates in question.®¥)

The collective coefficients of the group G may be restricted to an
arbitrarily given domain of ratiomality. In this case, G is said to be
reducible with respect to B if there is a v-flat (0 < v < %) invariant to G,
the coefficients of whose equations belong to R; otherwise, irreducible
with respect to R. If G is irreducible with respect to R, but not other-
wise, we have as above 4= CA'C-% for a properly chosen transfor-
mation C of coordinates (which may be so taken that its coefficients all
belong to R), where now all the coefficients of 4’ belong to R.*%¥)
If G is reducible with respect to R, it is reducible with respect to the
domain of all scalars real and imaginary, that is, is reducible according
to the foregoing definition.

In what follows 1 shall denote by T7,, (4,j=1,2,...,») the trans-
formation
(4) xi*‘-"oy"‘,x§-1=0;$§=3«”j;$§+1==0,~--,zc;,=0,

’

the coefficients of whose matrix are all zero, except that in the ¢ row

* Phil. Trans., 1838, p.17; see also ‘Memoir on the Automorphic Linear Trans-
formation of a Bipartite Quadric Funetion', ibid., p. 39.
*) Cf. A, Loewy, Trans. Am. Math. Soc.., vol. 4 (1903), p. 44.
) Cf. A Loewy, loc. cit., p. 59.
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and j® column, which is equal to umity. This transformation may be
represented by the bilinear form x;y;. The #? transformations which we
obtain by giving to i and j all integer values from 1 to » are linearly
independent; and we have

() T T= Ty Ty Tia =0 (gl h=1,2, ., m; het)).
Every linear transformation whatever in # variables may be expressed
linearly in terms of these »® transformations; and, in particular, for the
general transformation of G, we have

(6) A=22aiszj’

i=1 j=
I shall denote by m the maximum number of linear independent trans-
formations of G; and by 4,, 4,, ---, 4, where 4, (i=1,2,---, m) is
defined by _ .
™ z,=dfe+afe bt ala, (k=12 ,),
any arbitrarily chosen system of 2 linearly independent transformations
of G. From (6), it follows that the mawimum number m of linearly in-
dependent transformations of G cannot exceed we. Every transformation of
G is expressible linearly in terms of A, 4,, -- -, 4,; since, otherwise,
G would contain more than m linearly independent transformations. For
the general transformation 4 of G' we have

(8) A = “1‘4'1 + C¥2A2 + “mAm)

that is,

(9) a,,= “1“8 + “2“53 +et “ma’(:;) ("7 A=12 ..., n)
Moreover, we have
' (10) AiAj = Yi1 4, + Vije A, + -+ Viim Am (7:) j=12, ) 7')7

since 4,4, is a transformation of G for every pair of values of ¢ and j
from 1 to m. From (5) and (6) we obtain

(11) T,AT;; =a,T, (4=1,2---, n);

therefore, in particular,

(12) LA T,=al T, (i,j=1,2-, 0 h=1,2, ... m).
The totality of linear homogeneous transformations

(13) A=ua,4d, + aydy +---+a,4,,

where a,, a,, - - -, a, are arbitrary scalars, constitutes a group; since, if

(14) B = 51‘41 + 52-A2 + ek BmAm;

we have, by (10),

(15) ﬂﬁ-“-jéi?a@.ﬁﬂm%.

i=1 j=1 k=1
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Since 4,, 4,, - -+, 4, are linearly independent, this group contains e
essential parameters. KEvery transformation of G is a transformation of
this group. Therefore, if G contains v essential parameters m > 7.

By a theorem of W. Burnside's, the group G is irreducible if, and
only if, m = n® that is, if, and only if, it contains n® linearly independent
transformations.*) In what follows I shall establish, by the aid of
Burnside’s theorem, a theorem supplementary to Masehke’s theorem
referred to above. Namely, I shall show that ke group G is reducible
if, and only if, either some one, or more, non-diagonal coefficients, of G are
zero throughout in all transformations of G— or if the n transformations

=0, 2_,=0, 8=z, =0, 2 =0,
for e=1,2, ..., n, cannot all be expressed linearly in terms of the trans-
formations of G.

