On Simplicissima in Space of n Dimensions. (Third Paper.)
 By W. J. Curran Sbarp.

[Road June 12th, 1890.]

summary of the paper.

Addenda to Arts. X., XIII., XXVII., XXIX., and XXXVI. Articles.
XXXVII. Content of subsidiary simplicissima in terms of the coordinates of the vertices.
XXXVIII. The angle between two right lines. Condition of perpendicularity. Shortest distance between two right lines. Principal axps of a quadric.
XXXIX. Content of the simplicissimum vertices at any point and all bat one of its projections on the faces of the simplicissimum of reference; of the pedal simplicissimum. Condition that this ghould үanish.
XL. Interpretation of varions equations by the help of XXXIX., especially $\frac{A}{\lambda}+\frac{B}{\mu}+\frac{O}{\nu}+\ldots=0$. The poles of infinity. All lines through these are such that the sum of the reciprocals of the intercepts is zero.
XLI. The identical relations between the products of complementary simplicissima of n vertices, situated at $2 n$ points in space of $n-1$ dimensions. Triangles having tetheir vertices at six or five points in a plane. Tetrahedron with verticos at eight, seven, or six poinfs. Various classes of anharmonic systems. All up to the $n-1^{\text {thi }}$ are applicable in the Geometry of space of n dimensions.
XLII. Analogue to harmonical progression. Complete system of 2^{n-1} points harmonically related to n points. Properties of such systems:
XLIII. Quadrics intersecting in two linear loci, one of which is infinity, are similar and similarly situated, and have two centres of similitude.

Articles.
XLIV. Any two quadrics have a common self-conjugate simplicissimam. Its vertices. When these become indeterminate.
XLV. The value of the discriminant of

$$
U_{11} \lambda^{9}+U_{92} \mu^{8}+\ldots+2 U_{18} \lambda \mu+\ldots .
$$

XLVI. The invariants; contravariants, and covariants of two quadrics.

Addenda to Forner Papers.
(Vol. xvilu., pp. 325-59 ; Vol. xix., pp. 423-89.)
X. If

$$
\Sigma \equiv S-\left(A_{1} \lambda+A_{2} \mu+A_{8} \nu+\ldots\right)(\lambda+\mu+\nu \ldots),
$$

then

$$
\begin{equation*}
\Sigma-\left(\lambda^{\prime} \frac{d \Sigma}{d \lambda}+\mu^{\prime} \frac{d \dot{\Sigma}}{d \mu}+\nu^{\prime} \frac{d \Sigma}{d \nu}+\ldots\right)(\lambda+\mu+\nu+\ldots)=0 . \tag{1}
\end{equation*}
$$

represents the spheric with centre at ($\lambda^{\prime}, \mu^{\prime}, \nu^{\prime} \ldots$), and which cuts $\Sigma=0$ orthogonally. For at the centre of (1),

$$
\frac{d \Sigma}{d \lambda}-\frac{d \Sigma^{\prime}}{d \lambda^{\prime}}=\frac{d \Sigma}{d \mu}-\frac{d \Sigma^{\prime}}{d \mu^{\prime}}=\frac{d \Sigma}{d \nu}-\frac{d \Sigma^{\prime}}{d \nu^{\prime}}=\ldots
$$

and the radical locus of (1) and $\Sigma=O$ is the polar of the centre of each with respect to the other.
XIII. The proof of this proposition, which is equally true if instead of spherics we say similar ciroumscribed quadrics (Art. XLIII.), is incomplete as it stands, as it is not proved that the common point on the radical loci lies upon the spherics. This is easily proved by multiplying the equations to the radical loci by $\lambda, \mu, \nu_{i}, .$. , respectively, and adding, when the result is $S=0$.
XXVII. The central axis is at right engles to the common radical locus of the spherics

$$
A_{1} \lambda+A_{8} \mu+A_{2} \nu+\ldots=0,
$$

for the equations to the axis may be written

$$
\frac{\lambda-\frac{V}{n+1}}{\frac{1}{A_{1}}-\frac{1}{n+1} \Sigma \frac{1}{A_{1}}}=\frac{\mu-\frac{V}{n+1}}{\frac{1}{A_{2}}-\frac{1}{n+1} \Sigma \frac{1}{A_{1}}}=\frac{\nu-\frac{V}{n+1}}{\frac{1}{A_{1}}-\frac{1}{n+1} \Sigma \frac{1}{A_{1}}}=\& c .
$$

for which values of $a, b, c \ldots$ (Art. XVIII.),

$$
\begin{aligned}
& \frac{d}{d a} S(a, b, c \ldots)=n-1-\frac{1}{n+1} \sum \frac{1}{A_{1}} \sum A_{1}+\frac{2}{n+1} A_{1} \Sigma \frac{1}{A_{1}} \\
& \frac{d}{d b} S(a, b, c \ldots)=n-1-\frac{1}{n+1} \sum \frac{1}{A_{1}} \sum A_{1}+\frac{2}{n+1} A_{2} \Sigma \frac{1}{A_{1}}
\end{aligned}
$$

$\& \mathrm{c}$.
\&o.
Therefore

$$
\left\|\frac{d}{d a} S(a, b, c \ldots), \quad \frac{d}{d b} S(a, b, c \ldots), \quad \frac{d}{d c} S(a, b, c \ldots), \quad \ldots \quad\right\|=0
$$

therefore the axis is at right angles to the radical locus, and the centres of all the spherics lie apon it.

The shortest distance between two non-intersecting cdges (p, q) and (r, s) of a rectangular simplicissimum is the square root of

$$
\frac{A_{p} A_{q}}{A_{p}+A_{q}}+\frac{A_{r} A_{\dot{q}}}{A_{r}+A_{q}}
$$

Let $\left(\lambda_{1}, \mu_{1}, 0,0\right),\left(0,0, \pi_{3}, \rho_{2}, \ldots\right)$ be the points where the shortest distance between (1.2) and (3.4) meets these lines respectively; then, if d be this distance,

$$
\begin{aligned}
V^{2} d^{2}= & -S_{1}-S_{2}+\left(\lambda_{1} \frac{d S_{9}}{d \lambda_{2}}+\mu_{1} \frac{d S_{3}}{d \mu_{9}}+\nu_{1} \frac{d S_{9}}{d \nu_{3}}-\ldots\right) \\
= & -\lambda_{1} \mu_{1}\left(A_{1}+A_{2}\right)-\pi_{2} \rho_{2}\left(A_{3}+A_{4}\right) \\
& +\lambda_{1}\left\{\pi_{8}\left(A_{1}+A_{8}\right)+\rho_{8}\left(A_{1}+A_{4}\right)\right\} \\
& +\mu_{1}\left\{\pi_{2}\left(A_{2}+A_{3}\right)+\rho_{2}\left(A_{2}+A_{4}\right)\right\} \\
= & -\lambda_{1}\left(V-\lambda_{1}\right)\left(A_{1}+A_{9}\right)-\pi_{2}\left(V-\pi_{8}\right)\left(A_{3}+A_{4}\right) \\
& +\lambda_{1}\left\{\pi_{2}\left(A_{1}+A_{8}\right)+\left(V-\pi_{9}\right)\left(A_{1}+A_{4}\right)\right\} \\
& +\left(V-\lambda_{1}\right)\left\{\pi_{3}\left(A_{3}+A_{8}\right)+\left(V-\pi_{8}\right)\left(A_{2}+A_{4}\right)\right\} ;
\end{aligned}
$$

and, by differentiation,

$$
0=-2 V A_{3}+2 \lambda_{1}\left(A_{2}+A_{3}\right), \quad 0=-2 \nabla A_{4}+2 \pi_{3}\left(A_{2}+A_{3}\right),
$$

and

$$
d^{\mathrm{s}}=\frac{A_{1} A_{8}}{A_{1}+A_{2}}+\frac{A_{8} A_{4}}{A_{3}+A_{4}}
$$

XXIX. If $\Sigma^{\prime}=0$ be the bisecting spheric, $\Sigma^{\prime \prime}=0$ the spheric through the centres, and $\Sigma^{\prime \prime \prime}=0$ the orthogonal spheric, they are coaxal ; for, from the equations as given,

$$
\begin{aligned}
\Sigma^{\prime}+\Sigma^{\prime \prime \prime} \equiv & 2 S-2\left\{\frac{\lambda^{\prime}+\lambda^{\prime \prime \prime}}{2} \frac{d S}{d \lambda}+\frac{\mu^{\prime}+\mu^{\prime \prime \prime}}{2} \frac{d S}{d \mu}+\ldots\right\} \frac{\lambda+\mu+\ldots}{V} \\
& +\frac{V^{2} r^{\prime 2}+V^{2} r^{\prime \prime \prime 2}+S^{\prime}+S^{\prime \prime \prime \prime}}{V^{2}}(\lambda+\mu+\ldots)^{9} \\
\equiv & 2\left\{S-\left(\lambda^{\prime \prime} \frac{d S}{d \lambda}+\mu^{\prime \prime} \frac{d S}{d \mu}+\ldots\right)\right\} \frac{\lambda+\mu+\ldots}{V} \\
& +\frac{V^{2} r^{\prime \prime 2}+S^{\prime \prime}}{V^{2}}(\lambda+\mu+\ldots)^{2} \equiv 2 \Sigma^{\prime \prime} .
\end{aligned}
$$

XXXVI. If the equation to a linear locus be pat into the form

$$
A_{1} \frac{d S}{d \lambda}+A_{2} \frac{d S}{d \mu}+A_{8} \frac{d S}{d \nu}+\ldots=0 \equiv L
$$

and

$$
\lambda^{\prime}: \mu^{\prime}: \nu^{\prime} \ldots::: A_{1}: A_{9}: A_{3}
$$

[in other words, if ($\lambda^{\prime} \mu^{\prime} \nu^{\prime} \ldots$) be the pole of the linear locus with respect to the circamspheric], the equation may be written

$$
\lambda \frac{d S^{\prime}}{d \lambda^{\prime}}+\mu \frac{d S^{\prime}}{d \mu^{\prime}}+\nu \frac{d S^{\prime}}{d \nu^{\prime}}+\ldots=0
$$

the determinant of which is (Art. XII.), (-2) ${ }^{n+1}(n!)^{2} \nabla^{4} d^{2}$, where d is the distance from ($\lambda^{\prime}, \mu^{\prime}$...) to the circumcentre.

And hence the perpendicular from ($\lambda_{1}, \mu_{1}, \nu_{1} \ldots$) upon $L=0$

$$
\begin{aligned}
& =\sqrt{ }\left\{\frac{1}{\left(\Sigma A_{1}\right)^{2}} \cdot \frac{(-2)^{n-1}(n!)^{2}}{(-2)^{n+1}(n!)^{2}} \cdot \frac{L_{1}^{2}}{V^{2} d^{2}}\right\} \\
& =\frac{1}{2 \Sigma A_{1}} \cdot \frac{L_{1}}{V d} .
\end{aligned}
$$

Hence the perpendiculars from ($\lambda_{1}, \mu_{1} \ldots$) apon

$$
\frac{d S}{d \lambda}=0, \quad \frac{d S}{d \mu}=0, \& c .
$$

the tangents to the circumspheric at the vertices, are

$$
\frac{1}{2 V R} \cdot \frac{d S_{1}}{d \lambda_{1}}, \frac{1}{2 V R} \cdot \frac{d S_{1}}{d \mu_{1}}, \& c
$$

and the coordinates in the system mentioned in Art. XXXVI, are
proportional to perpendiculars upon the faces of a sinplicissimum and analogous to trilinear or quadruplanar coordinates.
[The following Articles are numbered in continuation of the former papers.]
XXXVII. Professor Sylvester's fundamental formula (Art. I., Vol. xvili, p. 325) for the squared content of a simplicissimum of $n+1$ vertices, viz.,

$$
\frac{-1}{(-2)^{n}(1.2 \ldots n)^{2}}\left|\begin{array}{ccccc}
0, & 1, & 1, & 1, & \ldots \\
1, & 0, & (1.2)^{2}, & (1.3)^{2}, & \ldots \\
1,(2.1)^{2}, & 0, & (2.3)^{2}, & \ldots \\
1,(3.1)^{2}, & (3.2)^{2}, & 0, & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right|,
$$

may be transformed so as to give the squared content of any simplicissimum in terms of the coordinates of the vertices.

