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XXVIIL. Problemns on the Distribution of Electric Currents in
Networks of Conductors treated by the Method of Mazwell. By
J. A. Fremixg, M. A., D.Sec. (Lond.), Fellow of St. John’s
College, Cambridge, Professor of Electrical Technology in
Unriversity College, London®.

[Plates IIL & IV.]

Ir any number of points in a plane be joined together
by linear conductors such as metallic wires, we have an
arrangement of conductors which is called a Network. If
at any point in the network a current of electricity be
allowed to flow in and is drained off at some other point by
conductors, called respectively the anode and kathode con-
ductor, then, after a short period, depending on the self and
mutual induction coefficients of the various counductors, the
total quantity of electricity arriving by the anode will distri-
bute itself throughout the network and settle down into a
steady flow. When this is the case there is a certain definite
difference of potential between the anode or source-point and
the kathode or sink-point, and there is also a certain definite
and constant strength of current in the anode conductor and
in every mesh or branch of the network. Call « and  the
potentials of these source- and sink-points, and # the strength
of the current in the anode lead, that is the whole quantity
of electricity flowing per second through the network, then
(y—a)/x measures the resistance of the network. We can
imagine the network replaced by a single linear conductor or
wire of such sort that if the anode and kathode conductors
are applied to its ends, the difference of potentials at the ends
of this simple conductor and the streggth of the current flow-
ing through it have the same numerical values #, «, and .
The resistance of this single conductor is then the same as
that of the complex network.

The resistance of the network is obviously some function
of the resistances of the separate conductors or wires which
compose it, and is capable of being calculated from them.
Experimentally, the resistance of a complicated network would

% Read June 27, 1885.
82



218 DR. J. A. FLEMIN.; ON THE DISTRIBUTION OF

best be determined by the measurement of the current-
strength in the anode lead and the difference of potential
between the source and the sink. Theoretically, it is in-
teresting to examine the law of distribution of currents in a
network, and to reduce to a function of the separate resist-
ances the total resistance of the whole network between any
two pcints.

§ 2. In his larger Treatlise on Dlectnclty, Clerk Maxwell
has treated the general case to determine the differences of
potentiuls and the currents in a linear system of n points con-

. . 1 .
nected together in pairs by 3 n(n—1) linear conductors*, and

has shown how to form the linear equations, the solution of
which gives the ¢ondition of the network when given electro-
motive forces acting along some or all of the branches have
established steady currents in them.

The vsual method of obtaining a solution for the distribn-
tion of currents is the apphcatlon of Ohm’s law round the
several currents of the network, controlled by the condition
of continuity that there is no creation nor destruction of elec-
tricity at the junctions.

Since the publication of the first edition of his Treatise,
Maxwell reduced these two sets of equations to one set by
the simple device of regarding the real currents in the meshes
of the network as the differences of imaginary currents round
each cycle or mesh of the network, all directed in the same
direction, and thus obtained by the application of Ohm’s law
a single set of linear equations, the solution of which gives
the required currents in each branch. Maxwell’s method is
as follows t:—If we have p points in space and join them
together by lines, the least number of lines which will con-
nect all the points together is p—~1. If we add one line more
we make a closed circuit somewhere in the system ; that is

#* ¢ A Treatise on Electricity and Magnetism,” 2nd edition, Vol. i. § 280
and § 347.

t This method was first given by Clerk Maxwell in his last course of
University lectures. It is alluded to in the second edition of his larger
Treatise and in the Appendix of his smaller Treatise by their respective
editors, Mr. W. D. Niven and Professor Garnett, to whom it was com-
municated by the present writer.



ELECTRIC CURRENTS IN NETWORKS OF CONDUCTORS, 217

to say, a portion of space is enclosed and forms a cell cycle
or mesh. Every fresh line added then makes a fresh mesh;
and hence if there are { lines altogether joining p points, the
pumber of cycles or cells will be k=l—(p—1). Now let
such a system of points and lines represent conducting wires
joining fixed points, and forming a conducting network. Let
a symbol be affixed to each point which represents the elec-
trical potential at that point, and also a symbol affixed to
each line representing the electrical resistance of the con-
ductor represented by it. In such a diagram of conductors
the form is a matter of indifference so long as the connections
are not disturbed and lines are not made to cross unless the
conductors they represent are in contact at that point.

Consider a network, Pl. III. fig. 1, formed by joining nine
points by thirteen conductors. Then there willbe 13— (9—1)
=5 cycles or cells. Now let an electromotive force E act in
one branch B, and give rise to a distribution of currents in the
network. Let a, 8, «, 8, &c. represent the potentials at the
points, and A, B, C, D, &c. the electrical resistances of the
conductors joining these points, and imagine that round each
cyele or circuit an imaginary current flows, all such currents
flowing in the same direction.

A circuit is considered to be circumnavigated positively
when you walk or go round it so as to keep the boundary on
your right hand. Hence, going round an area A in the di-
rection of the arrow is positive as regards the inside if you
walk inside the boundary-line, and negative as regards ex-
ternal space B if you walk in the same direction round the
outside. 'We shall consider a current, then, as positive when
it flows round a cycle in the opposite direction to the hands
of a watch. Returning then to the network, we consider that
round each cycle flows an imaginary current in the positive
direction. The real carrents in the conductors are the
differences of these in adjacent cycles or meshes, and the
lt_naginary currents will necessarily fulfil the condition of con-
tinuity, because any point is merely a place through which
lmaginary currents flow, and at which therefore there can be
no accumulation nor disappearance of electricity.

Let 2, y, z, &c. denote these imaginary like-directed cur-
rents. Then w—y denotes the real current in the branch I,
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and similarly #—z that in branch H. Then , y, ¢, &c. may
be called the cyclic symbols of these areas. The cyclic symbol
of external space is taken as zero; hence the real current iy
branch B is simply .

Let an electromotor act on the branch B, bringing into
existence an electromotive force in that branch. Let the
internal resistance of the electromotor be included in the
quantity B, representing the resistance of the branch A. Then
apply Ohm’s law to the cycle # formed by the conductors B,
I, H; we have E—Br=gy—a.

« is the actual current in this case flowing in the resistance B,
and the potential at the ends of B is equal to the effective
electromotive force acting in it less the product of the resist-
ance of the conductor multiplied by the current flowing in it.
For the conductor I we have similarly

y—B=(a—y)L.
Hence a—y represents the actual current in I: it is the dif-
ference of the imaginary currents flowing round the # and y
cycles in the positive direction. And for the conductor H
we have also B—a=(z—z)H.

Add together these three equations,
E=y~a+Baz,
O=B—vy+(z—y),
O=a—B+(¢—2)H ;

and we have, as the result of going round the cycle & formed
of conductors B, I, and H,

E=aB+I+H)—yI—:H. . . . . (1)

a, B, v have disappeared in virtue of these opposite signs.
This equation (1) is called the equation of the # cycle; and
we see that it is formed by writing as coefficient of the cyclic
symbol @ the sum of all the wesistances which bound that cycle,
and subtracting the cyclic symbel of each neighbouring cycle
multiplied respectively by the common bounding resistance
as coefficient, and equating this result to the effective electro-
motive force acting in the cycle, written as positive or nega-
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tive according as it acts with or against the imaginary current
in the cycle. This is Maxwell’s rule.

Since there are k cycles or meshes we can in this way form
k independent equations, and by the solution of these deter-
mine the £ independent variables, z, y, z, &e. The value of
the current in any branch is then obtained by simply taking
the difference of these variables belonging to the adjacent
meshes, of which the conductor or branch considered is the
common boundary.