Let us first assume that G is irreducible. Then, by Burnside’s
theorem, m = n? that is, G contains »? linearly independent transformations
4,, 4, - -+, A,a. By (6), the transformations 4,, 4,, ---, 4. are ex-
pressible linearly in terms of the »? linear transformations

T, (7:73.:112"“,”)7

: i
namely, the »? transformatxons

(16) 2, =0, 2, =0, 2 =2,

J i+1
(%J=1,2,--, n);
and, since the former are linearly independent, the latter, in particular

the » transformations 7, for ¢=1,2,---, », can be expressed linearly in
terms of 4,, 4,, -, 4. Thus, let

(17) T,=c) A, +cD A+ +04,  (G,j=1,2-n).
If possible, let some one coefficient a,, of the general transformation A
of @& be zero throughout in all fransformations of this group for some

definite pair of values of 2 and # (1 <AL n, 1Lk <n). Then in
particular,

=O’ SN xn=0

W __ (2) (n’)
2k & o U = O

and, therefore, by (5), (12), a.nd (17),5
Lo =TT T

n*
2’ Qi
ch]c Thk Acf Tkk
i=1

52

. ¢y (N
- ciz]ca'th O?

a

f

i=1

i) Proc. Lond. Math, Soe., 27 ger., vol. 3 (1905), p. 433,
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which is impossible. Therefore, if G is irreducible, the # transformations
T, (i=1,2,---, n) are expressible linearly in terms of transformations
of G, and no coefficient of G is zero throughout.

Let us now assume that each of the » transformations

T (=1, 2:"'2/”’)
is expressible linearly in terms of transformations of G; in which case,
by (8), each of these # transformations is expressible in terms of any
system A, 4y, -+, A, of the maximum number of linearly independent

transformations of G; thus let
(18) Tii = Cgl) Ai T 05'2) Az +eo+ CE-m)Am (i= 1:2:"‘7”7’)'

Let us also assume that no non-diagonal coefficient of G is zero throughout;
in which case, for each pair of distinct integers ¢ and j from 1 to #, an

integer & can be found (1 <% < m) such that agf)=)= 0. For, otherwise,

if for a assigned pair of values of ¢ and j (j =+ 9),
y __ (2) = a?;%) — 07

a'i J zJ

then, by (9), a;; = 0, that is, some one coefficient of G, outside the dia-
gonal, is zero throughout in each transformation 4 of G, which is con-
trary to supposition. Therefore, for each pair of integers ¢ and j from 1
to %, j==¢, we have, by (12) and (18),

(19) T, T A, T;;

(k)
@5

=~ 220")0“)41 4, A,

W ohp=1 =

T a® 222 (}L) c()yhkp yPZQA

U k=1 i=1 p=1 qg=1

by (10). Thus, the ? linearly independent transformations T}, (3,j=1,2,--,n)
are expressible linearly in terms of the m transformations 4,, 4,,- -, 4,,
Whence it follows that m = n?; and, therefore, by Burnside’s theorem,
G is irreducible. L

We have, therefore, the following theorem:

Theorem 1. An arbitrarily given group G of lineur homogeneous
transformations

x;=ax1w1+a’x2x2+"‘+aunxn (x=1,2,°--,%)
in n variables is irreducible if, and only if, each of the n transformations
g, =0, a_, =0 &=, =0.-2,=0,

14
i—-1 £

for i=1,2 -.. n, is expressible lincorly in terms of transformations of
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the group, and if, at the same time, no one, or more, non-diagonal coefficients
of G are zero throughout in oll transformations of G.

