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XX VZI. Pvobleins on tJLe Uisivibution of Elect& Czirrents in 
Networks qfConductom tveated by the MetJbod of Maxwell. B y  
J. A. FLEJIING, MA.,  D.Sc. (Lond.), Fellow of St. John's 
College, Camb?*idge, P?*ofessor of Electrical Technology in 
Urlivevsity Col lege, Lo, ictoi t " . 

[Plates 111. & IV.]  

IF any iiuinber of points in a plane be joined together 
by linear conductors such as metallic wires, we have an 
arrangement of conductors which is called a Network. If 
at any point in the network a current of electricity be 
allowed to flow in and is drained off a t  some other point by 
conductors, called respcctively the anode and kathode con- 
ductor, then, after a short period, depending on the self and 
mutual induction coefficients of the various conductors, tho 
total quantity of electricity arriving by tlie anode will distri- 
bute itself throughout the network and settle down into a 
steady flow. When this is the case there is a certain definite 
difference of potential between the anode or source-point and 
the kathode or sink-point, and there is also a certain definite 
and constant strength of current in the anode conductor and 
in every mesh or branch of the network. Call a and y the 
potentials of these source- and sink-points, and x the strength 
of the current in the anode lead, that is the whole quantity 
of electricity flowing per second through the network, then 
( y - a ) / x  measures the resistnnce of tlie network. We can 
imagine the network replaced by a single linear conductor or 
wire of such sort that if the anode and kathode conductors 
are applied to its ends, the difference of potentials at  the ends 
of this simple conductor and the streqgth of the current flow- 
ing through it have the same numerical values y,  a, and x. 
The resistance of this single conductor is then the same as 
that of the complex network. 

The resistance of the network is obviously some function 
of the resistances of the separate conductors or wires which 
compose it,, and is capable of being calculated from them. 
Experimentally, the resistance of a complicated network would 

* Read June 27,1885. 
8 2  
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best be determined by the measurement of the current- 
strength in the anode lend and the difference of potential 
between the source and the sink. Theorctically, it is in- 
teresting to examine the law of distribution of cnrrents in  a 
network, and to reduce to U function of the separate resist- 
ances the total resistance of the whole network bctwechn any 
two points. 

Q 2. In his larger Treatise on Electricity, Clerk Maxwcll 
hm treated the general case t o  determine the differences of 
potentids ant1 the currents in R linear system of n points con- 

nected togetlier in  pa i1.s by n(n - 1) linear conductors*, and 

has shown how to form the linear equations, tho solution oft 
which gives the y ” t i o n  of the network when given elcctro- 
motive forces acting along sonic or all of tlie brnnches ha1 P 
established steady currents in them. 

The usual method of obtainin@ a solution for the distribn- 
? tion of currents is the application of Ohin’s law round the 

several currents of the network, controlled by the condition 
of continuity that there is no creation nor destruction of elw- 
tricity a t  the junctions. 

Since the publication of the first edition of his Treatise, 
Maxwell reduced these t w o  sets of equations to one set by 
the simple device of regarding the r e d  currents in the meshes 
of the network as the clzferences of iinaginary currents round 
each cycle or mesh of the network, :dl directed in tlie same 
direction, and thus obtained by the application of Ohm’s law 
a single set of linear equations, the solution of which gives 
the required currents in each branch. Maxwell’s method is 
as follows ?:-If we have p points in space and join them 
together by lines, the least number of lines which will con- 
nect all the points together is p - 1. If we add one line more 
we make R closed circuit somewhere in the system ; that is 

1 
L 

* ‘A Treatise on Electricity and Magnetism,’ 2nd edition, Vol. i. $280 
nnd § 347. 

t This method wm first given by Clerk Maxwell in his last course of 
University lectures. It is alluded to in the second edition of his larger 
Treatise and in the Appendix of his smaller Treatise by their reepective 
editors, Mr. W. D. Niren and Professor Garnett, to whom it was com- 
municated by the present writer. 
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to say, a portion of spice is enclosed and forms a cell cycalc 
or Inesh. Every fresh line added then makes a fresh mesh; 
and hence if there :we 1 lines altogetlier joining p points, the 

Now let 
such a +,eiii of‘ points and lines represent conducting wires 
joilling fixed points, and forming n conducting network. Letl 
a sylnbol be affisecl to each point which represents the clec- 
triiJ potential a t  that point, and also ;i symbol affixed to 
each line representing the electrical resistance of the con- 
ductor represented by it. In  such a. dingr:iin of conductors 
the form is n matter of indiffwence so loiig as the connections 
are not disturbed and lines are not ~nnde  to cross unless tho 
conductors they represent are in contact nt that point. 

Consider a network, P1. 111. fig. 1, formed by joining nine 
points by thirteen conductors. Then there will be 13- (9-1) 
= 5  cycles or cells. Now let a n  electromotive force E act in 
one branch B, and give rise to a distribution of currents in tho 
network. Let  a, ,El, 7, 6, &c. represent the potentials a t  the 
points, and A, B, C ,  D, &c. the elccti.ica1 resistances of the 
conductors joining these points, and iningino that roiiiid ench 
cycle or circuit an imaginary current flows, all such currents 
flowirig in the same direction. 

A circuit is considered to be circumnavigated positively 
when you walk or go round it  so as to keep the boundary 011 
your right hand. Hence, going round an  area A in the di- 
rwtion of the arrow is positive :IS regards the inside if you 
walk inside the boundary-line, and negative as regards ex- 
ternal space B if you walk in the same direction round the 
outside. We shall consider a current, then, as positive when 
it flows round a cycle in the opposite direction to the hands 
of ;t watch. Returning then to the network, we consider that 
round each cycle f lows an iinaginsry current in the positive 
direction. Tho real currents in the conductors are the 
differences of these in adjacent cycles or meshes, and the 
ilnagillary currents will necessarily fulfil the condition of con- 
tinuity, because .any point is merely a place through which 
ilnaginary currents flow, and at which therefore there can be 
no accumulation 1101‘ disnppei-l~*ance of electricity. 

Let x, y, z, &c. denote these iin:tginary like-directed cur- 
r e n t ~ .  Then x-?/ denotes the real current in the branch I, 

of cycles or cells will be ?c=Z-(p-l). 
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and similarly 3--k" that in branch H. Then x, y, z, &c. Inay 
be called the cyclic synibols of these areas. The cyclic syinbo] 
of external space is taken as zero; hence the real current in 
branch B is simply x. 

Let an electromotor act on the branch E, bringing into 
existence an electromotive force in that branch. Let the 
internal resistance of the electromotor be included in the 
quantity B, representing the resistance of the branch A. Then 
apply Ohm's law to the cycle x formed by the conductors B, 
I, H ; we have E - B x = ~ - u .  
x is the actual current in this case flowing in the resistance B, 
and the potential at the ends of B is equal to the effective 
electroiiiotive force acting in it less the product of the resist- 
ance of the conductor multiplied by the current flowing in it. 
For  the conductor I we have similarly 

y-p= (.-$/)I. 
Hence 2-y represents the actnal current in I : it is the dif- 
ference of the imaginary currents flowing round the x and y 
cycles in the positive direction. And for the condiictor H 
we have also - a = ( ,T - z)H. 

Add together these three equ a t' lolls, 

E = y- a + Bx, 
0 =P- y + (LZ - y)I, 
0 = a -6 + ('c -z)H ; 

and we have, as the result of going round the cycle x formed 
of conductors B, I, and 11, 

E=x(B+I+H)-$/I-zH. . . . . (1) 
tc, p, y have disappeared in virtue of these opposite signs. 

