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tively connected, and thereby submitted to the process of 
electric distribution. 

To the theory of the sun's electric potential might still be 
opposed the objection that the electric attraction between the 
sun and the planets, and the repulsion which the latter would 
necessarily exert upon one another and upon their satellites, 
would modify the basis of the astronomical calculations, since 
then, besides gravitation, an additional force, the electrical, 
would have to be taken into account. 

This objection is perfectly legitimate. But as electric force, 
equally with gravitation, stands in the ratio of the square 
of the distance of the centres, the paths of the planets would 
remain unaltered if a part of the gravitational were replaced 
by an electrical attraction. Only the calculated ratio of the 
masses of the sun and planets to that of the earth would be 
changed. These alterations would be sensible, especially in 
the case of the small planets and the satellites, since electric 
force is a function of the surft~ce. On the other hand, how- 
ever, the disturbing influences exerted by the planets and their 
satellites upon one another's paths must be changed if gravi- 
tation be diminished by electric repulsion. 

Perhaps it is reserved for astronomy to bring out from the 
perturbations of the paths of Mercury, the asteroids, and the 
satellites the demonstration of the existence or nonexistence 
of an electric potential of the sun. 

XXVI.  On Porous Bodies in relation to Sound. By Lord 
RAYImlGn, D.C.L., F.R.S., Cavendish Professor of P@sies 
in the University of Cambridge*. 

I N Acoustics we have sometimes to consider the incidence 
of aerial waves upon porous bodies, in whose interstices 

some sort of aerial continuity is preserved. Tyndall has shown 
that in many cases sound penetrates such bodies, e. g. thick 
pieces of felt, more freely than would have been expected, 
though it is reflected from quite thin layers of continuous 
solid matter. On the other hand, a hay-stack seems to form 
a very perfect obstacle. It is probable that porous walls give 
a diminished reflection, so that within a building so bounded 
resonance is less prolonged than would otherwise be the case. 

When we inquire into the matter mechanically, it is evi- 
dent that sound is not destroyed by obstacles as such. In the 
absence of dissipative forces, what is not transmitted must 
be reflected. Destruction depends upon viscosity and upon 

* Communicated by the Author. 
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conduction of heat ; but the influence of these is enormously 
augmented by the contact of solid matter exposing a large 
surface. At such a surface the tangential as well as the nor- 
mal motion is hindered, and a passage of heat to and fro takes 
place, as the neighbouring air is heated and cooled during its 
condensations and rarefactions. With such rapidity of alter- 
nations as we are concerned with in the case of audible sounds~ 
these influences extend to only a very thin layer of the air 
and of the solid~ and are thus greatly favoured by attenuation 
of the masses. 

I have thought that it might be interesting to consider a 
little more definitely a problem sufficiently representative of 
that of a porous wall, in order to get a better idea of the 
magnitudes of the effects to be expected. We may conceive 
an otherwise continuous wall, presenting a flat face, to be per- 
forated by a great number of similar small channels~ uniformly 
distributed, and bounded by surfaces everywhere perpendi- 

cular to the face. If  the channels be sufficiently numereus~ 
the transition from simple plane waves outside to the state of 
aerial vibration corresponding to the interior of a channel of 
infinite length, occupies a space which is Small relative to the 
wave-length of the vibration, and then the connexion between 
the condition of things inside and outside admits of simple 
expression. 

Considering first the interior of one of the channels, and 
taking the axis of x parallel to the axis of the channel~ we sup- 
pose that as functions of x the velocity-components u, v, w~ and 
the condensation s are proportional to e i~z, while as functions 
of t everything is proportional to elnt~ n being real. The rela- 
tionship between ~¢ and n depends on the nature of the gas and 
upon the size and form of the channel, and must be found in 
each case by a special investigation. Supposing it known for 
the present, we will go on to show how the problem of reflec- 
tion is to be dealt with. 

For this purpose consider the equation of continuity as in- 
tegrated over the cross section of the channel or. Since the 
walls are impenetrabl% 

d S S u d ( 7 = o  ' 

so that 
nSS d +.SSud =o . . . . . .  (1) 

This result is applicable at points distant from the open end 
more than several diameters of the channel. 

