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Abstract: In this paper, we extend the rough set model on two different universes in intuitionistic
fuzzy approximation spaces to a single-valued neutrosophic environment. Firstly, based on
the (α, β, γ)-cut relation R̃{(α,β,γ)}, we propose a rough set model in generalized single-valued
neutrosophic approximation spaces. Then, some properties of the new rough set model are discussed.
Furthermore, we obtain two extended models of the new rough set model—the degree rough set
model and the variable precision rough set model—and study some of their properties. Finally,
we explore an example to illustrate the validity of the new rough set model.
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1. Introduction

Smarandache [1,2] introduced the concept of the neutrosophic set (NS), which consists of
three membership functions (truth membership function, indeterminacy membership function and
falsity membership function), where each function value is a real standard or nonstandard subset
of the nonstandard unit interval [0−, 1+]. The neutrosophic set generalizes the concepts of the
classical set, fuzzy set [3], interval-valued fuzzy set [4], intuitionistic fuzzy set [5] and interval-valued
intuitionistic fuzzy set [6]. The neutrosophic set model is an important tool for dealing with real
scientific and engineering applications because it can handle not only incomplete information, but also
the inconsistent information and indeterminate information that exist commonly in real situations.

For easily applying NSs in the real world, Smarandache [1] and Wang et al. [7] proposed
single-valued neutrosophic sets (SVNSs) by simplifying NSs. SVNSs can also be seen as an extension
of intuitionistic fuzzy sets [5], in which three membership functions are unrelated and their function
values belong to the unit closed interval. SVNSs has been a hot research issue. Ye [8,9] proposed
decision making based on correlation coefficients and weighted correlation coefficients of SVNSs
and illustrated the application of the proposed methods. Baušys et al. [10] applied SVNSs to
multi-criteria decision making and proposed a new extension of the crisp complex proportional
assessment (COPRAS) method named COPRAS-SVNS. Zavadskas et al. [11] applied SVNSs to the
weighted aggregated sum product assessment (WASPAS) method, named WASPAS-SVNS, and used
the new method to solve sustainable assessment of alternative sites for the construction of a waste
incineration plant. Zavadskas et al. [12] also applied WASPAS-SVNS to the selection of a lead-zinc
flotation circuit design. Zavadskas et al. [13] proposed a single-valued neutrosophic multi-attribute
market value assessment method and applied this method to the sustainable market valuation of
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Croydon University Hospital. Li et al. [14] applied the Heronian mean to the neutrosophic set,
proposed some Heronian mean operators and illustrated their application in multiple attribute
group decision making. Baušys and Juodagalvienė [15] demonstrated garage location selection for a
residential house. In [16], Ye proposed similarity measures between interval neutrosophic sets and
applied them to multi-criteria decision making problems under the interval neutrosophic environment.
Ye [17] proposed three vector similarity measures of simplified neutrosophic sets and applied them
to a multi-criteria decision making problem with simplified neutrosophic information. Majumdar
and Samanta [18] studied the distance, similarity and entropy of SVNSs from a theoretical aspect.
Peng et al. [19] developed a new outranking approach for multi-criteria decision making problems
in the context of a simplified neutrosophic environment. Liu and Wang [20] introduced an interval
neutrosophic prioritized ordered weighted aggregation operator w.r.t. interval neutrosophic numbers
and discussed its application in multiple attribute decision making. To deal with difficulties in steam
turbine fault diagnosis, Zhang et al. [21] investigated a single-valued neutrosophic multi-granulation
rough set over two universes. Şahin [22] proposed two kinds of interval neutrosophic cross-entropies
based on the extension of fuzzy cross-entropy and single-valued neutrosophic cross-entropy and
developed two multi-criteria decision making methods using the interval neutrosophic cross-entropy.
Ye [23] proposed similarity measures between SVNSs based on the tangent function and a multi-period
medical diagnosis method based on the similarity measure and the weighted aggregation of
multi-period information to solve multi-period medical diagnosis problems with single-valued
neutrosophic information. Yang et al. [24] proposed SVNRs and studied some kinds of kernels
and closures of SVNRs. Ye [25] presented a simplified neutrosophic harmonic averaging projection
measure and its multiple attribute decision making method with simplified neutrosophic information.
Stanujkic et al. [26] proposed a new extension of the multi-objective optimization (MULTIMOORA)
method adapted for usage with a neutrosophic set.

Rough set theory, initiated by Pawlak [27,28], is a mathematical tool for the study of intelligent
systems characterized by insufficient and incomplete information. The theory has been successfully
applied to many fields, such as machine learning, knowledge acquisition, decision analysis, etc.
To extend the application domain of rough set theory, more and more researchers have made some
efforts toward the study of rough set models based on two different universes [29–39].

In recent years, many researchers have paid attention to combining neutrosophic sets
with rough sets. Salama and Broumi [40] investigated the roughness of neutrosophic sets.
Broumi and Smarandache put forward rough neutrosophic sets [41,42], as well as interval neutrosophic
rough sets [43]. Yang et al. [44] proposed single-valued neutrosophic rough sets, which comprise a
hybrid model of single-valued neutrosophic sets and rough sets. Along this line, this paper attempts to
do some work regarding the fusion of single-valued neutrosophic sets and rough sets again. Concretely,
we will extend the rough set model in [29] to a single-valued neutrosophic environment. Furthermore,
we will apply the new model to a multi-attribute decision making problem.

The rest of this paper is organized as follows. In Section 2, we recall some basic notions related
to Pawlak rough sets, SVNSs and single-valued neutrosophic rough sets. In Section 3, we propose
a rough set model in generalized single-valued neutrosophic approximation spaces. Section 4 gives
two extended models and studies some related properties. Section 5 explores an example to illustrate
the new rough set model’s application in multi-attribute decision making. The last section summarizes
the conclusions.

2. Preliminaries

In this section, we recall some basic notions of Pawlak rough sets, SVNSs and single-valued
neutrosophic rough sets.
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2.1. Pawlak Rough Sets

Definition 1. ([27,28]) Let U be a nonempty finite universe and R be an equivalence relation in U. (U, R) is
called a Pawlak approximation space. ∀X ⊆ U, the lower and upper approximations of X, denoted by R(X)

and R(X), are defined as follows, respectively:

R(X) = {x ∈ U | [x]R ⊆ X},
R(X) = {x ∈ U | [x]R ∩ X 6= ∅},

where [x]R = {y ∈ U | (x, y) ∈ R}. R and R are called the lower and upper approximation operators,
respectively. The pair (R(X), R(X)) is called a Pawlak rough set.

Furthermore, the positive region, boundary region and negative region of the subset X are
defined by

pos(X) = R(X), neg(X) = U − R(X), bn(X) = R(X)− R(X).

2.2. Single-Valued Neutrosophic Sets and Single-Valued Neutrosophic Rough Sets

Definition 2. ([7]) Let U be a space of points (objects), with a generic element in U denoted by x. A SVNS
Ã in U is characterized by three membership functions, a truth membership function TÃ, an indeterminacy
membership function IÃ and a falsity membership function FÃ, where ∀x ∈ U, TÃ(x), IÃ(x), FÃ(x) ∈ [0, 1].

The SVNS Ã can be denoted by Ã= {〈x, TÃ(x), IÃ(x), FÃ(x)〉 | x ∈ U} or Ã= (TÃ, IÃ, FÃ).
∀x ∈ U, Ã(x) = (TÃ(x), IÃ(x), FÃ(x)), and (TÃ(x), IÃ(x), FÃ(x)) is called a single-valued
neutrosophic number.

Definition 3. ([44]) An SVNS R̃ in U ×U is called a single-valued neutrosophic relation (SVNR) in U,
denoted by R̃= {〈(x, y), TR̃(x, y), IR̃(x, y), FR̃(x, y)〉 | (x, y) ∈ U × U}, where TR̃ : U ×U −→ [0, 1],
IR̃ : U ×U −→ [0, 1] and FR̃ : U × U −→ [0, 1] denote the truth membership function,
indeterminacy membership function and falsity membership function of R̃, respectively.