For

$$
\begin{aligned}
V^{3}(r . s)^{2} & =-S_{r}-S_{1}+\left(\lambda_{r} \frac{d S_{4}}{d \lambda_{1}}+\mu_{r} \frac{d S_{s}}{d \mu_{s}}+\ldots\right) \\
& \equiv-S_{r}-S_{s}+S_{r . a}, \text { say } ;
\end{aligned}
$$

therefore the squared area of the triangle, the vertices of which are at

$$
\begin{aligned}
& =\frac{-1}{16}\left|\begin{array}{cccc}
0, & 1, & 1, & 1, \\
1, & 0, & \left.\frac{-S_{1}-S_{2}+S_{1.2},}{V_{1}^{2}}, \ldots\right),\left(\lambda_{3}, \mu_{2}, r_{2}, \ldots\right),\left(S_{3}, \mu_{3}, \nu_{8}, \ldots\right), S_{3}+S_{1.3} \\
V^{2} \\
1, & \frac{-S_{2}-S_{1}+S_{1.2}}{V^{2}}, & 0, & \frac{-S_{2}-S_{3}+S_{2.3}}{V^{2}} \\
1, & \frac{-S_{3}-S_{1}+S_{1.3}}{V^{2}}, & \frac{-S_{3}-S_{2}+S_{2.3}}{V^{2}}, & 0,
\end{array}\right| \\
& =\frac{-1}{16 V^{4}}\left|\begin{array}{cccc}
0, & 1, & 1 ; & 1 \\
1, & 2 S_{1}, & S_{1.2}, & S_{1.3} \\
1, & S_{1.2}, & 2 S_{2}, & S_{2.3} \\
1, & S_{1.3}, & S_{2,3}, & 2 S_{3}
\end{array}\right| .
\end{aligned}
$$

In the same way it may be shown that the squared content of the strahedron, the vertices of which are at

$$
\left(\lambda_{1}, \mu_{1}, \ldots\right),\left(\lambda_{2}, \mu_{2}, \ldots\right),\left(\lambda_{3}, \mu_{3}, \ldots\right),\left(\lambda_{4}, \mu_{4}, \ldots\right),
$$

$$
=\frac{-1}{(-2)^{3}} \frac{1}{(3!)^{8}} \frac{1}{V^{0}}\left|\begin{array}{ccccc}
0, & 1, & 1, & 1, & 1, \\
1, & 2 S_{1}, & S_{1.2}, & S_{1.3,} & S_{1.4} \\
1, & S_{1.2,} & 2 S_{2}, & S_{2.3}, & S_{2.4} \\
1, & S_{1.3,} & S_{2.3,} & 2 S_{8}, & S_{3.4} \\
1, & S_{1.4}, & S_{2.4,} & S_{3.4,} & 2 S_{4}
\end{array}\right|,
$$

and more generally that the squared content of the simplicissimum of $p+1$ vertices, situated at

$$
\begin{aligned}
& \left(\lambda_{1}, \mu_{1}, \ldots\right),\left(\lambda_{2}, \mu_{2}, \ldots\right) \ldots\left(\lambda_{p+1}, \mu_{p+1}, \ldots\right), \\
& =\frac{-1}{(-2)^{p}(p!)^{2}} \frac{1}{V^{2 p}}\left|\begin{array}{cccccc}
0, & 1, & 1, & 1, & \ldots & 1, \\
1, & 2 S_{1}, & S_{1.2}, & S_{1.8,}, & \ldots & S_{1 . p+1} \\
1, & S_{1.2}, & 2 S_{8}, & S_{2.3,} & \ldots & S_{2, p+1} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1, & S_{1 . p+1,} & S_{2 . p+1}, & S_{3 . p+1} & \ldots & 2 S_{p+1}
\end{array}\right| .
\end{aligned}
$$

From this formula it appears that the locus of the $p+1^{\text {th }}$ vertex of a simplicissimum of $p+1$ vertices, the content of which is constant and the base (the other p vertices) fixed, is a locus of the second degree. The simplest examples of this class of loci are the circle (or spheric) and the right circular cylinder. Snch loci pass through the intersection of the spherical locus at infinity, with the linear loci

$$
\begin{aligned}
& \lambda \frac{d S_{1}}{d \lambda_{1}}+\mu \frac{d S_{1}}{d \mu_{1}}+\nu \frac{d S_{1}}{d \nu_{1}}+\ldots=0 \\
& \lambda \frac{d S_{2}}{d \lambda_{2}}+\mu \frac{d S_{2}}{d \mu_{2}}+\nu \frac{d S_{2}}{d \nu_{2}}+\ldots=0, \quad \ldots \\
& \cdots \\
& \cdots \frac{d S_{\mu}}{d \lambda_{p}}+\mu \frac{d S_{\mu}}{d \mu_{p}}+\nu \frac{d S_{\mu}}{d \nu_{p}}+\ldots=0
\end{aligned}
$$

If $p=n$, in the formula of this article, the squared content of the simplicissimum vertices at

$$
\begin{aligned}
& \left(\lambda_{1}, \mu_{1} \ldots\right)\left(\lambda_{2}, \mu_{2} \ldots\right) \ldots\left(\lambda_{n+1}, \mu_{n+1} \ldots\right) \\
& =\frac{-1}{(-2)^{n}(n!)^{2}} \frac{1}{V^{3 n}}\left|\begin{array}{ccccc}
0, & 1, & 1, & \ldots . . & 1 \\
1, & 2 S_{1}, & S_{1.2} & \ldots \ldots & S_{1 . n+1} \\
1, & S_{1.2}, & 2 S_{2} & \ldots \ldots & S_{2 . n+1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1, & S_{1 . n+1}, & S_{2 . n+1}, & \ldots & 2 S_{n+1}
\end{array}\right|
\end{aligned}
$$

vol. $\mathbf{8 x 1}$ - No. 390.
and (Art. VI.)

$$
\frac{1}{V^{n}}\left|\begin{array}{ccccc}
1, & 0, & 0, & \ldots & 0 \\
1, & \lambda_{1}, & \mu_{1}, & \ldots & r_{1} \\
1, & \lambda_{2}, & \mu_{2}, & \ldots & \tau_{2} \\
& \ldots & \ldots & \ldots & \ldots \\
1, & \lambda_{n+1}, & \mu_{n+1}, & \ldots & r_{n+1}
\end{array}\right|
$$

is equal to the content of the simplicissimum ; therefore this is also

$$
=\frac{-1}{(-2)^{n}(n!)^{9} V^{n+1}}\left|\begin{array}{ccccc}
0 & 1, & 1, & \ldots \ldots & 1 \\
1, & \frac{d S_{1}}{d \lambda_{1}}, & \frac{d S_{1}}{d \mu_{1}}, & \ldots & \frac{d S_{1}}{d r_{1}} \\
1, & \frac{d S_{3}}{d \Lambda_{2}}, & \frac{d S_{3}}{d \mu_{2}}, & \ldots & \frac{d S_{3}}{d \tau_{2}} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1, & \frac{d S_{n+1}}{d \lambda_{n+1}}, \frac{d S_{n+1}}{d \mu_{n+1}} & \ldots & \frac{d S_{n+1}}{d \tau_{n+1}}
\end{array}\right|,
$$

which gives an expression in terms of the coordinates of Art. XXXVI.

$$
\begin{equation*}
\text { XXXVIII. If } \quad \frac{\lambda-\lambda^{\prime}}{a}=\frac{\mu-\mu^{\prime}}{b}=\frac{\nu-v^{\prime}}{c}=\ldots \ldots \tag{1}
\end{equation*}
$$

\qquad
where

$$
a+b+c+\ldots=0
$$

and

$$
\frac{\lambda-\lambda^{\prime}}{a^{\prime}}=\frac{\mu-\mu^{\prime}}{b^{\prime}}=\frac{\nu-\nu^{\prime}}{c^{\prime}}=\ldots . .
$$

where

$$
a^{\prime}+b^{\prime}+c^{\prime}+\ldots=0
$$

be two intersecting straight lines, and A the angle between them,

$$
\cos \theta=\frac{\left(a^{\prime} \frac{d}{d a}+b^{\prime} \frac{d}{d b}+c^{\prime} \frac{d}{d c}+\ldots\right) S(a, b, c \ldots)}{2 \sqrt{S(a, b, c \ldots) S\left(a^{\prime}, b^{\prime}, c^{\prime} \ldots\right)}}
$$

The angle between the lines is the same as that between the parallels to them through $(V, 0,0, \ldots)$ the vertex opposite $\lambda=0$. Let those lines meet $\lambda=0$ in $A_{1}\left(\lambda_{1}, \mu_{1}, \nu_{1} \ldots\right)$ and $A_{1}^{\prime}\left(\lambda_{1}^{\prime}, \mu_{1}^{\prime}, \nu_{1}^{\prime} \ldots\right)$ respectively.

Now, at Λ_{1},

$$
\lambda_{1}=0, \quad \mu_{1}=-\frac{b}{a} V, \quad \nu_{1}=-\frac{c}{a} V, \& c .
$$

and at A_{1}^{\prime},

$$
\lambda_{1}^{\prime}=0, \quad \mu_{1}^{\prime}=-\frac{b^{\prime}}{a^{\prime}} \nabla, \quad \nu_{1}^{\prime}=-\frac{c^{\prime}}{a^{\prime}} \nabla, \& c .
$$

therefore

$$
\begin{aligned}
V^{2} A \Lambda_{1}^{2}= & -S_{1}+V \frac{d S_{1}}{d \lambda_{1}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
= & -\frac{V^{2}}{a^{2}} S(a, b, c \ldots)+\frac{V^{2}}{a} \frac{d}{d a} S(a, b, c \ldots) \\
& -\frac{V^{3}}{a} \frac{d}{d a} S(a, b, c \ldots) \\
= & -\frac{V^{2}}{a^{2}} S(a, b, c \ldots),
\end{aligned}
$$

and

$$
A A_{1}^{2}=-\frac{1}{a^{3}} S(a, b, c \ldots)
$$

Similarly,

$$
A A_{1}^{\prime 2}=-\frac{1}{a^{\prime 2}} S\left(a^{\prime}, b^{\prime}, c^{\prime} \ldots\right)
$$

also,

$$
\begin{aligned}
V^{9} A_{1} A_{1}^{\prime 2}= & -S_{1}-S_{1}^{\prime}+\left(\lambda_{1}^{\prime} \frac{d}{d \lambda_{1}}+\mu_{1}^{\prime} \frac{d}{d \mu_{1}}+\ldots\right) S_{1} \\
= & -\frac{V^{2}}{a^{2}} S(a, b, c \ldots)+\frac{V^{2}}{a} \frac{d}{d a} S(a, b, c \ldots) \\
& -\frac{V^{2}}{a^{\prime 2}} S\left(a^{\prime}, b^{\prime}, c^{\prime} \ldots\right)+\frac{V^{2}}{a^{\prime}} \frac{d}{d a^{\prime}} S\left(a^{\prime}, b^{\prime}, c^{\prime} \ldots\right) \\
& +\frac{V^{2}}{a a^{\prime}}\left\{\left(b c^{\prime}+b^{\prime} c\right)(2.3)^{2}+\left(b^{\prime} d+b d^{\prime}\right)(2.4)^{2}+\ldots\right\} \\
= & -\frac{V^{2}}{a^{2}} S(a, b, c \ldots)-\frac{V^{2}}{a^{\prime 2}} S\left(a^{\prime}, b^{\prime}, c^{\prime} \ldots\right) \\
& +\frac{V^{2}}{a a^{\prime}}\left\{a^{\prime} \frac{d}{d a}+b^{\prime} \frac{d}{d b}+c^{\prime} \frac{d}{d c}+\ldots\right\} S(a, b, c \ldots) ;
\end{aligned}
$$

therefore
$A A_{1}^{2}+A A_{1}^{\prime 2}-A_{1} A_{1}^{\prime 2}=-\frac{1}{a a^{\prime}}\left\{\begin{array}{r}\left.a^{\prime} \frac{d}{d a}+b^{\prime} \frac{d}{d b}+c^{\prime} \frac{d}{d c}+\ldots\right\} S(a, b, c \ldots) ; ~ \\ \mathrm{Y} 2\end{array}\right.$

therefore

$$
\cos \theta=\frac{A A_{1}^{2}+A A_{1}^{\prime 2}-A_{1} A_{1}^{\prime 2}}{2 \cdot A A_{1} \cdot A A_{1}^{\prime}}=\frac{\left\{a^{\prime} \frac{d}{d a}+b^{\prime} \frac{d}{d \bar{b}}+\ldots\right\} S(a, b, c \ldots)}{2 \sqrt{S(a, b, c \ldots) S\left(a^{\prime}, b^{\prime}, c^{\prime} \ldots\right)}}
$$

Hence, if $A A_{1}, B B_{1}, C C_{1}, \& c$. be parallel lines through the vertices $A, B, C \ldots$, meeting the opposite faces in $A_{1}, B_{1}, C_{1}, \& c$. (Art. XVIII.),

$$
\frac{1}{A A_{1}}+\frac{1}{B B_{1}}+\frac{1}{C O_{1}}+\ldots=\frac{a+b+c \ldots}{\sqrt{-S}(a, b, c \ldots)}=0
$$

and

$$
\frac{(1.2)^{2}}{A A_{1} \cdot B B_{1}}+\frac{(2.3)^{2}}{B B_{1} \cdot C O_{1}}+\frac{(1.3)^{2}}{A A \cdot C C_{1}}+\& c .=\frac{S(a, b, c, \ldots)}{-S(a, b, c, \ldots)}=-1
$$

Also, if the lines be at right angles,

$$
\left(a^{\prime} \frac{d}{d a}+b^{\prime} \frac{d}{d b}+c^{\prime} \frac{d}{d c}+\ldots\right) S(a, b, c \ldots)=0
$$

(Comp. Art. XXXV.) It appears too, that, if the line (2) lie apon the linear locus

$$
A_{1} \lambda+\Lambda_{2} \mu+A_{3} \nu+\ldots=0
$$

to which

$$
\frac{\lambda-\lambda^{\prime \prime}}{a}=\frac{\mu-\mu^{\prime \prime}}{b}=\frac{\nu-\nu^{\prime \prime}}{c}=\ldots
$$

is at right angles, the two lines are at right angles. For

$$
\begin{gathered}
A_{1} a^{\prime}+A_{8} b^{\prime}+A_{3} c^{\prime}+\ldots=0 \\
a^{\prime}+b^{\prime}+c^{\prime}+\ldots=0
\end{gathered}
$$

and
therefore

$$
\left(A_{2}-A_{1}\right) b^{\prime}+\left(A_{3}-A_{1}\right) c^{\prime}+\ldots=0
$$

and therefore (XVIII.)

$$
\left(a^{\prime} \frac{d}{d a}+b^{\prime} \frac{d}{d b}+c^{\prime} \frac{d}{d c}+\ldots\right) S(a, b, c \ldots)=0
$$

and any right line at right angles to a linear locus is at right angles to all right lines in that locus, and conversely.