This equation (1) is called the equation of the x cycle; and 
we see that it is fornied by writing as coefficient of the cyclic 
symbol x the sum of all theresistances which bound that cycle, 
and subtracting the cyclic symbol of each neighbouring cycle 
multiplied respectively by the common bounding resistance 
as coefficient, and equating this result to the effective electro- 
motive force acting in the cycle, written as positive or nega- 
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tive according as it acts with or against the imaginary current 
the cycle. 
Since there are k cyc1c.s or meshes we can in this way form 

k independent equations, and by the solution of these deter- 
niine the 12 iiitlepeiident variables, x, y, z, $c. The value of’ 
the current, in any branch is tlicn obtained by simply taking 
tbe diffcrence of these variables beloiiging to the adjacent 
meshes, of wliich the conductor or branch considered is the 
common boundary. 

0 3. Let us now consider the most general case possible, in 
which we have a network composed of linear conductors suf- 
ficiently far apart to have no sensible mutual induction, and 
let tliere be electromotive forces acting in each branch or 
conductor. Let the system be considered to havc arrived at  
the steady condition. Let x, y, z, kc. be the cyclic symbols 
or measure of the imaginary current circulating counter- 
clockwise round oach mesh. Let A, B, C, &c. (fig. 3) be the 
resistances, and e,, e2, e3, $c. the electromotive forces act,ing 
in each branch. These are reckoned positive when they tend 
to force a current round the mesh counterclockwise, and 
negative when they act in the opposite direction. Then the 
equation to the 2 cycle will bo 

$(A + J + L)--yJ + Ox + Ou + Ow=el. 

The synibols of all the cycles are written down, putting in 
those of x ,  EL, and zu with zero coeficients, as they are not 
adjacent cycles to that of x. We shall have five equations 
similar to  tlie above for the other cycles, y, z, w, and U .  

Now it can very simply be shown from the theory of deter- 
minants, that if there are n linear equations of the type 

This is Maxwell’s rule. 

(11.2‘1 + C 1 2 ~ U y  + . . . . . . un a‘n = P 1 I 

blXl + 2/2#”2 + . , . . . . 

k1;L.I + /&xZ + . . . . . k, *rn = P n ,  
the solution for any variable x1 is the qnot,icnt of the deter- 
minants 
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u d c  a l d  
a, dl c1 and a1 bl 4 

s 

’ 

an a . . .  

. . . .  b, 

The only difference between the numerat’or and denominator 
is that the solution for xn is given by writing as numerator the 
determinant of the n equzltioiis having the c ~ l u m i i p ~ ,  p ,  . . .pn 
substituted for its nth column, and then writing down as 
denominator the determinant of the n equations simply. 

Thus, for example, the solution of the three linear equations 

U$ +by +ce =d, 
a,x+hly+ clx=dl, 

+ bzy -+ C ~ Z  = d2, 
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sinil)Ie symmetrical process of taking products, according 
to tlie rule, 

g 4. The properties of determinants enable us, however, 
very easily to evaluate a nuiiierical determinant of any order, 
The process consists in the gradnnl reduction of the determi- 
nant in order by such transformations as will render all the 
elements of the first row or column zero except the first. The 
determinant is then reduced to the product of its leading 
elements and the corresponding minor. A repetition of this 
lowers the determinant one degree at  each stage ; and finally, 
when it is resolved into a numerical two-row determinant, a 
simple cross multiplication gives its mlue. 

The process of evaluation of a nunierical determinant is 
dependent on four principles :- 

(1) That the value of a determinant is not altered if rows 
are clinnged into columns. 

(2) The interchange of two rows or two columns reverses 
the sign of the detertninant. 

(3) If  every constituent in any row or column be multiplied 
by the same factor, then the determinant is multiplied by that 
factor. 
(4) A determinant is not altered if we add to each consti- 

tuent of any row or column the corresponding constituents of 
any other row or column multiplied respectively by an iden- 
tical factor, positive or negative. 

For example, suppose that the solution of a series of network 
equations with numerical coefficients of resistance yield the 
determinant 

5 3 1 6  
7 8 9 2  
2 1 4 3  
1 0 7 5 7  

we proceed to operate on this as follows :-Subtract the 
second column from the first and write the rernnintler. AS ;t 
new first column we g e t  
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- 1 8 9 2  
1 1 4 3 '  
3 7 5 7  

1 2 - 3  3 
0 9 1 3 5  
1 1 4 3  
3 7  5 7  

a new second row, and we get 

9 13 5 
-1 7 0 .  

1 1 4 - 2  
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boundary. Maxwell ingeniously saves labour in this opera- 
tion by taking as t,hc symbol for one mesh say x+p, aiid for 
an adjacent mesh y (fig. 4), and then the real current in the 

.r +- y--?/==Lc. 

And the simple rearrangement and solution of the network 
equation gives at  once as value for x the current in the resist- 
ance AB, which is the common partition of the two meshes. 

4 5 .  Returning now to the case when there is only one 
impressed electroinotiva force in one branch, we see that in 
forming the cycle equations only one will be equated to an 
electromotive force, viz. the equation for the mesh contdnin,a 
the impressed electroinotive force in one 6f its branches. All 
the other equations will be equated t,o zero ; and accordingly 
the equation for the current in any conductor will be of the 

branch AB is 

form 

where A,, is a determinant of the nth order, and An-l is a first 
minor of this, Referring to fig. 1, we see that, by writing 
down the five equations of the cycles x) y, z, U, w, we obtain 
equations by which to calculate the currents in any of the 
thirteen branches, and the current in branch B will be 

CL’= EAn-1. - 
A* ’ 

where An is the debrminant formed of the coefficients of the 
five equations, and A,+l is the first minor corresponding to 
the coefficient of x in the equation of the s-cycle. 

We also saw that if y and a are the potentials a t  the ends 
of the branch B: E-Bx=y-a. 
Now consider that part of the network which remains if the 
conductor B is removed, and let us imagine that a current n 
continues to be forced into it at  y and drained out at a ; the 
total resistance of that part of the network, not counting B7 is 

Y - a .  
x ’  

E - -n. 
Now since the resistance of B may be anything, let it be zero; 

but this is equal to 

ix 
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then the total resistance of the network between y and a will bs 
E R = - ;  
2 

but 
HAn-, 

x= 1 7 1  B = 0, 
where the suflix and bracket denote that after the determi. 
nants are fornied from the cycle equations, according 
Maxwell’s rule, then in them B is put equal to zero. 

If‘ we denote the determinant of a11 the n-cycle equations 
under the condition of B = 0 by d,,, and by d,- the first minor 
of this or the minor of its leading element corresponding to the 
coefficient of a! with the resistance of the circuit containing 
the effective electromotive force put equal to zero, we have 
for the total resistance R of the network between the points at 
which the current enters and leaves, the expression 

d, 
R=d,+, 

Since, then, as v e  have seen, the linear equations for th, 
cycles can always be solved by evaluating the determinants, 
i t  follows that in all cases, no matter how complicated, the 
resistance of any network can be calculated by simple arith- 
metic processes from the given resistances of the branches or 
conductors which compose it. W e  have therefore an intorest- 
ing extension of Maxwell’s method of calculatibg the currents 
in a network and the potentials at the junctions to a method 
of calculating the combiiied resistance of a. nuniber of con- 
ductors forminu a network ; which method consists, as seen 
above, in forming a certain determinant whose elements 
are formed of the separate resistances of the branches, and 
dividing this deterniinant by another of an order next below, 
viz. the first minor of its lending elements ; and we find 
that the resistance between any two points of my network 
of conductors, however complicated, is expressible as the 
quotient of a certain determinant by another formed from it. 

