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Abstract

Objective: The aim of this study was to analyse the differences in the phospholipid composition of very low
density (VLDL), low density (LDL) and high density lipoprotein (HDL) monolayers in pregnant lean and obese
women.

Methods: LDL, HDL, and VLDL were isolated from plasma samples of 10 lean and 10 obese pregnant women,
and their species composition of phosphatidylcholines (PC) and sphingomyelins (SM) was analysed by liquid-
chromatography tandem mass-spectrometry. Wilcoxon-Mann-Whitney U test and principal component analysis
(PCA) were used to investigate if metabolite profiles differed between the lean/obese group and between
lipoprotein species.

Results: No significant differences have been found in the metabolite levels between obese and non-obese
pregnant women. The PCA components 1 and 2 separated between LDL, HDL, and VLDL but not between normal
weight and obese women. Twelve SM and one PCae were more abundant in LDL than in VLDL. In contrast, four
acyl-alkyl-PC and two diacyl-PC were significantly higher in HDL compared to LDL. VLDL and HDL differed in three
SM, seven acyl-alkyl-PC and one diacyl-PC (higher values in HDL) and 13 SM (higher in VLDL). We also found
associations of some phospholipid species with HDL and LDL cholesterol.

Conclusion: In pregnant women phospholipid composition differs significantly in HDL, LDL and VLDL, similar to
previous findings in men and non-pregnant women. Obese and lean pregnant women showed no significant
differences in their lipoprotein associated metabolite profile.
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Introduction
Obesity and its comorbidities are a major public health
concern [1]. It has been shown that pregnancy and early
life can already set the path towards an adverse meta-
bolic state as in obesity. In this regard, maternal obesity
during gestation is a risk factor for offspring obesity later
in life [2]. Mechanistically, lipoproteins are one of the
main sources for fetal nutrient supply, as they contain
triacylglycerols (TG). Obesity is associated with a

disturbed lipoprotein profile [3]. Hence, higher lipopro-
tein levels and an altered structure of the phospholipid
monolayer are an important object of research, as
modifications might have consequences for fetal energy
supply and early programming of later adverse health
outcomes due to energy over- or undersupply.
In the fasting state, the function of very low density

lipoproteins (VLDL) is to transport fatty acids in the
form of TG from the liver to extrahepatic tissues and,
during pregnancy, to the fetus for energy metabolism
and structural maintenance [4]. VLDL particles are con-
verted into low density lipoproteins (LDL) that contain
less TG and more cholesterol than VLDL. LDL choles-
terol can be taken up by tissue mediated by the LDL
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receptor, or at high levels be deposited in scavenger cells
in the intima-media of blood vessels which contributes
to cardiovascular disease risk [5]. In contrast, HDL
recollects cholesterol from extrahepatic tissues and
transports it back to the liver for excretion with bile,
contributing to reducing cardiovascular risk [6].
Total plasma fatty acids are strongly associated with

lipoprotein metabolism and various lipoprotein features,
such as cholesterol and content of saturated species are
related with cardiovascular health [7–9]. Despite existing
evidence of the importance of lipoprotein fatty acid
composition for the metabolism and functionality of
some of these particles [10], differences in molecular
species found in different lipoproteins have hardly been
studied.
The surface of all lipoproteins is comprised of phos-

pholipids, mainly phosphatidylcholine (PC) and sphingo-
myelin (SM) [11]. Those two groups of phospholipids
have been positively associated with higher BMI in clin-
ical targeted metabolomics studies [12–15]. Most of the
current metabolomics studies use whole plasma for
blood fatty acid and phospholipid analyses [16] and
usually different lipoproteins are not further separated
before analysis. Thus, differences of the lipoprotein
composition are not considered.
Differences in the phospholipid composition of

lipoproteins have previously been shown in males and
non-pregnant females [17].
We aimed to characterize the phospholipid compos-

ition of LDL, HDL and VLDL in obese and lean preg-
nant women, which, apart from lipoprotein species in
pregnancy in general [18], so far has not been described
in detail. Circulating lipids change considerably during
pregnancy and lipid levels have been associated with
offspring anthropometry [19]. High placental expression
of endothelial lipase (EL), which preferentially cleaves
phospholipids, indicates involvement of phospholipids in
placental transfer of fatty acids [20]. Thus, a comparison
of phospholipids between lipoproteins in pregnant
women can improve the understanding of lipid metabol-
ism during pregnancy and supports the planning of
further metabolomics studies in respect to the inclusion
of lipoprotein specific analyses.

Materials and methods
Subjects
Twenty pregnant women were studied at the time of
parturition (between 37 and 41 weeks of gestation) in
the Obstetrics and Gynecology Service of the Virgen de
la Arrixaca Clinical Hospital, Murcia (Spain), including
10 obese women (pre-pregnancy BMI > 30 kg/m2) and
10 women with normal weight (pre-pregnancy BMI
20-25 kg/m2). All women satisfied the following
inclusion criteria: singleton pregnancy, term delivery,

age 18–40 years, omnivorous diet, not consuming DHA
supplements during the last trimester, non-smoking,
normal fetal Doppler scan and undergoing elective
caesarean section. Subjects reporting health problems or
pregnancy complications were excluded. Written in-
formed consent was obtained from all subjects. This
study was approved by the Hospital Ethics Committee.

Sampling
Blood samples of fasted mothers were collected with
EDTA-containing tubes at the time of delivery. Samples
were centrifuged for 3 min at 1200 g to obtain plasma.

Biochemical analyses
Insulin was analyzed by chemiluminescence (DIAsource
INSIRMA, Nivelles, Belgium) and glucose, total choles-
terol, TG, LDL cholesterol and HDL cholesterol were
quantified by an automatic analyzer (Roche-Hitachi
Modular PyD Autoanalyzer, Mannheim, Germany).