Again, the shortest distance between two non-intersecting straight lines is at right angles to each of them. Let these be

$$
\begin{aligned}
& \frac{\lambda-\lambda^{\prime}}{a}=\frac{\mu-\mu^{\prime}}{b}=\frac{\nu-v^{\prime}}{c}=\ldots \equiv p \text { say } \\
& \frac{\lambda-\lambda^{\prime \prime}}{a^{\prime}}=\frac{\mu-\mu^{\prime \prime}}{b^{\prime}}=\frac{\nu-\nu^{\prime \prime}}{c^{\prime}}=\ldots \equiv p^{\prime} \text { say }
\end{aligned}
$$

and if $\left(\lambda_{1}, \mu_{1} \ldots\right),\left(\lambda_{2}, \mu_{8} \ldots\right)$ be any points in these respectively, and d the distance between them,

$$
\begin{aligned}
V^{9} d^{2}= & -S_{1}-S_{8}+\left(\lambda_{9} \frac{d S_{1}}{d \lambda_{1}}+\mu_{9} \frac{d S_{1}}{d \mu_{1}}+\ldots\right) \\
= & -S^{\prime}-p\left(a \frac{d S^{\prime}}{d \lambda^{\prime}}+b \frac{d S^{\prime}}{d \mu^{\prime}}+c \frac{d S^{\prime}}{d \nu^{\prime}}+\ldots\right) \\
& -p^{2} S(a, b, c \ldots)-S^{\prime \prime}-p^{\prime}\left(a^{\prime} \frac{d S^{\prime \prime}}{d \lambda^{\prime \prime}}+b^{\prime} \frac{d S^{\prime \prime}}{d \mu^{\prime \prime}}+c^{\prime} \frac{d S^{\prime \prime}}{d \nu^{\prime \prime}}+\ldots\right) \\
& -p^{\prime 2} S\left(a^{\prime}, b^{\prime}, c^{\prime} \ldots\right)+\left(\lambda^{\prime \prime} \frac{d S^{\prime}}{d \lambda^{\prime}}+\mu^{\prime \prime} \frac{d S^{\prime}}{d \mu^{\prime}}+\nu^{\prime \prime} \frac{d S^{\prime}}{d \nu^{\prime}}+\ldots\right) \\
& +p\left(a \frac{d S^{\prime \prime}}{d \lambda^{\prime \prime}}+b \frac{d S^{\prime \prime}}{d \mu^{\prime \prime}}+c \frac{d S^{\prime \prime}}{d \nu^{\prime \prime}}+\ldots\right) \\
& +p^{\prime}\left(a^{\prime} \frac{d S^{\prime}}{d \lambda^{\prime}}+b^{\prime} \frac{d S^{\prime}}{d \mu^{\prime}}+c^{\prime} \frac{d S^{\prime}}{d \nu^{\prime}}+\ldots\right) \\
& +p p^{\prime}\left(a^{\prime} \frac{d}{d a}+b^{\prime} \frac{d}{d b}+c^{\prime} \frac{d}{d c}+\ldots\right) S(a, l, c \ldots)
\end{aligned}
$$

which is to be a minimum by the variation of p and p^{\prime}, which are independent. This leads to two simple equations in p and p^{\prime} which determine these and d^{2} and ($\lambda_{1}, \mu_{1} \ldots$) ($\lambda_{2}, \mu_{2} \ldots$), and which can be transformed into

$$
\left\{\left(\lambda_{2}-\lambda_{1}\right) \frac{d}{d / a}+\left(\mu_{2}-\mu_{1}\right) \frac{d}{d b}+\left(\nu_{2}-\nu_{1}\right) \frac{d}{d c}+\ldots\right\} S(a, b, c, \ldots)=0,
$$

and

$$
\left\{\left(\lambda_{1}-\lambda_{2}\right) \cdot \frac{d}{d u^{\prime}}+\left(\mu_{1}-\mu_{2}\right) \frac{d}{d \bar{l}^{\prime}}+\left(\nu_{1}-v_{2}\right) \frac{d}{d c^{\prime}}+\ldots\right\} S\left(a^{\prime}, b^{\prime}, c^{\prime} \ldots\right)=0 .
$$

So that the slortest distance is at right angles to both lines.
By the help of this article, the theory of the principal axes of a quadric locus may be completed. It has been shown (XXX.) that they are generally u in number; (XXXVI.) that they are mutually at right angles; and now, since they are by delinition at right angles to the diametmal loci which lisect chomeds parallel to them, it appears by the above the diametral locus which is conjugate to any principa! axis contains all the others.
XXXIX. If $I^{\prime}\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime} \ldots\right)$ bo any point, and $\Lambda^{\prime}, l^{\prime}, C^{\prime} \ldots$ its projections on the faces of the simplicissimum of reference; ($P B^{\prime} C^{\prime} D^{\prime} \ldots$) the content of the simplicissimum with vortices at $l^{\prime}, l^{\prime}, C^{\prime} \ldots$

$$
=\stackrel{n^{2(n-1)}}{\{(n-1)!\}^{2}} \cdot \stackrel{\mu^{\prime}}{V_{2}^{2}} \cdot \stackrel{\nu^{\prime}}{V_{s}^{2}} \ldots V^{n-1}
$$

and the pedal simplicissimum $A^{\prime} B^{\prime} C^{\prime}$...

$$
=\frac{n^{2(n-1)}}{\{(n-1)!)\}^{3}} \cdot \frac{\lambda^{\prime}}{V_{1}^{2}} \cdot \frac{\mu^{\prime}}{V_{2}^{2}} \cdot \frac{\nu^{\prime}}{V_{s}^{2}} \ldots V^{n-1}\left\{\frac{V_{1}^{2}}{\lambda^{\prime}}+\frac{V_{2}^{2}}{\mu^{\prime}}+\frac{V_{s}^{2}}{\nu^{\prime}}+\ldots\right\} .
$$

(Comp. Art. XXVI.)
Let

$$
\begin{align*}
& \frac{\lambda-\lambda^{\prime}}{a_{1}}=\frac{\mu-\mu^{\prime}}{b_{1}}=\frac{\nu-\nu^{\prime}}{c_{1}}=\ldots \tag{1}\\
& \left(a_{1}+b_{1}+c_{1} \ldots=0\right), \\
& \frac{\lambda-\lambda^{\prime}}{a_{2}}=\frac{\mu-\mu^{\prime}}{b_{2}}=\frac{\nu-\nu^{\prime}}{c_{2}}=\ldots \tag{2}\\
& \left(a_{2}+b_{2}+\dot{c}_{2}+\ldots=0\right), \\
& \quad \& c ., \quad \& c .
\end{align*}
$$

be the equations to the lines $P A^{\prime}, P B^{\prime}, P C^{\prime}, \& c$.; then (1) is at right angles to the linear locus

$$
a_{1} \frac{d S}{d \lambda}+b_{1} \frac{d S}{d \mu}+c_{1} \frac{d S}{d \nu}+\ldots=0
$$

through the circumcentre (Art. XXXVI.), or, writing S_{1} for $S\left(a_{1}, b_{1}, c_{1} \ldots\right)$, to

$$
\lambda \frac{d S_{1}}{d a_{1}}+\mu \frac{d S_{1}}{d b_{1}}+\nu \frac{d S_{1}}{d c_{1}}+\ldots=0
$$

and this is parallel to $\lambda=0$; therefore

$$
\frac{d S_{1}}{d b_{1}}=\frac{d S_{1}}{d c_{1}}=\ldots \equiv q_{1}, \text { say }
$$

And the equations to determine $a_{1}, b_{1}, c_{1}, \& c$. are

$$
\begin{array}{rlr}
a_{1}+b_{1}+ & c_{1}+\ldots & =0 \\
(2.1)^{2} a_{1}+\quad(2.3)^{2} c_{1}+ & =q_{1}, \\
(3.1)^{2} a_{1}+(3.2)^{2} & b_{1}+\ldots & =q_{1}, \\
\& c ., & \quad \& c .,
\end{array}
$$

and

$$
a_{1}: b_{1}: c_{1}: \ldots::\left|\begin{array}{ccccc}
0, & 1, & 1, & 1 & \ldots \\
1, & 0, & (2.3)^{2}, & (2.4)^{2} & \ldots \\
1, & (3.2)^{2}, & 0, & (3.4)^{2} & \ldots \\
1, & (4.2)^{2}, & (4.3)^{2}, & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right|
$$

$$
:\left|\begin{array}{ccccc}
\left|\begin{array}{ccccc}
1, & 0, & 1, & 1 & \ldots \\
(2.1)^{2}, & 1, & (2.3)^{2}, & (2.4)^{2} & \ldots \\
(3.1)^{2}, & 1, & 0, & (3.4)^{2} & \ldots \\
(4.1)^{2}, & 1, & (4.2)^{2}, & 0 & \ldots \\
\ldots & \ldots . & \ldots & \ldots & \ldots
\end{array}\right| & \ldots
\end{array}\right|:\left|\begin{array}{ccccc}
1, & 1, & 0, & 1 & \ldots \\
(2.1)^{2}, & 0, & 1, & (2.4)^{2} & \ldots \\
(3.1)^{2}, & (3.2)^{2}, & 1, & (3.4)^{2} & \ldots \\
(4.1)^{2}, & (4.2)^{2}, & 1, & 0 & \ldots \\
\ldots & \ldots . & \ldots & \ldots & \ldots
\end{array}\right|
$$

and taking these as the values of $a_{1}, b_{1}, c_{1}, \& c$.,
and

$$
a_{1}=-(-2)^{n-1}\{(n-1)!\}^{2} V_{1}^{2} ;
$$

$l a_{1}+m b_{1}+n c_{1}+\& c$.

$$
=-\left|\begin{array}{ccccc}
0, & l, & m, & n & \ldots \\
0, & 1, & 1, & 1 & \ldots \\
1, & (2.1)^{2}, & 0, & (2.3)^{2} & \ldots \\
1, & (3.1)^{2}, & (3.2)^{2}, & 0 & \ldots \\
\ldots . & \ldots & \ldots & \ldots & \ldots
\end{array}\right| ;
$$

therefore
and

$$
\frac{d S_{1}}{d a_{1}}=(1.2)^{2} b_{1}+(1.3)^{2} c_{1}+\ldots
$$

$$
=-\left|\begin{array}{ccccc}
0, & 0, & (1.2)^{2}, & (1.3)^{2} & \ldots \\
0, & 1, & 1, & 1 & \ldots \\
1, & (2.1)^{2}, & 0, & (2.3)^{2} & \ldots \\
1, & (3.1)^{2}, & (3.2)^{2}, & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right|=\left|\begin{array}{ccccc}
0, & 1, & 1, & 1 & \ldots \\
0, & 0, & (1.2)^{2}, & (1.3)^{2} & \ldots \\
1, & (2.1)^{2}, & 0, & (2.3)^{2} & \ldots \\
1, & (3.1)^{2}, & (3.2)^{2}, & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right|
$$

$$
\begin{aligned}
& \frac{d S_{1}}{d b_{1}}=q_{1}=\frac{d S_{1}}{d c_{1}}=\ldots \equiv(2.1)^{2} a_{1}+(2.3)^{2} c_{1}+\ldots \\
& =-\left|\begin{array}{cccccc}
0, & (2.1)^{2}, & 0, & (2.3)^{2}, & (2.4)^{2} & \ldots \\
0, & 1, & 1, & 1, & 1 & \ldots \\
1, & (2.1)^{2}, & 0, & (2.3)^{2}, & (2.4)^{2} & \ldots \\
1, & (3.1)^{2}, & (3.2)^{2}, & 0, & (3.4)^{2} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots
\end{array}\right| \\
& =\left\lvert\, \begin{array}{ccccc}
1, & 1, & 1, & 1 & \ldots \\
(2.1)^{2}, & 0, & (2.3)^{2}, & (2.4)^{2} & \ldots \\
(3.1)^{2}, & (3.2)^{2}, & 0, & (3.4)^{2} & \ldots \\
(4.1)^{2}, & (4.2)^{2}, & (4.3)^{2}, & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array} \ldots\right.
\end{aligned}
$$

$=\left|\begin{array}{ccccc}0, & 1, & 1, & 1 & \ldots \\ 1, & 0, & (1.2)^{2}, & (1.3)^{2} & \ldots \\ 1, & (2.1)^{2}, & 0, & (2.3)^{2} & \ldots \\ 1, & (3.1)^{2}, & (3.2)^{2}, & 0 & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \ldots\end{array}\right|+\left|\begin{array}{ccccc}1, & 1, & 1, & 1 & \ldots \\ (2.1)^{2}, & 0, & (2.3)^{2}, & (2.4)^{2} & \ldots \\ (3.1)^{2}, & (3.2)^{2}, & 0, & (3.4)^{2} & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \cdots & \ldots\end{array}\right|$

$$
=-(-2)^{n}(n!)^{2} V^{2}+q_{1}
$$

and

$$
\begin{gathered}
2 S_{1}=a_{1} \frac{d S_{1}}{d a_{1}}+b_{1} \frac{d S_{1}}{d b_{1}}+c_{1} \frac{d S_{1}}{d c_{1}}+\ldots \\
=-(-2)^{n}(n!)^{2} \nabla^{2} \times\left[-(-2)^{n-1}\{(n-1)!\}^{2} V_{1}^{2}\right]
\end{gathered}
$$

Thus, then, $a_{1}=-(-2)^{n-1}\{(n-1)!\}^{3} V_{1}^{2}$,

$$
\begin{aligned}
\frac{d S_{1}}{d a_{1}} & =-(-2)^{n}(n!)^{2} V^{2}+q_{1} \\
S_{1} & =-(-2)^{2(n-1)} V^{2} \cdot V_{1}^{2}(n!)^{2}\{(n-1)!\}^{2}
\end{aligned}
$$

Similarly, $\quad b_{3}=-(-2)^{n-1}\{(n-1)!\}^{2} V_{2}^{2}$,

$$
\begin{gathered}
\frac{d S_{2}}{d l_{1}}=-(-2)^{n}(n!)^{2} V^{2}+q_{2} \\
S_{2}=-(-2)^{2(n-1)}(n!)^{2}\{(n-1)!\}^{2} V^{2} V^{2} \\
\& c ., \quad \& c .
\end{gathered}
$$