Let now G be any group whatever of linear homogeneous transfor-
mations whose coefficients lie in an arbitrary domain B If G is irre-
ducible with respect to the domain of all scalars real and imaginary,
a fortiori, it is irreducible with respect to R. Therefore, from theorem 1
we obtain the following theorem:

Theorem 2. Let G be any group of linear homogeneous transfor-
mations i n variables whose ecoefficients are all contained in the arbitrarily
given domain R of rationality. Then, G s irreducible if no non-diagonal
coefficient of G s zero throughout, and if each of the n transformations

7 4
. 0, -+ 2, =0

i+1
for i=1,2 ... n is expressible lincarly in terms of tramsformations of G-
We may apply this theorem to show very readily that the subgroup
of proper orthogonal substitutions in # > 2 variables whose coefficients
lie wholly in an arbitrarily given domain R is irreducible. It suffices to
prove this theorem for R = 1. Let G denote this subgroup. The coeffi-
cients of a proper orthogonal substitution in » variables are functions,

rational in the domain B =1, of %% (n—1) parameters; and, therefore,

each system of rational values of the parameters gives a transformation
of G. Moreover, no coefficient of a proper orthogonal transformation is
zero for all values; and, therefore, no coefficient is zero for all rational
values of the parameters. Wherefore, for each pair of integers ¢ and j
from 1 to n, there is a rational system of values of the parameters, and,
therefore, a transformation 4 of &, for which @,;4 0. Whence it follows,
that no coefficient of G+ is zero throughout; and therefore, we have only
to show, for n > 2, that each of the » transformations 7,, (1=1,2,--,n)
can be expressed linearly in terms of transformations of the group. To
establish this, let S, denote the identical transformation, and let

| 8o (i=2,3, -, n)
denote the proper orthogonal substitution

’ 4 4
2, =0, 2, =0,2=2z,2

t4 4 4
By ==y, 4g=qg, " &; =7

4 ’ ’
gy Xy=—Z, (L‘i+1~—w X, = .

1417
The n substitutions S;, S, -+, §,_, are all transformations of G. If now
¢Sy + ¢, 84 +¢,_ 8, ;=0

n

then
. =0,

o= O —C— " —C

and, for k=2,38, ..., n—1,

CF et F G 1= G+ G+ T 61 =0
But the resultant of this system of equations is equal to (— 1)*27-1(n —2),
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being the determinant whose conmstituents in the principal diagonal and
in the first row are all equal to — 1, except that in the first row and
column, which, and also the remaining constituents, is equal to 4+ 1. There-
fore, if n>2, the transformations S;, S, -- -, §,_; are linearly independent;
and since these transformations are expressible linearly in terms of
Tiyy Togy +++y T,y the latter, if %> 2, can be expressed linearly in terms

of Sy, S, --+, S,_y, and, thus, in terms of proper orthogonal substitu-
tions, which was to be proved.

§ 2.

By the aid of theorem 1, I shall establish certain criteria for the
reducibility of a group of linear homogeneous transformations generated
by infinitesimal transformations. Let G be generated by the r (r < m)
independent infinitesimal transformations X, X,, ---, X, where

(20) X, = 221)% . aw (i=1,2,--, 7).
I shall denote by B; the matrix of X, (i=1,2,..-,r): thus,

(ORI AG) ®
bll ) bl2 ? ) bln
(0} @ Ay
(21} B, = b217 bm, ’ bzn (?:=1’ 2?"')7')'
O] (O3} (3)
bil’ b;2’ Y bnn

Then for the general transformation 4 of G we have

(22) A= ei____z;t;Bi__: 1 +Zr,1tz'1 _Bl_1 + —;—Zr'zr’t&tizBﬁ sz"{':"’

=1 f=14=1
where #,, t,, - - -, t, are arbitrary scalars. The matrices B, B,, -+, B,
are linearly mdependent being the matrices of independent infinitesimal

transformations of G. In what follows, it is not necessary to distinguish
between an infinitesimal transformation and its matrix.