Q 6. We shall proceed to illustrate this method by a few 
examples. 

1. Find tho resistance between the l’oints 1 and 3 (fig. 5 )  
of a notworlc conskting of five condiictoI*s, whose rcsistnnceF 
ar(b A, 13, c‘, I), E, joining four i ~ o i i i ~ ~ ;  I ,  2. 3; ;incl 4. 

-* 

b 
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Connect 1 and 3 by mi imaginary conductor of zero resist- 
ance, and having an  electromotive force, e, supposed to act in 
it, Let x, y, z denote the cycles or imaginary like-directed 
curreiits in the three meshes so formed, and write down the 
current equations, according to Maxwell, for these t,hree 
cycles :--. 

(A + B)x -AY - Bz = e, 

-B& -EY + (B + C + E)z= 0. 

-Am + ( A + E + D ) y  -E2 = 0, 

Then, by what has been shown above, the resistance R be- 
tween the points l and 3 of the network is given by the 
expression 

( A + %  -4 -B I -A, (A+E+D) ,  -E 
- B; - E, (B+C'+E) 

R =  
(A+E+D,)  -E 1 -E, (E+C+E) 

In dealing with numerical cases we need no longer intro- 
duce any notice of imaginary electromotive forces, but proceed 
according to the following rule. 

To determine the resistance of a network of conductors 
between any two points on the network. Join these two 
points by a line whose resistance is supposed zero, and give 
symbols to the meshes of the network so formed; calling 
this additional mesh produced by the added zero conductor 
the added mesh. Then write down a determinant whose dexter 
diagonal has for elements. the slim of the resistances which 
bound each mesh, b .  beginning with the added mesh ; and for 
the other elements of each row the resistances which separate 
this mesh respectively from adjacent meshes, and having the 
minus sign prefixed, ,zeros being placed for elements cone- 
sponding to nonadjacent meshes. 

More explicitly, if we denote by x, y, z, &c. the meshes, 
being the added mesh, and by ZR,, Z s ,  Z&, &a. the sum 

of the resistances which bound each cycle, then these will be 
the elements along the dexter diagonal of the determinant. 



cl, = rl -r1 0 
-r1 rl + r2 --r2 

0 - r 2  r2 + r3  
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zero being placed as an element if these meshes, m and PE, 
have no common boundary or circuit. 

By adding the 
first row to the second for a new second row, and this new 
second row to the third for a new third row, we transform the 
determinant easily into 

0 
0 0 r 3  

The above deterniinant is easily evaluated. 

r 2  - r 2  
r1 -r I 

which is equal to 
r1r2r3* 

The first minor of the leading term of the network deter- 
minant is 

q + r 2  --r2 i 
- r 2  r 2 + q  I =&-I? 

which is equal to 
v 2  + r 2 r 3  + r 3 q ;  

and hence the resistance of the network between A and B is 

which is a known result. I n  these simple cases the above 
general rule is, of course, a less easy method of finding the 
combined resistance than the direct application of Kirchhoff’s 
corollaries of Ohm’s law ; but whereas the general method is 
alike applicable to the most complicated as well as to the most 
simple cases, tfhe simple direct method requires twice as many 
equations, and does not determine the direotion as well as 
magnitude of the current in each branch. 

4 8. As a silhple’ numerical example we may take the ca88 
of a crossed square of wires. Let 12 conductors join 9 points 
(fig. 7) so as to form a square divided into four squares, or a 
four-mesh network of conductors. Let the resistance of each 
branch, as ab, be unity. It is required to find the combined 
resistance between A and B. Number the meshes 1, 2, 3, 
4, 5 ; 1 being the added mesh formed by joining A B  by a 
dotted line, making an additional fifth mesh, the resistance of 
this additional ideal conductor being zero. Then the network 
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determinant, is 
4 

-1 

-2 

-1 

0 

-1 -2  -1 0 

4 -1 0 -1 

-1 4 -1 0 

0 -1 4 -1 

-1 0 -1 4 

IF 

= dn. 

The dexter diagonal has for each eleiiient 4, viz. tlie sum of 
the four resistances, each to unity, which form each mesh or 
cell. And all the other figures, say, in the nth row, are the 
resistances (with minus sign prefixed) separating the nth 
mesh from all other meshes, zero being placed in the column 
corresponding to  any mesh which has no coniinon conductor 
or branch with this nth mesh. The order in which the columns 
stand and also the rows correspond to the order in which the 
meshes are numbered in fig. 7, 

The numerical value of this determinant is easily found to 
be 288=3 x 96=d,. Now if we take the first minor of its 
leading element,, we get a deterininant formed of the elements 
included in the dotted rectangle ; and taking this as a separate 
determinant, and evaluating it, we have its value 

&,1=192=2 x 96; 

hence the rosistance of the network between tbe points A 
and B is 

-=-- -18 units. dn 288 
dn-1 192 

Q 9. One more simple numerical case may be taken and 
compared with the results of known methods. 

Let a hexagon of conductors be taken (fig. 8) having 
crossed diagonals all meeting in the centre. Let the resistance 
of each side, as ab, be unity, and aIso let the resistance of each 
ssmidiagonal, as Oa, be unity. Then required the combined 
resistance of this network of 12 conductors between the points 
A and B diametrically opposite. Join the points A and B by 
&dotted line of zero resistance, making an added mesh 1. 
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Mark the othbr meshes 2, 3, 4, 5, 6, 7. Then by forming the 
network equations it is easily seen that the network deter- 

- d 

minant cl, is 
3 -1 -1 -1 0 0 0 

-1 3 -1 0 -1 0 0 
-1 -1 3 -1 0 0 0 
- 1  0 -1 3 0 0 -1 
0-1 0 0 3-1 0 
0 0 0 0-1 3-1 
0 0 0 - 1  0-1 3 

The value of this determinant is 256. 

3 -1 0 --I 0 0 
-1 3 -1 0 0 0 

0 -1 3 0 -0 -1 
-1 0 0 3 - 1  0 
0 0 0-1 3-1 
0 0-1 0 - 1  3 

= d*. 
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respectively 23, 2, and 83, which is equal to 
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1 4 
1 1 1 = 5 ’  

23 2 23 
- + - + -  

the same result as obtained above. 
These numerical examples show conclusively that, in casea 

in which the resistance of a network can be obtained by simple 
direct methods, the results coincide, as should be the case, 
with those obtained by the employment of the general method ; 
but a t  the same time the general method is capable of con- 
ducting easily to a solution in the most unsymmetrical cases. 
T h e  general rule will, for instance, just. as easily give the 
determinants when the selected points between which the 
resistance is reqpired are not symmetrically placed, but are, 
say, adjacent angles of the hexagon, in which case no such 
simple direct method as employed above can be used. 

0 10. The following example will give a good illustration 
of Maxwell’s method of treating network problems, viz. the 
ca& of Sir W. Thomson’s resistance-balance for small resist- 
ances, In this arrangement (fig. 10) 9 conductors join 6 
points and form 4 cells. B is the battery-circuit in which 
operates an electromotive force E. Let the four cycle cur- 
rents be denoted by z+y, y, z, and w. These are the imagi- 
nary likedirected currents round the circuits, and the real 
currents in the branches are the differences of these. 