Again,

$$
\left|\begin{array}{ccc}
b_{y}, & c_{2}, & \ldots \\
b_{8}, & c_{3}, & \ldots \\
\ldots & \ldots & \ldots \\
b_{n+1}, & c_{n+1}, & \ldots
\end{array}\right| \times\left\{-(-2)^{n}(n!)^{2} V^{2}\right\}
$$

$$
=\left|\begin{array}{ccccc}
1, & 0, & 0, & 0, & \ldots \\
0, & 1, & 0, & 0, & \ldots \\
0, & a_{2}, & b_{3}, & c_{2}, & \ldots \\
0, & a_{3}, & b_{3}, & c_{3}, & \ldots \\
\ldots & \ldots & \ldots \\
0, & a_{n+1}, & b_{n+1}, & c_{n+1}, & \ldots
\end{array}\right| \times\left|\begin{array}{lllll}
0, & 1, & 1, & 1, & \ldots \\
1, & 0, & (1.2)^{2}, & (1.3)^{2}, & \ldots \\
1,(2.1)^{2}, & 0, & (2.3)^{2}, & \ldots \\
1,(3.1)^{2}, & (3.2)^{2}, & 0, & \ldots \\
\ldots & \ldots & \cdots & \ldots \\
& & &
\end{array}\right|
$$

$$
=\left|\begin{array}{ccccc}
0, & 1, & 0, & 0, & \ldots \\
1, & 0, & \frac{d S_{9}}{d a_{3}}, & \frac{d S_{3}}{d a_{3}}, & \ldots \\
1, & (2.1)^{2}, & \frac{d S_{9}}{d b_{3}}, & \frac{d S_{8}}{d b_{3}}, & \ldots \\
1, & (3.1)^{2}, & \frac{d S_{9}}{d c_{9}}, & \frac{d S_{3}}{d c_{8}}, & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right|=-\left|\begin{array}{cccc}
1, & \frac{d S_{2}}{d a_{2}}, & \frac{d S_{8}}{d a_{8}}, & \ldots \\
1, & \frac{d S_{3}}{d b_{2}}, & \frac{d S_{3}}{d b_{3}}, & \ldots \\
1, & \frac{d S_{3}}{d c_{9}}, & \frac{d S_{8}}{d c_{3}}, & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right|
$$

$$
=-\left|\begin{array}{ccccc}
1, & q_{3}, & q_{3}, & q_{4}, & \ldots \\
1, & \frac{d S_{2}}{d b_{2}}, & q_{3}, & q_{4}, & \ldots \\
1, & q_{8}, & \frac{d S_{3}}{d c_{3}}, & q_{4}, & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right|=-\left|\begin{array}{cccc}
1, & q_{3}, & q_{3}, & \ldots \\
0, & \frac{d S_{9}}{d b_{2}}-q_{2}, & 0, & \ldots \\
0, & 0, & \frac{d S_{3}}{d c_{3}}-q_{3}, & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right|
$$

$$
=-\left(\frac{d S_{2}}{d b_{2}}-q_{2}\right)\left(\frac{d S_{s}}{d c_{3}}-q_{3}\right) \ldots\left(\frac{d S_{n+1}}{d l_{n+1}}-q_{n+1}\right)
$$

$$
=-2_{-}^{n^{2}}(n!)^{2 n} V^{2 n} ;
$$

$$
\therefore\left|\begin{array}{ccc}
b_{2}, & c_{2}, & \ldots \\
b_{3}, & c_{3}, & \ldots \\
\ldots & \cdots & \ldots \\
b_{n+1}, & (n+1), & \ldots
\end{array}\right|=(-1)^{n} 2^{n(n-1)}(n!)^{2(n-1)} V^{8(n-1)},
$$

Now

$$
P A^{\prime}=\frac{n \lambda^{\prime}}{V_{1}^{\prime}}, P B^{\prime}=\frac{n \mu^{\prime}}{V_{2}^{\prime}}, \& c .
$$

and the direction ratios of these lines are the

$$
a_{1}: b_{1}: c_{1}: \ldots ; a_{2}: b_{2}: c_{2} \ldots
$$

\&c., \&c., above.
And it was shown (Art. XX.) that ($P B^{\prime} C^{\prime} D^{\prime} \ldots$)

$$
=\frac{1}{V^{n-1}} \frac{V^{n}}{\sqrt{(-1)^{n} S_{2}^{\prime} S_{s}^{\prime} \ldots S_{n+1}^{\prime}} \frac{n^{n}}{\mu^{\prime} \nu^{\prime} \ldots} V_{2} \cdot V_{3}}\left|\begin{array}{ccc}
b_{2}, & c_{3}, & \ldots \\
b_{s}, & c_{3}, & \ldots \\
\ldots & \ldots & \ldots \\
b_{n+1}, & c_{n+1} . & \ldots
\end{array}\right|
$$

$$
\begin{aligned}
& =\frac{V}{(-1)^{n} 2^{(n-1)}(n!)^{n}\{(n-1)!\}^{n}} \frac{1}{V_{3} \cdot V_{3} \ldots V^{n}} \times \frac{n^{n} \mu^{\prime} \nu^{\prime}}{V_{3} \cdot V_{8}} \ldots \\
& \quad \times\left\{(-1)^{n} 2^{n(n-1)}(n!)^{2(n-1)} V^{2(n-1)}\right\} \\
& =\frac{n^{2(n-1)}}{\{(n-1)!\}^{2}} \frac{\mu^{\prime}}{V_{3}^{2}} \frac{\nu^{\prime}}{V_{3}^{2}} \ldots V^{n-1},
\end{aligned}
$$

with similar values for $\left(P A^{\prime} C^{\prime} D^{\prime} \ldots\right),\left(P A^{\prime} B^{\prime} D^{\prime} \ldots\right)$, \&c. And hence the pedal simplicissimum of P

$$
=\frac{n^{2(n-1)} V^{n-1}}{\{(n-) 1!\}^{2}} \frac{\lambda^{\prime}}{V_{1}^{2}} \frac{\mu^{\prime}}{V_{s}^{2}} \frac{\nu^{\prime}}{V_{s}^{2}} \ldots\left\{\frac{V_{1}^{2}}{\lambda^{\prime}}+\frac{V_{s}^{2}}{\mu^{\prime}}+\frac{V_{s}^{2}}{\nu^{\prime}}+\& c .\right\}
$$

which vanishes if $\quad \frac{V_{1}^{2}}{\lambda^{\prime}}+\frac{V_{2}^{2}}{\mu^{\prime}}+\frac{V_{s}^{2}}{\nu^{\prime}}+\ldots=0$,
in which case the projections of P lie on a linear locus (the Simson locus of Art. XXVI.).

XI . The value of $\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime} \ldots\right)$ found in the last article leads to an interpretation of the equation

$$
\frac{A}{\lambda}+\frac{B}{\mu}+\frac{C}{\nu}+\ldots=0
$$

to an n-ic locus circumscribed to the simplicissimum of reference, and having $n+1$ nodes at the vertices, the lines joining which lie wholly on the locus.

If points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, \& c$. be taken on $P A^{\prime}, P B^{\prime}, P C^{\prime}, \& c$., respectively, such that
then, if

$$
P A^{\prime \prime}=f \cdot P A^{\prime}, \quad P B^{\prime \prime}=g \cdot P B^{\prime}, \quad P C^{\prime \prime}=h \cdot P C^{\prime}, \& c .
$$

then, if

$$
\frac{V_{j}^{2}}{f \lambda}+\frac{V_{s}^{2}}{g \mu}+\frac{V_{s}^{2}}{h \nu}+\ldots=0
$$

(i.e., the isogonal conjugate of $\frac{\lambda}{f}+\frac{\mu}{g}+\frac{\nu}{h}+\ldots=0$)
be equivalent to

$$
\begin{equation*}
\frac{A}{\lambda}+\frac{B}{\mu}+\frac{C}{\nu}+\ldots=0 \tag{1}
\end{equation*}
$$

i.e., if

$$
f: g: h: \ldots:: \frac{V_{2}^{2}}{A}: \frac{V_{2}^{2}}{B}: \frac{V_{s}^{2}}{C}: \ldots ;
$$

then, for every position of P on (1), $A^{\prime \prime}, B^{\prime \prime}, O^{\prime \prime}$, \&c. lie on a linear locus.

If the point lie upon the locus

$$
\begin{equation*}
\frac{A}{\lambda}+\frac{B}{\mu}+\frac{O}{\nu}+\ldots=\frac{M}{\lambda \mu \nu} \ldots(\lambda+\mu+\nu \ldots)^{2} . \tag{2}
\end{equation*}
$$

(a locus concentric with the above, i.e., having the same poles of infinity), the content of the simplicissimum whose vertices are at $A^{\prime \prime}, B^{\prime \prime}, O^{\prime \prime}+\ldots$ will be constant. (The above results are in analogy to those given for Conics in Questions 9816, 9817, 9818, and in the solution of Question 8177 in the Reprint from the Educational Times, Vol. xinx.)

The linear polar of any point $\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \ldots\right)$ with respect to (1) is

$$
\frac{\lambda}{\lambda^{\prime}}\left(\frac{B}{\mu^{\prime}}+\frac{C}{\nu^{\prime}}+\ldots\right)+\frac{\mu}{\mu^{\prime}}\left(\frac{A}{\lambda^{\prime}}+\frac{C}{\nu^{\prime}}+\ldots\right)+\& c . \ldots=0
$$

and hence the centres, the poles of infinity, are given by the equations

$$
\frac{\lambda^{\prime}}{A}\left(\frac{V}{n}-\lambda^{\prime}\right)=\frac{\mu^{\prime}}{B}\left(\frac{V}{n}-\mu^{\prime}\right)=\frac{\nu^{\prime}}{O}\left(\frac{V}{n}-\nu^{\prime}\right)=\ldots
$$

If the point ($\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \ldots$) lie upon (1), this reduces to

$$
\begin{equation*}
\frac{A}{\lambda^{\prime 3}} \lambda+\frac{B}{\mu^{\prime 2}} \mu+\frac{C}{\nu^{\prime 2}} \nu+\ldots=0 \tag{3}
\end{equation*}
$$

(compare Salmon, Geometry of Three Dimensions, p. 416), and therefore (Art. xil.), if $p_{1}, p_{2}, p_{3}, \ldots$ be the perpendiculars from the vertices of the simplicissimum of reference upon (3),

$$
\frac{A}{\lambda^{\prime 2}}: \frac{B}{\mu^{\prime 2}}: \frac{C}{\nu^{\prime 2}}: \ldots:: p_{1}: p_{3}: p_{3}: \ldots
$$

and if

$$
A=V_{1}^{2}, \quad B=V_{y}^{2}, \quad O=V_{3}^{2}, \& c .
$$

so that the locus (1) is the isogonal conjugate of infinity, this implies that the perpendiculars from the vertices upon the tangent locus at any point are inversely proportional to the squares of the perpendiculars from the point of contact upon the corresponding faces of the simplicissimum (and hence this is true for the circumcircle of a triangle).

From (3), also, it follows that, if the linear locus
touches (1),

$$
a \lambda+\beta \mu+\gamma^{\nu}+\ldots=0
$$

(compare Salmon, Geometry of Three Dimensions, p. 416), and the reciprocal equation is of order 2^{n-1}.

If ($\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \ldots$) be any point, any line through it

$$
\begin{gathered}
\frac{\lambda-\lambda^{\prime}}{a}=\frac{\mu-\mu^{\prime}}{b}=\frac{\nu-\nu^{\prime}}{c}=\ldots \equiv p \text { say } \\
\quad(\text { where } a+b+c+\ldots=0 \text {) }
\end{gathered}
$$

will meet (1) at the points where p has the values given by the equation

$$
\left.\begin{array}{c}
A\left(\mu^{\prime}+l p\right)\left(\nu^{\prime}+c p\right)\left(\pi^{\prime}+d p\right) \ldots+B\left(\lambda^{\prime}+a p\right)\left(\nu^{\prime}+c p\right)\left(\pi^{\prime}+d p\right) \ldots \\
+O\left(\lambda^{\prime}+a p\right)\left(\mu^{\prime}+b p\right)\left(\pi^{\prime}+d p\right) \ldots+\& c .=0 ; \\
\text { or } \quad \lambda^{\prime} \mu^{\prime} \nu^{\prime} \ldots\left[\left(\frac{A}{\lambda^{\prime}}+\frac{B}{\mu^{\prime}}+\frac{C}{\nu^{\prime}}+\ldots\right)\right. \\
+p\left\{\frac{A}{\lambda^{\prime}}\left(\frac{b}{\mu^{\prime}}+\frac{c}{\nu^{\prime}}+\ldots\right)+\frac{B}{\mu^{\prime}}\left(\frac{a}{\lambda^{\prime}}+\frac{c}{\nu^{\prime}}+\ldots\right)+\frac{C}{\nu^{\prime}}\left(\frac{a}{\lambda^{\prime}}+\frac{b}{\mu^{\prime}}+\ldots\right)+\& c .\right\} \\
+p^{2}\left\{\frac{A}{\lambda^{\prime}}\left(\frac{b c}{\mu^{\prime} \nu^{\prime}}+\ldots\right)+\frac{B}{\mu^{\prime}}\left(\frac{a c}{\lambda^{\prime} \nu^{\prime}}+\ldots\right)+\frac{C}{\nu^{\prime}}\left(\frac{a b}{\lambda^{\prime} \mu^{\prime}}+\ldots\right)+\& c .\right\} \\
+\ldots \quad \ldots \quad \ldots
\end{array}\right] \quad \begin{aligned}
& \left.+p^{n} \frac{a b c \ldots}{\lambda^{\prime} \mu^{\prime} \nu^{\prime} \ldots}\left(\frac{A}{a}+\frac{B}{b}+\frac{C}{c}+\ldots\right)\right]=0,
\end{aligned}
$$

and the line will lie wholly on the locus if the $n+1$ coefficients all vanish, This involves that ($\lambda^{\prime} \mu^{\prime} \nu^{\prime} \ldots$) should lie on (1), and that the eliminant of the other n coefficients equated to zero and of

$$
a+b+c+\ldots=0
$$

should vanish, which it must do since the edges lie on the locus. If ($\lambda^{\prime} \mu^{\prime} \nu^{\prime} \ldots$) be one of the poles of infinity, the coefficient of p in the above equation will vanish, and consequently the sum of the reciprocals of the intercepts made upon any line through one of them is zero. This is a generalisation of the property of the centre of a couis circumscribed to a triangle.