If 2 ’ 8 is not an infinitesimal transformation of &, then m

z=1

is at least as great as -+ 1. In the first place, if Zx  Pa, is an

infinitesimal transformation of the group, the matrix umty is expressible

linearly in terms of By, B,, ---, B,; and conversely. For, if 290% 81

x=1
;8 an infinitesimal transformation of G, we have
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.
237,*3—;=y1X1+y2X2+---+err,
z=1 #

which is equivalent to
8x2=y1b(1)+7zb() "+7’rbfg ("7}':'1727"‘7”)

where ¢,, =1, ¢,;, =0 (A4 %); and this system of equations is equi-
valent to

1=7’1B1+72B2+"'+7rBr-

Next, let
(23) Ai=eeBi=1+9Bi+';—92Bi2+"' (7;:172)"':7)?
where ¢ is an arbitrary scalar; and, if possible, let
(24) ¢+ A, +6Ay+---+cd, =0
for all values of g; that is, for all values of o let, simultaneously,
(25) €6, + ¢, 00 + - - +crai)2——0 (¢, A=1,2,-+-,m),

where ¢, =1, &, =0 (14 ), the scalars a (¢=1,2,---,7) being the
coefficients of A Since these coefficients are transcendental integral
functions of ¢, if equations (25) have a solution other than

G=06=""=¢=0,
we may take ¢, ¢, - -+, ¢, t0 be integral functions of ¢; and, thus, we
may put

(26> (0+C(1)9+ (2) 2+"' (i=1,2,~--,7‘),

in which case equatlon (24) becomes

@7) {cg’) + > c§.°>J +o ch}) + > cﬁ.”) + Bz}
i=1 i=1 i=1
+ —;-92 [(c((f) + 2 05.2)) + 22 cf.l) B, + 2 cf.o) Bf] +
f=1 i=1 t=1

on substituting for A4,, 4,, etc., their expressions in terms of B, B,, ete.
Since this equation holds for all values of ¢, we have, in particular,

(28) &+ D=0,

t=1

@ (40+ )+ Tz
t=1 =1
(30) (cg” + > cj?’) +2 D "B+ D B =0.
i=1 t=1 i=1



Irreducibility of linear groups. 365
We have

(31) &+ D=0,
i=1

since, otherwise, by (29) the matrix unity is expressible linearly in terms
of B, B;, --:, B,, which is contrary to supposition. Therefore, since
By, By, -, B, are linearly independent, ¢® =0 (i =1,2, .-, 7); whence,
by (28), ¢® = 0. Thus we have

Further,
(33) cg)l) = C<11) == s+ s » == cg'l) = 0_

For, from (30) and (32), we derive

(e Z2)r23en-0
i=1 t=1

whence follows
(34) e+ Dl =0,
i=1

since, otherwise, the mafrix unity is expressible linearly in terms of
B, B,, -, B.. Therefore, since B,, B,, -, B, are linearly independent,
MN=0 (i=1,2, .-+, r); whence, by (31), we have ¢{) =0. Again, by
the aid of the preceding equations and those obtained by putting equal
to zero the terms in (27) involving % we have

(35) ) =D =...=c2 =0
ete., etc. Wherefore,
(36) Co"‘-=01=-..=cr__=0

for all values of g; and, thus, 4,, 4,,---, 4, and the identical transfor-
mation are linearly independent; that is, m >» + 1. Consequently, if
r=n?—1 and G does not contain the infinitesimal transformation

2 T, 5%, the group is irreducible, by Burnside’s theorem, since in
x=1
this case m = »%

If r = n® since m >7, we have m = n?, and @ is irreducible, which
is otherwise evident, since in this case G- is the general linear homo-
geneous group.