Definition 4. ([45]) Let R̃, S̃ be two SVNRs in U. If ∀x, y ∈ U, TR̃(x, y) ≤ TS̃(x, y), IR̃(x, y) ≥ IS̃(x, y)
and FR̃(x, y) ≥ FS̃(x, y), then we say R̃ is contained in S̃, denoted by R̃⊆̃S̃. In other words, we say S̃ contains
R̃, denoted by S̃⊇̃R̃.

Definition 5. ([24]) Let R̃ be an SVNR in U. If ∀x ∈ U, TR̃(x, x) = 1 and
IR̃(x, x) = FR̃(x, x) = 0, then R̃ is called a reflexive SVNR. If ∀x, y ∈ U, TR̃(x, y) = TR̃(y, x),
IR̃(x, y) = IR̃(y, x) and FR̃(x, y) = FR̃(y, x), then R̃ is called a symmetric SVNR.
If ∀x ∈ U,

∨
y∈U TR̃(x, y) = 1 and

∧
y∈U IR̃(x, y) =

∧
y∈U FR̃(x, y) = 0, then R̃ is called a serial

SVNR. If ∀x, y, z ∈ U,
∨

y∈U(TR̃(x, y) ∧ TR̃(y, z)) ≤ TR̃(x, z),
∧

y∈U(IR̃(x, y) ∨ IR̃(y, z)) ≥ IR̃(x, z) and∧
y∈U(FR̃(x, y) ∨ FR̃(y, z)) ≥ FR̃(x, z), then R̃ is called a transitive SVNR, where “ ∨ ” and “ ∧ ” denote

maximum and minimum, respectively.

Definition 6. ([24]) Let R̃ be an SVNR in U; the tuple (U, R̃) is called a single-valued neutrosophic
approximation space. ∀Ã ∈ SVNS(U), the lower and upper approximations of Ã w.r.t. (U, R̃), denoted by
R̃(Ã) and R̃(Ã), are two SVNSs whose membership functions are defined as: ∀x ∈ U,
TR̃(Ã)(x) =

∧
y∈U(FR̃(x, y) ∨ TÃ(y)),

IR̃(Ã)(x) =
∨

y∈U((1− IR̃(x, y)) ∧ IÃ(y)),
FR̃(Ã)(x) =

∨
y∈U(TR̃(x, y) ∧ FÃ(y));

T
R̃(Ã)

(x) =
∨

y∈U(TR̃(x, y) ∧ TÃ(y)),

I
R̃(Ã)

(x) =
∧

y∈U(IR̃(x, y) ∨ IÃ(y)),

F
R̃(Ã)

(x) =
∧

y∈U(FR̃(x, y) ∨ FÃ(y)).
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The pair (R̃(Ã), R̃(Ã)) is called the single-valued neutrosophic rough set of Ã w.r.t. (U, R̃).
R̃ and R̃ are referred to as the single-valued neutrosophic lower and upper approximation
operators, respectively.

3. Rough Set Model in Generalized Single-Valued Neutrosophic Approximation Spaces

Guo et al. [29] studied the rough set model on two different universes in intuitionistic fuzzy
approximation space. In this section, we will extend the rough set model in [29] to a single-valued
neutrosophic environment.

Yang et al. [24] proposed the notions of single-valued neutrosophic relations from U to V
and generalized single-valued neutrosophic approximation spaces as follows.

Definition 7. ([24]) Let U and V be two nonempty finite universes. The relation
R̃ in U × V is called a single-valued neutrosophic relation from U to V, denoted by
R̃ = {〈(x, y), TR̃(x, y), IR̃(x, y), FR̃(x, y)〉|(x, y) ∈ U ×V}, where TR̃ : U ×V −→ [0, 1],
IR̃ : U ×V −→ [0, 1] and FR̃ : U × V −→ [0, 1] denote the truth membership function, indeterminacy
membership function and falsity membership function of R̃, respectively.

The triple (U, V, R̃) is called a generalized single-valued neutrosophic approximation space on
two different universes.

Remark 1. If U = V, then we call R̃ a single-valued neutrosophic relation in U.

Definition 8. Let R̃ be an SVNR from U to V. If ∀x ∈ U, y ∈ V, TR̃(x, y) = TR̃(y, x), IR̃(x, y) = IR̃(y, x)
and FR̃(x, y) = FR̃(y, x), then R̃ is called a symmetric SVNR. If ∀x ∈ U,

∨
y∈V TR̃(x, y) = 1 and∧

y∈V IR̃(x, y) =
∧

y∈V FR̃(x, y) = 0, then R̃ is called a serial SVNR.

The union, intersection and containmentof two SVNRs from U to V are defined as follows,
respectively.

Definition 9. Let R, S be two SVNRs from U to V.

(1) The union R∪̃S of R and S is defined by R∪̃S = {〈(x, y), max{TR(x, y), TS(x, y)},
min{IR(x, y), IS(x, y)}, min{FR(x, y), FS(x, y)}〉|(x, y) ∈ U ×V}.

(2) The intersection R∩̃S of R and S is defined by R∩̃S = {〈(x, y), min{TR(x, y), TS(x, y)},
max{IR(x, y), IS(x, y)}, max{FR(x, y), FS(x, y)}〉|(x, y) ∈ U ×V}.

(3) If ∀(x, y) ∈ U ×V, TR(x, y) ≤ TS(x, y), IR(x, y) ≥ IS(x, y) and FR(x, y) ≥ FS(x, y), then we say R
is contained in S, denoted by R⊆̃S.

Next, we give the notion of (α, β, γ)-cut relation R̃{(α,β,γ)} of a single-valued neutrosophic relation
R̃ from U to V.

Definition 10. Let U, V be two nonempty finite universes and R̃ be a single-valued neutrosophic relation from
U to V. For any α, β, γ ∈ (0, 1], we define the (α, β, γ)-cut relation R̃{(α,β,γ)} of R̃ as follows:

R̃{(α,β,γ)} = {(x, y) ∈ U ×V|TR̃(x, y) ≥ α, IR̃(x, y) ≤ β, FR̃(x, y) ≤ γ}.

According to Definition 10, if (x, y) ∈ R̃{(α,β,γ)}, it indicates that the truth membership degree
of the relationships of x and y w.r.t. SVNR R̃ is not less than α, and the indeterminacy membership
degree and falsity membership degree of the relationships of x and y w.r.t. SVNR R̃ are not more than
β and γ, respectively.
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Definition 11. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. R̃{(α,β,γ)} is
the (α, β, γ)-cut relation defined in Definition 8. For any x ∈ U, y ∈ V, we define

R̃{(α,β,γ)}(x) = {y ∈ V|TR̃(x, y) ≥ α, IR̃(x, y) ≤ β, FR̃(x, y) ≤ γ},
R̃−1
{(α,β,γ)}(y) = {x ∈ U|TR̃(x, y) ≥ α, IR̃(x, y) ≤ β, FR̃(x, y) ≤ γ}.

The following Definition 12 gives a rough set model on two universes based on the (α, β, γ)-cut
relation R̃{(α,β,γ)} induced by a single-valued neutrosophic relation R̃ from U to V.

Definition 12. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space.
Suppose R̃{(α,β,γ)} is the (α, β, γ)-cut relation given in Definition 10 from U to V. For any set Y ⊆ V,
the lower approximation and upper approximation of Y on two universes w.r.t. (U, V, R̃) and (α, β, γ) are
defined by

R̃{(α,β,γ)}(Y) = {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y and R̃{(α,β,γ)}(x) 6= ∅},

R̃{(α,β,γ)}(Y) = {x ∈ U|R̃{(α,β,γ)}(x) ∩Y 6= ∅ or R̃{(α,β,γ)}(x) = ∅}.

The pair (R̃{(α,β,γ)}(Y), R̃{(α,β,γ)}(Y)) is called the rough set of Y w.r.t. (U, V, R̃) and (α, β, γ).

If R̃{(α,β,γ)}(Y) = R̃{(α,β,γ)}(Y), then Y is called the definable set w.r.t. (U, V, R̃) and (α, β, γ).

If R̃{(α,β,γ)}(Y) 6= R̃{(α,β,γ)}(Y), then Y is called the undefinable set w.r.t. (U, V, R̃) and (α, β, γ).