§ 8. Let us now consider the most general case possible, in
which we have a network comrposed of linear conductors suf-
ficiently far apart to have no sensible mutual induction, and
let there be electromotive forces acting in each branch or
conductor. Let the system be considered to have arrived at
the steady condition. Let z, y, z, &c. be the cyclic symbols
or measure of the imaginary current circulating counter-
clockwise round each mesh. Let A, B, C, &e. (fig. 8) be the
resistances, and ey, e,, €5, &c. the electromotive forces acting
in each branch. These are reckoned positive when they tend
to force a current round the mesh counterclockwise, and
negative when they act in the opposite direction. Then the
equation to the & cycle will be

2(A+J +L)—yJ + 0z + Ou+ Ow=e¢,.

The symbols of all the cycles are written down, putting in
those of 2z, u, and w with zero coefficients, as they are not
afijacent cycles to that of @. We shall have five cquations
similar to the above for the other cycles, ¥, z, w, and w.

Now it can very simply be shown from the theory of deter-
minants, that if there are n linear equations of the type

apeytase, 4+ . . . L L, a, &, =p,

hwytlae+ . . o L oL b a,=p,

kyay +kovs+ . . . . L. k,x,=p,,

thfa solution for any variable , is the quotient of the deter-
minants
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The only difference between the numerator and denominator
is that the solution for #, is given by writing as numerator the
determinant of the n equations having the column p,, p; ... p,
substituted for its nth column, and then writing down as
denominator the determinant of the » equations simply.
Thus, for example, the solution of the three linear equations

ar +by +cz =d,
@+ by +ez=d,

ag® + by + coz=dj,
is

d b ¢

‘ d, b ¢

| dy by o

T =

a b ¢
¢y by o
a by ¢

with similar expressions for y and z, differing only in having
as numerators respectively

a d ¢ a b d
a dy o and a b d |’
! ag dg Ca ag bg dg

denominator being the same.
In this case the evaluation of these determinants is easy : a
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simple symmetrical process of taking products, according
to the rule,

a b oe !
L d e f ]} = (aei + bfy + cdh) —(ecg + bdi + afh).
g h 1

§ 4. The properties of determinants enable us, however,
very easily to evaluate a numerical determinant of any order.
The process consists in the gradual réduction of the determi-
nant in order by such transformations as will render all the
elements of the first row or column zero except the first. The
determinant is then reduced to the product of its leading
elements and the corresponding minor. A repetition of this
lowers the determinant one degree at each stage ; and finally,
when it is resolved into a numerical two-row determinant, a
simple cross multiplication gives its value.

The process of evaluation of a numerical determinant is
dependent on four principles :—

(1) That the value of a determinant is not altered if rows
are changed into columns.

(2) The interchange of two rows or two columns reverses
the sign of the determinant.

(3) Ifevery constituent in any row or column be multiplied
by the same factor, then the determinant is multiplied by that
factor.

(4) A determinant is not altered if we add to each consti-
tuent of any row or column the corresponding constituents of
any other row or column multiplied respectively by an iden-
tical factor, positive or negative.

For example, suppose that the solution of a series of network
equations with numerical coefficients of resistance yield the
determinant

5 3 1 6
7 8 9 2
2 1 4 3
10 7 5 7

we proceed to operate on this as follows :—Subtract the
second column from the first and write the remainder. As a
new first column we get
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2 3 1 6
-1 8 9 2
1 1 4 3
3 7 5 7

Subtract the third row from the first and put the remainder
as a new first row. Also add the third row to the second for
a new second row, and we get

1 2-3 3
0 9 13 5
11 4 3
3 7 5 7

Again, subtract the first row from the third for a new third,
and subtract three times the first row from the fourth row for
a new fourth row, and we have

1 2-3 3
0 9 13 5
0—-1 7 0
0 1 14-—-2
which is equivalent to the third order determinant
9 13 5
-1 7 0
. 1 14 -2
And a similar series of operations reduces this to
76 5
21 =2

which is equal to
—~T76x 2-5x21=—2517.

Accordingly a series of simple subtractions and multiplica-
tions will effect the evaluation of any numerical determinant,
and enable us to solve a series of linear network equations for
the currents in all the branches when the numerical values of
the resistances of the conductors are given. The equations as
written above give as solutions the values of the cyclic sym-
bols or imaginary currents round each mesh. To obtain the
actual current in any branch, we should have to obtain the
values of the cyclic symbals or imaginary currents, for the
adjacent meshes of which the given branch is a common
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poundary. Maxwell ingeniously saves labour in this opera-
tion by taking as the symbol for one mesh say #+y, and for
an adjacent mesh y (fig. 4), and then the real current in the

branch AB is 4 y—y=u.

And the simple rearrangement and solution of the network
equation gives at once as value for # the current in the resist-
ance AB, which is the common partition of the two meshes.

§ 5. Returning now to the case when there is only one
impressed electromotive force in one branch, we see that in
forming the cycle equations only one will be equated to an
electromotive force, viz. the equation for the mesh containing
the impressed electromotive force in one of its branches. All
the other equations will be equated to zero ; and accordingly
the equation for the current in any conductor will be of the
form o BA.-,

A, ’

where A, is a determinant of the nth order,and A, _, isa first
minor of this. Referring to fig. 1, we see that, by writing
down the five equations of the cycles z, y, 2, v, w, we obtain
equations by which to calculate the currents in any of the
thirteen branches, and the current in branch B will be

EAn-:
A,
where A, is the determinant formed of the coefficients of the
five equations, and A,-, is the first minor corresponding to
the coefficient of 2 in the equation of the z-cycle.
We also saw that if ¢ and « are the potentials at the ends
of the branch B, E—Bz=y—a.

&=

Now consider that part of the network which remains if the
conductor B is removed, and let us imagine that a current n
continues to be forced into it at y and drained out at « ; the
total resistance of that part of the network, not counting B, is

Y,

but this is equal to @
LY
&L

Now since the resistance of B may be anything, let it be zero;
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then the total resistance of the network between y and a will b

R="—;

&
but

o= [Bee
A B=0,

where the suftix and bracket denote that after the determi.
nants are formed from the cycle equations, according t
Maxwell’s rule, then in them B is put equal to zero.

If we denote the determinant of all the n-cycle equations
under the condition of B=0by d,, and by d,_, the first minor
of this or the minor of its leading element corresponding to the
coefficient of @ with the resistance of the circuit containing
the effective electromotive force put equal to zero, we have
for the total resistance R of the network between the points at
which the current enters and leaves, the expression

dn
R=g_"

Since, then, as we have seen, the linear equations for th.
cycles can always be solved by evaluating the determinants,
it follows that in all cases, no matter how complicated, the
resistance of any network can be calculated by simple arith-
metic processes from the given resistances of the branches or
conductors which compose it. We have therefore an interest-
ing extension of Maxwell’s method of calculating the currents
in a network and the potentials at the junctions to a method
of calculating the combined resistance of a number of con-
ductors forming a network ; which method consists, as seen
above, in forming a certain determinant whose elements
are formed of the separate resistances of the branches, and
dividing this determinant by another of an order next below,
viz. the first minor of its leading elements; and we find
that the resistance between any two points of any network
of conductors, however complicated, is expressible as the
quotient of a certain determinant by another formed from it.

§ 6. We shall proceed to illustrate this method by a few
examples.

