The Classical Review

http://journals.cambridge.org/CAR
Additional services for The Classical Review:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

THE

Latin Nōrma again

E. R. Wharton

The Classical Review / Volume 6 / Issue 06 / June 1892, pp 258-259
DOI: 10.1017/S0009840X00185907, Published online: 27 October 2009
Link to this article: http://journals.cambridge.org/abstract S0009840X00185907

How to cite this article:

E. R. Wharton (1892). Latin Nōrma again. The Classical Review, 6, pp 258-259 doi:10.1017/ S0009840X00185907

Request Permissions : Click here
evidence of F is very weak (cf. Solmsen l.c.). The only passage that speaks strongly in support of it is B. 332 ă $\sigma \tau v \mu^{\prime} \underset{\sim}{\alpha}$ IIpıá$\mu o \iota \frac{{ }_{\epsilon}^{c}}{}(\lambda \omega \mu \epsilon v$, but, unless there is other evidence outside the verb, this single passage will hardly turn the scale in favour of F; Fick reads Fadún. It is otherwise with ${ }^{\check{\epsilon}} \lambda \omega \rho$, $\dot{\epsilon} \lambda \omega \rho \iota a$; here \mathcal{F} is either demanded or permitted by the metre, except in $\nu .208$ $\mu \dot{\eta} \boldsymbol{\pi}{ }^{\prime} \dot{s} \mu_{0}{ }^{\mathbf{E}} \boldsymbol{\epsilon} \lambda \omega \rho$, as Solmsen remarks, 'eine gewiss nicht alte partie.' But it is by no means certain that ${ }^{\circ} \lambda \omega \rho$ and ${ }_{\epsilon}^{\epsilon} \lambda \epsilon \hat{i} \nu$ are connected. In fact $\underset{\epsilon}{\boldsymbol{\epsilon}} \lambda \omega$ p has a distinct and specific meaning of its own in which è $\lambda \epsilon \hat{\nu}$ does not share. It is not for nothing that Greek commentators explained ${ }^{〔} \lambda \omega \rho$ by ${ }_{\epsilon}^{\epsilon} \lambda \kappa v \sigma \mu \alpha$; its associations lie with ${ }_{\epsilon} \lambda_{\kappa} \in \iota \nu$ rather than

 X. 336. The only passage where ${ }^{\prime \prime} \lambda \omega \rho$ shows any clear approximation in meaning to è $\lambda \in \hat{\imath} \nu$ is $\nu .208$, a passage suspicious for other reasons; $\bar{\epsilon} \lambda \omega \rho$ then cannot be urged as a strong proof that $\in \lambda \epsilon \hat{i} \boldsymbol{v}$ had once \mathcal{F}. $\dot{\nexists} \lambda \omega \rho$ has been well compared by L. Meyer Vgl. Gram. ${ }^{2} 156$ with Lat. uellere (also uoltur), $\sqrt{ }$ uel, of which ${ }_{\sim} \lambda_{\kappa}{ }^{\prime} \omega$ may be an extension. ${ }^{1}$
${ }^{1}$ This would be impossible if Fick Vgl. Wb. ${ }^{4}$ i. 552 be right in separating én $\lambda \kappa \omega$ altogether from Lith.

In the case of é $\lambda \in i v$, as we have seen, the evidence is against initial F, and points to i or s. $\in \lambda \epsilon \hat{\nu} \nu$ may, then, very well be compared with Ir. tellaim 'take away, steal,' $=$ *tosellaim, cf. do-sella, Leabhar na h-Uidhri $73^{\text {b }}$ 14, maduléll ni, si quid furatus est, Würzb. Gl. $22^{\text {b }}$ 7. sellaim may stand for ${ }^{*}$ sel-nami. ${ }^{2}$ This does not overturn Osthoff's comparison with saljan ; it rather goes to support it, for Ir. sellaim on the one hand can hardly be separated from saljan, and on the other approaches very closely in meaning to Gr. ѐ $\lambda \epsilon$ ढiv.