Next, we define the positive region posR̃{(α,β,γ)}
(Y), negative region negR̃{(α,β,γ)}

(Y) and boundary

region bnR̃{(α,β,γ)}
(Y) of Y, respectively:

posR̃{(α,β,γ)}
(Y) = R̃{(α,β,γ)}(Y),

negR̃{(α,β,γ)}
(Y) = U − R̃{(α,β,γ)}(Y),

bnR̃{(α,β,γ)}
(Y) = R̃{(α,β,γ)}(Y)− R̃{(α,β,γ)}(Y).

Remark 2. If R̃ is a series single-valued neutrosophic relation from U to V, i.e., ∀x ∈ U,
∨

y∈U TR̃(x, y) = 1
and

∧
y∈U IR̃(x, y) =

∧
y∈U FR̃(x, y) = 0, then there exists y ∈ V such that TR̃(x, y) = 1 and

IR̃(x, y) = 0, FR̃(x, y) = 0 for all x ∈ U since V is finite. Therefore, for any α, β, γ ∈ (0, 1], we have
R̃{(α,β,γ)}(x) 6= ∅. Therefore, we have

R̃{(α,β,γ)}(Y) = {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y and R̃{(α,β,γ)}(x) 6= ∅},
= {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y},

R̃{(α,β,γ)}(Y) = {x ∈ U|R̃{(α,β,γ)}(x) ∩Y 6= ∅ or R̃{(α,β,γ)}(x) = ∅}.
= {x ∈ U|R̃{(α,β,γ)}(x) ∩Y 6= ∅}.

In the following, we discuss some properties of the lower approximation and the upper
approximation given in Definition 12.

Theorem 1. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. Suppose R̃{(α,β,γ)}
is the (α, β, γ)-cut relation given in Definition 10 from U to V. For any Y, Y1, Y2 ⊆ V, the following
properties hold:

(1) R̃{(α,β,γ)}(Y) ⊆ R̃{(α,β,γ)}(Y);

(2) R̃{(α,β,γ)}(∅) = ∅, R̃{(α,β,γ)}(V) = U;

(3) R̃{(α,β,γ)}(Y1 ∩Y2) = R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2),
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R̃{(α,β,γ)}(Y1 ∪Y2) = R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2);

(4) R̃{(α,β,γ)}(Y1 ∪Y2) ⊇ R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2),

R̃{(α,β,γ)}(Y1 ∩Y2) ⊆ R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2);

(5) If Y1 ⊆ Y2, then R̃{(α,β,γ)}(Y1) ⊆ R̃{(α,β,γ)}(Y2) and R̃{(α,β,γ)}(Y1) ⊆ R̃{(α,β,γ)}(Y2);

(6) R̃{(α,β,γ)}(Y) =∼ R̃{(α,β,γ)}(∼ Y), R̃{(α,β,γ)}(Y) =∼ R̃{(α,β,γ)}(∼ Y).

Proof. We only prove (3) and (6).
(3) R̃{(α,β,γ)}(Y1 ∩Y2)

= {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y1 ∩Y2 and R̃{(α,β,γ)}(x) 6= ∅}
= {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y1 and R̃{(α,β,γ)}(x) ⊆ Y2 and R̃{(α,β,γ)}(x) 6= ∅}
= {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y1 and R̃{(α,β,γ)}(x) 6= ∅} ∩ {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y2 and

R̃{(α,β,γ)}(x) 6= ∅}
= R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2);

R̃{(α,β,γ)}(Y1 ∪Y2)

= {x ∈ U|R̃{(α,β,γ)}(x) ∩ (Y1 ∪Y2) 6= ∅ or R̃{(α,β,γ)}(x) = ∅}
= {x ∈ U|(R̃{(α,β,γ)}(x) ∩Y1) ∪ (R̃{(α,β,γ)}(x) ∩Y2) 6= ∅ or R̃{(α,β,γ)}(x) = ∅}
= {x ∈ U|R̃{(α,β,γ)}(x) ∩Y1 6= ∅ or R̃{(α,β,γ)}(x) = ∅} ∪ {x ∈ U|R̃{(α,β,γ)}(x) ∩Y2 6= ∅

or R̃{(α,β,γ)}(x) = ∅}
= R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2).

(6) ∼ R̃{(α,β,γ)}(∼ Y)
=∼ {x ∈ U|R̃{(α,β,γ)}(x) ∩ (∼ Y) 6= ∅ or R̃{(α,β,γ)}(x) = ∅}
= {x ∈ U|R̃{(α,β,γ)}(x) ∩ (∼ Y) = ∅ and R̃{(α,β,γ)}(x) 6= ∅}
= {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y and R̃{(α,β,γ)}(x) 6= ∅}
= R̃{(α,β,γ)}(Y);

∼ R̃{(α, β, γ)}(∼ Y)

=∼ {x ∈ U|R̃{(α,β,γ)}(x) ⊆ (∼ Y) and R̃{(α,β,γ)}(x) 6= ∅}
=∼ {x ∈ U|R̃{(α,β,γ)}(x) ∩Y = ∅ and x ∈ U|R̃{(α,β,γ)}(x) 6= ∅}
= {x ∈ U|R̃{(α,β,γ)}(x) ∩Y 6= ∅ or R̃{(α,β,γ)}(x) = ∅}
= R̃{(α,β,γ)(Y).

Remark 3. In general,

(1) R̃{(α,β,γ)}(∅) 6= ∅, R̃{(α,β,γ)}(V) 6= U;

(2) R̃{(α,β,γ)}(Y1 ∪ Y2) 6= R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2) and R̃{(α,β,γ)}(Y1 ∩ Y2) 6= R̃{(α,β,γ)}(Y1) ∩

R̃{(α,β,γ)}(Y2),

as shown in the following example.

Example 1. Let U = {x1, x2, x3}, V = {y1, y2, y3, y4}. Y1 = {y1} and Y2 = {y3}. The single-valued
neutrosophic relation R̃ from U to V is given in Table 1.
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Table 1. The single-valued neutrosophic relation R̃ from U to V.

R̃ y1 y2 y3 y4

x1 (0.7,0,1,0.2) (0.8,0.3,0.2) (0.7,0.2,0.1) (1,0,0)
x2 (1,0.3,0.1) (0,0,1) (0.7,0.3,0.2) (0,0,1)
x3 (0.2,0.1,0.8) (0.1,0.2,0.7) (0.8,0.2,0.1) (0,0.3,1)

(1) Take α = 0.9, β = 0.3 and γ = 0.2; we have

R̃{(0.9,0.3,0.2)}(x1) = {y4}, R̃{(0.9,0.3,0.2)}(x2) = {y1}, R̃{(0.9,0.3,0.2)}(x3) = {y3}.

By Definition 12, we have R̃{(α,β,γ)}(∅) = {x3} 6= ∅ and R̃{(α,β,γ)}(V) = {x1, x2} 6= U.

(2) Take α = 0.5, β = 0.3 and γ = 0.2; we have

R̃{(0.5,0.3,0.2)}(x1) = {y1, y2, y3, y4}, R̃{(0.5,0.3,0.2)}(x2) = {y1, y3}, R̃{(0.5,0.3,0.2)}(x3) = ∅.

By Definition 12, we have

lR̃{(α,β,γ)}(Y1) = ∅, R̃{(α,β,γ)}(Y2) = {x3}, R̃{(α,β,γ)}(Y1 ∪Y2) = {x2, x3}.

R̃{(α,β,γ)}(Y1) = {x1, x2}, R̃{(α,β,γ)}(Y2) = {x1, x2, x3}, R̃{(α,β,γ)}(Y1 ∩Y2) = ∅.

Obviously, R̃{(α,β,γ)}(Y1 ∪ Y2) 6= R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2) and

R̃{(α,β,γ)}(Y1 ∩Y2) 6= R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2).

Theorem 2. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. R̃{(α1,β1,γ1)}
and R̃{(α2,β2,γ2)} are two relations defined in Definition 10. If R̃ is a series, α1 ≤ α2, β1 ≥ β2 and γ1 ≥ γ2,
then

(1) R̃{(α1,β1,γ1)}(Y) ⊆ R̃{(α2,β2,γ2)}(Y);

(2) R̃{(α1,β1,γ1)}(Y) ⊆ R̃{(α2,β2,γ2)}(Y).