Let us assume that no non-diagonal coefficient of the matrices of the
collective infinitesimal transformations of G is zero throughout for all the
infinitesimal transformations of this group. That is, let us assume that

no non-diagonal coefficient is zero in each of the matrices By, B, - -, B,
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of the respective infinitesimal transformations z,, %, ---, z, of G; and,
therefore, for each pair of distinct integers ¢ and j from 1 to %, we can
find an infinitesimal transformation B, (1 <% < r) for which bg.) +0.
Or, otherwise expressed, let us assume that

ki k13) “ k1 4)
b(12)='=07 bi:; =+ 0, B’ bi:r__:{::o’

ky kos %
b;l‘)=§=0, b23)+0, T b;:r)’*‘o’

where k,, (p,g=1,2,---,7; ¢+p) are integers mnot less than 1 nor
greater than ». Let ¢ and j be any definite but arbitrary pair of distinct
integers from 1 to »; and let

(87) A= =1+ 0B, + 1o B2+,

where ¢ is an arbitrary scalar. For ¢ sufficiently small, the non-diagonal
coefficients of 4" will differ as little as we please from the corresponding
non-diagonal coefficients of B,. Therefore, since bi';.) + 0, we have a;, =0

for ¢ sufficiently small. Whence, since .4'= ¢*® is a transformation of
G, it follows that mno non-diagonal coefficient of G is zero throughout.
Therefore, by theorem 1, if also each of the » transformations
T; (i=1,2,---,n) can be expressed linearly in terms of transformations
of G, this group is irreducible.

Let us next assume that r >» — 1 and that G contains » — 1 in-
finitesimal transformations

- o 2 N N8
B Y= e, X =800 L Lt s,
j=1
("’.=1)2)"'>n“‘1)7

such that © 1)
b By
1, et ... ¢1
(1) (n—1)
b b
17827"'762 =+ 0.
1) (n—1)
1, & vy e’
Let ®B; (1=1,2,--.,n—1) denote the matrix of Y; and let
50
et, 0 ,--.,0
B; b))
QI,-‘-—=€‘= 0 ) € )"')O (z=1,2,~»-,n———1)_

(%)
0, O ,~--,er’”

The transformations ¥, %,, .-, A _, are transformations of G, being
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generated by infinitesimal transformations of G; and, together with the
identical transformation (which is also a transformation of ), are linear
in vire Togs -+ Ton- Moreover7 %117 Q'[2: h 2[7;-1; and the identical
transformation, are linearly independent. For, if

+ady+-+e ¥, =0,
we have, simultaneously,
5(1) B(n—l)
+ee* +--+e,_e* =0 (x=1,2,-,n),
which is impossible, since the resultant of these equations is, by sup-
position, not equal to zero. Therefore, in the case supposed, the =
transformations 7.,, Ty, - -+, T,, are expressible linearly in terms of
transformations of G.
We have, therefore, the following theorem.
Theorem 3. Let G be any group of linear homogeneous transformations
im n wvariables gencrated by r independent infinitesimal tramsformations
X, X,, -+, X, where

b .
_24_, ylx).ax (z=172:”':7'>'

z=1 2=

Then G is irreducible if r =n*—1 andz z, 5—— is not an infinitestmal

x=

tramsformation of the group. Further, G is wreduczble if mo non-diagonal coef-
ficient is zero in each of the matrices of the respective infinitesimal trams-
formations X, X;, -+, X,, that ds, if an integer k (1 <k <) can be found,
corresponding to each pair of distinct integers i and j from 1 to n, such
that bﬁ';) + 0, and if, at the same time, each of the n transformations
2y =0, -, 2iy =0, Zi=1a;, 2ip:1=0,--", x, =0,

for i=1,2,---,m, can be expressed linearly in terms of transformations
of G. Thercfore, in particular, G s irreducible if, corresponding to each
pair of distinct integers i and j from 1 to n, an integer k can be found
such that bg.';.) + 0, and if, at the same time, G contains n — 1 infinitesimal
transformations

n
@) 0 .
Y, = z b, T, 5 (i=1,2,-,n—1)
x=1 %
such that
5(1) B(""l)
1 ’ e 1 7 ¢ ¢ .’ e 1
1 7 -
o1 g2 =1

1, e 7"'762 =+ 0.