The problem is to determine the current in the galvano- 
meter branch G, and the relation of the resistances when this 
current through G is zero. Let P, Q, S, T, R, r, D be respec- 
tively the resistanees of the branches, and G tho resistance of 
the galvanometer circuit, and B the resistance of the battery 
circuit. Then z+y and y being the imaginary like-directed 
currents in the two adjacent meshes of which the galvanometer 
branch is the common boundary, then z+y-y=z is the 
current through the galvanometer. 

Proceeding to write down the cycle equations, according to 
Maxwell’s rule, we have 

0 

(P + ~t + Q + ~ ) m + y  - - GY- QZ- RZO= 0, 
(T+F+ S + G ) ~ - G Z + ~ - S B Z - W = O ,  

(&+ S+D)BZ-SS~-QZ+~-DZO=O, 
- 
- 

(R + D + v + B) W- RZ +y - Dz-T =E. 
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-Q+S,  D, --D 
T+S+r, T+r,  -r 
P t Q + R ,  I?+& --R 

E 
A 

&!= - 

Rearranging'these equations and solving for x, we have the 
following value :- 

I 

-Q+& D, 0 

P+Q+R,  P + R ,  P 
T + S + r ,  r+T,  T =O, 

Hence the condition that the current in the galvanometer- 
branch shall be zero is that both determinants in this expression 
shall be simultaneously zero, or 

T r S  that is, _ -  
P-B=Q' 

Hence this condition expresses the relation which must hold 
good between the magnitudes of the resistances T, P, Q, S, r, 
R, in order that the galvanometer-branch G may be c0njuga.h 
to the battery-branch B. 

The above example shows well the symmetry of the method 
when dealing with a case of distribution of currents in a net- 
work. 

$ 11. As a final illustration, let us consider the case of a 
circular wire A P B Q, with a diametral wire P Q across it. 

Take any two points A, B, at the extremities of a diameter 
T 2  
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7r 

not coinciding with P Q, but separated by an angular distance 
8 from it, and let us obt,sin the resistance of the circular wire 
so crossed between the points A and B. 

Join the points A, B by a dotted line of zero resistance. 
Call the three meshes so formed z, y, and z ;  let T be the 
radius of the circle ; and let p be the electrical resistance of 
the wire per unit of length. Then the 

Resistance of branch PQ = 2pr, 
9 9  ,9 AP = p?.e, 
J ,  ,I AQ=py(~-68), 

and 
. Resistance of branch BQ=resistance of AP, 

99 ¶, PB= ), 9, A&. 
Then the network determinant d, is 

P V r r ,  -p9+-0), -e  
- P r  (r--8), p r ( r  + 2>, -pr2 
-09 -pP"2, P?'(T + 2) 

Removing the coniinon factor vp, we have to evaluate 

o e T  
- 1 1 2 ,  
-0 2 7r 

of the network 

?p2( (T + 2 )' - 4) = r 2 p 2 ~ ( ~  + 4). 
Hence the resistance of the network between A and B, = R, is 
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7r w e  Can check this in the extreme cases when 8=0 or e=-. 
Mrhen 8=0, the network-resistance is simply that of three 
co11dnctors whose resistances are 2pr, r p r ,  and 7rpr joined in 
multiple arc, as in Plate IT. fig. 12, because PQ now coin- 

&des with AB ; and this is simply rp- 2T It is seen at 

once that the above value for R becomes this when 8 is put 

equal to zero. Now, when O=- the diameter PQ joins 

points at  equal potential (fig. 13), and is not traversed by any 
current at  all ;  mid hence its removal will not affect the 
resistance between the points A and 13. 

Hence the resistance of the network simply reduces to that' 
of a circle measured at the ends of a diameter, or to two con- 
ductors of resistance rps- joined in multiple arc, and this is 

equal to pv-. Ey putting 8= - in the general solution 2 2 

for R above, we get it reduced to vp ; and accordingly this 

formula agrees, as i t  should do in these reduced cases, with the 
results of the direct inethod based on first principles. I f  R 

value of 8 be found which will make the expression 
27r 4- 2T8- 2 P  

equal to ~ + 4 ,  then for such a position of the diameter AB 
relatively to PQ the resistance of the circle and its diagonal 
PQ would be exactly equal to the resistance of half the dia- 
lnetral wire or to its radius, assuming both the circle and 
diagonal to be made of wire of equal conductivity per unit of 
length. To find the value of 8 for which this is the case, we 
have to solve the quadratic 

If we put 8= - zo, where xo is the number of degrees equi- 

\ den t  to the angle 8, we find, as a solution for this quadratic, 
that the positive root is nearly 

1 7 1 O  804. 
Now 3 radians, or 3 unit-angles in circular measure, are nearly 

171O.887. 

2 

7r+4' 

7r 

2 '  

7r 7r 

2 

2T + 2T8 - 282 =m -I- 4. 
l r  

180 
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Hence, for a position of the diagonal PQ as in fig. 14, when 
the arc AP is nearly equal to 7r-3, or to the fractional part 
of r, the resistance of the circle and diagonal PQ measured 
between the points A, B is very nearly equal to that of half the 
diagonal PQ; or, which is the same thing, the resistance of PQ 
alone is nearly double the combined resistance of the circle and 
diagonal measured between the points A and B a t  the extremity 
of a diameter removed 171".80+ from PQ. 

4 12. A small practical application of this last example may 
be made in constructing a variable resistance. 

Let PAQB (fig. 15) be a narrow circular canal cut in a slab 
of wood or ebonite and filled with mercury. Let PDQ be a 
bent copper wire balanced on a pivot CD, and having its ends 
P and Q dipping in the trough a t  opposite extremities of a 
diameter of the circular trough PAQB. 

The total resistance between any two points A and B, in the. 
trough, which are also diametrically opposite, can be varied 
within limits by changing the position of P Q  relatively to AB. 

When PQ is turned so that it is at right angles to-the dia- 
meter AB, it does not affect the total resistance between A 
and B, and maybe removed. The resistance is then just that 
of the circular band of mercury taken at opposite extremities 
of its diameter.. When PQ is coincident with AB it reduces 
the resistance, and in intermediate positions the joint resistance 
of trough and diagonal wire is intermediate between the greatest 
and least when it is in position removed either 9O0or Oo from 
AB. 

By using a circular glass canal filled with sulphate-of-zinc 
solution, and a zinc diagonal electrode and amalgamated-zinc 
electrodes at A and B, a variable resistance may be constructed 
capable of being varied over considerable ranges perfectly 
gradually and with no imperfect contacts. 

Q 13. Having illustrated, by the foregoing examples, the 
methods of calculating both the currents in and resistances of 
networks of any complexity, we return for a moment to some 
general considerations. 

Consider a function formed of the sum of' each separate 
resistance in a network muitiplied by the square of the current 
strength flowing through it. This expresses the heat gene- 
rated per second in the whole network by that distribution of 



ELECTRIC CURRENTS IN NETWORKS OF CONDUCTORS. 235 

current. 
work. 
formed into heat or rendered unavailable. 

fig. 1. Call it H. Then 

This is called the Dissipation Function of the net- 
It represents the rate at which energy is being trans- 

Write down the dissipation function for the network in 

- - -2 - 
H = B~~ + I~ -y2 + H~ - + cy2 + L~ - ya + ~2 + J~ 

-i( - + K ~ - ~ ~ +  (D + ~ ) 2  + (F + ~ ) d +  M ~ - ~ .  
Now the cycle equation for the cycle or mesh y is, by Max- 
well’s rule, 

which is the same as 

And this is at once seen to be identically the same as the first 
partial differential of the dissipation function with respect to 
the cyclic symbol y, or is the same as 

(C + I + L + J)y - Ix -Lz - JV = 0, 

- - 
Cy- lx -y -Lz -y - JU -y = 0. 