Proof. (1) Since α1 ≤ α2, β1 ≥ β2 and γ1 ≥ γ2, for any x ∈ U, we have

R̃{(α1,β1,γ1)}(x) = {y ∈ V|TR̃(x, y) ≥ α1, IR̃(x, y) ≤ β1, FR̃(x, y) ≤ γ1}
⊇ {y ∈ V|TR̃(x, y) ≥ α2, IR̃(x, y) ≤ β2, FR̃(x, y) ≤ γ2}
= R̃{(α2,β2,γ2)}(x).

By Definition 12, for any x ∈ R̃{(α1,β1,γ1)}(Y), we have R̃{(α1,β1,γ1)}(x) ⊆ Y.

Thus R̃{(α2,β2,γ2)}(x) ⊆ R̃{(α1,β1,γ1)}(x) ⊆ Y, which implies that x ∈ R̃{(α2,β2,γ2)}(Y). Hence,

R̃{(α1,β1,γ1)}(Y) ⊆ R̃{(α2,β2,γ2)}(Y).

(2) By (1), for any x ∈ U, we have R̃{(α1,β1,γ1)}(x) ⊇ R̃{(α2,β2,γ2)}(x).
So

R̃{(α1,β1,γ1)}(x) ∩Y ⊇ R̃{(α2,β2,γ2)}(x) ∩Y f or any x ∈ U.

By Definition 12, for any x ∈ R̃{(α2,β2,γ2)}(Y), we have R̃{(α2,β2,γ2)}(x) ∩Y 6= ∅.

Thus, R̃{(α1,β1,γ1)}(x) ∩ Y 6= ∅, which implies that x ∈ R̃{(α1,β1,γ1)}(Y). Hence,

R̃{(α1,β1,γ1)}(Y) ⊆ R̃{(α2,β2,γ2)}(Y).

Theorem 3. Let R̃, S̃ be two series single-valued neutrosophic relations from U to V. If R̃⊆̃S̃, then ∀Y ⊆ V,
we have:

(1) S̃{(α,β,γ)}(Y) ⊆ R̃{(α,β,γ)}(Y);
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(2) R̃{(α,β,γ)}(Y) ⊆ S̃{(α,β,γ)}(Y).

Proof. (1) Since R̃⊆̃S̃, we have

TS̃(x, y) ≥ TR̃(x, y), IS̃(x, y) ≤ IR̃(x, y) and FS̃(x, y) ≤ FR̃(x, y) f or any (x, y) ∈ U ×V.
Then, S̃{(α,β,γ)}(x) = {y ∈ V|TS̃(x, y) ≥ α, IS̃(x, y) ≤ β, FS̃(x, y) ≤ γ}
⊇ {y ∈ V|TR̃(x, y) ≥ α, IR̃(x, y) ≤ β, FR̃(x, y) ≤ γ}
= R̃{(α,β,γ)}(x).

By Definition 12, for any x ∈ S̃{(α,β,γ)}(Y), we have S̃{(α,β,γ)}(x) ⊆ Y.

Thus, R̃{(α,β,γ)}(x) ⊆ S̃{(α,β,γ)}(x) ⊆ Y, which implies that x ∈ R̃{(α,β,γ)}(Y). Hence,

S̃{(α,β,γ)}(Y) ⊆ R̃{(α,β,γ)}(Y).

(2) By (1), for any x ∈ U, we have S̃{(α,β,γ)}(x) ⊇ R̃{(α,β,γ)}(x). Thus,

R̃{(α,β,γ)}(x) ∩Y ⊆ S̃{(α,β,γ)}(x) ∩Y for any x ∈ U. By Definition 12, for any x ∈ R̃{(α,β,γ)}(Y), we

have R̃{(α,β,γ)}(x) ∩Y 6= ∅. Thus, S̃{(α,β,γ)}(x) ∩Y 6= ∅, which implies that x ∈ S̃{(α,β,γ)}(Y).

Hence, R̃{(α,β,γ)}(Y) ⊆ S̃{(α,β,γ)}(Y).

Lemma 1. Let R̃, S̃ be two single-valued neutrosophic relations from U to V. For any x ∈ U and α, β, γ ∈ (0, 1],
we have:

(1) (R̃∪̃S̃){(α,β,γ)}(x) ⊇ R̃{(α,β,γ)}(x) ∪ S̃{(α,β,γ)}(x);

(2) (R̃∩̃S̃){(α,β,γ)}(x) = R̃{(α,β,γ)}(x) ∩ S̃{(α,β,γ)}(x).

Proof. (1) For any x ∈ U, we have:

(R̃∪̃S̃){(α,β,γ)}(x) = {y ∈ V|max(TR̃(x, y), TS̃(x, y)) ≥ α, min(IR̃(x, y), IS̃(x, y)) ≤ β,

min(FR̃(x, y), FS̃(x, y)) ≤ γ}

⊇ {y ∈ V|TR̃(x, y) ≥ α, IR̃(x, y) ≤ β, FR̃(x, y) ≤ γ}

∪{y ∈ V|TS̃(x, y) ≥ α, IS̃(x, y) ≤ β, FS̃(x, y) ≤ γ}

= R̃{(α,β,γ)}(x) ∪ S̃{(α,β,γ)}(x)
(2) For any x ∈ U, we have:

(R̃∩̃S̃){(α,β,γ)}(x) = {y ∈ V|min(TR̃(x, y), TS̃(x, y)) ≥ α, max(IR̃(x, y), IS̃(x, y)) ≤ β,

max(FR̃(x, y), FS̃(x, y)) ≤ γ}

= {y ∈ V|TR̃(x, y) ≥ α, IR̃(x, y) ≤ β, FR̃(x, y) ≤ γ}

∩{y ∈ V|TS̃(x, y) ≥ α, IS̃(x, y) ≤ β, FS̃(x, y) ≤ γ}

= R̃{(α,β,γ)}(x) ∩ S̃{(α,β,γ)}(x)

Theorem 4. Let R̃, S̃ be two series single-valued neutrosophic relations from U to V. For any Y ⊆ V
and α, β, γ ∈ (0, 1], we have:

(1) (R̃∪̃S̃){(α,β,γ)}(Y) ⊆ R̃{(α,β,γ)}(Y) ∩ S̃{(α,β,γ)}(Y) ⊆ R̃{(α,β,γ)}(Y) ∪ S̃{(α,β,γ)}(Y);

(2) (R̃∪̃S̃){(α,β,γ)}(Y) ⊇ R̃{(α,β,γ)}(Y) ∪ S̃{(α,β,γ)}(Y).

Proof. (1) By Lemma 1 (1), we have

(R̃∪̃S̃){(α,β,γ)}(Y) = {x ∈ U|(R̃∪̃S̃){(α,β,γ)}(x) ⊆ Y}
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⊆ {x ∈ U|R̃{(α,β,γ)}(x) ∪ S̃{(α,β,γ)}(x) ⊆ Y}

= {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y} ∩ {x ∈ U|S̃{(α,β,γ)}(x) ⊆ Y}

= R̃{(α,β,γ)}(Y) ∩ S̃{(α,β,γ)}(Y).
So

(R̃∪̃S̃){(α,β,γ)}(Y) ⊆ R̃{(α,β,γ)}(Y) ∩ S̃{(α,β,γ)}(Y) ⊆ R̃{(α,β,γ)}(Y) ∪ S̃{(α,β,γ)}(Y).

(2) By Lemma 1 (1), we have

(R̃∪̃S̃){(α,β,γ)}(Y) = {x ∈ U|(R̃∪̃S̃){(α,β,γ)}(x) ∩Y 6= ∅}

⊇ {x ∈ U|(R̃{(α,β,γ)}(x) ∪ S̃{(α,β,γ)}(x)) ∩Y 6= ∅}

= {x ∈ U|R̃{(α,β,γ)}(x) ∩Y 6= ∅} ∪ {x ∈ U|S̃{(α,β,γ)}(x) ∩Y 6= ∅}

= R̃{(α,β,γ)}(Y) ∪ S̃{(α,β,γ)}(Y).