1. Find the resistance between the points 1 and 3 (fig. 5)
of a network consisting of five conductors, whose resistances
are A, B, C, D, E, joining four points, 1, 2,3, and 4.
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Connect 1 and 3 by an imaginary conductor of zero resist-
ance, and having an electromotive force, ¢, supposed to act in
it. Let z, y, z denote the cycles or imaginary like-directed
currents in the three meshes so formed, and write down the
current equations, according to Maxwell, for these three
cycles :(—

(A+B)x —Ay —B: =e,
—Ar +(A+E+D)y —E-: =0,
— Bz ~Ey +(B+C+E)z=0.
Then, by what has been shown above, the resistance R be-

tween the points 1 and 3 of the network is given by the
expression

(A +B), —A, ~B
] —A, (A+E+D), —E
o | —B, —E, (B+C+E)
(A+E+D,) —E

—E, (B+C+E)

In dealing with numerical cases we need no longer intro-
duce any notice of imaginary electromotive forces, but proceed
according to the following rule.

To determine the resistance of a network of conductors
between any two points on the network. Join these two
points by a line whose resistance is supposed zero, and give
symbols to the meshes of the network so formed; calling
this additional mesh produced by the added zero conductor
the added mesh. Then write down a determinant whose dexter
diagonal has for elements' the sum of the resistances which
bound each mesh, beginning with the added mesh; and for
the other elements of each row the resistances whlch separate
this mesh respectively from adjacent meshes, and having the
minus sign prefixed, .zeros being placed for elements corre-
sponding to nonadjacent meshes.

More explicitly, if we denote by =, y, 2, &c the meshes,
z being the added mesh, and by =R,, ZR,, £R., &c. the sum
of the resistances whlch bound each cycle, then these will be
the elements along the dexter diagonal of the determinant.
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And if # and y are adjacent meshes, and *R represents the
resistance of the common boundary, then —*R will be the
element in the xth row and yth column, and also in the yth
row and zth column ; but if # and z are nonadjacent meshes,
then O will be the element in the a#th row and zth column, and
also in the zth row and zth column. Having f'ormed this
determinant, which we call the network determmant we
divide it by the first minor of its leading element ; and the
quotient is the resistance of the network between the two
points, joined by the zero-conductor forming the added mesh.
It is seen that, owing to the mode of formation of the network
equations, the network determinant is a symmetrical deter-
minant—that is, one half of the determinant is the reflection,
as it were, of the other half in the diagonal considered as a
mirror.

§ 7. As a means of comparing the results of this method
with other known results, let us take the exceedingly simple
case of three conductors joining two points in what is com-
monly called multiple arc.

Tet 1, 2,and 3 (fig. 6) be the three conductors joining
two points A and B; let their respective resistances be
71, T3, 73 3 then join A, B by a dotted line so as to make one
added mesh, and let the resistance of this added circuit be
zero. Then, without writing down the equations to the cycles
we see that the network determinant is

d n= ™ -7 0
- r1+7y —7g
0 —1y e+ 73

The elements 7y, 7, + 7y, 79+ 73 of the dexter diagonal are the
sums of the resistances which bound each mesh, , y, and 2,
taking the added mesh # first.

The other elemerits of the first row are the resistances, with
minus sign prefixed, which separate the mesh # from mesh y
and mesh 2'; or are common to z and y and 2 and z, viz. r,
and zero, because x and z are nonadjacent. And, similarly,
if m and » are any two meshes, then the element in the nth
row and mth column is the resistance separating or common
to the two meshes ; and the element in the nth row and mth
column is identical with that in the mth row and nth column:
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zero being placed as an element if these meshes, m and n,
have no common boundary or circuit.

The above determinant is easily evaluated. By adding the
first row to the second for a new second row, and this new
second row to the third for a new third row, we transform the
determinant easily into

rn =7 0
0 ry =g
0 0 73
which is equal to
7975,

The first minor of the leading verm of the network deter-
minant is .
747y —~rg
— 7T 7'2+7'3 =dn—l,
which is equal to
7Ty + Ters+ 75y 5

and hence the resistance of the network between A and B is

dy 717973
— I
dny TTe+1rergreny

which is a known result. In these simple cases the above
general rule is, of course, a less easy method of finding the
combined resistance than the direct application of Kirchhoff’s
corollaries of Ohm’s law ; but whereas the general method is
alike applicable to the most complicated as well as to the most
simple cases, the simple direct method requires twice as many
equations, and does not determine the direction as well as
magnitude of the current in each branch.

§ 8. As a sithple’ numerical example we may take the case
of a crossed square of wires. Let 12 conductors join 9 points
(fig. 7) so as to form a square divided into four squares, or a
four-mesh network of conductors. Let the resistance of each
branch, as ab, be unity. It is required to find the combined
resistance between A and B. Number the meshes 1, 2, 3,
4,5 ; 1 being the added mesh formed by joining A B by a
dotted line, making an additional fifth mesh, the resistance of
this additional ideal conductor being zero. Then the network
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determinant is

4 -1 -2 -1 0
T 4_—10_1 .....
-9 -1 4 -1 0
-1 0 -1 4 -1

0 -1 0 -1 4 =d,.

The dexter diagonal has for each element 4, viz. the sum of
the four resistances, each to unity, which form each mesh or
cell. And all the other figures, say, in the nth row, are the
resistances (with minus sign prefixed) separating the nth
mesh from all other meshes, zero being placed in the column
corresponding to any mesh which has no common conductor
or branch with this nth mesh. The order in which the columns
stand and also the rows correspond to the order in which the
meshes are numbered in fig. 7.

The numerical value of this determinant is easily found to
be 288=3x 96=d,. Now if we take the first minor of its
leading element, we get a determinant formed of the elements
included in the dotted rectangle ; and taking this as a separate
determinant and evaluating it, we have its value

dne1=192=2x96;

hence the resistance of the network between the points A

and B is

d 288 .
=229 11 .
.= 192 1 units

§ 9. One more simnple numerical case may be taken and
compared with the results of known methods.

Let a hexagon of conductors be taken (fig. 8) having
crossed diagonals all meeting in the centre. Let the resistance
of each side, as ab, be unity, and also let the resistance of each
semidiagonal, as Oa, be unity. Then required the combined
resistance of this network of 12 conductors between the points
A and B diametrically opposite. Join the points A and B by
a-dotted line of zero resistance, making an added mesh 1.
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Mark the other meshes 2, 3, 4, 5, 6, 7. Then by forming the
network equations it is easily seen that the network deter-
minant d,, is

3—-1—-1-1 0 0 0
-1 83-1 0-1 0 O
—1 -1 3-1 0 0 0
-1 0-1 3 0 0-1

0—-1 0 0 3-—-1 0

0 0 0 0—-1 3 -1

0 0 0-1 0—=1 38 | =d.

The value of this determinant is 256.
The first minor of the leading element of d, is d,_,.
= 3~-1 0-1 0 O
-1 8-1 0 0 O
0~1 3 0 -0 -1
-1 0 0 8 -1 O
0O 0 0-1 3 -1
O 0-—-1 O0-1 3
The value of this last is 320.
Hence the resistance of the network between the points A
and B is

d. _ 256 4
dnoy— 3207 5
We can easily verify this result in the above symmetrical case,
for the hexagonal framework in fig. 8 is traversed symme-
trically by the current flowing through it; and hence no
disturbance of the distribution of currents will take place by
separating it, as in fig. 9. We break the connection between
the semidiagonal conductors a, b and the mean diagonal A B,
whilst keeping them in contact with each other, the resistance
of each branch still remaining unity. It is then easily seen
that the hexagon so arranged must offer exactly the same
resistance between the points A and B as in its original form.
Now the combined resistance of a, b, and f, each equal to
unity, between the points C, D is &, and the combined resist-
ance of this with e and g in series is 2% ; and hence the total
resistance of the whole network between A and B is equal to
that of three conductors in multiple arc whose resistances are
VOL. VII. T

R=
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respectively 2%, 2, and 22, which is equal to

1 _4
1 1. 1 5
23tstag

the same result as obtained above.