$5 a=- -0, 
where a represents partial differentiation ; and by writing 
down the other cycle equations for each cyclic symbol or 
imaginary current, x, y, z, &c., we can show that these cur- 
rent-equations are respectively 

each equated to the effective electromotive force in that cycle 
or mesh. 

Let us assume now that x is constant, but that y, z, U, 20, &o. 
are independent variables and are arbitrarily changed. This 
is equivalent to supposing that a given quantity of electricity 
per second is pushed into the network, but that its distribution 
is supposed to be varied. We see that the equations which 
we write down, according to Maxwell, to determine the real 
distribution of currents in the network, according to Ohm’s 
law, are the same equations as would be written down to  find 
the values of y, x, U, w, &c., which make the dissipation func- 
tion a minimum under fixed conditions of total current flow- 
ing into the network, viz. equating to zero the first partial 
differentials of H with respect to the variables y, z, U,, &a. 
The Bame holds good generally, hence we see that this is 
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another way of arriving at  the theorem of which Maxwell has 
given a proof on page 375, $ 284, vol. i. of his large Treatise, 
2nd edition, viz.:--“ I n  any system of conductors in which 
there are no internal electromotive forces the heat generated 
by currents distributed in accol’dance with Ohm’s law is less 
than if the currents bad been distributed in any other manner 
consistent with the actual conditions of supply and outflow of 
the current.” 

The exact proof that the partial differentials of the dissipa- 
tion function eqiiated to zbro gives the condition that the dis- 
sipation function shall be a minimicnz is not complete without 
an examination of Lagrange’s conditions. It is obvious that 
the second partial differentials of the dissipation function are 
quantities which are resistances, viz. the coefficients of the 
current symbols in the cycle equations, and that the conditions 

&c. are posi- a2H for a minimum are complied with, since - b y 2  ’ 
tive ; and the cSiscrin2inunt of t,he quadratic function of the 
currents or  symmetrical determinants formed of these second 
partial differentials is what has been called above the network 
determinant. This and all its successive minors are positive 
quantities *. 

$ 14. I n  the foregoing sections the problems have been 
treated under the limitations that the various meshes of the 
network of coiiductors have no mutual and no self-induction. 
The introduction of these inductive actions will affect in a 
considerable way the treatment of the problem ; and the dis- 
tribution of the currents in, and the resistance of, the network 
will be affected by them during the time taken by the cur- 
rents to become steady. 

In those pages of his Treatise in which Clerk Maxwell 
worked out his splendid dynamical theory of electromagnetism, 
he starts with the explanation of the methods Lagrange and 
Hamilton employed to bring pure dynamics under the power 
of analyvsis, and the results of Lagrange are embodied in the 
equation 

* See Williameon’s ‘ Differential CdcuIus,’ p. 408, “ On the Conditions 
foraMaximiim and Minimuni of R Function of any number of Variables," 
$163, and Appendix. 
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in which X is the impressed force tending to increase the 
variable x, and T denot,es the visible energy of the system of 
bodies at that instant. 

This equation establishes a relation between the kinetic 
energy of a material system at any instant, the force im- 
pressed upon it in a certain direction, and a quantity called a 
variable, which expresses the state or condition of the system 
with respect to that direction. Maxwell, by a process of ex- 
traordinary ingenuity, extended this reasoning from materio- 
motive forces, masses, velocities, and kinetic energies of gross 
matter to the electromotive forces, quantities, currents, and 
electrokinetic energies of electrical matter, and in so doing 
obtained a siinilar equation of great generality for attacking 
electrical problems. 

In  the electrical problem the variables are the quantities of 
electricity x, y, x,  &c. which have from the beginning of the 
epoch flowed past any points, . . .  and the analogues of the velo- 
cities are the fluxes of these, x, y, z, &e., or the currents. 

The electrokinetic energy is measured by the quadratic 
expression 

where the coefficients Ll, Lz, Mlz are functions of the geome- 
trical variables, but into which the electrical variables do not 
enter. 

If now, as before, dl, k2 represent the imaginary like-directed 
currents round each mesh of a network, in which currents 
are beginning to flow, then 

. .  
T=*Llj?? + $L2i: + . . . M12xlx2 + , &c., 

dT dT - and -, &c. 
dXl  dxz 

represent the electrokinetic momenta of these circuits. 
note them by p l ,  p2, &c., and accordingly 

De- 

If E is the impressed e~ectr6motive force in the circuit or 
mesh arising from some cause, battery, thermopile, dynamo 
machine, &c ., which would produce st current independently 
of magneto-induction, then, if R be the total resistance 
round the mesh, and & the cyclic current, &. is the electro- 
motive force required to overcome the residtance of the drcuit, 
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and E - & is the electromotive force available for changing 
the electric momentum of the circuit. 

Accordingly, by Lagrange’s equation, 

d t  dx’ 
E-&=--- dp dT 

where T is the electrokinetic energy. As T does not contain a, 
that is to say it is a function of currents, not quantities, the 
last term disappears, and we have 

or 

The electromotive force is therefore expended in two 
things : first, overcoming the resistance R ; and, secondly, 
increasing the electromagnetic momentum p .  Now if there 
is no electromagnetic momentum, we have seen that the 
cycIic equations are of the form 

where H is the dissipation function of the system, and E’ ia 
the acting electromotive force concerned in overcoming )the 
resistance of the circuit. 

If, then, we substitute for I& in equation +, we have 

as the general equation for the electromotive force in any 
mesh or cycle x, 

- d CFT -++- dH 
dt dx dx 

This most important equation is Maxwell’s general equation 
for determining the current in any circuit when the dis- 
sipation function, and kinetic energy, and impressed electro- 
motive force are known. We  shall proceed to apply it to the 
solution of some network problems, in which the self and 
mutual induction of the branches is taken into account to 
determine the distribution*of currents and combined resistance 
at any instant during the variable state. 

dH 
dx 

. -E. 
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4 15. Consider, first, the case of a galvanometer with a 

coefficient of self-induction L and resistance G, and shunted 
by a shunt of resistance 8, but wound so as to have no co- 
efficient of self-induction, and let the shunt and galvanometer- 
coils be so far removed that there is no coefficient of mutual 
induction. 

Let a battery be joined up and let the battery and con- 
nections have a resistance B and electromotive force E (see 
fig. 16). 

Call the current in 
the galvanometer- and shunt mesh y and the current in the 
shunt and battery mesh d+y. Then the current through 
the galvonometer is y, the current through the shunt is x, and 
the current through the battery is x + y. 

This is the ordinary practical case, 

We have then a two-mesh network. 