J. Strachan.

velkù and pritting it with Lat. sulcus. But the words agree so closely both in form and in meaning that they can hardly be separated. Brugmann Grundriss i. 147 (cf. also ii. 476) explains the initial of ${ }_{\epsilon} \boldsymbol{\lambda} \kappa \kappa \omega$ from the influence of $\dot{\epsilon} \lambda \kappa \kappa^{-}, \delta \lambda \kappa$ - cognate with sulcus. In that case the shorter $F_{\epsilon} \lambda$ - of $F_{\epsilon} \lambda c \omega \rho$ has remained unaffected. As to the breathing of ${ }^{\prime \prime} \lambda \omega \rho$ no stress can be laid upon it: it is evident that in later times the word survived only as an archaism, and it may very easily have been invested with the rough breathing through association with é $\overline{\epsilon \in 亡 \nu}$ or ${ }^{\prime \prime} \lambda \kappa \in \epsilon \nu$,
${ }^{2}$ Before -nāmi a weak form of the root might have been expected. This is probably to be found in tallaim 'take away, steal' which can hardly be separated from tellaim: tallaim might be explained from to-salnami $(s-a l=s a l$. $)$. By the side of sal- there appeared in certain parts of the verb sel-, and levelling set in in one direction or the other.

LATIN $N \bar{O} R M A$ AGAIN.

Some points in Mr. H. D. Darbishire's exhaustive criticism ($C . R$. vi. pp. 147-9) of iny derivation of nōrma call for remark.

It is unjust to say that Prof. Havet 'loosened the laws of Latin etymology' when he suggested that in Latin the combination $n+m$ in non-compound words becomes rm, and thas at once obtained the simplest and most obvious derivation possible for carmen and germen, as from canō and genō respectively. The rule has no exceptions, though from the nature of the case it has few instances; roots ending in n are rare (Whitney gives only twenty-four such in Sanskrit), and it is only in carmen and germen that such roots are in Latin combined with a termination beginning with m.There was no reason why anima should lose its i : why my ${ }^{*}$ nōnima did so I have already explained, it was in order to get a disyllable like the other technical terms with the same ending, fōrma and grōma.-Mr. Darbishire has quite misunderstood me if he
thinks that I supposed the hypothetical * canmen etc. to have ever actually existed for a moment: my contention is just the reverse, that the combination $n m$ in noncompounds was unpronounceable to a Roman, and that therefore he substituted $r m$ for it.

In Latin inscriptions down to about b.c. 100 (Corssen, pp. 8--9) C and G and, when A follows, \mathcal{C} and K are used indifferently. During that period the supernumerary letters G and K would no more be considered integral parts of the Latin alphabet than the Etruscan K, found occasionally in in-scriptions-(Deecke in Encyclopaedia Britannica) but not recognised in the Etruscan abecedarium which we possess, was considered an integral part of the Etruscan alphabet. After b.c. 100 the use of C for G, and of K for C, was confined to abbreviations, and the Latin alphabet consisted of twentyone letters (Cic. N.D. 2, 93), arranged doubtless as in our alphabet: G fell into the place which, in the Latin alphabet as compared with the Greek, was vacant before

H (Z not being admitted into the Latin alphabet till after Quintilian's time, ${ }^{1}$ and then, as a foreign leiter, relegated to the end), while K was put, as in Greek, between I and L .

My derivation of nörma has the advantage of involving no 'change of sense' at all: on my view nōna, at the time when nörma was formed, meant L as distinctly as sexta ${ }^{2}$ meant

[^0]F, and its derivative *nōnima naturally meant, if I may coin the corresponding English word, 'an L-er,' an instrument shaped like L, what our carpenters call an L-square. Mr. Darbishire's derivation of nörma from the root of $n \bar{o} s c \bar{o}$, as ' the line to be known,' requires a good deal of explaining: a right angle is not a line, and 'to be known ' means nothing

E. R. Wharton.

sense was clear from the context': by which he must mean 'from the example,' frangit.