These numerical examples show conclusively that, in cases
in which the resistance of a network can be obtained by simple
direct methods, the results coincide, as should be the case,
® with those obtained by the employment of the general method ;

but at the same time the general method is capable of con-
ducting easily to a solution in the most unsymmetrical cases.
The general rule will, for instance, just. as easily give the
determinants when the selected points between which the
resistance is reqnired are not symmetrically placed, but are,
say, adjacent angles of the hexagon, in which case no such
simple direct method as employed above can be used.

§ 10. The following example will give a good illustration
of Maxwell’s method of treating network problems, viz. the
case of Sir W. Thomson’s resistance-balance for small resist-
ances. In this arrangement (fig. 10) 9 conductors join 6
points and form 4 cells. B is the battery-circuit in which
operates an electromotive force E. Let the four cycle cur-
rents be denoted by z+y, ¥, 2, and w. - These are the imagi-
nary like-directed currents round the circuits, and the real
currents in the branches are the differences of these.

The problem is to determine the current in the galvano-
meter branch G, and the relation of the resistances when this
current through G is zero. LetP,Q,S, T, R, », D be respec-
tively the resistances of the branches, and G the resistance of
the galvanometer circuit, and B the resistance of the battery
circuit. Then z+y and y being the imaginary like-directed
currents in the two adjacent meshes of which the galvanometer
branch is the common boundary, then z+y—y==z is the
current through the galvanometer. ‘

Proceeding to write down the cycle equations, according to
- Maxwell’s rule, we have

(P+G+Q+R)z+y—Gy—~Qz—Rw=0,
(T+r+8S+G)y—Ge+y—S8z—rw=0,
(Q+ 8+ D)z—8Sy—Qz +y—Dw=0,
(R+D+r+B)w—Rw:;—-Dz-—ry=E.
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Rearranging these equations and solving for 2, we have the
following value :—
—Q+8, D, -D
T= T+S+», T+», —r |,
P+Q+R, P+R, —R

in which A is the determinant of the four equations in #, y,
z, and w, and whose specific value does not concern us.

This gives the current in the galvanometer-branch ; and if
this is zero, then the determinant in the numerator of the equa-
tion giving « must be zero. Hence, when « is zero, we have

-Q+8, D, O
T+84+r, »+T, T | =0,
P+Q+R, P+R, P
this determinant being derived from the one in the equation
for # by adding the second and third columns for a new third

column.
This last determinant equation writes out into

T, » T, S
e, | TP P q

Hence the condition that the current in the galvanometer-
branch shall be zero is that both detérminants in this expression
shall be simultaneously zero, or

T, »
P, R
that iS, 2 _ L _ -§-

P R ™ Q
Hence this condition expresses the relation which must hold
good between the magnitudes of the resistances T, P, Q, S, »,
R, in order that the galvanometer-branch G may be conjugate
to the battery-branch B.

The above example shows well the symmetry of the method
when dealing with a case of distribution of currents in a net-
work.

§ 11. As a final illustration, let us consider the case of a
circular wire A P B Q, with a diametral wire P Q across it.

Take any two points A, B, at the extremities of a diameter
' T2

=0.

(Q+8+D)

T, 8
=0, and , P,, Q l=0;
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not coinciding with P Q, but separated by an angular distance
0 from it, and let us obtain the resistance of the circular wire
so crossed between the points A and B.

Join the points A, B by a dotted line of zero resistance.
Call the three meshes so formed =z, y, and z; let » be the
radius of the circle ; and let p be the electrical resistance of
the wire per unit of length. Then the

Resistance of branch PQ = 2pr,

7 ” AP=pro,
and ” ) AQ=pr(mr—0),
Resistance of branch BQ=resistance of AP,
9 2 PB= ,, »  AQ.
Then the network determinant d,, is
prr, —pr(mr—6), —0
—pr(m—8), pr(m+2), —pr2
4, —pr2, pr(m+2)
Removing the common factor #p, we have to evaluate
o —nr—0 —0
~7—0 T+2 -2
—0 2 T+2
This is very easily reduced to
0 6 =
| -1 1 2 |,
-0 2 =

which is equal to
2m(w + 0 —67),
&n=rp32m (7 + O — 6?).

The value of the minor of the leading element of the network
determinant, viz. d,_,, is

r’p{(m + 2P — 4} =r’p*m(w + 4).
Hence the resistance of the network between A and B, =R, is

and therefore

dn _n_ 2w(w+0mr -0
-d_,,_:,’R'-’rp w(mr+4)

27 + 2wl — 267

=rp .

r—a
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We can check this in the extreme cases when =0 or 9=22.—.

When 6=0, the network-resistance is simply that of three
condnctors whose resistances are 2pr, mpr, and pr joined in
multiple arc, as in Plate IV. fig. 12, because PQ now coin-
. . e e 27 .

cides with AB; and this is simply P It is seen at
once that the above value for R becomes this when 6 is put
%, the diameter PQ joins
points at equal potential (fig. 13), and is not traversed by any
current at all ; and hence its removal will not affect the
resistance between the points A and B.

Hence the resistance of the network simply reduces to that
of a circle measured at the ends of a diameter, or to two con-
ductors of resistance mpr joined in multiple arc, and this is
T T

5 By putting 6=—2— in the general solution

for R above, we get it reduced to »p 7—; ; and accordingly this

equal to zero. Now, when 6=

equal to pr

formula agrees, as it should do in these reduced cases, with the
results of the direct method based on first principles. If a
value of € be found which will make the expression
27 + 270 —26°

equal to 744, then for such a position of the diameter AB
relatively to PQ the resistance of the circle and its diagonal
PQ would be exactly equal to the resistance of half the dia-
metral wire or to its radius, assuming both the circle and
diagonal to be made of wire of equal conductivity per unit of
length, To find the value of @ for which this is the case, we
have to solve the quadratic

2742wl — 20 =7 + 4.
If we put 6= 1—7—;(—) 2°, where 2° is the number of degrees equi-

valent to the angle 8, we find, as a solution for this quadratic,
that the positive root is nearly
171°-804.
Now 3 radians, or 3 unit-angles in circular measure, are nearly
171°-887.
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Hence, for a position of the diagonal PQ as in fig. 14, when
the arc AP is nearly equal to #—3, or to the fractional part
of 7r, the resistance of the circle and diagonal PQ measured
between the points A, B is very nearly equal to that of half the
diagonal PQ; or, which is the same thing, the resistance of PQ
alone is nearly double the combined resistance of the circle and
diagonal measured between the points A and B at the extremity
of a diameter removed 171°804 from PQ.

§ 12. A small practical application of this last example may
be made in constructing a variable resistance.

Let PAQB (fig. 15) be a narrow circular canal cut in a slab
of wood or ebonite and filled with mercury. Let PDQ be a
bent copper wire balanced on a pivot CD, and having its ends
P and Q dipping in the trough at opposite extremities of a
diameter of the circular trough PAQB.

The total resistance between any two points A and B in the.
trough, which are also diametrically opposite, can be varied
within limits by changing the position of PQ relatively to AB.

When PQ is turned so that it is at right angles to the dia-
meter AB, it does not affect the total resistance between A
and B, and may be removed. The resistance is then just that
of the circular band of mercury taken at opposite extremities
of its diameter. When PQ is coincident with AB it reduces
the resistance, and in intermediate positions the joint resistance
of trough and diagonal wire is intermediate between the greatest
and least when it is in position removed either 90° or 0° from
AB.