5(1) (7‘ 1)
1’ @n’...,e"
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We can determine whether or not the group G, generated by in-
finitesimal transformations, s reducible, as soon as we know its invariants
general and special; namely, we have only to ascertain whether among
these invariants is a v-flat (0 < » <n). It is to be noted that the above
theorem does not require a knowledge of the invariants of the group.
To illustrate the application of this theorem, it may be applied to the
proper orthogonal group in » variables. As is well known, this group
bas no finite invariant flat (except the origin) when » > 2 and, thus, for

n > 2, is irreducible. The » = % n(n—1) infinitesimal transformations
of this group are
Xy =) 2 —m 2 (= 1,20m; i, i+2, ),

¢ i w7 0%;
Therefore, no coefficient in the collective infinitesimal transformations of
the group is zero throughout. Moreover, as shown pag. 362, when »n>2,
there are » linearly independent transformations S,, S,, ---, S,_, of the
group of the form
Ty = Q1y, Ty = Qay, *y Ty = 05

and, therefore, the transformations 7, (¢=1,2,--,n) can be expressed
linearly in terms of transformations of the group. Whence, by theorem 3,
the group is irreducible if » > 2.

Finally, let & be any group in n variables generated by » independent
infinitesimal transformations

0 .
X, =) 7%, + & () 5%; + o+ &) 5‘% (f=1,2,-.,7),

whose constants of composition are ¢, (5,5, k=1,2,--,7). The infini-
tesimal fransformations of the adjoined of & are

r r
0 .
E, =22 cz'jkezc‘a‘gj (t=1,2,-+,9);

and, if this group contains no invariant v-flat (v<<r), that is, if the
adjoined is irreducible, there is no subgroup of @& invariant to the ad-
joined. It is to be noted that the adjoined will contain » — 1 infinitesimal
transformations

@, 0 @, 0 w9 .
91 & 5, + 9, % Je, +:--+g, r (¢=1,2..,r—1),
for which gil) 9({" "
1, el , .. e
1 -
D o=

p
1, €%, ¢ =+ 0,
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if it contains an infinitesimal transformation

0 0
919 Ge, +9232'gg;+"'+9r3,-3%
in which no two of the ¢'s are equal. We have now, as a consequence
of theorem 3, the following theorem:
Theorem 4. Let & be any group in n variables generated by the r
independent infinitesimal transformations X, X,, - - -, X,, where

0
%,- = gn(x) 3_33: -+ gi2(x) 5%; +- 4+ Sm(,’b‘) a%‘ (i=1;2;'“rr)r

whose constants of composition are ¢ (1, j,k=1,2,-- 7). Then ®
contains no subgroup invariont fo the adjoined group, of, for each pair
of distinct integers j and k from 1 to r, am integer ¢ (1<S9<7r) can be
found such that ¢;;;, =0, and if, at the same time, each of the r trans-
[formations
=0, -,€_1=0, ¢i=¢, €i1;=0,---,6, =0,

for 1=1,2,--- 7, can be expressed linearly in terms of tramsformations
of the adjoined. The latter condition is satisfied if the adjoined comtains
r — 1 infinitesimal transformations

G 0 W 0 i 0 .
9 61~a—é;+92 eg’a'e;+"'+g§-)er'az (Z=1,2,"°,7"'—1)
such that
: o fr=1
1, el , e, € 1

92
17 e€”, €

+0;

e} (r-1)
1, &, &'
and, therefore, in particular, if the adjoined contains an infinitesimal trans-

formation
0 0 0
9161 Ge, + 926 Pey + -t g, Je,

for which the coefficients gy, gq, -+ 5 9, ore all distinct.