GREEK Σ SY- FROM TY-

Finding side by side Dor. rú, Lesb. and Ion.-Att. $\sigma \dot{v}$-Boeot. $\tau \hat{\kappa} к о \nu$, Ion.-Att. $\sigma \hat{v} \kappa о \nu-$ Ion.-Att. тv́ $\beta \eta \eta$ (Lat. turba), Att. ovo $\beta \eta \nu \in$ vís $^{\prime}$ -Dor. $\tau \bar{\tau} \bar{p}^{\prime} \dot{\sigma} \delta \omega$ (Theocr. 1. 3), Ion.-Att. $\sigma \bar{u} \rho i(\zeta)$: or again Sk. vătulas 'mad,' Hom. $\vec{a}(F) \dot{\eta} \sigma v \lambda o s$ 'wicked'—Sk. catúras (Acc.) Lith. keturi, Hom. $\pi i \sigma v \rho \epsilon s$ Lesb. $\pi \dot{\epsilon} \sigma v \rho \epsilon s:$ we should naturally, but for a preconceived opinion, see here in σv - a dialectic representative of τv-. So, comparing sup- in vinvos with svep-in Ags. svefn, we should see in $\sigma \dot{v} \rho \mu a, \sigma \dot{v} \rho \omega$ a tur-, Ablaut of tver- in Sk. tvar- ' hasten,' O.H.G. dweran 'mix'; and in the termination -ovvo (e.g. $\gamma \eta \theta$ ócovos, $\left.\gamma \eta \theta_{0} \sigma v_{v}\right)_{\text {) a }}$ a tuno-, Ablaut of -tvono- in Sk. -tvanam (e.g. vasutvanam ' wealth ').

To these eight apparent instances of σv from to- I would make three additions: (1) $\mathfrak{d} \lambda o \sigma v ́ \delta \nu \eta, I l .20 .207$, Od. 4. 404, $=$ ${ }^{*} \dot{\alpha} \lambda o-\tau v \delta \delta-\nu \eta$ ' of the sea wave' (Middle Irish tond 'wave,' Lat. tund \bar{o} 'beat'), with the same stem as in $\dot{a} \lambda \hat{c}^{\prime} \theta \in v, I l .21 .335$. The word can hardly be $\dot{a} \lambda o \sigma-\dot{v} \delta \nu \eta$ ' of the sea water,' Fick, Wörterbuch, ${ }^{4}$ 1. 546, since this would presuppose a combination $\dot{\alpha} \lambda o ̀ s ~ v ̌ \delta \omega \rho$, which is not Homeric (it is only in the Odyssey that $v \delta \omega \rho$ is used of the sea, and then only in the combinations ă $\nu \epsilon \mu$ ós $\tau \epsilon \kappa \alpha \grave{\imath}$ $\dot{v} \delta \omega \rho, 3$. 300 , and $\dot{\alpha} \lambda \mu \nu \rho o ̀ v v \delta \omega \rho)$, and the only Homeric compound beginning with a genitive ("E $\lambda \lambda \eta{ }^{\prime}{ }^{2}$ móvros is scarcely a compound) is the isolated ovi δ evós-w ρa ' caring for no one,' Il. 8. 178. (2) $\delta a \sigma v v_{s}={ }^{*} \delta_{0} \tau$-vis as Lat. densus $={ }^{*}$ dnt-totos, Albanian dent 'make thick.' G. Meyer explains δ aovís as * $\delta n \tau \tau-\sigma v_{s}$: but there is no termination - $\sigma v v^{-}$. (3) $\sigma v \chi^{\text {vós }}$ 'long, numerous ' $={ }^{*} \tau v \chi^{v o ́ s}$ 'ordinary' (cf. тuх由́v), a Litotes for 'sufficient, considerable.'