By using a circular glass canai filled with sulphate-of-zinc
solution, and a zinc diagonal electrode and amalgamated-zinc
electrodes at A and B, a variable resistance may be constructed
capable of being varied over considerable ranges perfectly
gradually and with no imperfect contacts.

§ 18. Having illustrated, by the foregoing examples, the
methods of calculating both the currents in and resistances of
networks of any complexity, we return for a moment to some
general considerations.

Consider a function formed of the sum of each separate
resistance in a network multiplied by the square of the current
strength flowing through it. This expresses the heat gene-
rated per second in the whole network by that distribution of
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current. This is called the Dissipation Function of the net-
work. It represents the rate at which energy is being trans-
formed into heat or rendered unavailable.

Write down the dissipation function for the network in
fig. 1. Call it H. Then

H=B2’+Iz—y’ + Hr—r"+ Oy’ + Lz =3 + A’ + Ju—y’
+Kz—w?+ (D + E)’ + (F + G)w? + Mu—w".
Now the cycle equation for the cycle or mesh y is, by Max-

well’s rule,
(C+I1+L+4Jd)y—1s—Lz—Jv=0,
which is the same as

Cy~lz—y—~Lz—y—~Ju—y=0.
And this is at once seen to be identically the same as the first

partial differential of the dissipation function with respect to
the cyclic symbol y, or is the same as

oH_
%"a—y"'o’

where O represents partial differentiation ; and by writing
down the other cycle equations for each cyclic symbol or
imaginary current, z, y, 2, &c., we can show that these cur-
rent-equations are respectively
H
%%g: %%;’I: %%—z—’ &e.,

each equated to the effective electromotive force in that cycle
or mesh.

Let us assume now that 2 is constant, but that y, z, u, w, &e.
are independent variables and are arbitrarily changed. This
is equivalent to supposing that a given quantity of electricity
per second is pushed into the network, but that its distribution
is supposed to be varied. We see that the equations which
we write down, according to Maxwell, to determine the real
distribution of currents in the network, according to Ohm’s
law, are the same equations as would be written down to find
the values of y, 2, w, w, &c., which make the dissipation func-
tion a minimum under fixed conditions of total current flow-
ing into the network, viz. equating to zero the first partial
differentials of H with respect to the variables y, 2, u, &e.
The same holds good generally, hence we see that this is
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another way of arriving at the theorem of which Maxwell has
given a proof on page 375, § 284, vol. i. of his large Treatise,
2nd edition, viz.:—* In any system of conductors in which
there are no internal electromotive forces the heat generated
by currents distributed in accordance with Obm’s law is less
than if the currents had been distributed in any other manner
consistent with the actual conditions of supply and outflow of
the current.” \

The exact proof that the partial differentials of the dissipa-
tion function equnated to zéro gives the condition that the dis-
sipation function shall be a minimum is not complete without
an examination of Lagrange’s conditions. It is obvious that
the second partial differentials of the dissipation function are
quantities which are resistances, viz. the coefficients of the

current symbols in the cycle equations, and that the conditions
. ;

. . Y i = | .
for a minimum are complied with, since 3’ &c. are posi-

tive ; and the discriminant of the quadratic function of the
currents or symmetrical determinants formed of these second
partial differentials is what has been called above the network
determinant. This and all its successive minors are positive
quantities *.

§ 14. In the foregoing sections the problems have been
treated under the limitations that the various meshes of the
network of conductors have no mutual and no self-induction.
The introduction of these inductive actions will affect in a
considerable way the treatment of the problem ; and the dis-
tribution of the currents in, and the resistance of, the network
will be affected by them during the time taken by the cur-
rents to become steady.

~ In those pages of his Treatise in which Clerk Maxwell

worked out his splendid dynamical theory of electromagnetism,

he starts with the explanation of the methods Lagrange and

Hamilton employed to bring pure dynamics under the power

of analysis, and the results of Lagrange are embodied in the
equation d dT dT
=% 4 @

* See Williameon’s ¢ Differential Calculus,” p. 408, “ On the Conditions

for a Maximnm and Minimum of a Function of any number of Variables,”
§ 163, and Appendix.
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in which X is the impressed force tending to increase the
variable @, and T denotes the visible energy of the system of
bodies at that instant.

This equation establishes a relation between the kinetic
energy of a material system at any instant, the force im-

ressed upon it in a certain direction, and a quantlty called a
yariable, which expresses the state or condition of the system
with respect to that direction. Maxwell, by a process of ex-
traordinary ingenuity, extended this reasoning from materio-
motive forces, masses, velocities, and kinetic energies of gross
matter to the electromotive forces, quantities, currents, and
electrokinetic energies of electrical matter, and in so doing
obtained a similar equation of great generality for attacking
electrical problems.

In the electrical problem the variables are the quantities of
electricity #, y, 2, &c. which have from the beginning of the
epoch flowed past any points, and the analogues of the velo-
cities are the fluxes of these, z, ¥, 2, &c., or the currents.

The electrokinetic energy is measured by the quadratic
expression

T=1iL2 +4Leze + . . . M2+, &e.,
where the coefficients L;, Lj, M, are functions of the geome-
trical variables, but into which the electrical variables do not
enter.

If now, as before, 2,, 7, represent the imaginary like-directed
currents round each mesh of a network, in which currents
are beginning to flow, then

T ond 4, e
d.z‘1 d(z'2

represent the electrokinetic momenta of these circuits. De-
note them by p;, ps, &c., and accordingly
p1=L1£'1+M12:Z’2, &e.

If E is the impressed electromotive force in the circuit or
mesh arising from some cause, battery, thermopile, dynamo
machine, &c., which would produce a current independently
of magneto-induction, then, if R be the total resistance

round the mesh, and # the cyclic current, Rz is the electro-
motive force required to overcome the resistance of the circuit,
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and E — Rz is the electromotive force available for changing
the electric momentum of the circuit.
Accordingly, by Lagrange’s equation,

dp dT
dt ~ da’
where T is the electrokinetic energy. AsT does not contain ,

that is to say it is a function of currents, not quantities, the
last term disappears, and we have

. _d dT
E—Rs=7 =,

E—Re=

or
d 4T

dt da:

The electromotive force is therefore expended in two
things : first, overcoming the resistance R ; and, secondly,
increasing the electromagnetic momentum p. Now if there
is no electromagnetic momentum, we have seen that the
cyclic equations are of the form

+Rz=E.

where H is the dissipation functlon of the system, and E’ is
the acting electromotive force concerned in overcoming the
resistance of the circuit.

If, then, we substitute for Rz in equation %Z—.—H, we have
z

as the general equation for the electromotive force in any
mesh or cycle z,

d dT + %
dt dz'

This most important equation is Maxwell’s general equation
for determining the current # in any circuit when the dis-
sipation function, and kinetic energy, and impressed electro-
motive force are known. We shall proceed to apply it to the
solution of some mnetwork problems, in which the self and
mutual induction of the branches is taken into account to
determine the distribution.of currents and combined resistance
at any instant during the variable state.
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§ 15. Consider, first, the case of a galvanometer with a
coefficient of self-induction L and resistance @&, and shunted
by a shunt of resistance S, but wound so as to have no co-
efficient of self-induction, and let the shunt and galvanometer-
coils be so far removed that there is no coefficient of mutual
induction. This is the ordinary practical case.

Let a battery be joined up and let the battery and con-
nections have a resistance B and electromotive force B (see
fig. 16).

We have then a two-mesh network. Call the current in
the galvanometer- and shunt mesh y and the current in the
shunt and battery mesh ¢+y. Then the current through
the galvonometer is y, the current through the shunt is «, and
the current through the battery is z +y.