From the value of ($P B^{\prime} \sigma^{\prime} D^{\prime}$), found in the last article, it appears that

$$
\mu \nu \ldots \tau=M(\lambda+\mu+\nu+\ldots+\tau)^{n}
$$

represents a locus such that $\left(P B^{\prime} C^{\prime} D^{\prime}\right)$ is constant. The linear loci $\mu=0, \nu=0, \ldots$ are asymptotic to this, and their intersection, the vertex opposite to $\lambda=0$, is the pole of infinity. Also, any line wholly on the surface must be parallel to a face ($\operatorname{not} \lambda=0$) of the simplicissimum.

Again, $\quad \frac{A}{\lambda}+\frac{B}{\mu}=0$, or $A \mu+B \lambda=0$,
1890.] Simplicissima in Space of n Dimensions.
is a locus, such that $\left(P B^{\prime} C^{\prime} D^{\prime} \ldots\right):\left(P A^{\prime} C^{\prime} D^{\prime} \ldots\right)$ is a constant ratio; and

$$
\frac{A}{\lambda}+\frac{B}{\mu}+\frac{C}{\nu}=0
$$

a locus of the second degree which contains the intersections of

$$
\lambda=0, \mu=0 ; \quad \mu=0, \nu=0 ; \quad \nu=0, \lambda=0
$$

is the locus of a point P such that

$$
\left(P B^{\prime} O^{\prime} D^{\prime} \ldots\right),\left(P A^{\prime} C^{\prime} D^{\prime} \ldots\right),\left(P A^{\prime} D^{\prime} D^{\prime} \ldots\right)
$$

satisfy a linear relation.

$$
\text { Similarly, } \quad \frac{A}{\lambda}+\frac{B}{\mu}+\frac{C}{\nu}+\frac{D}{\pi}=0
$$

is a locus of the third order, such that, if P be any point in it,

$$
\left(P B^{\prime} O^{\prime} D^{\prime} \ldots\right),\left(P A^{\prime} O^{\prime} D^{\prime} \ldots\right),\left(P A^{\prime} D^{\prime} D^{\prime} \ldots\right),\left(P A^{\prime} B^{\prime} C^{\prime} \ldots\right)
$$

are connected by a linear relation. This locus passes through the intersections of any three of the linear loci

$$
\lambda=0, \mu=0, \nu=0, \pi=0,
$$

and the process of interpretation may be carried on indefinitely.
XLI. It has been shown (Art. XX.) that, if a pencil of $2 n$ coterminons lines, in space of n dimensions, be cut by any linear locus, the products of the contents of pairs of complementary ($n-1$)-ary simplicissima, having their vertices at the points of intersection, must satisfy certain identical relations, which lead to relations among the anharmonic ratios of the pencil. These may be obtained as follows :-

All the $(n-1)^{\text {th }}$ minors of

$$
\left|\begin{array}{ccccc}
b_{1}, & b_{2}, & b_{3}, & \ldots . . & b_{2 n} \\
c_{1}, & c_{2}, & c_{3} & \ldots \ldots . & c_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
l_{1}, & l_{2}, & l_{3}, & \ldots . . & l_{2 n} \\
b_{1}, & b_{2}, & b_{8}, & \ldots . . & b_{2 n} \\
c_{1}, & c_{2}, & c_{3}, & \ldots . & c_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
l_{1}, & l_{2}, & l_{3}, & \ldots . & l_{2 n}
\end{array}\right|
$$

must vanish. And therefore, writing ($p, q, r, \ldots t$) for

$$
\begin{aligned}
& \quad\left|\begin{array}{ccccc}
b_{p}, & b_{q}, & b_{r}, & \ldots . . & b_{t} \\
c_{\mu}, & c_{q}, & c_{r}, & \ldots & c_{t} \\
\ldots & \ldots & \ldots & \ldots \\
l_{p}, & l_{q}, & l_{r}, & \ldots . . & l_{t}
\end{array}\right|, \\
& \quad b_{n}(n+1, n+2, \ldots 2 n-1,2 n)+(-1)^{n} b_{n+1}(n+2, n+3, \ldots 2 n, n) \\
& +b_{n+2}(n+3, n+4, \ldots n, n+1)+(-1)^{n} b_{n+3}(n+4, n+5, \ldots n+1, n+2) \\
& +\& c .=0, \\
& \quad c_{n}(n+1, n+2, \ldots 2 n-1,2 n)+(-1)^{n} c_{n+1}(n+2, n+3, \ldots 2 n, n) \\
& +c_{n+2}(n+3, n+4, \ldots n, n+1)+(-1)^{n} c_{n+3}(n+4, n+5, \ldots n+1, n+2) \\
& +\& c .=0, \\
& \quad \& c .
\end{aligned}
$$

Now, if these equations be multiplied respectively by the first minors of

$$
\left|\begin{array}{cccc}
b_{n}, & c_{n}, & \ldots \ldots & l_{n} \\
b_{1}, & c_{1}, & \ldots \ldots & l_{1} \\
b_{2}, & c_{2}, & \ldots . & l_{2} \\
\ldots & \ldots & \ldots & \ldots \\
b_{n-1}, & c_{n-1}, & \ldots & \ldots \\
l_{n-1}
\end{array}\right|,
$$

and the results added together,

$$
\begin{aligned}
& (1,2, \ldots n-1, n)(n+1, n+2, \ldots 2 n-1,2 n) \\
+ & (-1)^{n}(1,2, \ldots n-1, n+1)(n+2, n+3, \ldots 2 n, n) \\
+ & (1,2, \ldots n-1, n+2)(n+3, n+4, \ldots n, n+1) \\
+ & (-1)^{n}(1,2, \ldots n-1, n+3)(n+4, n+5, \ldots n+1, n+2)+\& c .=0,
\end{aligned}
$$

which is the general type of the identical relations required.
If $n=2$, and $1,2,3,4$ denote four points in a straight line, the formula gives

$$
(1,2)(3,4)+(1,3)(4,2)+(1,4)(2,3)=0,
$$

the well-known relation.
In general, the number of relations will be equal to the number of combinations of $2 n$ things, $n-1$ together, i.e.,

$$
\frac{2 n!}{(n+1)!(n-1)!},
$$

and therefore fifteen for tridimensional space. Thas, if $1,2,3,4,5,6$ denote any six points in a plane, and $(1,2,3)$ the area of the trianglo whose vertices are at 1,2 , and 3 , taken in that order,

$$
(3,5,6)(1,2,4)-(3,5,1)(2,4,6)+(3,5,2)(4,6,1)
$$

$$
-(3,5,4)(6,1,2)=0 \equiv \mathrm{x} .
$$

$$
(3,6,1)(2,4,5)-(3,6,2)(4,5,1)+(3,6,4)(5,1,2)
$$

$$
-(3,6,5)(1,2,4)=0 \equiv \mathrm{xn}
$$

$$
(4,5,6)(3,2,1)-(4,5,3)(2,1,6)+(4,5,2)(1,6,3)
$$

$$
-(4,5,1)(6,3,2)=0 \equiv \mathrm{x}_{\mathrm{II} .}
$$

$$
\begin{aligned}
& (1,2,3)(4,5,6)-(1,2,4)(5,6,3)+(1,2,5)(6,3,4) \\
& -(1,2,6)(3,4,5)=0 \equiv \mathrm{I} \text {, } \\
& (1,3,4)(2,5,6)-(1,3,2)(5,6,4)+(1,3,5)(6,4,2) \\
& -(1,3,6)(4,2,5)=0 \equiv \text { II., } \\
& (1,4,5)(6,2,3)-(1,4,6)(2,3,5)+(1,4,2)(3,5,6) \\
& -(1,4,3)(5,6,2)=0 \equiv \mathrm{~m} . \\
& (1,5,6)(2,3,4)-(1,5,2)(3,4,6)+(1,5,3)(4,6,2) \\
& -(1,5,4)(6,2,3)=0 \equiv \mathrm{Iv} ., \\
& (1,6,2)(3,4,5)-(1,6,3)(4,5,2)+(1,6,4)(5,2,3) \\
& -(1,6,5)(2,3,4)=0 \equiv \mathrm{v} ., \\
& (2,3,4)(6,5,1)-(2,3,6)(5,1,4)+(2,3,5)(1,4,6) \\
& -(2,3,1)(4,6,5)=0 \equiv \mathrm{VI} \text {., } \\
& (2,4,5)(6,3,1)-(2,4,6)(3,1,5)+(2,4,3)(1,5,6) \\
& -(2,4,1)(5,6,3)=0 \equiv \text { चII., } \\
& (2,5,6)(4,3,1)-(2,5,4)(3,1,6)+(2,5,3)(1,6,4) \\
& -(2,5,1)(6,4,3)=0 \equiv \text { vill., } \\
& (2,6,1)(5,4,3)-(2,6,5)(4,3,1)+(2,6,4)(3,1,5) \\
& -(2,6,3)(1,5,4)=0 \equiv 1 \times ., \\
& (3,4,5)(6,1,2)-(3,4,6)(1,2,5)+(3,4,1)(2,5,6) \\
& -(3,4,2)(5,6,1)=0 \equiv \mathrm{x} .
\end{aligned}
$$

$$
\begin{aligned}
(4,6,1)(5,3,2)-(4,6,5)(3,2,1) & +(4,6,3)(2,1,5) \\
- & (4,6,2)(1,5,3)=0 \equiv \mathrm{xiv} . \\
(5,6,1)(2,3,4)-(5,6,2)(3,4,1)+ & (5,6,3)(4,1,2) \\
- & (5,6,4)(1,2,3)=0 \equiv \mathrm{xv.}
\end{aligned}
$$

and, denoting the sinisters of those equations by the Roman figures to which they are put equal,

$$
\begin{aligned}
& \mathrm{I} .+\mathrm{x} .+\mathrm{xv} .=0, \quad \mathrm{I} .+\mathrm{XI} .+\mathrm{xiv} .=0, \quad \mathrm{I} .+\mathrm{xII} .+\mathrm{xIII}=0, \\
& \text { II. }+ \text { vil. }+\mathrm{xv} .=0, \quad \text { II. }+ \text { viII } .+\mathrm{xiv} .=0, \quad \text { il. }+1 \mathrm{x} .+\mathrm{xilI} .=0,
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{iv} .+\mathrm{vi} .+\mathrm{xiv} .=0, \quad \mathrm{Iv} .+\mathrm{viI} .+\mathrm{XII} .=0, \quad \mathrm{IV} .+\mathrm{IX} .+\mathrm{x} .=0, \\
& \text { v. }+ \text { vi. }+ \text { xili. }=0, \quad \text { v. }+ \text { vil. }+ \text { xi. }=0, \quad \text { v. }+ \text { vili. }+\mathbf{x} .=0 .
\end{aligned}
$$

It is easy, by the help of these identities, to show that all the relations may be derived from five, but I have not succeeded in deriving them from four, as tho theory (Art. XIX.) seems to require. This is probably due to my having ovorlooked some relation (probably not linear) between i., II., \&c.

The above relations hold for any six points in a plano. If two points, say 5 and 6 , coincide, those of the fiftoen rolations which do not become idontically true, reduce to

$$
(1,2,5)(3,4,5)-(1,3,5)(2,4,5)+(1,4,5)(2,3,5)=0
$$

Hence, if $1,2,3,4,5$ be any tive points in a plane, the following relations hold among the triangles whose vertices are at these points :-

$$
\begin{aligned}
& (1,2,5)(3,4,5)-(1,3,5)(2,4,5)+(1,4,5)(2,3,5)=0 \\
& (1,2,4)(3,5,4)-(1,3,4)(2,5,4)+(1,5,4)(2,3,4)=0 \\
& (1,2,3)(4,5,3)-(1,4,3)(2,5,3)+(1,5,3)(2,4,3)=0 \\
& (1,3,2)(4,5,2)-(1,4,2)(3,5,2)+(1,5,2)(3,4,2)=0 \\
& (2,3,1)(4,5,1)-(2,4,1)(3,5,1)+(2,5,1)(3,4,1)=0
\end{aligned}
$$

If one of the anharmonic ratios be unity, others are so also; e.g., if
from 1 .,

$$
(1,2,3)(4,5,6)=(1,2,4)(5,6,3)
$$

and from xv., $\quad(1,5,6)(2,3,4)=(2,5,6)(1,3,5)$
and the lines 12, 34, and 56 aro concurrent.

If another independent ratio be unity also, say

$$
\begin{aligned}
& (1,3,4)(2,5,6) \\
\text { then } \quad(1,3,4)(2,5,6) & =(1,3,5)(2,4,6)(2,4,6)=(1,5,6)(2,3,4), \\
\text { by i1., }(1,3,2)(4,5,6) & =(1,3,6)(2,4,5)=(1,4,2)(3,5,6),
\end{aligned}
$$

and by Ix.,

$$
(1,2,6)(3,4,5)=(1,5,4)(2,3,6)=(1,2,5)(6,3,4),
$$

and the lines 15,36 , and 2.1 are concurrent, and also 13,26 , and 45 aro concurrent.