Taking now the origin of x at the face of the wall, we have 
to form corresponding expressions for the waves outside; and 
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we may here neglect the effects of friction and heat-conduction. 
I f  a be the velocity of sound in the open, and tco=n/a , we 
may write 

s =  ( d ~o~ + Be-'~o~)e "t, . . . .  (2) 

u=a(--d~o~+ Be-'~)e"~'; . . . .  (3) 

so that the incident wave is 
s=d(~"+~o% . . . . . . . .  (4) 

or, on throwing away the imaginary part, 

s =  cos( t+ 0x) . . . . . . .  ( 5 )  

These expressions are applicable when x exceeds a moderate 
multiple of the distance between the channels. Close up to 
the face the motion will be more complicated; but we have no 
need to investigate it in detail. The ratio of u and s at a 
place near the wall is given with sufficient accuracy by put- 
ting x = 0  in (2) and (8), 

u _ a ( - - l + B )  
I+B (6) 

We now assume that a region about x=0~ on one side of 
which (6) is applicable and on the other side of which (1) is 
applicable, may be taken so small relatively to the wave-length 
that the mean pressures are sensibly the same at the two boun- 
daries, and that the flow into the region at the one boundary 
is sensibly equal to the flow out of the region at the other 
boundary. The equality of flow does not imply an equality 
of mean velocities, since the areas concerned are different. 
The mean velocities will be inversely proportional to the cor- 
responding areas--that is, in the ratio ~ : a + a ~, if a '  denote 
the area of the unperforated part of the wall corresponding to 
each channel. By (1) and (6) the connexion between the 
inside and outside motion is expressed by 

(B--  1)a (~+~, ) .  
O" 

tc B + I  
We will denote the ratio of the unperforated to the perforated 
parts of the wall by g, so that g=a ' / ( r .  Thus, 

1--B Ko 
1 +  B - + g )  . . . . . . .  ( 7 )  

I f  g = 0 ,  I¢=1¢0, there is no reflection; if there are no perfora- 
tions, g = c ¢ ,  and then ]3= 1, signifying a complete retiection. 
In place of (7) we may write 

~ ( l + g ) - - ~ °  . . . . . .  (8) 
B = ~(i +g)  + Ko' 



184 Lord Rayleigh on Porous Bodies 

which is the solution of the problem proposed. It is under- 
stood that waves which have once entered the wall do not 
return. When dissipative forces act, this condition may 
always be satisfied by supposing the channels long enough. 
The necessary length of channel, or thickness of wall, will 
depend upon the properties of the gas and upon the size and 
shape of the channels. 

Even in the absence of dissipative forces there must be 
reflection, except in the extreme case g----0. Putting to=to o 
in (8), we have 

B----- g 2 + g  . . . . . . . .  ( 9 )  

If  g = l  (that is, if half the wall be cut away), B = ~ ,  Be=~, 
so that the reflection is but small. If  the channels be cir- 
cular, and arranged in square order as close as possible to each 
other, g--- (4--7r)/~', whence B ----"121, B e -  -. "015, nearly all the 
motion being transmitted. 

It remains to consider the value of to. The problem of the 
propagation of sound in a circular tube, having regard to the 
influence of viscosity and heat-conduction, has been solved 
analytically by KirchhotW, on the suppositions that the tan- 
gential velocity and the temperature-variation vanish at the 
walls. In discussing the solution, Kirchhofftakes the case in 
which the dimensions of the tube are such that the immediate 
effects of the dissipative forces are confined to a relatively thin 
stratum in the neighbourhood of the walls. In the present 
application interest attaches rather to the opposite extreme, 
viz. when the diameter is so small that the frictional layer 
pretty well fills the tube. Nothing practically is lost by an- 
other simplification which it is convenient to make (following 
Kirchhoff)--that the velocity of propagation of viscous and 
thermal effects is negligible in comparison with that of sound. 

One result of the investigation may be foreseen. When 
the diameter of the tube is very small, the conduction of heat 
from the centre to the circumference of the column of air 
becomes more and more free. In the limit the temperature of 
the solid walls controls that of the included gas, and the expan- 
sions and rarefactions take place isothermally. Under these 
circumstances there is no dissipation due to conduction, and 
everything is the same as if no heat were developed at all. 
Consequently the coefficient of heat-conduction will not appear 
in the result, which will involve, moreover, the Newtonian 
value of the velocity of sound (b) and not that of Laplace (a). 