The dissipation function H is

Bw+y2+ S+ Gy*=H,

which muy be written

B+S 2+y°+G+8 y®—28 z+yy=H;
and the electromagnetic energy is
1Ly =T.
Hence, by the general equation,

d dT dH _
dGay tray T

we have the two cycle equations for the y and z+y cycles,

2 1y + TF Ry —SaFy=0

and
B+S 24y — Sy =E,
or
(Li +G') —Sz=0
dt y i |
and

By+ B+ 8Sx=E,
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The solution of these for # and y is

E B+8S
0 -8
y = = current tbrough
B B+8S [ galvanometer,
d :
and
B B
d
Lé_i-t._l- G O
z = = current through
B B+8S [the shunt,
d
LC—IQ +G =S
Writing out this differential equation for y’ we have,
Ly -6 | | B Bs+s E —BF8
¥ — y= ’
0 B+S G 8 ¢ 8
or BTS1Y +(BS +RG+8G)y=ES,
or @+BS+BG+SG ES

dt (BF¥SL YT B+OL
The solution of this differential equation is _
ES _BG+GS+BS
y= BG+GS+BS<1_e BL )
This gives the value of the current through the galvanometer
at any time, ¢, after starting the flow by making the connec-
tion with the battery.

When ¢=0, then y=0, and as ¢ increases y increases, and
ES

finally, when t= oo, y= BGIGSTEY ° 2 it may be
written, y= S B
’ = .
G+S‘B+_SG
: G+8S

This last is the ordinary formula given for the current
through a shunted galvanometer ; but we see that when_ self-
induction is taken into atcount, it is not until after an infinite
time that the current rises to this value.
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By the cycle equation, By + B+ B+Se=E: hence

- E—By
B+S* ‘
BG+GS+BG
And if we write N for the factor (1 —e T (BYDE t) , then
BE— EBSN
_ BG+ BS+8G
- B+8
_E(BG+BS+8G— BSN)
(B+8)(BG+BS+8G) ’

which gives the current through the shunt at any instant.

§ 16. Consider now the combined resistance of the galva-
pometer and shunt at any instant. -,

The self-induction of the galvanometer acts like a spurious
resistance during the commencement of the currentand drags
out or plolongs the rise of current in the cralvanometel coils ;
accordingly, during this period the combmed resistance is a
function of the tlme ¢ from the commencement of the flow.

To calculate the combined resistance of galvanometer and
shunt at any instant, we proceed as in the cases above exem-
plified. Torm the cycle equations

(B+8)z+y—Sy=E
d \
—8z+y+ (G+ S+Lc'i-t) y=0.,
Write down the determinant of these equations with the bat-
tery-circuit resistance put equal to zero, that is put B=0, and

the combined resistance R reqmred is the quotient of this
determinant by its first minor, viz. '

S —S
S G+8S+L2
- O+ LT

R=
G+S+L%
dt
or
s o0
' -8 a¢+L% I s(GaL?
R= @ — ( o

d - d
8+G+Lz S+ <G+Ldt
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We have now to see what is the meaning of G+Ld§t as an
operator in a determinant.

If we consider the formation of a current in a circuit of
resistance R and coefficient of self-induction L by an electro.
motive force B, we have the equation for the current ¢

di | .
L C-?Z + RZ— E .
Write thus
d :

(LG +R)i=E;
or, by notation of the calculus of operations,

. d -1

But now the solution of the above differential equation

under the conditions ¢{=0, (=0, and {= o, i=-1-g-, is

s R
.
i=E (1‘§ =)
Comparing these two expressions for ¢ together, we have
d R
L 7 +R=

— .
(=)
Hence we may substitute in the expression for the combined

resistance of galvanometer and shunt for L Edt+ G,

G
7 _Ga,\’
(1—c2%)
and we have as a result,
NG
R= e
G+8(1—z?)
We see that when ¢=0, R=S, and when {= o, R= G%S—S

Hence the result shows that at the first instant of starting a
current through a shunted galvanometer, when the shunt
has no self-induction and the galvanometer a considerable
one, the galvanometer behaves as if it had a high spurious
resistance, which in time dies away, allowing the total current,
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after an infinite time, to be divided between the galvanometer

S ¢ G
G+S ° G+¥

§ 17. We may apply the same methods to the examination
of the case when the current sent through the shunted galva-
nometer is not generated by a source of constant electromotive
force, but is a:discharge from a condenser.

Let K (fig. 17) be a condenser connected up with a shunted
galvanometer, so that when the key % is pressed a discharge
passes through the galvanometer and shunt. Call the two
cycles # and y. Let G be the galvanometer-resistance and S
the shunt, and let Ly and L, be their respective coefficients of
self-induction ; the coefficient of mutual induction being zero.

Let ¢ be the quantity of electricity in the condenser at any
instant ¢, Counting the time from the instant of commencing
the discharge,:let C be the capacity of the condenser, and let
¢q: and ¢s be the quantities of electricity which have, since the
beginning of the epoch, flowed respectively through the gal-
vanometer and the shunt. '

If T be the energy function and F the dissipation function,
we have, as above, the fundamental equations

2P=Lyy% + Ly(2—y)%
2F=Gy*+ S(z—y)?;

and the shunt in the ratio of

and
or :
2T=L,y* + L,2* + Lyy? ~2L,ay,
2F = Gy? + S2® + Sy* — 28zy.
By the fundamental equation

adTl  dF _
dide Tdz

For ¢ we must write Gq

Writing, then, the cycle equations, we have
d
&E(ng-—Lzy) + Sz—Sy= —g

d =
dt (Lx.y +L2..7/"'L2‘Z') + G!/"" Sy'~— Sz=0;
from W hiCh we deduce easily
15¢ =0
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and
d
L5 (z—y) +Sa—y)=¢ 3
or

d d )
Ly 5 —Ls 7 (a—y) =S(z—y) — Gy.

Now y and x#—y represent the strengths of the currents flowing
through the galvanometer and the shunt at any instant.

If we integrate both sides of the equation from O to oo, we
have

[Lw-—Lﬁx—y)]f:Sﬁ w—ydt—(}jo ydt.

Now the left-hand side of the equation is zero because quan-
tities of the form of Ly represent the number of lines of force
which are added into the circuit of the galvanometer, and the
discharge may be divided into two parts, during one of which
lines of force are being added to, and in the other of which sub-
tracted from, the circuits of the galvanometer and shunt; and

the sum of these is zero. Again,jv (z—y)dt and s‘ ydt re-
0 Jo

present the whole quantities ¢, and ¢; of electricity which
have flowed respectively through the galvanometer and the
shunt, Hence we arrive at the conclusion that

Sgg—Gg1=O,

or
G_q,
S QI,

that is, the total quantity of the discharge is divided hetween
the two circuits inversely as their resistances. We see there-
fore that self-induction does not affect the ratio of division of
a discharge in a divided circuit, provided that: no external
work, such as the moving of magnets or circuits conveying
currents, absorbs current energy. Hence, if a ballistic gal-
vanometer is shunted and a discharge sent through it, if the
needle has sufficient moment of inertia and the discharge is
sufficiently short, so that the needle has not perceptibly moved
from its position before the discharge is over, then the whole
quantity of electricity is divided between the galvanometer
and the shunt in the inverse ratio of their resistances.
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§ 18. To complete the solution we have to calculate the
current flowing through the galvanometer and shunt at any

instant.
Taking the two cycle equations

dr :

"C’
and p
Llamyesagy=d oo o (i)
we get )
a“w_9_a
Ly dt~ C Gy,
and

IJ1T12 (:l;;{= (Ll + L2)é{—L1 S .'Z’—y—LgGy

=(L, + Lg)g—LLSw+(LIS—L2G)g/. . (iii.)