The dissipation function H is 

BZT$'+ Sz' + Gy'= H, 

which mtq  be written 

and the electromagnetic energy is 

Hence, by the general equation, 

d tlT dH 
dt dy dy -- ++-=E, 

we have the two cycle equations for the y and x+y cycle8, 

d -Ly + G + Sy - Sm +y =O dt 
-- and 

or 
B + S  X+Y - Sy = E, 

and t (Li +c)y--sx=o, 

By + B + S x  = E. I 



1 

d L&+G -S 

B B + S  
d L%+G -S 

and 

[the shunt, 

B E 

Lz-+G 0 d 

-G d L- dt 
0 B+S 

- 
B B + S  E - U + S  

I y f  -G S y= 0 S 

or B + S r ,  $ +(BS + RG+ S G ) ~ = E S ,  

z+ (B+S)L y= (B+ S)L' 
Or dy BS+BG+SG ES 

The solution of this differential equation is 
BGF+GS+BS 

'= BG+ GS+ BS 
This gives the value of the current through the gaIvanometer 
at  any time, t ,  after starting the flow by making the connec- 
tion with the battery. 

When t = 0, then y =O,' and as t increases y increases, and 

or, as it inay be ES 
BG + GS+ BS' finally, when t= 00, y= 

S E 
SG written, y= - 

B+ -- G + S  
G + S  

This last is the ordinary formula given for the current 
t'hrough LL shunted galvanometer ; but we see that when, self- 
induction is taken into account, it is not until after an infinite 
time that) the current rises to this value. 
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By the cyclo equation, By + U + Sx=E : hence 
E - Bj/ 
B+S 

$2'= ___- 

S 0 
d 

BG+QS+l?Q 
Ancl if we write N for the factor (1 -e- ( 1 1 $ s T t )  , then 

EBSN 
BG + B8 + SG E- 

U + S  X= 

mhich gives the current through the shunt at  any instant. 
0 16. Consider now the conibincd resistaiice of tho galva- 

noineter and shunt a t  any instant. 
The self-induction of the gdvanonieter acts like a spurious 

resistance during the coimneiicement of the current and drags 
aut or prolongs the rise of current in the aalvanometer-coils ; 
accordingly, during this period the combined resistance is a 
function 0; the time t from the commencement of the flow. 

To calculate the combined resistance of galvanometer and 
shunt at any instant, we proceed as in the cases above exem- 
plified. Form the cycle equations 

? 

- 
{ B + S)Z + y - Sy = E, 

- d' - sX Sy+ ( G 3- s + L%) Y = O .  

Write damn the determinant of these equations with the bat- 
tery-circuit resistance put equ:tl to zero, that is put B=O, and 
the combined resistance R required is the quotient of this 
determinant by its first minor, viz. 

--a I 

R= 

or 
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d We have now to see what is the meaning of Gt+L;;ii; as an 
operator in a, determinant. 

If we consider the formation of a current in a circuit of 
resistance R and coefficient of self-induction L by an electro. 
motive force E, we have the equation for the current i 

di L -+Ri=E. dt 
Write thus 

( L ~ + R ) ~ = E ;  d 

or, by notation of the calculus of operations, 

i= E(L it + R)-'. 
But now the solution of the above differential equation - 

E under the conditions t=O,  i = O ,  and t =  a, i=- is R' 

R '  ' i=E 
Comparing these two expressions for i together, we have 

d R 
L- +RE R 

dt (1 -e-z ")' 

Hence we may substitute in the expression for the combined 

resistance of galvanometer and shunt for L zt+ Gc, d 

G 
(1 -e-: t ) ' 

and we have as a result, 
R= SG 

G + 8 (1 -e-: ')' 
GS WO see that when t = O ,  R=S, and when t= 00, R=- G +  8' 

Hence the result shows that at the first instant of starting 8 

current through a shunted galvanometer, when the shunt 
has no self-induction and the galvanometer a considerable 
one, the galvanometer behaves as if it had a high spurion8 
resistance, which in time dies away, allowing the total current, 
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after an infinite time, to be divided between the galvanometer 

to - and the shunt in the ratio of - G S 
G + S  G+S* 

6 17. W e  may apply the same methods to the examination 
of the case when the current sent through the shunted galva- 
nometer is not generated by a source of constant electromotive 
force, but is a:discharge from a condenser. 

Let K (fig. 17) be a condeiiser connected up with a shunted 
galvanometer, so that when the key k is pressed a discharge 
passes through the galvanometer and shunt. Call the two 
cycles x and y. Let G be the galvanometer-resistance and S 
the shunt, and let L1 and L, be their respective coefficients of 
self-induction ; the coefficient of mutual induction being zero. 

Let q be the quantity of electricity in the condenser at any 
instant t. Counting the time from the instant of commencing 
the discharge,,let C be the capacity of the condenser, and let 
qr and q2 be the quantities of electricity which have, since the 
beginning of the epoch, flowed respectively through the gal- 
vanometer and the shunt. 

If T be the energy function and F the dissipation function, 
we have, as above, the fundamental equations 

and 

or 

2!P = L1y2 + L2.x -yy, 

2F = Gy2 + S(Z - Y ) ~  ; 

2T=Lly2+ L,x'+ Lz~'-ZL,XY, 
2F = Cy2 + SX' + 89' - 2 SXY. 

By the fundamental equation 
d d T  (EF + - = e .  & Z  dx 

For e we must wCite8. P 

Writing, then, the cycle equations, we have 
d 
dt -(L+-L$/)+Sx-Sy- - a* 'il 

d ( L , ~  -+ L ~ - L ~ )  + GY 3- SY - Sx=O ; 

from which we deduce easily 
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and 
L2- d (x-y) + S(x-p) - -  4 ; 

dt -c' 

S o w  y and 3-y represent tlie strengths of the currents flowing 
through the gnlvaiiometer and the shunt a t  any instant,. 

If we integrate both sides of the equation from 0 to 00, we 
hare 

Now tho left-hand side of the equation is zero because quan- 
tities of the forin of Ly represent the number of lines of force 
which are added into the circuit of the galvanotnet,er, and the 
discharge inay be divided into two parts, during one of which 
lines of force are being added to, and in the otlier of which sub- 
tracted from, the circuiks of the galvanometer and shunt; and 

the suin of these is zero. A g a i n , i  (z-Y)cZt ancl ydt re- 

present the whole quantities q2 and p1 of electricity which 
have flowed respectively through tho galvanometer and the 
shunt. 

r W 

r O  

Hence we  arrive at the conclusion that' 

Rg2- G z ~ =  0, 
or 

that is, the total quantity of the discharge is divided hetween 
the two circuits inversely as their resistances. We see there- 
fore that self-induction does not affect the ratio of division of 
a discharge in a divided circuit, provided that, no external 
work, such as the moving of magnets or circuits conveying 
currents, absorbs current energy. Hence, if a ballistic gal- 
vanometer is shunted and a discharge sent throhgh it, if the 
needle has sufficient moment of inertia and the discharge is 
sufficiently short, so that' the needle has not perceptibly moved 
from its position before the discharge is over, then the whole 
quantity of electricity is divided between the galvanometer 
and the shunt in tho inverse ratio of their resistances. 



nil4 
L2 d- - x--?/+ S , V - - y = p  'I  , , . . . (ii.) 

tit 
we get 
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quantity left in the coilclenser at that instant. The above 
inay be written 

C' 
and the final equation (iv.) may be written 

- I  U= 'I (LlL,C2z+ C l 3  (L1S+L2G)C2@ C P  + C 2 G S g  d +C(G+S)) 0:  

and accordiiigly we have the following equation for the value 
of y at any instant 

d t P  d2 d 
cl t 

= ( L1- + G)-' ( L,L2C2 clt" + ( L, S + L2G) C2 + C2GS + C( G i 

which inay bc written 
C l  d3 

y= ( LYL2C2@ + (LfSC2 + 2L,L2CZG) tltj + (2LIC2GS + L2GY 

+ (C;-~CL, + C ~ G ~ S )  $ + GCC+)-'O. 