Similarly, the typical relation when $n=4$-in othor words, among the products of complemontary tetrahedra which have their vertices at any eight points in the samo tridimensional space (i.e., iu the same linear locas in space of four dimensions)-is

$$
\begin{aligned}
& (1,2,3,4)(5,6,7,8)+(1,2,3,5)(6,7,8,4) \\
+ & (1,2,3,6)(7,8,4,5)+(1,2,3,7)(8,4,5,6) \\
+ & (1,2,3,8)(4,5,6,7)=0:
\end{aligned}
$$

these are " $0_{3}^{\prime \prime}$ or 56 in number, and should bo depondent (Art. XX.) upon 23 independent relations.

By supposing two of tho points to coincide, the following typical relation is obtained among the tetrahedra the vortices of which aro situated at any sovou points :

$$
\begin{aligned}
& (1,2,3,4)(1,5,6,7)+(1,2,3,5)(6,7,4,1) \\
+ & (1,2,3,6)(7,4,1,5)+(1,2,3,7)(4,1,5,6)=0
\end{aligned}
$$

and, by supposing two other points to coincide, this typical relation among the tetrahedra the vertices of which occupy any six points in space

$$
\begin{aligned}
(1,2,3,4)(1,2,5,6) & -(1,2,3,5)(1,2,6,4) \\
& +(1,2,3,6)(1,2,4,5)=0
\end{aligned}
$$

In tho geometry of space of n dimensions all the anharmonic systems up to the $n^{\text {th }}$ have their-upplication. Pencils of $2 u$ straight lines through a point cutting a linear locus, form a system of the $\overline{n-1}{ }^{\text {th }}$ class; pencils of $2 n-2$ planes through a line cut linear loci represouted by two equations in a system of the $\overline{n-2^{\text {th }}}$ class; and so on, until pencils of four lincar loci through a common intersection cut a line in points which form an ordinary anhurmonic system, i.e., in accordance with the nomenclature above in one of the first class.

XIIII. A special cuse, which seems to bo the proper goneralization of a hamonic pencil arises, when the poncil meoting at $(V, 0,0, \ldots)$ is composed of the $2 n$ straight lines

$$
\nu=\pi=\ldots=0, \quad \mu=\pi=\ldots=0, \quad \mu=\nu=\ldots=0, \& c \cdot ;
$$

the ellges of the simplicissimum of reference which meat at the origin of the pencil, and the other u lines

$$
\begin{gathered}
\frac{\mu}{-a}=\frac{\nu}{b}=\frac{\pi}{c}=\ldots, \quad \frac{\mu}{a}=\frac{\nu}{-b}=\frac{\pi}{c}=\ldots, \\
\frac{\mu}{a}=\frac{\nu}{b}=\frac{\pi}{-c}=\ldots, d c .
\end{gathered}
$$

(or more generally of the $2 n$ lines

$$
\begin{aligned}
& N=0, P=0, \ldots ; \quad M=0, P^{\prime}=0, \ldots ; \quad M=0, N=0, \ldots ; \& \mathrm{c} ., \\
& \text { and } \quad-A M=\quad B N=\quad O P=\ldots \text {, } \\
& A M=-D N=O P=\ldots, \\
& A M=B N=-O P=\ldots, \\
& \text { du: \&c., }
\end{aligned}
$$

all of which meet ab the peind

$$
M=0, \quad N=(1, \quad l=0, \ldots)
$$

In spate of threo dimensions tho anharmonic ratios comeresponding to such it system are wiven by

$$
\begin{aligned}
& (1,4,: i)(4,5,6):(1,2,4)(3,5,(6):(1,2,5)(3,4,6):(1,2,6)(3,4,5) \\
& :(1,3,4)(2,5,6):(1,3,5)(2,4,(6):(1,: 3,(i)(2,4,5):(1,4,5)(2,3,6) \\
& :(1,4,6)(2,3,5):(1,5,6)(2,3,4):: 2: 1:-1: 0:-1 \\
& : 0:-1: 1:-1: 0 ;
\end{aligned}
$$

and the other systems whtiand by dhaging the signs of at b, or a will, like the absere, have the ir : mhatmonic ratios

$$
\pm 2, \pm!, \pm 1,0, \text { or } \infty .
$$

The completo system, which includes all the ratys of these, is composed of the first there of these rays, and fow others, such that, if they cul, any plane in the points $1,2,3$ and $4,5,(i, 7$, respeetively, then, if any three of the last four points be taken as the vortices of a triangle, the points $1,2,3$ wre the feet of consurrent lines from the vertices through the remaining point.

It is casily proved that, if the lines 56, 64, 45 touch a conic about 123 at these points respectively, the six points form a systom of the kind, the seventh being the point of concurrence of 14, 25, 30. Therefore, if from any point threo tangent planes be drawn to a quadric surface, the threo points of contact, and the thireo points where tho intersections of tho tangont planes mect the polar plane of the original point, form a system of tho kind stated.

Again, if two sets of points $1,5,6$ and $4^{\prime}, 55^{\prime}, 6^{\prime}$ are each thus conjugate to the samo threo primary points $1,2,3$, and if 7 and 7 ' be the additional points connected with these systems, the oight points $4,5,6,7$ and $4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}$ all lio on the same conic, to which $1^{2} 23$ is self-conjugate-viz., if tho rays through $1,2,3$ be the edges of the simplicissimum as above, and those through $4,5,6$ tho remaining three lines, theso and that through $7, \frac{\mu}{a}=\frac{\nu}{b}=\frac{\pi}{c}$ and $4^{\prime}, 5^{\prime}, 6^{\prime}$ and 7^{\prime} tho samo with $a^{\prime}, l^{\prime}, c^{\prime}$ writton for a, b, c, on

$$
\left|\begin{array}{lll}
\lambda^{2}, & \mu^{2}, & r^{2} \\
a^{2}, & b^{2}, & r^{2} \\
a^{\prime 2}, & b^{\prime 2}, & e^{\prime 2}
\end{array}\right|=0 .
$$

In the same way, in space of u dimensions a peneil of $2 n$ rays of the kind defined at the heginning of this attiele ents any transversal linear locus in $2 n$ points, such that first n peints are the feet of comenrrent lines from the vertiees of the simplicissimum defined by the second n, and tho anharinonic ratios aro

$$
\pm 2, \pm \frac{1}{2}, \pm 1,0, \infty
$$

Any set of n points so conjugate with a given set of n points, involves, by changing tho signs of a, \&ce., a nystem of 2^{n-1} poinis constituting 2^{n-1} sets of ratios.

All the $n .9^{n-1}$ points belonging to u such systems comjugate to the same n points, lio upon the same pualric locus in spaco of ($n-1$) dimensions, to which tho simplicissimmon, of which the vertices aro at the n points to which cach system is conjngate, is self-reciprocal ; and if $a, b, c \ldots ; a^{\prime}, b^{\prime} \ldots$, \&ec. be the constants determining these points, this locus is

$$
\left|\begin{array}{cccc}
\lambda^{2}, & \mu^{3}, & \nu^{2} & \ldots \\
a^{2}, & b^{3}, & c^{2} & \ldots \\
a^{\prime 2}, & b^{\prime 2}, & c^{\prime 2} & \ldots \\
a^{\prime \prime \prime}, & b^{\prime \prime 3}, & c^{\prime \prime 2} & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right|=0 .
$$

Each system of points upon such a quadric is analogous to a system of points in involution; the n vertices of the simplicissimum corresponding to the foci of the involution. Wiach point ou the quadric determines the other 2^{n-1} points of its systcm.

It may also be shown that the four systems of this kind, dutermined on the faces of the tetrahedron of reference by the samo point of concurronce, lio on tho same quadric surfaco; for, if this point be $a: b: c: d$, the points on $\lambda=0$ are

$$
0:-b: c: l, \quad 0: b:-c: d, \quad 0: b: c-d ;
$$

those on $\mu=0$,

$$
-a: 0: c: d, \quad a: 0:-c: d, \quad a: 0: c:-d
$$

those on $\nu=0$,

$$
-a: b: 0: d, \quad a:-b: 0: d, \quad a: b: 0:-d
$$

and on $\pi=0$,

$$
-n: b: 0: 0, a:-b: a: 0, a: b:-a: 0
$$

these all lie upon
or

$$
\left(\frac{\lambda}{a}+\frac{\mu}{b}+\frac{\nu}{c}+\frac{\pi}{c l}\right)^{2}+\left(\frac{\lambda \mu}{a b}+\frac{\lambda_{1}}{a c}+\frac{\lambda \pi}{m l}+\ldots\right)=0,
$$

which has double contact with the circumscribed guadric

$$
\frac{\lambda \mu}{a b}+\frac{\lambda \nu}{a c}+\frac{\lambda \pi}{i l l}+\frac{\mu \nu}{l, c}+\frac{\mu \pi}{h, l}+\frac{\nu \pi}{c l}=0,
$$

which passes throngla the points

$$
(-a, b, c, l) ; \quad(a,-l, c, l) ; \quad(a, b,-c, d) ; \quad(a, b, c,-d) .
$$

In the same way, in space of four dimensions, the five systems determined on the faces of tho simplicissimum of reference by the same point of concurrence,

$$
(a: b: c: c l: e)
$$

all lic upon

$$
\frac{\lambda \mu}{a b}+\frac{\lambda \nu}{a c}+\frac{\lambda \pi}{a d}+\frac{\lambda \rho}{a e}+\frac{\mu \nu}{b c}+\frac{\mu \pi}{b d}+\frac{\mu \rho}{b e}+\frac{\nu \pi}{c d}+\frac{\nu \rho}{c e}+\frac{\pi \rho}{d e}=0 ;
$$

and, in space of five dimensions, the systems determined by the point

$$
(a: b: c: d: B: f)
$$

lie upon

$$
\begin{gathered}
\frac{\lambda^{2}}{a^{2}}+\frac{\mu^{2}}{b^{2}}+\frac{\nu^{2}}{c^{2}}+\frac{\pi^{2}}{d^{2}}+\frac{\rho^{2}}{\rho^{2}}+\frac{\sigma^{2}}{f^{2}} \\
-\frac{5}{2}\left\{\frac{\lambda \mu}{a b}+\frac{\lambda \nu}{a c}+\frac{\lambda \pi}{a d}+\frac{\lambda \rho}{a e}+\frac{\lambda \sigma}{a f}+\frac{\mu \nu}{b c}+\& c .\right\}=0 ;
\end{gathered}
$$

and so on, the quadric locus being of the form

$$
\left(\frac{\lambda}{a}+\frac{\mu}{b}+\ldots\right)^{2}-\kappa\left(\frac{\lambda \mu}{a b}+\frac{\lambda \nu}{a c}+\ldots\right)=0
$$

and having contact with

$$
\left(\frac{\lambda \mu}{a b}+\frac{\lambda \nu}{a c} \ldots \ldots\right)=0
$$

aloug its intersertion with

$$
\frac{\lambda}{n}+\frac{\mu}{b}+\ldots=0
$$

Ω locus of which interpretations aro given in Art. XXIII. all finem.
XLIII. 'Two quadric loci, which intersect in the linear locus at infinity and noother linear locus, are similar and similarly situated, having two centrose of similitude in the line of contres.

$$
\begin{equation*}
U=A_{11} \lambda^{3}+A_{28} \mu^{2}+A_{33} \nu^{2}+\ldots+2 A_{12} \lambda \mu+\ldots=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
U+\left(B_{1} \lambda+B_{2} \mu+B_{3} \nu+\ldots .\right)(\lambda+\mu+\nu+\ldots)=0 \tag{2}
\end{equation*}
$$

\qquad
are two such loci.
where

$$
(a+b+c+\ldots=0) \text { (Art. XVIII.) }
$$

be any line through ($\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \ldots$) cutting (1) and (2) at distances p and p^{\prime}, these are determined by the equations

$$
\begin{gathered}
U^{\prime}+m p\left(a \frac{d U^{\prime}}{d \lambda^{\prime}}+b \frac{d U^{r^{\prime}}}{d \mu^{\prime}}+c \frac{d U^{\prime}}{d v^{\prime}}+\ldots\right) \\
+m^{2} p^{2}\left(A_{11} a^{8}+\Lambda_{22} b^{2}+A_{2 s} c^{2}+\ldots+2 A_{12} b c+\ldots\right)=0
\end{gathered}
$$

and

$$
U^{\prime}+\left(B_{1} \lambda^{\prime}+3_{2} \mu^{\prime}+B_{3} \nu^{\prime}+\ldots\right)\left(\lambda^{\prime}+\mu^{\prime}+\nu^{\prime}+\ldots\right)
$$

$$
\begin{aligned}
& +m p^{\prime}\left\{a \frac{d U^{\prime}}{d \lambda^{\prime}}+b \frac{d U^{\prime}}{d \mu^{\prime}}+c \frac{d U^{\prime}}{d \nu^{\prime}}\right. \\
& \quad+\ldots+\left(B_{1} a+B_{2} b+B_{3} c+\ldots\right)\left(\lambda^{\prime}+\mu^{\prime}+\nu^{\prime}+\ldots\right\} \\
& \quad+m^{3} p^{\prime 3} \cdot\left\{\Lambda_{11} a^{9}+\Lambda_{23} b^{3}+\Lambda_{33} c^{2}+\ldots+2 \Lambda_{13} b c+\ldots\right\} .
\end{aligned}
$$

In order that tho values of p^{\prime} should bo equimultiples of those of p, it is necessary and sufficient that

$$
\begin{align*}
& 1+\frac{\left(B_{1} \lambda^{\prime}+B_{2} \mu^{\prime}+B_{3} י^{\prime}+\ldots\right) V}{V^{\prime}} \\
& =\left\{1+\frac{\left(B_{1} a+B_{2} b+B_{3} c+\ldots\right) V}{a \cdot \frac{d U J^{\prime}}{d \lambda^{\prime}}+b \frac{d U^{\prime}}{d \mu^{\prime}}+c \frac{d V^{\prime}}{d \nu^{\prime}}+\ldots}\right\}^{2} \tag{3}
\end{align*}
$$