But in the great majority of words τv-is as constant in Lesbian and Ionic-Attic as in

Doric ; and hence philologists have agreed to explain away the few cases in which it seems to become σv. The forms $\tau \hat{v} \kappa о \nu$ and $\tau \bar{v} p i \sigma \delta \omega$ indeed they ignore: the connexion of $v a ̂ t u l a s$ and $\dot{a} \eta{ }^{\prime} \sigma v \lambda_{o s,}$, reasonable as it is, they deny (Wackernagel, K. Z. 24. 609) without suggesting anything better. The $-\sigma$ - of $\pi i \sigma v \rho \epsilon s, \pi \dot{\epsilon} \sigma v \rho \epsilon s$ they would deduce from the $-\sigma \sigma$, representing $-t v-$, of $\pi \epsilon \sigma \sigma v \rho \epsilon \varsigma,{ }^{1}$ $\tau \epsilon \sigma \sigma a \rho \epsilon s$, without explaining why the latter never in Attic became * τ ' $\sigma a \rho \epsilon \mathrm{~s}$. The σ - of σv they hold is borrowed from the oblique cases ${ }^{2}$ (Brugmann, Grundriss, 2. 440), that of -avoo- from a supposed byform - σ évo- (or rather - σ gevo-) representing -tveno- (do. 2. 70 n .) : and so, I suppose, the σ - of $\sigma v \rho-$ $\beta \eta \nu \epsilon$ ís from a byform * $\sigma \epsilon \rho \beta$ - representing tverb-, and that of $\sigma v v_{0} \rho$ from a byform ${ }^{*} \sigma \in \rho-$ representing tver-. As to $\sigma v v^{\prime}$, it is difficult to see (1) why * τ c had its consonant transformed by the influence of $\sigma \epsilon$, $\sigma \epsilon ́ o$, oó instead of having it preserved by the influence of roí (locative of σv, Grundriss, 2. 447), which in Homer is nearly as common as all the other oblique forms put together (in $I l$. 1-3 I count 23 instances of $\sigma \dot{v}, 42$ of roí, 46 in all of $\sigma \epsilon^{\prime}$, $\sigma \in ́ o, ~ \sigma o i ́)$; or (2) why, if ' Analogy' works by any laws at all, $\sigma \epsilon \in, \& c .$, made * τv into $\sigma v ́$,
 ờtos into ${ }^{*} \gamma \omega$ * τ ós ${ }^{*}$ *oìtos. As to the other three instances, it is unfortunate that the supposed ${ }^{*} \gamma \eta \theta$ ó $\sigma \epsilon v o s,{ }^{*} \sigma \epsilon \epsilon^{\prime} \rho \eta \eta,{ }^{*} \sigma \epsilon i \rho \omega$ have died out and left no trace of their existence :

[^1]
[^0]: ${ }^{1}$ Quint. 12, 10, 27 jucundissimas ex Graecis literas non habemus, vocalem alteram, alteram consonantem.
 ${ }^{2}$ Quint. 12, 10, 29 illa (litera) quae est sexta nostrarum. Mr. Darbishire says that here 'the

[^1]: ${ }^{1}$ Aeolic (Hesychius), with the 'Aeolic' v for o, G. Meyer, Gr. Gr. ${ }^{2}$ 62. I would explain it as= ${ }^{*} \pi \in ́ \tau F o p \in s$, standing to ${ }^{*} \pi \in ́ \tau u p \in s$ ($\pi \in ́ \sigma v p \in s$) as Lith. ketveri to ketari.
 ${ }^{2}$ I.c. $t v$ - is represented by σ - in $\sigma \epsilon, \sigma^{\prime}$ o, σo^{\prime}, as apparently also in the obscure words $\sigma a \rho \gamma \alpha y \eta$, $\sigma \epsilon \hat{v} \tau \lambda o \nu, \sigma \eta \lambda i a, \sigma \dot{\eta} \mu \epsilon \rho \alpha \nu, \sigma i \lambda \phi \eta$, which have byforms (also Attic) $\tau a \rho \gamma \alpha{ }^{\alpha} \nu \eta, \& c .$, G. Meyer, 263.