This linear differential equation is solved when we know 
tlie roots of the auxiliary biquadratic ; and according as they 
are all real or partly iimginary, so will be the nature of the 
solution. 

If the roots are a11 real the solution is a sun1 of esponentinls, 
whose total value first increases and then dies away as t 
increases, indicating that the discharge produces a wave of 
electricity through the galvanometer always in one direction; 
but if two or all of the roots of the auxiliary biquadr a t' ic are 
unreal, it  indicates as the forin of solution a function of sines 
a i d  cosines which will have periodic values, and points to  the 
ftict that the discharge is a series of alternations. The general 
case, when both the galvanometer and sliunt have coeficients 
of self-induction, when treated to determine the conditions for 
iin oscillating discharge, leads to  an expression of considerable 
complexity and not iiiuch practical use. The reduced case, in 
which the gnlvanoineter is wound to have self-induction and 
the shunt so as to have no coefficient of self-induction, is, 
however, a practical case, and can be treated without much 
cl i f i c  ul t y . 

Taking the differential equation for y) equation (iv.), nrd 
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writing in it L2=0, we have 

or 

The discharge will be oscillatory if khe auxiliary quadratic 
1 m+--=O S GS _- 

G + S  n d J + ~ l ( ~ + . ~ )  cL1 
has unreal or imaginary roots. 

Solving it we have 
Gm G2 G2 G + S  ----- 

+ -G +47- 4L? SCL, ' 

Hence, for the roots to be imaginary, 

or 
4L1 G T S  SC must be greater than G2S"C2, 

4L' , G . GS 
-C- G t S '  

If this relation holds good, then the discharge is oscillatory 
in the condenser; and accordingly we see that to prevent 
electrical oscillation in the gdvanoineter circuit, the product 
of resistance of the galvanometer and coiiiliiied resistance of 
galvanometer ant1 shunt must be equal to or greater than 
four times the self-induction of the galvanometer divided by 
the capacity of the condenser. 

We may write the solution of the quadratic above, 

G+S  
G 

l tL= - - 4- 4 -1 

=-a& d - l p ,  
2L1 - L,C 4Lf - 

- 
\\liere G+S 

G --s-- 
2L, 

a- -- 

U 2  



and accordiilgly when p is real, that is wlien 

G + S  
.- 

S Q2 is >---- 4L7 
we hare, for solution of equation, 

p = Ae-at cos Pt + pe-atsin pt. 
When t = 0, q = Q 5 the original charge of tho condenser, and 

%=O when t c O  ; clt 
therefore Q=A ancl Q:=B; P 
and p=Qe-at(cospt+ -“sin,& P ) . 

Having now the value of t,he quantity of electricity left in 
the condenser at any instant, me can find easily, from the 
cycle equation (i.), the value of the current through the  
galvanometer. For 

or 

and the constant C’ is determined by the condition y=O when 
t=O.  

Substituting the value of y above, we have 

G 
2L’ 

a=.-- 
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and since 

wliich gives the v:duo of the instantaneous current in the 
gfll\.anoineter-circuit a t  any iiistaiit t after sturting a discharge 
from ;I condenser of cal):wity C? oiid original qiiaiitity Q through 
;L sliunted galr:tnomctcr, the shiint being wound witliout self- 
induction, and the gnlvanometcr having a coefficient of self- 
induction L1. 

8 19. TWO conclucling cxnmples of this inethod of treating 
network problenis will now be given, wliicli are iii Professor 
Clerk N:ixwell’s own words*. 

I’heorem.-To cotnpre  the indnction between onc pair of 
coils and any other two. 

Let a, 6, y,  6 be foar coils of wire. 
It is required to compare tho mutual induction of a and y 

with that  of ,B :~nd 6. 
Join up a and p coils in series with a galvnnoinctcr, and 

join up y and 6 coils in multiple arc with n battery, as  show^ 
in fig. 18. 

Place the coils in position. 

* In the May term 1879, Professor Clerk Maxwell lectured a t  Cam- 
bridge on Electromagnetism, and in the two last 1ecturc.s of the Course he 
gave this method of obtaining the equation for the currents in a network 
of conduction. In the last lecture uf all lie applied the method to caws in 
~ . h i c h  self and mutual iiiduction w f w  taken into account, :tncl gave the two 
illustrations ia 5 19. A t  the conclusion of this lecture lie had elided his 
professorial duties for the term, and a melancholy intercst attaches to the 
subject which occupied his mind on the last occasion on mliicli, uncon- 
&ously to  himself or his pupils, he was to  perform t h e m  TI~ose who 
enjoyed even for a brief period the pririlege of being taught by him, ever 
cherish R vivid remembrance of the intellectud treat afFordcd by Professor 
IIaxmell’s lecture-teaching, and the profoiind suggestiveness and interest 
of it. 

The two examples in § 19 and 5 20 are taketi from my notes of Prof. 
Maxwell’s lecturee, with some little alterations t o  makc them clearer. 
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Let R and S be resistances of the primaries cy and 6;  let Q 
be resistance of the two secondaries and of the galvanometer. 

Let L1, L2, NI, N2 be the coefficients of self-induction of 
the coils, and M1, M, the coefficieiits of' mutual induction of 
a and y,  ,@ and 6. Let r be the coefficient of self-induction 
of the galvanometer. 

Call x the cycle current of y, y that of 6, and z that of the 
circuit formed of a, 6, and the galvanometer. 

The kinetic energy T of the system is 
2T=m2N1+2xzM1+z2(L1+L2+~) +y2??2+ 2yzM2, 

2F = x2R + y2 8 + z2Q. 

and the dissipation function F is 

Then, by the formula 
d d T  d F  
d t c l x ' z '  

E =  -- 

j l ~ ,  + ;M, + x ~ =  E. 
iN2+sM2+yS= -E. 

+ i n!r2 + k ( L~ + L~ + r) + x~ = 0. 
Now x- y is the current through the battery; hence if we 

put x+y  for x in the above, we shall get x as the battery- 
current. Hence, niaking the change, we have 

. .  
( x + y ) ~ l + ' s ~ l  + Z y ~ = ~ ,  . . . . . (i* 1 
iN2 + z M ~  +yS=--E, . . . . . . (ii.) 
(,c + y)M1 +klM2 + .'( L, + L2 + I?) + zQ = 0; . (iii.) 
. .  

d 
ncld equations (i.) aiid (ii.) and arrange, putting n for - 'dt' 

(N,n+R)x+ (Nln+N2n+R+ S)y+(311+M2)nz=O, 
M,nx + (Mln + M2n)y + { (L, + L2 + r)n + Ql z=o. 

Eliminating y, we have 
{n(Nl?z + R) (141 + M,) - MIn(Nln + R + 8)  )X 

+ ((MI + J I g l  'n2- 1 (L1+ L2 + r ) n  + Q [ (Nln + N2n + R + S t  ) z = O ~  

Hence we get 
* -  4 ? L ~ (  M2N1 -MlNF) -TZ (Mi S - M2R) 5 ~ t :  
* -  

a denominator which does not concern us' 
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If matters are so arranged that z=O, or the gc?lvanometer 
3hows no current, 

hence if there is no “ kick ” on the galvanometer 011 nialriiig 
{he current, t8heti 

$ 20. Tlieorem.-To determine the capacity of a condenser 
by nieens of a Wheatstone’s bridge (fig. 19). 