For similitude, these quantities must romain unchanged for all valuos of a, b, c, consistent with $a+b+c+\ldots=0$;
and therefore

$$
\frac{n_{1} a+B_{2} b+B_{3} c+\ldots}{a^{d U U^{\prime}}} \frac{1 \lambda^{\prime}}{}+b^{d I U U^{\prime}} d \mu^{\prime}+c \frac{d U^{\prime}}{d \nu^{\prime}}+\ldots .
$$

must also remain unaltered. Putting this equal to q,
and

$$
\left.q=\frac{\left(B_{2}-B_{1}\right) b+\left(B_{3}-B_{1}\right) c+\ldots}{\left(\frac{d U^{\prime}}{d \mu^{\prime}}-\frac{d U}{d \lambda^{\prime}}\right) b+\left(\frac{d}{d \bar{V}^{\prime}}\right.} \frac{d \nu^{\prime}}{d U^{\prime}}\right) c+\ldots .
$$

$$
\frac{B_{3}-B_{1}}{\frac{d U^{\prime}}{d \mu^{\prime}}-\frac{d U^{\prime}}{d \tilde{\lambda}^{\prime}}}=\frac{B_{3}-B_{1}}{\frac{d U^{\prime}}{d \nu^{\prime}}-\frac{d U^{\prime}}{d \lambda^{\prime}}}=\ldots=q ;
$$

therefore

$$
\begin{equation*}
\frac{d U^{\prime}}{d \lambda^{\prime}}-\frac{B_{1}}{q}=\frac{d U^{\prime}}{d \mu^{\prime}}-\frac{B_{2}}{q}=\frac{d U^{\prime}}{d \nu^{\prime}}-\frac{B_{9}}{q}=\ldots \equiv h, \text { say } \ldots \ldots \tag{4}
\end{equation*}
$$

theroforo

$$
2 U^{\prime}-\frac{1}{q}\left(B_{1} \lambda^{\prime}+B_{2} \mu^{\prime}+B_{s} \nu^{\prime}+\ldots\right)=h \nabla
$$

Bat, by (3),

$$
\left.\underline{B}_{1} \lambda^{\prime}+\underline{B}_{2} \mu^{\prime}+\right]_{8} \nu^{\prime} \ldots \cdot-2 q-q^{2} V=0 ;
$$

therofore

$$
q U^{\prime}+h=0
$$

and tho equations (4) may bo writton

$$
\begin{aligned}
q \frac{d U^{\prime}}{d \lambda^{\prime}}-B_{1} & =q \frac{d U^{\prime}}{d \mu^{\prime}}-B_{2}=q \frac{d U^{\prime}}{d \nu^{\prime}}-B_{5}=\ldots \\
& =-q^{2} U^{\prime}=m \text { suppose }
\end{aligned}
$$

also,

$$
q\left(\lambda^{\prime}+\mu^{\prime}+\nu^{\prime}+\ldots\right)=q V,
$$

so that there aro $n+3$ equations from which to climinate

$$
q \lambda^{\prime}, q \mu^{\prime}, q \nu^{\prime} \ldots \text { and } m,
$$

and nll but one aro linenr. Hence the rosultant is a quadratic in q, each solution of which determines one position of ($\left.\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \ldots\right)$.

If

$$
\left(\lambda^{\prime \prime}, \mu^{\prime \prime}, \nu^{\prime \prime}, \ldots\right) \text { nnd }\left(\lambda^{\prime \prime \prime}, \mu^{\prime \prime \prime}, \nu^{\prime \prime \prime}, \ldots\right)
$$

be the contres of (1) and (2),
therefore

$$
\frac{d U^{\prime}}{d \lambda^{\prime \prime}}=\frac{d U^{\prime \prime}}{d \mu^{\prime \prime}}=\frac{d U^{\prime}}{d l^{\prime \prime \prime}}=\ldots
$$

nind

$$
\frac{d U^{\prime \prime \prime}}{d \lambda^{\prime \prime \prime}}-B_{1} V=\frac{d U^{\prime \prime \prime}}{d \mu^{\prime \prime \prime}}-B_{3} V=\frac{d U^{\prime \prime \prime}}{d \nu^{\prime \prime \prime}}-B_{3} V=\ldots ;
$$

and the line joining these points is thereforo

$$
\frac{\frac{d U}{\sqrt{2} \mu}-\frac{d U}{d \lambda}}{\Pi_{2}-l_{1}}=\frac{d U}{d \nu}-\frac{d U}{d \lambda}=\ldots
$$

and by (4) the centres of similitude lie upon this.
Other properties of similar and similarly situated quadric loci are givon in Λ rt. XXV. (note), Art. XXXI., and in tho Addendum to Art. XIII., prefixed to this papor.

XLIIV. Two quadric loci in space of n dimensions have a common solf-conjugato simplicissimum. Let

$$
\begin{aligned}
& U \equiv \Lambda_{11} \lambda^{2}+\Lambda_{22} \mu^{2}+\Lambda_{83} \nu^{2}+\ldots+2 \Lambda_{12} \lambda \mu+\ldots=0 \\
& W \equiv B_{11} \lambda^{2}+B_{22} \mu^{2}+l j_{33} \nu^{2}+\ldots+2 B_{12} \lambda \mu+\ldots=0
\end{aligned}
$$

bo the quadrics, and let ($\lambda^{\prime}, \mu^{\prime}, \nu^{\prime} \ldots$) bo a point which has the same lincar polar with respect to each of them.

Therefore

$$
\lambda \frac{d U^{\prime}}{d \bar{\lambda}^{\prime}}+\mu \frac{d U^{\prime}}{d \mu^{\prime}}+\nu^{\prime} d U_{\nu^{\prime}}^{J^{\prime}}+\ldots=0
$$

and

$$
\lambda \frac{d W^{\prime}}{d \lambda^{\prime}}+\mu \frac{d W^{\prime}}{d \mu^{\prime}}+\nu \frac{d W^{\prime}}{d \nu^{\prime}}+\ldots=0
$$

aro identical loci.

$$
\text { Therefore } \begin{gathered}
\frac{d U^{\prime}}{d \lambda^{\prime}}: \frac{d W^{\prime}}{d \lambda^{\prime}}:: \frac{d U^{\prime}}{d \mu^{\prime}}: \frac{d W^{\prime}}{d \mu^{\prime}}:: \frac{d U^{\prime}}{d \nu^{\prime}}: \frac{d W^{\prime}}{d \nu^{\prime}}:: \& 0 . \\
:: r: 1, \text { say ; }
\end{gathered}
$$

and, eliminating $\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \& c$. from the resulting $n+1$ homogeneous linear equations,
an equation of the $(n+1)^{\text {th }}$ degree in r.
(It is, indeed, the discrimimant of $U-r W=0$, and the values of r aro those for which this quadric has a double point.)

Each root r_{1}, r_{2}, \&c. of (1) gives r separate solution for $\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \ldots$, so that, when the roots are all mequal, the $n+1$ corresponding points

$$
\left(\lambda_{1}^{\prime}, \mu_{1}^{\prime}, \nu_{1}^{\prime}, \ldots\right),\left(\lambda_{2}^{\prime}, \mu_{2}^{\prime}, \nu_{2}^{\prime}, \ldots\right),\left(\lambda_{n+1}^{\prime}, \mu_{n+1}, \nu_{n+1}^{\prime}\right)
$$

are the vertices of a simplicissimum, and each lies upon the linear polar of all the others with respect to both the quadrics.

For, if r_{t} and r_{t} be two values of r,

$$
\frac{d V_{x}^{\prime}}{d \lambda \lambda_{x}^{\prime}}=r_{x} d W_{x}^{\prime} \quad d \lambda_{x}^{\prime \prime} \quad{ }_{s}^{\prime}=\mu_{x}^{\prime} d W_{x}^{\prime} d \mu_{x}^{\prime}, \& e,
$$

and
therefore

$$
\lambda_{t}^{\prime}\left\|J_{s}^{\prime}+\lambda_{s}^{\prime \prime} d J_{s}^{\prime} \mu_{\mu_{s}^{\prime}}^{\prime}+v_{t}^{\prime} d U_{n}^{\prime}\right\| \nu_{s}^{\prime}+\ldots
$$

$$
=v_{0}\left\{\lambda_{t}^{\prime} d W_{s}^{\prime} d \lambda_{s}^{\prime}+\mu_{i}^{\prime} \frac{d W_{s}^{\prime}}{d \mu_{s}^{\prime}}+\nu_{t}^{\prime} d V_{t}^{d}+\ldots\right\},
$$

$$
\lambda_{1}^{\prime} d I I_{t}^{\prime}+\mu_{t}^{\prime} d U_{t}^{\prime} d \mu_{t}^{\prime}+v_{n}^{\prime \prime}{ }_{d \nu_{t}^{\prime}}^{d U_{t}^{\prime}}+\ldots
$$

$$
=r_{t}\left\{\lambda_{t}^{\prime d}{ }_{d V_{t}^{\prime}}^{d \lambda_{t}^{\prime}}+\mu_{a}^{\prime}{ }_{i d W_{t}^{\prime}}^{d}+r_{t}^{\prime}{ }_{d V_{t}^{\prime}}^{d W_{t}^{\prime}}+\ldots\right\} ;
$$

but

$$
\begin{gathered}
\lambda_{z}^{\prime} \frac{d U U_{t}^{\prime}}{d \lambda_{t}^{\prime}}+\mu_{s}^{\prime} d U_{t}^{\prime} d \mu_{t}^{\prime}+v_{t}^{\prime} \frac{d U_{t}^{\prime}}{d \nu_{t}^{\prime}}+\ldots \\
=r_{t}\left\{\lambda_{t}^{\prime} l W_{t}^{\prime}+\mu_{t}^{\prime} l W_{t}^{\prime} \frac{W_{t}^{\prime}}{d \mu_{t}^{\prime}}+v_{t}^{\prime} \frac{d W_{t}^{\prime}}{d \nu_{t}^{\prime}}+\ldots\right\},
\end{gathered}
$$

and therefore, $r_{\text {t }}$ and r_{t} bcing different,

$$
\begin{gathered}
\lambda_{t}^{\prime} \frac{d U_{t}^{\prime}}{d \lambda_{t}^{\prime}}+\mu_{t}^{\prime} \frac{d U_{t}^{\prime}}{d \mu_{t}^{\prime}}+\nu_{t}^{\prime} \frac{d U_{t}^{\prime}}{d \nu_{t}^{\prime}}+\ldots=0, \\
\lambda_{t}^{\prime} \frac{d W_{t}^{\prime}}{d \lambda_{t}^{\prime}}+\mu_{s}^{\prime} \frac{d W_{t}^{\prime}}{d \mu_{t}^{\prime}}+\nu_{t}^{\prime} \frac{d W_{t}^{\prime}}{d \nu_{t}^{\prime}}+\ldots=0,
\end{gathered}
$$

and ($\lambda_{x}^{\prime}, \mu_{t}^{\prime}, \nu_{t}^{\prime} \ldots$) lies apon the polar of ($\lambda_{t}^{\prime}, \mu_{t}^{\prime}, \nu_{t}^{\prime} . .$.) with respect to each of the quadrics $U=0$ and $W=0$.

Hence, when the roots of (1) are unequal, these two quadrics lave n definito self-conjugate simplicissimum, the vertices of which are the double points of those quadrics of the system $J-r W=0$ which have donble points.

When two or more of the roots of (1) are equal, the corresponding vertices aro no longer determinate. If two bo equal, one of the qualries $U-r W=0$ is expressible as a linear homogeneous function of $n-1$ squares, and has double points along a straight line; if three of the roots be equal, one of tho quadrics is expressible as a linear homogeneous function of $n-2$ squares, and has donble points over a plane; and so on.

For if, when referred to $t h$ common self-conjugate simplicissimum,

$$
\begin{aligned}
& U \equiv a \lambda^{2}+b \mu^{3}+c \nu^{2}+d \pi^{2}+e \rho^{2}+\ldots=0, \\
& W \equiv a^{\prime} \lambda^{2}+b^{\prime} \mu^{2}+c^{\prime} \nu^{2}+d^{\prime} \pi^{2}+e^{\prime} \rho^{2}+\ldots=0,
\end{aligned}
$$

it is neeressary and sufficient, in order that

$$
\begin{aligned}
& a \lambda^{\prime} \lambda+l \mu^{\prime} \mu+c v^{\prime} \nu+d \pi^{\prime} \pi+c \rho^{\prime} \rho+\ldots=0 \\
& a^{\prime} \lambda^{\prime} \lambda+b^{\prime} \mu^{\prime} \mu+c^{\prime} \nu^{\prime} \nu+l^{\prime} \pi^{\prime} \pi+c^{\prime} \rho^{\prime} \rho+\ldots=0
\end{aligned}
$$

may be identical, that all but ono of the quantities $\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \ldots$ should vanish, unless some of the coeflicients be such that some of the ratios $a: b: \ldots:: a^{\prime}: b^{\prime}: c^{\prime} \ldots$ hold-i.e., unless tho equation (1) has equal ronts. When this is the cose, it is only necessary that those coordinates, of which the coofficients do not satisfy tho proportions above, should vanisli. I'hus, if $a: b:: a^{\prime}: b^{\prime}$, all the coordinates but λ^{\prime} and μ^{\prime} must vanish; if $a: b: c:: a^{\prime}: v^{\prime}: c^{\prime}$, all but $\lambda^{\prime}, \mu^{\prime}, v^{\prime}$; and so oll.