Theorem 5. Let R̃, S̃ be two series single-valued neutrosophic relations from U to V. For any Y ⊆ V
and α, β, γ ∈ (0, 1], we have:

(1) (R̃∩̃S̃){(α,β,γ)}(Y) ⊇ R̃{(α,β,γ)}(Y) ∪ S̃{(α,β,γ)}(Y) ⊇ R̃{(α,β,γ)}(Y) ∩ S̃{(α,β,γ)}(Y);

(2) (R̃∩̃S̃){(α,β,γ)}(Y) ⊆ R̃{(α,β,γ)}(Y) ∩ S̃{(α,β,γ)}(Y).

Proof. (1) By Lemma 1 (2), we have

(R̃∩̃S̃){(α,β,γ)}(Y) = {x ∈ U|(R̃∩̃S̃){(α,β,γ)}(x) ⊆ Y}

= {x ∈ U|(R̃{(α,β,γ)}(x) ∩ S̃{(α,β,γ)}(x)) ⊆ Y}

⊇ {x ∈ U|(R̃{(α,β,γ)}(x) ⊆ Y} ∪ {x ∈ U|(S̃{(α,β,γ)}(x) ⊆ Y}

= R̃{(α,β,γ)}(Y) ∪ S̃{(α,β,γ)}(Y).
Therefore,

(R̃∩̃S̃){(α,β,γ)}(Y) ⊇ R̃{(α,β,γ)}(Y) ∪ S̃{(α,β,γ)}(Y) ⊇ R̃{(α,β,γ)}(Y) ∩ S̃{(α,β,γ)}(Y).

(2) By Lemma 1 (2), we have

(R̃∩̃S̃){(α,β,γ)}(Y) = {x ∈ U|(R̃∩̃S̃){(α,β,γ)}(x) ∩Y 6= ∅}

= {x ∈ U|(R̃{(α,β,γ)} ∩ S̃{(α,β,γ)})(x) ∩Y 6= ∅}

⊆ {x ∈ U|R̃{(α,β,γ)}(x) ∩Y 6= ∅} ∩ {x ∈ U|S̃{(α,β,γ)}(x) ∩Y 6= ∅}

= R̃{(α,β,γ)}(Y) ∩ S̃{(α,β,γ)}(Y).

Next, we define the inverse lower approximation and upper approximation on two universes
w.r.t. (U, V, R̃) and (α, β, γ) as follows:

Definition 13. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. For any
α, β, γ ∈ (0, 1], X ⊆ U, the inverse lower approximation and upper approximation of X on two universes w.r.t.
(U, V, R̃) and (α, β, γ) are defined as:

R̃−1
{(α,β,γ)}(X) = {y ∈ V|R̃−1

{(α,β,γ)}(y) ⊆ X and R̃−1
{(α,β,γ)}(y) 6= ∅},

R̃−1
{(α,β,γ)}(X) = {y ∈ V|R̃−1

{(α,β,γ)}(y) ∩ X 6= ∅ or R̃−1
{(α,β,γ)}(y) = ∅}.
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The pair (R̃−1
{(α,β,γ)}(X), R̃−1

{(α,β,γ)}(X)) is called the inverse rough set of X w.r.t.

(U, V, R̃) and (α, β, γ).

Theorem 6. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. R̃{(α,β,γ)} is
the (α, β, γ)-cut relation given in Definition 10 from U to V, where α, β, γ ∈ (0, 1]. For any X, X1, X2 ⊆ U,
we have:

(1) R̃−1
{(α,β,γ)}(X) ⊆ R̃−1

{(α,β,γ)}(X);

(2) R̃−1
{(α,β,γ)}(∅) = ∅, R̃−1

{(α,β,γ)}(U) = V;

(3) R̃−1
{(α,β,γ)}(X1 ∩ X2) = R̃−1

{(α,β,γ)}(X1) ∩ R̃−1
{(α,β,γ)}(X2),

R̃−1
{(α,β,γ)}(X1 ∪ X2) = R̃−1

{(α,β,γ)}(X1) ∪ R̃−1
{(α,β,γ)}(X2);

(4) R̃−1
{(α,β,γ)}(X1 ∪ X2) ⊇ R̃−1

{(α,β,γ)}(X1) ∪ R̃−1
{(α,β,γ)}(X2),

R̃−1
{(α,β,γ)}(X1 ∩ X2) ⊆ R̃−1

{(α,β,γ)}(X1) ∩ R̃−1
{(α,β,γ)}(X2);

(5) If X1 ⊆ X2, then R̃−1
{(α,β,γ)}(X1) ⊆ R̃−1

{(α,β,γ)}(X2) and R̃−1
{(α,β,γ)}(X1) ⊆ R̃−1

{(α,β,γ)}(X2);

(6) R̃−1
{(α,β,γ)}(X) =∼ R̃−1

{(α,β,γ)}(∼ X), R̃−1
{(α,β,γ)}(X) =∼ R̃−1

{(α,β,γ)}(∼ X).

Proof. The proof is similar to that of Theorem 1.

Definition 14. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. R̃{(α,β,γ)} is
a (α, β, γ)-cut relation defined in Definition 10. For any Y ⊆ V, the approximate precision ρR̃{(α,β,γ)}

(Y) of Y

w.r.t. R̃{(α,β,γ)} is defined as follows:

ρR̃{(α,β,γ)}
(Y) =

|R̃{(α,β,γ)}(Y)|

|R̃{(α,β,γ)}(Y)|
,

where |Y| represents the cardinality of the set Y.

Let µR̃{(α,β,γ)}
(Y) = 1− ρR̃{(α,β,γ)}

(Y), and µR̃{(α,β,γ)}
(Y) is called the rough degree of with regard to

R̃{(α,β,γ)}. It is obviously that 0 ≤ ρR̃{(α,β,γ)}
(Y) ≤ 1 and 0 ≤ µR̃{(α,β,γ)}

(Y) ≤ 1.

The following Theorem 7 discusses the properties of approximation precision and rough degree.

Theorem 7. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. R̃{(α,β,γ)} is
a (α, β, γ)-cut relation defined in Definition 10. For any Y1, Y2 ⊆ V(Y1 6= ∅, Y2 6= ∅), then the rough degree
and the approximate precision of the set Y1, Y2, Y1 ∪Y2, and Y1 ∩Y2 satisfy the following properties:

(1) µR̃{(α,β,γ)}
(Y1 ∪ Y2)|R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2)| ≤ µR̃{(α,β,γ)}

(Y1)|R̃{(α,β,γ)}(Y1)| +

µR̃{(α,β,γ)}
(Y2)|R̃{(α,β,γ)}(Y2)| − µR̃{(α,β,γ)}

(Y1 ∩Y2)|R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)|;

(2) ρR̃{(α,β,γ)}
(Y1 ∪ Y2)|R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2)| ≥ ρR̃{(α,β,γ)}

(Y1)|R̃{(α,β,γ)}(Y1)| +

ρR̃{(α,β,γ)}
(Y2)|R̃{(α,β,γ)}(Y2)| − ρR̃{(α,β,γ)}

(A ∩Y2)|R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)|.

Proof. According to the definition of the rough degree, we have



Symmetry 2017, 9, 119 11 of 19

µR̃{(α,β,γ)}
(Y1 ∪Y2) = 1−

|R̃{(α,β,γ)}(Y1∪Y2)|

|R̃{(α,β,γ)}(Y1∪Y2)|

= 1−
|R̃{(α,β,γ)}(Y1∪Y2)|

|R̃{(α,β,γ)}(Y1)∪R̃{(α,β,γ)}(Y2)|

≤ 1−
|R̃{(α,β,γ)}(Y1)∪R̃{(α,β,γ)}(Y1)|

|R̃{(α,β,γ)}(Y1)∪R̃{(α,β,γ)}(Y2)|
.

Then, we have

µR̃{(α,β,γ)}
(Y1 ∪Y2)|R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2)|

≤ |R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2)|.