Differentiate this last equation with regard to ¢ and eliminate

fl;{ by the help of the equation above it, and we arrive at

d
d’z lz L,S=L.G
L1L2 —(‘m = —LlS( -+ b Ll = (%'—' G’f/)-

ot
Eliminating 4 between the lust and equation (iii.) and re-
ducing, we arrive at

=
Lz do | oo e g
L,L, T + (L;S + L,G) Ut + GSz=(G+8) o
1,
but now o= —E—/—([/. Muking this substitution we have

b [3( . "’( .
LL,C ‘—(—U,{ + C (L;S +L._)_G-)fﬁl.f_,/ + UGS%+((}+ S)g=0, (iv.)

an anteresting equation, the solution of which gives us
the quantity of eclectricity in the condenser at any instunt, ¢,
after starting the discharge.  According to the equation ubove
dy i
L,/ +Gy= 1.
Lt I=C
Yy, s . . \
This equation gives us a value of 7 or the current through

the galvanometer at any instant when we know ¢, or the
VOL. VII. U
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quantity left in the condenser at that instant. The above

may be written
Y= (Ll + (J') O’

and the final equation (iv.) may be written
Lo (Lng ¢ L+ LS+ L&)C L 1+ 068 L +0(G+ S))

and accordmgly we have the followmg equatlon for the value
of y at any instant

y=(Lis+6)" LLC L 4 (LS+ LG +0as s +0:
Y=\Man P gp TS T Y dt
which may be written

y= (LiiL?C?d D (1280 + 2L, Ly0?G) & g ﬁ + (2L, C2GS + L,GX

—_ e N—1
+(GFSOL +¢68) & + GOGHE) o,

This linear differential equation is solved when we know
the roots of the auxiliary biquadratic; and according as they
are all real or partly imaginary, so will be the nature of the
solution.

If the roots are all real the solution is a sum of exponentials,
whose total value first increases and then dies away as ¢
increases, indicating that the discharge produces a wave of
electricity through the galvanometer always in one direction;
but if two or all of the roots of the auxiliary biquadratic are
unreal, it indicates as the form of solution a function of sines
and cosines which will have periodic values, and points to the
fact that the discharge is a series of alternations. The general
case, when both the galvanometer and shunt have coeflicients
of self-induction, when treated to determine the conditions for
an oscillating discharge, leads to an expression of considerable
complexity and not much practical use. The reduced case, in
which the galvanometer is wound to have self-induction and
the shunt so as to have no coefficient of self-induction, is,
however, a practical case, and can be treated without much
dxﬁ‘lcult)

Taking the differential equation for ¢, equation (iv.), and
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writing in it L;=0, we have

CL,S dt2+CGSd(’+(G+q) =0,
or

S d29+ GS dg+ 9 _o

G¥Sde " L(G+8)dt 'CL,”

The discharge will be oscillatory if the auxiliary quadratic

S GS 1
Grs™ TG ton~T
has unreal or imaginary roots.
Solving it we have
2 +Gm + & G* G* G+8
L, 4Ly 4L  SCL,’

=0

or

( LG +\/G2S?O2-——4G——+ SL,SC
2‘E1) 91,8C.

Hence, for the roots to be imaginary,
4L; G+ S SC must be greater than G2S?C?,

4L G.GS
C G+S-

If this relation holds good, then the discharge is oscillatory
in the condenser; and accordingly we see that to prevent
electrical oscillation in the galvanometer circuit, the product
of resistance of the galvanometer and combined resistance of
galvanometer and shunt must be equal to or greater than
four times the self-induction of the galvanometer divided by
the capacity of the condenser.

We may write the solution of the quadratic above,

or

G+8S
G — I C:
"‘-—"mi“-l T.O TR
=—a,i

where / —
G
a=gr, wd A=\ T 41/»

v 2
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and accordingly when @ is real, that is when

G+S

-m‘— is >1£j2;,
we have, for solution of equation,
g=Ae~*cos Bt + Be~**sin Bt.
When ¢=0, ¢g=Q=the original charge of the condenser, and
ccl—l%=0 when t=0;
therefore Q=A and Q~— =B;

dnd g=Qe~* (cos Bt + Bsm ,Bt)

Having now the value of the quantity of electricity left in
the condenser at any instant, we can find easily, from the
cycle equation (t.), the value of the current through the
galvanometer. For
or

dz/+G

C
y=e SI“”{C’ 5‘5‘ CLdt}

and the constant (' is determined by the condition y=0 when
t=0.

Substituting the value of ¢ above, we have

ll
t"l ) t"lQ

a=

G
'2—IJ’
y=e—2¢ { C'+ E CE Se“‘ (B cos Bt +asin Bt)}

i { O+ ;88‘14 e* sin Bt} ;
__Q
Y= BOL,

but ¢'=0,

e~*sin Bt ;
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and since
G+S
_ G 4 . S G?
a——m an B— W‘ 4Li’
Q -8, . ( G+ S_g_z_)
Y="IG+8 o’ & e\V s o /)b
B

which gives the value of the instantaneous current in the
galvanometer-circuit at any instant ¢ after starting a discharge
from a condenser of capacity C and original quantity Q through
a shunted galvanomecter, the shunt being wound without selt-
induction, and the galvanometer having a coefficient of self-
induction L.

§ 19. Two concluding examples of this method of treating
network problems will now be given, which are in Professor
Clerk Maxwell’s own words*.

T'heorem.—To compare the induction between one pair of
coils and any other two.

Let a, B, 1y, & be four coils of wire.

It is required to compare the mutual induction of a and «
with that of 8 and d.

Join up @ and B coils in series with a galvanometer, and
join up y and 8 coils in multiple arc with a battery, as shown
in fig. 18.

Place the coils in position.

* In the May term 1879, Professor Clerk Maxwell lectured at Cam-
bridge on Electromagnetism,and in the two last lectures of the Course he
gave this method of obtaining the equation for the cuirents in a network
of conduaction. In the last lecture of all he applied the method to cases in
v-hich self and mutual induction was taken into account, and gave the twa
illustrations in § 19. At the conclusion of this lecture he had ended his
professorial duties for the term, and a melancholy intercst attaches to the
subject which occupied his mind on the last occasion on which, uncon-
sclously to himself or his pupils, he was to perform them. Those who
enjoyed even for a brief period the privilege of being taught by him, ever
cherish a vivid remembrance of the intellectunl treat afforded by Professor
Maxwell's lecture-teaching, and the profonnd suggestiveness and interest
of it,

The two examples in § 19 and § 20 are taken from my notes of Prof.
Maxwell's lectures, with some little alterations to make them clearer.
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Let R and S be resistances of the primaries ¢ and §; let Q
be resistance of the two secondaries and of the galvanometer.

Let L, Ly, N;, Ny be the coefficients of self-induction of
the coils, and M;, M, the coefficients of mutual induction of
a and v, Band 8. Let I be the coefficient of self-induction
of the galvanometer.

Call # the eycle current of «, y that of 8, and = that of the
circuit formed of a, B, and the galvanometer.
The kinetic energy T of the system is

2T=a?N;+22zM, + 2% (L + Ly +T") + y* N, + 2y2 M,,
and the dissipation function F' is
2F=a’R +»*S +2°Q.

Then, by the formula
ddl dF

= dtde T 4z’
:;'Nl"l‘—éMl +a2R=E.
yNp+2M, +yS= —E.
aM, +yMy+2(L; + Ly + T') + 2Q =0.