Star!ing from Kirchhoff's formulae, we find as the value of 
" Pogg..Ann. cxxxiv. 1868. 
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applicable when the diameter (2r) is very small, 

~2 = 8inl ~l 
b~r2 , . . . . . .  (10) 

~ being the kinematic coefficient of viscosity. The wave 
propagated into the channels is thus proportional to 

e P ~ c o s ( n t + p x + e ) ,  . . . . .  (11) 
where 

2 , / (n~ ' )  _ 2 ,/(n'yt~') (12) 
P =  1 - - i - -  br ar ' " 

~/being the ratio of the specific heats, equal to 1"41. In the 
derivation of (10), nr2/(Sv), ~, being the thermometric coeffi- 
cient of conductivity, is assumed to be small. 

To take a numerical example, suppose that the pitch is 256 
(middle c of the scale), so that n----2~r × 256. The value of/z I 
for air is "16 C.G.S. (Maxwell), and that of v is "256. If we 
take r----ToX6o~ centim., we find nr2/Sv equal to about _1__. If  
r were 10 times as great, the approximation wouldl~°r°haps 
still be sufficient. 

From (12)~ if n =  29r x 256, 
1"15 x 10 -a 

P =  r . . . . . .  (13) 
so that if r----To-doS, p----1"15. In this ease the amplitude is 
reduced in ratio e : 1 in passing over the distance p-~--that  is, 
about one centimetre. The distance penetrated is proportional 
to the radius of the channel. 

The amplitude of the reflected wave is~ by (8), 

B =  p(1 +g)(1- - i ) - -  ~o 
p( 1 42)(1 --i) + ~o' 

or~ as we may write it~ 

B =  p1(1- - i ) -1  _ p ' - - l - - i p '  (14) 
p/(1--i)  + 1 - - p l  + l _ i p l ~  

where 
p'-----(l +g)p/~¢o . . . . . . . .  (15) 

If I be the intensity of the reflected sound, that of the incident 
sound being unity, 

l _ z p  - -  29 +1 
---  2p,~+2~ + 1 . . . . . .  (16) 

The intensity of the intromitted sound is given by 

4p' (17) V = 1 - - I = 2 f f 2  +2p~+1 . . . . .  
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By (12), (15), 
p,= (18) 

r~/n 
I f  we suppose r=]~oo v centim., and g---- 1, we shall have a wall 
of pretty close texture. In this case, by (18), pi=47"4, and 
Y----'0412. A four-per-cent, loss may not appear to be much; 
but we must remember that in prolonged resonance we are 
concerned with the accumulated effects of a large number of 
reflections, so that rather a small loss in a single reflection 
may well be material. The thickness of the porous layer 
necessary to produce this effect is less than one centimetre. 

Again, suppose r---~o v c e n t i m . , g = l .  We findp~=4"74, 
I~='342, and the necessary thickness would be less than 10 
centimetres. 

I f  r be much greater than ~1o~ centim., the exchange of heat 
between the air and the walls of the channels is no longer 
sufficiently free for the expansions to be treated as isothermal. 
When r is so great that the thermal and viscous effects extend 
only through a small fraction of it, we have the case discussed 
by Kirchhoff. I f  we suppose ibr simplicity g = 0  (a state of 
things, it is true, not strictly consistent with channels of cir- 
cular section*), we have 

ry z2 
I =  4nr.Z, . . . . . . . . .  (19) 

in which / _  1 . \  

. . . . .  

The incident sound is absorbed more and more completely as 
the diameter of the channels increases ; but at the same time 
a greater thickness becomes necessary in order to prevent a 
return from the further side. I f  g =  0, there is no theoretical 
limit to the absorption; and, as we have seen, a moderate 
value of g does not by itself entail more than a comparatively 
small reflection. A loosely compacted hay- or straw-stack 
would seem to be as effective an absorbent of sound as any- 
thing likely to be met with. 

In large spaces bounded by non-porous walls, roof, and floor, 
and with few windows, a prolonged resonance seems inevitable. 
The mitigating influence of thick carpets in such cases is well 
known. The application of similar material to the walls, or 
to the roof, appears to offer the best chance of further im- 
provement. 

* The 1)roblem in two dimensions is somewhat simpler than that treated 
by Kirchhoff. Although it would allow us without violence to suppose 
g=0~ it seems scarcely worth while to enter upon it here, as the results 
are of precisely the same character. The principal difference is that the 
hyperbolic functions cosh &e. replace that of Bessel. 