Similarly, we have

µR̃{(α,β,γ)}
(Y1 ∩Y2) = 1−

|R̃{(α,β,γ)}(Y1∩Y2)|

|R̃{(α,β,γ)}(Y1∩Y2)|

= 1−
|R̃{(α,β,γ)}(Y1)∩R̃{(α,β,γ)}(Y2)|

|R̃{(α,β,γ)}(Y1∩Y2)|

≤ 1−
|R̃{(α,β,γ)}(Y1)∩R̃{(α,β,γ)}(Y1)|

|R̃{(α,β,γ)}(Y1)∪R̃{(α,β,γ)}(Y2)|
.

Hence,
µR̃{(α,β,γ)}

(Y1 ∩ Y2)|R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)| ≤ |R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)| −

|R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)|.
Furthermore, we know |A ∪ B| = |A|+ |B| − |A ∩ B| holds for any sets A and B. Then,

µR̃{(α,β,γ)}
(Y1 ∪Y2)|R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2)|

≤ |R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y1) ∪ R̃{(α,β,γ)}(Y2)|

= |R̃{(α,β,γ)}(Y1)|+ |R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y1)|
−|R̃{(α,β,γ)}(Y2)|+ |R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)|

= |R̃{(α,β,γ)}(Y1)|+ |R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y1)| − |R̃{(α,β,γ)}(Y2)| − (|R̃{(α,β,γ)}(Y1)

∩R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)|)

≤ |R̃{(α,β,γ)}(Y1)|+ |R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y1)| − |R̃{(α,β,γ)}(Y2)| − µR̃{(α,β,γ)}
(Y1 ∩Y2)

|R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)|.

Furthermore, by

µR̃{(α,β,γ)}
(Y1) = 1−

|R̃{(α,β,γ)}(Y1)|

|R̃{(α,β,γ)}(Y1)|
and µR̃{(α,β,γ)}

(Y2) = 1−
|R̃{(α,β,γ)}(Y2)|

|R̃{(α,β,γ)}(Y2)|
, we have

|R̃{(α,β,γ)}(Y1)| − |R̃{(α,β,γ)}(Y1)| = µR̃{(α,β,γ)}
(Y1)|R̃{(α,β,γ)}(Y1)| and

|R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y2)| = µR̃{(α,β,γ)}
(Y2)|R̃{(α,β,γ)}(Y2)|.
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Therefore,

µR̃{(α,β,γ)}
(Y1 ∪Y2)|R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)|

≤ |R̃{(α,β,γ)}(Y1)|+ |R̃{(α,β,γ)}(Y2)| − |R̃{(α,β,γ)}(Y1)| − |R̃{(α,β,γ)}(Y2)|

−µR̃{(α,β,γ)}
(Y1 ∩Y2)|R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y1)|

= µR̃{(α,β,γ)}
(Y1)|R̃{(α,β,γ)}(Y1)|+ µR̃{(α,β,γ)}

(Y2)|R̃{(α,β,γ)}(Y2)|

−µR̃{(α,β,γ)}
(Y1 ∩Y2)|R̃{(α,β,γ)}(Y1) ∩ R̃{(α,β,γ)}(Y2)|.

4. Two Extended Models

In this section, we give two extended rough set models of the model in Section 3, i.e., the degree
rough set model and the variable precision rough set model.

4.1. The Degree Rough Set Model on Two Different Universes

Definition 15. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space and R̃{(α,β,γ)}
be a (α, β, γ)-cut relation defined in Definition 10. For any Y ⊆ V, we define the degree lower and upper
approximations of Y w.r.t. the degree k, (U, V, R̃) and (α, β, γ) as follows:

R̃{(α,β,γ)}
k
(Y) = {x ∈ U||R̃{(α,β,γ)}(x)−Y| ≤ k and R̃{(α,β,γ)}(x) 6= ∅}

= {x ∈ U||R̃{(α,β,γ)}(x)| − |R̃{(α,β,γ)}(x) ∩Y| ≤ k and R̃{(α,β,γ)}(x) 6= ∅};

R̃{(α,β,γ)}
k
(Y) = {x ∈ U||R̃{(α,β,γ)}(x) ∩Y| > k or R̃{(α,β,γ)}(x) = ∅}.

where k is a finite nonnegative integer and |Y| denotes the cardinality of the set Y.

The pair (R̃{(α,β,γ)}
k
(Y), R̃{(α,β,γ)}

k
(Y)) is called the degree rough set of Y w.r.t. the degree k,

(U, V, R̃) and (α, β, γ).

We also define the positive region posR̃k
{(α,β,γ)}

(Y), negative region negR̃k
{(α,β,γ)}

(Y) and boundary

region bnR̃k
{(α,β,γ)}(Y)

of Y as follows:

posR̃k
{(α,β,γ)}

(Y) = R̃{(α,β,γ)}
k
(Y),

negR̃k
{(α,β,γ)}

(Y) = U − R̃{(α,β,γ)}
k
(Y),

bnR̃k
{(α,β,γ)}

(Y) = R̃{(α,β,γ)}
k
(Y)− R̃{(α,β,γ)}

k
(Y).

Remark 4. In Definition 15, if k = 0, then
R̃{(α,β,γ)}

0
(Y) = {x ∈ U||R̃{(α,β,γ)}(x)−Y| ≤ 0 and R̃{(α,β,γ)}(x) 6= ∅}

= {x ∈ U||R̃{(α,β,γ)}(x)−Y| = 0 and R̃{(α,β,γ)}(x) 6= ∅}
= {x ∈ U|R̃{(α,β,γ)}(x) ⊆ Y and R̃{(α,β,γ)}(x) 6= ∅}
= R̃{(α,β,γ)}(Y);

R̃{(α,β,γ)}
0
(Y) = {x ∈ U||R̃{(α,β,γ)}(x) ∩Y| > 0 or R̃{(α,β,γ)}(x) = ∅}

= {x ∈ U|R̃{(α,β,γ)}(x) ∩Y 6= ∅ or R̃{(α,β,γ)}(x) = ∅}
= R̃{(α,β,γ)}(Y),

which implies that the lower and upper approximation operators in Definition 12 are special cases of the degree
lower and upper approximation operators in Definition 15, respectively.



Symmetry 2017, 9, 119 13 of 19

In following Theorem 8, we discuss some properties of the degree lower and upper
approximation operators.

Theorem 8. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space, and R̃{(α,β,γ)} is
the (α, β, γ)-cut relation defined in Definition 10. For any Y, Y1, Y2 ⊆ V, we have:

(1) R̃{(α,β,γ)}
0
(Y1 ∩Y2) = R̃{(α,β,γ)}

0
(Y1) ∩ R̃{(α,β,γ)}

0
(Y2),

R̃{(α,β,γ)}
0
(Y1 ∪Y2) = R̃{(α,β,γ)}

0
(Y1 ∪ R̃{(α,β,γ)}

0
(Y2;

(2) R̃{(α,β,γ)}
k
(Y1 ∩Y2) ⊆ R̃{(α,β,γ)}

k
(Y1) ∩ R̃{(α,β,γ)}

k
(Y2),

R̃{(α,β,γ)}
k
(Y1 ∪Y2) ⊇ R̃{(α,β,γ)}

k
(Y1) ∪ R̃{(α,β,γ)}

k
(Y2);

(3) R̃{(α,β,γ)}
k
(Y1 ∪ A2) ⊇ R̃{(α,β,γ)}

0
(Y1) ∪ R̃{(α,β,γ)}

k
(Y2),

R̃{(α,β,γ)}
k
(Y1 ∩Y2) ⊆ R̃{(α,β,γ)}

k
(Y1) ∩ R̃{(α,β,γ)}

k
(Y2);

(4) R̃{(α,β,γ)}
k
(Y) =∼ R̃{(α,β,γ)}

k
(∼ Y),

R̃{(α,β,γ)}
k
(Y) =∼ R̃{(α,β,γ)}

k
(∼ Y);

(5) If Y1 ⊆ Y2, then R̃{(α,β,γ)}
k
(Y1) ⊆ R̃{(α,β,γ)}

k
(Y2) and R̃{(α,β,γ)}

k
(Y1) ⊆ R̃{(α,β,γ)}

k
(Y2);

(6) If k ≥ l, then R̃{(α,β,γ)}
l
(Y) ⊆ R̃{(α,β,γ)}

k
(Y) and R̃{(α,β,γ)}

k
(Y) ⊆ R̃{(α,β,γ)}

l
(Y), where k is a finite

positive integer.