Now #—y is the current through the battery; hence if we
put «+y for 2 in the above, we shall get # as the battery-
current. Hence, making the change, we have

(@+y)N+2M, +z+yR=E, . . . . . ()
yN, +eM, +yS=—E,. . . . . . (i)
(z+ )My + My +2(Ly + Lo+ T) +2Q=0; . (iii.)
- add equations (i.) and (ii.) and arrange, putting » for gt-,
(N7 +R)z+ (Nin + Noyn + R+ 8)y + (M; + Mp)ne =0,
M, nz+ (Min+Myn)y + {(Ly+Ly+TYn+ Q} 2=0.

Eliminating y, we have

$n(N + R) (M, + M) —Mpn(N;n+ R+ S)

+ (M + Mp)?02— §(Ly+ Ly + T)n+ Q} {Nin + Npn + R+ S} )2 =0
Hence we get

{n?(MgNl —M,Ny) —n(M,;8 _M2R)} z

a denominator which does not concern us

-~
~—
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If matters are so arranged that z=0, or the galvanometer
shows no current,

(LN, ~M,N) 22 = (a5 -2 R);

hence if there is no ““ kick ”” on the ga]vanmneter on making
the current, then

M, _R
M°F

§ 20. Theorem.—To determine the capacity of a condenser
by means of a Wheatstone’s bridge (fig. 19).

Let a, 8, v, & be the four points of a Wheatstone’s bridge;
and let the branch between « and 3 be interrupted at « 4, and
a Leyden jar or condenser inserted provided with some rapid
commutator, such as a tuning-fork, so that whilst the outside
of the jar is kept permanently attached to B, the inside is
alternately joined to a and b.

If a tuning-fork is used and its prongs have small metal
styles which just come down to the surface of the merciry in
two little cups, when the fork vibrates, as the prongs come
together, the upper point dips in; and as they separate, the
lower one dips in; hence the shank of the fork is alternately
connected with one and the other cup. The interval between
the time of connection being exactly half the time of a com-
plete oscillation of the fork.

Now let the meshes of the network be called 2+ 2, z, and y;
then & is the current through the galvanometer, and y is the
current through the battery. When the arrangement is made
as in the diagram, and the fork set vibrating, the vibrating
fork and the condenser act together like a resistance, and let
through so much electricity per second.

Now, as the condenser gets its charge by electricity flowing
into it, it builds up an opposing electromotive force in the 2

circuit which at any instant is equal to the value of S ;;Zt, where

K is the capacity of the jar, the integral being integrated from
the instant when the charging commences up to the instant
considered. Now, if the fork makes n vibrations a second
when the steady state is set ap, the current z which flows into
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the jar has a mean value z; and therefore —%{ is the opposing
n

electromotive force in that branch.

Accordingly, the condenser and associated commutator
behave like a voltameter inserted in the branch af, or like a
resistance with a counter electromotive force in it.  Only such
a combined jar and fork differs from an ordinary metallic
resistance in this, that its apparent resistance is not constant,
but depends on two things, the speed of commutation or
charge and recharge, and the capacity of the condenser; whilst
the counter electromotive force depends on the current 2, and,

being represented by ;—ZK, is dependent not only on n and K,

but also on the values of all the other resistances in the branches.
In the first place, we require an expression for the- electro-
motive force charging the condenser. Let the difference of
potential between « and & be called e.  Then consider the net-
work formed by the five conductors R, 8, Q, G, and B with
the electromotive force in the branch B; write down the net-
work equations for this # mesh network. '

(B+R+B)y—8S(z+2) =K,

—8y+(Q+S+G)x+2)=0.
E(Q+85+G),

y=——"§5 ">

Hence

and
ES

THz= 5

where 8= the determinant

B+R+S8, -8
-8, Q+8+G
which is
S(Q+ )+ (R+B)(Q+8+G).

Now the difference of potential e between @ and b when the
condenser is just beginning to be charged is

G(r+2)+RBRy=e;
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ESG ER(Q+S+G)
e= 5 + 5

-G, -R
_3 SG+R(Q+S+G) _ Q+8+G, —8
=P+ O+ R+BYQ+85+G) TSQ+ ) ¥ (RBR+B)QTS+ G

or

-G, —R
S+G, —S
p=T 9t ;G

Now if the electromotive force ¢ be employed » times in a
second to charge a jar of capacity K, the average current
flowing into the jar is nKe=z. .

Now to find z we have to consider the distribution of cur-
rents when the fork or commutator is in operation, and the
condenser allowing a flow of electricity to take place through it.

Let P be the resistance which could equivalently replace
the jar and fork—that is, would allow an equal quantity of
electricity to pass per second ; then, since n_zK is the opposing

electromotive force in this branch, we have the following
equation for the three cycles «, #+2, and y:—
—Sz+(R+S+B)y—(R+8):=E,
~Ga—Ry+(P+R)e=— %,
(Q+8+G)a—8y +(Q+8):=0.
Now let A stand for the determinant

-5, R+S+B, —(R+8)
1
-G, —R, P+ 74 +R
Q+8S+G, —8, Q+8
Then the solution of the above equations for z and @ are
B —@G, —R
pm | Q+S+G, —8
A )
and
1
B -—R, P+7_{—I—{ +R
-8, Q+S

T= A
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z is the average current flowing through the condenser, and «
is the current through the galvanometer. Now let the resist-
ances R, S, and Q be so varied that the current through the
galvanometer is zero, then #=0; and therefore

1
{ —R, P+ & +R o
-8, Q+8
or
R(Q+S)éS(P+ L +R>
nK ’
or
RQ
_— = P + h
Now insert this value for P+ 1 in the determinant A

nK

above and calculate its value, and we arrive at the expression

A 1BQ+8S)+Q(R+ S)}S{G(R+ S)+R(Q+8)}

We have now, by substitution of this value of A in the value

obtained above for z,an expression for the value of the average

current through the condenser when the bridge is balanced,

and it is R
B * Q+ S +G, =8

T BRI QUR+SHGR+8) +R(Q+ S}

Equating this to the other value for z, namely,

—@G, —R
z=nKe=nKE ’ Q+8+G, —8
S(Q+)+(B+B){Q+S+G}
we have
K— ___ S{8(Q+G)+(R+B)(Q+8+G)t

B+ +QR+HHFAB+D +RQ+V)Y
which gives us a value for 2K in terms of
B, Q R, S, G.
Now it is interesting to note that we may otherwise write
the above expression for nK,

1- A

2R~ 8’
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where A is the determinant,

R+B+S, -8, ~R+S
-5, Q+8+G, R(—SQ-+1) ,
—R, -G, Q+S
and 8 is its first minor,
R+B+8S8, =8
-8,

and -lK is of the dimensions of a resistance.
n

The value for nK writes out by a simple transformation into
another form,
S2
Ko S{l"‘(Q+s+G)(R+B+s>

3

RQ{1+ (R+B+S)} {” R(Q+S+G)

which is the form in which it is glven by Prof. J. J. Thomson
in his paper, and quoted by Mr. R. T. Glazebrook in his
memoir on a Method of Measurlng the Capacity of a
Condenser*.

The above examples are amply sufficient to exemplify this
method of treating problems in networks of conductors, and
show how it enables calculations to be made with considerable
ease, not only of the distribution of currents and potentials,
but of the resistances between any points on a network, the
branches of which consist either of simple resistances or of
wires having self- and mutual induction with other branches,
or of electromagnets, or condensers associated with appropriate
commutators.

* This method of Maxwell’s, of obtaining the capacity of a ccndenser has
been practically employed, with most excellent results, by Mr. R. T.
Glazebrook, F.R.S. ; and the full details of the tests to which.he subjected
the method are given in his paper in the ¢ Proceedings of the Physical
Society,’ vol. vi. part iii. p. 204 (June 28,1884). [Phil. Mag. for August
1884, p. 98.]