If, in the first case, $\left(\lambda_{1}, \mu_{1}, 0,0\right),\left(\lambda_{2}, \mu_{2}, 0,0\right)$ be new positions of the two vertices on (1.2),

$$
a \lambda_{1} \lambda_{2}+b \mu_{1} \mu_{2}=0
$$

and if $\left(\lambda_{1}, \mu_{1}, \nu_{1}, 0\right),\left(\lambda_{2}, \mu_{2}, \nu_{2}, 0\right),\left(\lambda_{3}, \mu_{3}, \nu_{s}, 0\right)$ be new positions of the three vertices in the plane $(1,2,3)$,

$$
\begin{aligned}
& a \lambda_{1} \lambda_{2}+b \mu_{1} \mu_{2}+c \nu_{1} \nu_{2}=0, \\
& a \lambda_{9} \lambda_{3}+b \mu_{9} \mu_{3}+c \nu_{2} \nu_{s}=0, \\
& a \lambda_{3} \lambda_{1}+b \mu_{3} \mu_{1}+c \nu_{3} \nu_{1}=0 ;
\end{aligned}
$$

and similar relations hold in other cases.
The intersections of quadric loci in space of n dimensions may be
classified according as the roots (1) are equal or unequal. Thas, in ordinary space,
(i.) all the roots may be unequal,
(ii.) two roots may be equal and $W=A U+L M$,
(iii.) threo roots may bo cqual and $W=\Lambda U+L^{2}$,
(iv.) two pairs of roots may be equal nnd

$$
\begin{aligned}
& U=A L M+B L^{\prime} M^{\prime}, \\
& W=\Lambda^{\prime} L M+B^{\prime} L^{\prime} M^{\prime} ;
\end{aligned}
$$

and so for space of any dimensions.
XLV. If the transformation of Art. V. bo applied to $U=0$, tho result, tho equation in simplicissimum content coordinates to tho intersection of $U=0$ with the linear locus determined by tho $p+1$ points

$$
\left(x_{1}, y_{1}, z_{1}, \ldots\right), \quad\left(x_{2}, y_{2}, z_{2}, \ldots\right), \ldots\left(x_{p+1}, y_{p+1}, z_{p+1}\right)
$$

will bo

$$
\left.U_{11} \lambda^{2}+U_{28} \mu^{2}+U_{33} \nu^{2}+\ldots+2 U_{18} \lambda \mu+\ldots=0 \ldots \ldots \ldots \ldots . . \text { (} . .\right),
$$

whore U_{11} stands for the value of U when $x_{1}, y_{1}, z_{1}, \ldots$ are written for: x, y, z, \ldots and $2 U_{13}$ for the result of operating on this with

$$
\left(x_{2} \frac{d}{d x_{1}}+y_{2} \frac{d}{d y_{1}}+z_{2} \frac{d}{d z_{1}}+\ldots\right)
$$

If $p+1=n$, so that tho locus determinod by the points is Ω linear locus in space of u dimensions, and then, if this bo the tangent locus at $\left(x_{1}, y_{1}, z_{1}, \ldots\right)$, a point on $U=0$,

$$
U_{11}=0, \quad U_{12}=0, \quad U_{15}=0 \ldots,
$$

and the discriminant of (1) vanishos; thoreforo the linear tangent locus at any point on a quadric locus, in space of n dimensions, intersects the quadric in a quadric in space of $n-1$ dimonsions (i.e., on tho linear locus), having a double point at the point of contact (comp. Art. XXXIII.) ; and if the locus through the n points be a tangent, tho discriminant of (1) vanishes; and conversely, for if the discriminant of (1) vanishes, (1) has a node, and if this be taken as the first vertex of the simplicissimum of n vertices

$$
U_{11}=U_{18}=J_{18}=\ldots=0
$$

and the linear locus touches at this point.
1890.] Simplicissima in Space of n Dimensions. 347

Since the equation to the linear locus is

$$
\left|\begin{array}{cccc}
x, & y & z, & \ldots \tag{2}\\
x_{1}, & y_{1}, & z_{1}, \ldots \\
x_{2}, & y_{2}, & z_{2}, \ldots \\
\ldots & \ldots & \ldots \\
x_{n}, y_{n}, z_{n}, & \ldots
\end{array}\right| \equiv \alpha x+\beta y+\gamma z+\ldots=0 .
$$

it follows that tho vanishing of the discriminant of (1) is the condition that (2) should touch $U=0$, and thorefore $a, \beta, \gamma, \& c$., the first minors of tho determinantin (2), must satisfy the reciprocal equation $\sigma=0$; and hence the discriminant of (1) can only differ by a simple maltiplier from the valuo of σ when the above values are written for a, $\beta, \gamma, \& c$. (Educational Times, Questions 8940, 8970 and 9828).

By an entiroly similar proof it appears that, if

$$
\Sigma \equiv \sigma_{11} a^{3}+\sigma_{22} \beta^{3}+\sigma_{33} \gamma^{8}+\ldots+2 \sigma_{29} u \beta+\ldots,
$$

the discriminant of Σ can only differ by a multiplior from $\Delta^{n-1} U$, with the first minors of

$$
\left|\begin{array}{cccc}
a_{1} & \beta, & \gamma_{1} & \ldots \\
\alpha_{1} & \beta_{1}, & \gamma_{1}, & \ldots \\
a_{2} & \beta_{2}, & \gamma_{3}, & \ldots \\
\ldots & \ldots & \ldots \\
a_{n}, & \beta_{n}, & \gamma_{n}, & \ldots
\end{array}\right|
$$

writton for x, y, z, \&c.

$$
\text { If } \quad p=1, \quad U_{11} \lambda^{2}+2 U_{12} \lambda \mu+U_{22} \mu^{2}=0
$$

determines the points in which the line joining the two given points outs: $U=0$; and, if $U_{11} U_{22}-U_{12}^{2}=0$, this line is a tangent, and thercfore

$$
4 U_{11} U-\left\{\left(x \frac{d}{d x_{1}}+y \frac{d}{d y_{1}}+z \frac{d}{d z_{1}}+\ldots\right) U_{11}\right\}^{2}=0
$$

is the equation to the group of linear tangents from the point ($x_{1}, y_{1}, z_{1}, \ldots$).

If $p=2$, the plane through these given points cuts $U=0$ in

$$
U_{11} \lambda^{2}+U_{22} \mu^{2}+U_{3 s} \nu^{2}+2 U_{12} \lambda \mu+\ldots=0
$$

and this will touch if

$$
U_{11} U_{23} U_{35}+2 \sigma_{19} U_{15} U_{25}-U_{11} U_{23}^{2}-U_{22} U_{13}^{2}-U_{89} \sigma_{12}^{2}=0 ;
$$

and

$$
\begin{gathered}
4 U_{11} U_{23} U+2 U_{12}\left(x_{1} \frac{d}{d x}+y_{1} \frac{d}{d y}+\ldots\right) U \cdot\left(x_{2} \frac{d}{d x}+y_{2} \frac{d}{d y}+\ldots\right) U \\
-4 U_{12}^{2} U-U_{11}\left\{\left(x_{2} \frac{d}{d x}+y_{2} \frac{d}{d y}+\ldots\right) U\right\}^{2} \\
-U_{23}\left\{\left(x_{1} \frac{d}{d x}+y_{1} \frac{d}{d y}+\ldots\right) U\right\}^{2}=0
\end{gathered}
$$

is the equation to the groap of tangent planes which can be drawn to $U=0$, through the line joining ($x_{1}, y_{1}, z_{1}, \ldots$) and ($x_{i}, y_{y}, z_{y}, \ldots$); and so on.
XLVI. The $(n+1)$-ary quadric, the sinister of the equation to a quadric locus in space of n dimensions, has only one invariant, the discriminant; but two such quadrics hnve in all $(n+2)$ invariantsthe two discriminants and n other functions involving the coefficients of both-these last are the coefficients of the powers $1,2, \ldots n$ of r in (1), Art. XLIV. They are combinants and aro dorived from the discriminant of U by operating upon that function with

$$
\frac{1}{\mu!}\left(B_{11} \frac{d}{d A_{11}}+B_{2 y} \frac{d}{l A_{22}}+\ldots+1_{14} \frac{d}{l A_{1 y}}+\ldots\right)
$$

giving to p all values from 1 to n.
As stated above, the ronts of (1) give the quadries through the intersection of $U=0$ and $W=0$, which have double points.

If $a_{11}, a_{12}, \ldots a_{14}$, \&c. be the tirst minors of the discrimiuant of U, the coefficient of r is

$$
B_{11} \mathrm{a}_{11}+B_{22} \mathrm{a}_{22}+\ldots+2 B_{12} \mathrm{a}_{12}+\ldots
$$

and this vanishes if a simplicissimum self-conjagate with respect to $W=0$ can be inscribed in $U=0$; for then

$$
B_{19}=B_{19}=B_{29}=\ldots 0 \text { and } a_{11}=a_{29}=\ldots=0 \text { (Art. XXX.). }
$$

If $V=0$ and $X=0$ be the equations to the sectious of $U=0$ and $W=0$ respectively, by the linear locus

$$
a \lambda+\beta \mu+\gamma \nu+\ldots+\theta_{\tau}=0
$$

-i.e., through the n points

$$
\left(\frac{V \theta}{\theta-a}, 0,0 \ldots \frac{-V a}{\theta-a}\right), \quad\left(0, \frac{V \theta}{\theta-\beta}, 0, \ldots \frac{-V \beta}{\theta-\beta}\right), \& e^{(A r t, ~ \nabla .),}
$$

-the discriminant of $V-r X=0$ will be an equation in r of order n, the first and last coofficients when reduced being the discriminants of V and X; and so the sinisters of tho reciprocal equations to $U=0$ and $W=0$, the meaning of the others may bo obtained from the geomotry of $(n-1)$-dimensions. Thus the vanishing of the coofficient of r implios, from the general result above, that all linear loci, the coeflicients of which make it vanish, cut $U=0, W=0$ in sections such that a simplicissimum of n vertices self-conjugato with respect to the section of $W=0$ is inseribod in that of $U=0$.

In this way I interpreted the contravariants of two quadric surfaces in a papor read here in December 1883; and so, if U and W be quinary quadrics, and

$$
\sigma-r \tau+r^{3} \pi-r^{8} r^{\prime}+r^{4} \sigma^{\prime}=0
$$

(where σ and σ^{\prime} are the reciprocals of U and W), the expanded form of the discriminant of $V-r X=0, \sigma, \tau, \pi, \tau^{\prime}, \sigma^{\prime}$ are the $\Delta, \theta, \phi, \theta^{\prime}, \Delta^{\prime}$ of the quadric surfaces $V=0$ and $X=0$ (Salmon, Geometry of 'Three Dimensions, p. 145).

If $r=0$, as abovo, it is possible to inseribo in $V=0$ a tetrahedrou self-conjugate with respect to $X=0$.

If $\tau^{\prime}=0$, there is a tetrahedron self-conjugato with respect to $V=0$, the faces of which touch $X=0$.

If $\pi=0$, the odgos of a tetrahedron, self-conjugate with respect to either $V=0$ or $X=0$, touch the other.

The coudition that a tetrahedron may be inscribable in $X=0$, which has two pairs of opposite edges on $V=0$, is

$$
4 \sigma \tau \pi=\tau^{3}+8 \sigma^{2} r^{\prime}
$$

and that it may bo possiblo to find a totrahedron haviug two pairs of opposite edges on one of the quadrics and its four faces touching the other

$$
4 \sigma^{\prime} \tau^{\prime} \pi=\tau^{\prime 3}+8 \sigma^{\prime 2} \tau
$$

It thus appears that two $(n+1)$-ary quadrics have $(n+2)$ indopendent invariants, and ($n+1$) independent contravariants.

If $u=0$ and $w=0$ be the tangential equations to $U=0$ and $W=0$ respectively, $u-x w=0$ will be the tangential equation to the system of quadrics which touch the same system of common tangent loci as $U=0$ and $W=0$.

The equation to $u-r w=0$ in simplicissimum coordinates will be
of the $n^{\text {th }}$ order in r, and of the form

$$
D-r T+\ldots \pm r^{n-1} T^{\prime} \mp r^{n} W=0
$$

and the coefficionts I ', \&c. of all tho powers of r except 0 and n, will be the covariants of the two quadrics, and thereforo these are $n-1$ in number.

The contravariants above might have been obtainod in a similar way by forming the tangential equation to $U-r W=0$, when they would be the coefficients of all the powers of r from 1 to $n-1$, and these covariants might have been obtained ly employing a transformation similar to that of Art. V. to the contragrediont variables.

It has not seemed advisable to attempt to carry the gonoral investigation of the concomitants further, as the results would be more casily obtained and more clearly intelligiblo by working thom out successively for four, fivo, and u-dimonsional space.

I regret to have to add tho following corrigenda to tho previous papors:-
Vol. xix., p. 444, 1. 17, for $2^{n}{ }^{1} \operatorname{read} 2^{n+1}$.

1. $455,1.20$, for $\frac{n-2 p-1}{(p+1) \Sigma \frac{1}{A_{1}}}$ reud $\frac{n-2 p-1}{(p+1) \Sigma \frac{1}{A_{1}}} V$.
p. 460, 1. 11, for $r_{1}^{2} V$, read $r_{1}^{2} V^{2}$.
p. $468,1.3$, for $\frac{h}{m^{2}}$, read $\frac{h}{m^{2}} V^{2}$.
2. 5 , for l $l p^{2}$, read $l p^{2} V^{2}$.
3. 474, I. 14, for $U^{\prime} U^{\prime \prime}$ read $4 U^{\prime} U^{\prime \prime}$.
I. 17, for $U D^{\prime}$, recul $4 U U^{\prime}$.
p. 478, 1. 27, for Q_{1}, read Q_{1}^{2}.
[P.S.-It is only during the printing of this paper that I havo noticed Mr. Brill's quostion (8431) and its solution in the Reprint from the liducationul Ilimes, Vol. scvin., p. 111. In this the equations of p .335 arc onunciated for sis points on a circle.]