Proof. We only prove (4) and (6).
(4) Notice that Y1 −Y2 = Y1 ∩ (∼ Y2) and ∼ (∼ Y) = Y for any set Y ∈ V; we have

∼ R̃{(α,β,γ)}
k
(∼ Y) =∼ {x ∈ U||R̃{(α,β,γ)}(x) ∩ (∼ Y)| > k or R̃{(α,β,γ)}(x) = ∅}

=∼ {x ∈ U||R̃{(α,β,γ)}(x)−Y| > k or R̃{(α,β,γ)}(x) = ∅}
= {x ∈ U||R̃{(α,β,γ)}(x) ∩ (∼ Y)| ≤ k and R̃{(α,β,γ)}(x) 6= ∅}
= R̃{(α,β,γ)}

k
(Y),

∼ R̃{(α,β,γ)}
k
(∼ Y) =∼ {x ∈ U||R̃{(α,β,γ)}(x)− (∼ Y)| ≤ k and R̃{(α,β,γ)}(x) 6= ∅}

=∼ {x ∈ U||R̃{(α,β,γ)}(x) ∩ (Y)| ≤ k and R̃{(α,β,γ)}(x) 6= ∅}
= {x ∈ U||R̃{(α,β,γ)}(x) ∩ (Y)| > k or R̃{(α,β,γ)}(x) = ∅}

= R̃{(α,β,γ)}
k
(Y).

(6) Since k ≥ l, for any x ∈ U and Y ⊆ V, we have

R̃{(α,β,γ)}
l
(Y) = {x ∈ U||R̃{(α,β,γ)}(x)−Y| ≤ l and R̃{(α,β,γ)}(x) 6= ∅}
⊆ {x ∈ U||R̃{(α,β,γ)}(x)−Y| ≤ k and R̃{(α,β,γ)}(x) 6= ∅}
= R̃{(α,β,γ)}

k
(Y).

For any x ∈ R̃{(α,β,γ)}
l
(Y), we have |R̃{(α,β,γ)}(x) − Y| ≤ l and R̃{(α,β,γ)}(x) 6= ∅,

then we have |R̃{(α,β,γ)}(x) − Y| ≤ k and R̃{(α,β,γ)}(x) 6= ∅, so x ∈ R̃{(α,β,γ)}
k
(Y). Hence,

R̃{(α,β,γ)}
l
(Y) ⊆ R̃{(α,β,γ)}

k
(Y).

Remark 5. In general, R̃{(α,β,γ)}
k
(Y1 ∩ Y2) ⊇ R̃{(α,β,γ)}

k
(Y1) ∩ R̃{(α,β,γ)}

k
(Y2) does not hold, where k is

a finite positive integer. The reason is that if k > 0, then |R̃{(α,β,γ)} − Y1| ≤ k and |R̃{(α,β,γ)} − Y2| ≤

k 6=⇒ |R̃{(α,β,γ)} − Y1 ∩ Y2| ≤ k. Besides, R̃{(α,β,γ)}
k
(Y1 ∪ Y2) ⊆ R̃{(α,β,γ)}

k
(Y1) ∪ R̃{(α,β,γ)}

k
(Y2)
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also does not hold in general, where k is a finite positive integer. The reason is that if k > 0, then
|R̃{(α,β,γ)}(x) ∩ (Y1 ∪Y2)| > k 6=⇒ |R̃{(α,β,γ)} ∩Y1| > k or |R̃{(α,β,γ)} ∩Y2| > k.

4.2. The Variable Precision Rough Set Model on Two Different Universes

Definition 16. Let (U, V, R̃) be a generalized single valued neutrosophic approximation space. For any
Y ⊆ V, α, β, γ ∈ (0, 1], we define the variable precision lower and upper approximation of Y w.r.t. the control
parameter ν, (U, V, R̃) and (α, β, γ) as follows, respectively:

VR̃{(α,β,γ)}
ν
(Y) = {x ∈ U| |R̃{(α,β,γ)}(x)∩Y|

|R̃{(α,β,γ)}(x)| ≥ 1− ν, R̃{(α,β,γ)}(x) 6= ∅},

VR̃{(α,β,γ)}
ν
(Y) = {x ∈ U| |R̃{(α,β,γ)}(x)∩Y|

|R̃{(α,β,γ)}(x)| > ν, R̃{(α,β,γ)}(x) 6= ∅} ∪ {x ∈ U|R̃{(α,β,γ)}(x) = ∅},

where ν ∈ [0, 0.5), |Y| denotes the cardinality of the set Y.

The pair (VR̃{(α,β,γ)}
ν
, VR̃{(α,β,γ)}

ν
) is called the variable precision single-valued neutrosophic

rough set of A with regard to the control parameter ν, (U, V, R̃) and (α, β, γ).

We also define the positive region posVR̃ν
{(α,β,γ)}

(Y), negative region negVR̃ν
{(α,β,γ)}

(Y) and boundary

region bnVR̃ν
{(α,β,γ)}

(Y) of Y about R̃ν
{(α,β,γ)}(Y) as follows:

posVR̃ν
{(α,β,γ)}

(Y) = VR̃{(α,β,γ)}
ν
(Y),

negVR̃ν
{(α,β,γ)}

(Y) = U −VR̃{(α,β,γ)}
ν
(Y),

bnVR̃ν
{(α,β,γ)}

(Y) = VR̃{(α,β,γ)}
ν
(Y)−VR̃{(α,β,γ)}

ν
(Y).

The following Theorems 9 and 10 can be easily obtained by Definition 16.

Theorem 9. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. For any Y ⊆ V,
α, β, γ ∈ [0, 1], ν = [0, 0.5), then:

(1) R̃{(α,β,γ)}(Y) ⊆ VR̃{(α,β,γ)}
ν
(Y);

(2) VR̃{(α,β,γ)}
ν
(Y) ⊆ R̃{(α,β,γ)}(Y).

Proof. The proof is straightforward from Definition 16.

Remark 6. In Theorem 9, if ν = 0, then:

(1) VR̃{(α,β,γ)}
0
(Y) = R̃{(α,β,γ)}(Y);

(2) VR̃{(α,β,γ)}
0
(Y) = R̃{(α,β,γ)}(Y).

Theorem 10. Let (U, V, R̃) be a generalized single-valued neutrosophic approximation space. For any Y ⊆ V,
α, β, γ ∈ [0, 1]. Then:

(1) VR̃{(α,β,γ)}
0.5
(Y) =

⋃
ν∈[0,0.5) VR̃{(α,β,γ)}

ν
(Y);

(2) VR̃{(α,β,γ)}
0.5
(Y) =

⋂
ν∈[0,0.5) VR̃{(α,β,γ)}

ν
(Y).

Proof. The proof is straightforward from Definition 16.

5. An Application in Multi-Attribute Decision Making

In this section, we illustrate the application of the rough set model in generalized single-valued
neutrosophic spaces proposed in Section 3.
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We present the medical decision procedure based on the proposed rough set model in a
single-valued neutrosophic environment as follows.

Assume that the universe U = {x1, x2, x3, · · · , xm} denotes a set of patients and the universe
V = {x1, x2, x3, · · · , xn} denotes a set of symptoms. Let R̃ be an SVNR from U to V. For any
(xi, yj) ∈ U ×V, TR̃(xi, yj), IR̃(xi, yj), FR̃(xi, yj) represent the truth membership degree, indeterminacy
membership degree and falsity membership degree of patient xi with symptoms yj, respectively. Given
a patient xi, the doctor can present the relationship degree decreased by a single-valued neutrosophic
number, i.e., R̃(xi, yj) between the patient xi and the symptom yj. The (α, β, γ) is given in advance
by another doctor and represents the doctors’ lowest requirements on the membership degree. For
any Y ⊆ V, Y denotes a certain disease and has the basic symptoms yj ∈ Y. For a patient xi, if
xi ∈ R̃{(α,β,γ)}(Y), then we can be sure that the patient xi is suffering from the disease Y and must

receive treatment immediately; if xi ∈ R̃{(α,β,γ)}(Y)− R̃{(α,β,γ)}(Y), we cannot be sure whether the
patient xi is suffering from the disease Y or not. Therefore, the doctor needs to carry out a second
choice to decide whether the patient xi is suffering from the disease Y or not; if xi ∈ U − R̃{(α,β,γ)}(Y),
then we can be sure that the patient xi is not suffering from the disease Y and does not need to receive
treatment.