Let a, /3, y, 8Le the four points of a Wheatstone’s bridge; 
and let the branch between a and 8 be interrupted at U 6, and 
a Leyden jar or condenser inserted provided with some rapid 
commutator, such as a tuning-fork, PO that whilst the outside 
of the jar is kept permanently attached to p, the inside is 
alternately joined to U and b. 

If a tuning-fork is used and its prongs have small metal 
styles which just come down to the surface of the mercury in 
two little cups, when the fork vibrates, as the prongs come 
together, the upper point dips in; and as they separate, the 
lower one dips in;  hence the shank of the fork is alternately 
connected with one and the other cup. The interval between 
the time of connection being exactly half the time of a com- 
plete oscillation o i  tho fork. 

Now let the meshes of the network be called I% + z, z )  and y; 
then x is the current through the galvanometer, and y is the 
current through the battery. When the arrangement is made 
as in the diagram, and the fork set vibrating, the vibrating 
fork and the condenser act together like a resistance, and let 
through so much electricity per second. 

Now, as the condenser gets its charge by electricity flowing 
into it, it builds up an opposing electromotive force in the z 

circuit which at  any instant is equal to  the value of -> where 

K is the capacity of the jar, the integral being integrated from 
the instant when the charging commences up to the instant 
considered. Now, if the fork makes n vibrations a second 
when the steady state is set up, the current 2 which flows into 

p t  
K 



252 DR. J. A. FLEXING ON THE DTSTRTBUTION OF 

z the j:n has a inenii w l u e  3; and therefore - is the opposing 

electromotive force in that branch. 
Accordingly, the condenser and associated commutator 

behave like a voltniiieter inserted in the branch a@, or like R 

resistance with a counter electromotive force in it. Only such 
8 cornlinecl jar and fork diffcrs from an ordinary metallic 
resistance in this, th:it its npparent resistance is not constant, 
but dcl)ends on two things, the speed of commutation or 
charge :ind rechargc?, and tho capacity of the condenser; whilst 
the counter electromotive force depcnds on the current z, ancl, 

being rcI)rcsented by 2-, is dependent not only on n and IC, 
but also on the mlucs of :ill the other resistances in tlie h n c h e s .  
I n  the first pl:ice, l y e  rcqiiiro an expression for the electro- 
motive force cliargiiig the conctenscr. Let  tlie difference of 
Iboteiitinl betwecii (i an t1  I) be called e .  Then consider the net- 
\ ~ o r l i  formed by the five conductors R, s, Q, G, and I3 with 
the electroinotive force in tlic branch 13; write down the net- 
work equations for this z ~nesh  nctworli. 

nIC 

rL IC 

- 8~ + ( Q + S + G)( .V + Z) 
E( Q + S + G) . 

Y = ’ 6 

0. 
Hence 

and 
ES 
8 ’  X + Z = = - -  

where 6= the deterininant 

Q+S+G 
E + + + + ,  I -s, 

which is 
S( Q + G)  + (R + B ) ( Q  + S + G). 

NOW the diffcroiice of potential e between CI and b when the 
condenser is just, beginning to be charged is 

G(.T + z )  + Ry = e  ; 
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ESG+ ER(Q+S+G) 
6 :. e= - 6 

SGC R(& + S + G) I Q+S+G,  -S I 
S( Q + G )  + (l%+B)( Q + S + G) = S(Q + G )  + (E + B)(Q + kj + c; ) 7  

=E 

or 

Now if the electromotive force e be employed n times in a 
second to cllarge n j a r  of capacity I<, the average current 
flowing into the jar is r X e  = x .  

Nom to find x we have to consider the distribution of cur- 
rents when the fork or coinmutator is i a  operation, aid lhe 
condenser allowing n flow of electricity to take place through it. 

Let P be the rcsistaiice which could eqnivalontly replace 
the jar and f'ork-th:it is, would allow an equal quantity of 

electricity to pass per second ; then, since - is the opposing 

electromotive force in this brmicli, - we have the followiiig 
equation for the three cycles :r, J :  + z, and 9:- 

9 

2 

nK 

- S X  + (R + S + B)y - (R + S)Z = E, 
- Gx- RJJ + (P + R)z= - 
(&+ S + G ) x - ~ ~ J +  ( Q  + S)z=o. 

* w 

?X' 

Now let A stand for tho determinant 
-8, R + S + B ,  -(a+s> 

1 - 0, - R, P + n - - + R  

I & + S + G ,  4, & + a  I 
Theii the solution of the above equations for z and *7: are 

El 
z= I Q + S + G ,  -S 

A > 
and 

1 1 -R, P+-  + R  E 71 K 
1-8, Q + S  

A- .T = 
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z is the average current flowing through the condenser, and 11: 
is the current through the galvanometer. Now let the resist- 
ances R, S, and Q be so varied that the current through the 
galvanometer is zero, then z=O; and therefore 

1 
nK -R, P+  - + R  

= 0, 
-8, Q + S  

or 

1 
nK Now insert this value for P+ - in the determinant A 

above and calculate its value, and we arrive at the expression 

MQ + S) + Q( R + 8 ) )  { G( R + S) + R(Q + S) Z 
S A =  

W e  have now, by substitution of this value of A in the value 
obtained above for z, an expression for the value of the average 
current through the condenser when the bridge is balanced, 
and it is 

Q+S.+G, -S -R 1 ESI -GG, 

(B(Q+S)+Q(R+S)m(RT@+R(&+)’ z= 

Equating this to the other value for z, namely, 

j -G, -R I 
z=nKe=nICE I Q+S+G,  -S 

S( Q + a) + (R + B) Q + s + GT’ 

which gives us a value for nK in terms of 
B, Q, R, 8, G. 

Now it is interesting to note that we inay otherwise write 
the above expression for nK, 

1. A x = x ’  
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where A is the determinant, 

1 R+B+S,  -S, 

and 6 is its first niiiior, 
R+B+S:  -S I -6 Q + S + G  l 9  

1 S ( 1 -  (&+8+G;)(R+B+S,) 

1 and - is of the dimeiisions of a resistance. nK 

another form, 
m e  value for nK writes out by a simple transformation into 

S2 

RQ(~+ Q ~ R + B + S )  ---) ( 1 +  R(Q+S+Q) sG 1; SB n K  = 

which is the form in which it is given by Prof. J. J. Thomson 
in his paper, and quoted by Mr. R. T. Glazebrook in his 
memoir on a Method of Measuring the Capacity of a 
Condenser". 

The above examples are amply sufficient to exeniplify this 
method of treating problems in networks of conductors, and 
show how it enables calculations to be made with considerable 
ease, not only of the distribution of currents and potentials, 
but of the resistances between any points on a network, the 
branches of which consist either of simple resistances or of 
wires having self- and mutual induction with other branches, 
or of electromagnets, or condensers associated with appropriate 
commutators. 

* This method of Maxwell's, of obtaining the capacity of a ccndenser has 
been practically employed, with most excellent results, by Mr. R. T. 
Glazebrook, F.R.S. ; and the full details of the tests to whichAe subjected 
the method axe given in his paper in the Proceedings of the Physical 
Society,' vol. vi. part iii. p. 204 (June 28,1884). [Phil. Mag. for August 
1884, p. 98.1 