Next, we give an example to illustrate the method above.

Example 2. Let U = {x1, x2, x3, x4, x5} be five patients, V = {y1, y2, y3, y4, y5, y6, y7} be seven symptoms,
where yj (j = 1, 2, 3, 4, 5, 6, 7) stand for “tired”, “a stuffed-up nose”, “headache”, “chill”,“stomach pain”, “dry
cough” and “chest-pain”. R̃ is the medical knowledge statistic data of the relationship of the patient xi (xi ∈ U)

and the symptom yj (yj ∈ V), and R̃ is an SVNR from U to V (given in Table 2). For any (xi, yj) ∈ U ×V,
TR̃(xi, yj), IR̃(xi, yj), FR̃(xi, yj) represent the truth membership degree, indeterminacy membership degree and
falsity membership degree of patient xi with symptoms yj, respectively. For example, R̃(x1, y1) = (0.2, 0.1, 0.8)
indicates that the truth membership, indeterminacy membership and falsity membership of patient x1 with
symptoms y1 is 0.2, 0.1, 0.8, respectively.

Table 2. The single-valued neutrosophic relation R̃ of the symptoms and patients.

R̃ y1 y2 y3 y4 y5 y6 y7

x1 (0.6,0,1,0.4) (1,0,0) (0.6,0.2,0.2) (0.8,0.3,0.2) (0,0,1) (0.9,0.1,0.2) (0.1,0.1,0.9)
x2 (1,0.2,0) (0,0,1) (0.8,0.1,0.1) (0.1,0.1,1.7) (0,0,1) (0.8,0.2,0.1) (0.2,0.1,0.6)
x3 (0.8,0.1,0.5) (0,0.3,1) (0.2,0.2,0.8) (0.2,0.1,0.8) (0.7,0.1,0.2) (0.1,0.2,0.8) (1,0,0)
x4 (1,0.3,0.1) (0,0,1) (0.3,0.1,0.7) (0,0,1) (0,0,1) (0.7,0.3,0.2) (0,0,1)
x5 (0.1,0.2,0.7) (0,0,1) (0,0.2,0.9) (0.2,0.1,0.7) (1,0,0) (0,0,1) (0.7,0.3,0.2)

Let Y = {y1, y2, y3, y6} ⊆ V denote a certain disease showing four basic symptoms in the clinic.
Case 1. Take (α, β, γ) = (0.5, 0.5, 0.5); by Definition 10, we can get the cut relation R̃{(0.5,0.5,0.5)} (given

in Table 3).

Table 3. The cut relation R̃{(0.5,0.5,0.5)}.

R̃{(0.5,0.5,0.5)} y1 y2 y3 y4 y5 y6 y7

x1 1 1 1 1 0 1 0
x2 1 0 1 0 0 1 0
x3 1 0 0 0 1 0 1
x4 1 0 0 0 0 1 0
x5 0 0 0 0 1 0 1

According to Definition 11, we can get
R̃{(0.5,0.5,0.5)}(x1) = {y1, y2, y3, y4, y6},
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R̃{(0.5,0.5,0.5)}(x2) = {y1, y3, y6},
R̃{(0.5,0.5,0.5)}(x3) = {y1, y5, y7},
R̃{(0.5,0.5,0.5)}(x4) = {y1, y6},
R̃{(0.5,0.5,0.5)}(x5) = {y5, y7}.
Then, by Definition 12, we can calculate the lower approximation, the upper approximation, the boundary

region and the negative region of Y as follows, respectively.
R̃{(0.5,0.5,0.5)}(Y) = {x2, x4},

R̃{(0.5,0.5,0.5)}(Y) = {x1, x2, x3, x4},
bnR̃{(0.5,0.5,0.5)}

(Y) = {x1, x3},
negR̃{(0.5,0.5,0.5)}

(Y) = {x5}.
By Definition 14, we also can calculate the approximate precision of the set Y (Y ⊆ V) as follows:
ρR̃{(α,β,γ)}

(Y) = 1
2 .

Thus, we can obtain the following conclusions:

(1) Patients x2 and x4 are suffering from the disease Y and must receive treatment immediately.
(2) We cannot determine whether patients x1 and x3 are suffering from the disease Y or not.
(3) The patient x5 is not suffering from the disease Y and does not need to receive treatment.

Case 2. Take (α, β, γ) = (0.7, 0.4, 0.3). We can obtain the cut relation R̃{(0.7,0.4,0.3)} (given in Table 4).

Table 4. The cut relation R̃{(0.7,0.4,0.3)}.

R̃{(0.7,0.4,0.3)} y1 y2 y3 y4 y5 y6 y7

x1 0 1 1 0 0 1 0
x2 1 0 1 0 0 1 0
x3 0 0 0 0 1 0 1
x4 1 0 0 0 0 1 0
x5 0 0 0 0 1 0 1

According to Definition 11, we can get
R̃{(0.7,0.4,0.3)}(x1) = {y2, y3, y4, y6},
R̃{(0.7,0.4,0.3)}(x2) = {y1, y3, y6},
R̃{(0.7,0.4,0.3)}(x3) = {y5, y7},
R̃{(0.7,0.4,0.3)}(x4) = {y1, y6},
R̃{(0.7,0.4,0.3)}(x5) = {y5, y7}.
Then, by Definition 12, we can calculate the lower approximation, the upper approximation, the boundary

region and the negative region of Y as follows, respectively.
R̃{(0.7,0.4,0.3)}(Y) = {x2, x4},

R̃{(0.7,0.4,0.3)}(Y) = {x1, x2, x4},
bnR̃{(0.7,0.4,0.3)}

(Y) = {x1},
negR̃{(0.7,0.4,0.3)}

(Y) = {x3, x5}.
By Definition 14, we also can calculate the approximate precision of the set Y (Y ⊆ V) as follows:
ρR̃{(α,β,γ)}

(Y) = 2
3 .

Thus, we can obtain the following conclusions:

(1) Patients x2 and x4 are suffering from the disease Y and must receive treatment immediately.
(2) We cannot determine whether patient x1 is suffering from the disease Y or not.
(3) Patients x3 and x5 are not suffering from the disease Y and do not need to receive treatment.
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Based on the above analysis, the proposed model and method could help decision makers make a scientific
and precise decision as they face the similar cases in practice. Besides, the model presented in this paper also
permits controlling the risk of misdiagnosis in practice.

To explore the effectiveness of the method proposed in this paper, we compare it with the method
proposed in [29]. The method given in [29] only deals with the decision making problems with
intuitionistic fuzzy information, but not the decision making problems with the single-valued
neutrosophic information; while the model proposed in the present paper can handle the decision
making problems not only with intuitionistic fuzzy information (since intuitionistic fuzzy sets can be
regarded as a special case of SVNSs), but also with single-valued neutrosophic information. Thus, the
proposed method is more general, and its application domain is wider than that of the method in [29].

The proposed model is based on the level cut relation of single-valued neutrosophic relations.
There are two advantages. One advantage is that the level parameter in the model can control the
risk of the misdiagnosis. Another advantage is that the model can approximate the crisp concept by
converting a single-valued neutrosophic fuzzy relation into a crisp binary relation.

The rough set method does not depend on any other extra knowledge besides the given dataset.
Rough set theory can be applied as a component of hybrid solutions in machine learning and data
mining. They have been found to be particularly useful for rule induction and feature selection.
Decision makers can control the size of the loss of information by changing the level parameter.

6. Conclusions

In the present paper, based on the (α, β, γ)-cut relation R̃{(α,β,γ)} (α, β, γ ∈ (0, 1]), we propose
a new rough set model in generalized single-valued neutrosophic approximation spaces and obtain
two extended models of the model. Some properties are studied. Finally, we use an example to
illustrate the proposed rough set model’s application in a multi-attribute decision making problem.
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