Lipoprotein isolation
Maternal plasma lipoproteins were isolated from 1.5 mL
of fresh plasma by ultracentrifugation using a discon-
tinuous NaCl/KBr density-gradient [21] in an Optima
L-100 XP ultracentifuge equipped with 100Ti rotor
(Beckman Coulter, CA, USA). The rest of plasma was
frozen in liquid nitrogen and stored at − 80 °C until
analysis.

Metabolomics measurement of the phospholipids
Metabolomics analysis was performed at the Division of
Metabolic and Nutritional Medicine of the Dr. von Hau-
ner Children’s Hospital in Munich, Germany, by liquid
chromatography coupled to tandem mass spectrometry
(LC-MS/MS), as described previously [12].
The analysis of polar lipids comprised diacyl-phosphatidyl-

cholines (PCaa), acyl-alkyl-phosphatidylcholines (PCae), and
SM. The analytical technique is not capable of deter-
mining the position of the double bonds and the dis-
tribution of carbon atoms between fatty acid side
chains. The lipid species are described using the no-
menclature CX:Y, where X is the length of the carbon
chain (C), Y is the number of double bonds. “a”
means, that the acyl chain is bound via an ester bond
to the backbone and “e” means an ether bond.
For all metabolomics analyses, data acquisition on the

mass spectrometer, data handling and quantification
were performed with Analyst 1.6.2 software (AB Sciex,
Darmstadt, Germany).

Quality control
The quality control (QC) for the results was performed
by using six QC samples per batch. Overall, two batches
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were measured with ten samples per lipoprotein species
and plasma.
The QC was based on the inter- and intra-batch

coefficient of variance (CV). For the intra batch CV, we
used 20% and for the inter CV we used 30% as thresh-
old. We excluded metabolites if more than 1 value of the
QC samples exceeded 1.5 times the IQR. This was done,
because with 6 QC samples, 2 values exceeding 1.5 times
the IQR can be by chance.

Statistics
The software R (3.0.2) (R Project for Statistical Comput-
ing, http://www.r-project.org/) was used for all statistical
analyses in this study.
We graphically screened data for outlier and normal

distribution. Critical values were defined as values that
were 1.5 times the IQR above or below the median.
Amongst the critical values, measurements that were
two standard deviations apart from the next value were
declared as influential observations.
Missing values were imputed using k nearest neigh-

bour (knn) imputation [22], as a complete dataset is
necessary for the calculation of percentages. If there
were still influential observations left according to the
above definition after knn imputation, the respective
sample was excluded. We calculated the metabolite
percentages for each individual and each species, to
describe the relative phospholipid composition across li-
poproteins. Percentages were calculated based on all me-
tabolites and also metabolite group-wise (PCaa, SM,
PCae). In a first step, we investigated the differences in
phospholipid composition between lean and obese preg-
nant women, stratified by lipoprotein species. Wilcoxon
Mann Whitney U test was applied, as with a small
sample size (< 30), normal distribution cannot simply be
assumed, and the Quantile-Quantile-plots indicated that
the data was not normal distributed. The results
were plotted in so called Manhattan plots (detailed
results: Additional file 1: Tables S1-S6). In this plot,
the |–log10(p)|-value is plotted on the y-axis and the
metabolites on the x-axis. Values above the zero line show
higher values of the metabolite in normal weight than in
obese, values below show the opposite.
We also plotted metabolite concentrations against

BMI as a continuous variable to see if there were
tendencies in metabolite concentrations in dependency
of the BMI (Additional file 1: Figures S1-S5).
In a second step, and as main aim of this analysis, we

examined if the metabolite composition depended on
the lipoprotein species. We conducted a principal
component analysis (PCA) and produced score plots to
investigate whether there was a grouping according to
lipoprotein species.

In order to make results comparable for metabolites
with low and high percentage levels, we calculated
median ratios for each metabolite: For each pair (HDL/
LDL, HDL/VLDL, LDL/VLDL), we calculated the
medians in each species and built the ratio of these two.
To obtain confidence intervals for these median ratios,
we used 500 bootstrapping replicates. For each pairwise
combination of lipoprotein species, we plotted the ratios
together with their confidence interval, to depict the as-
sociations of the metabolites with the lipoproteins and
to provide an estimate of the percent difference.
Wilcoxon Mann Whitney U test was applied to see if
there were significant differences in the phospholipid
composition between the lipoprotein species (detailed
results: Additional file 1: Tables S1-S6).
It was also analysed if the sum of SM to sum of PC

ratio is significantly different between the lipoproteins.
The last step was to analyse the association between

the significant phospholipids in the lipoprotein species
with the cholesterol content of the respective lipoprotein
to test for potential functional alignments of cholesterol
and phospholipid species as hypothesised in previous
studies [23]. This was done by Spearman correlation
coefficients.
To account for multiple testing for the p-values,

Bonferroni correction was used, which is done by div-
iding the p-level of 0.05 by the number of metabolites
ð0:0571 ¼ 0:0007Þ. Whenever p-values are reported, they
are Bonferroni corrected. We define tendencies as
uncorrected p-values of < 0.05.

Results
Subject characteristics are shown in Table 1. A total of
71 PC and SM passed our QC criteria, comprising 20
PCaa (11 poly-unsaturated species), 27 SM (16 saturated
and mono-unsaturated), and 24 PCae (15 polyunsatur-
ated). Wilcoxon Mann Whitney U test for differences in
metabolite concentrations between normal weight and

Table 1 Characteristics of pregnant women

Control (n = 10) Obese (n = 10) P

Age (years) 33.80 ± 1.87 34.50 ± 2.31 0.807

Pregestational BMI (kg/m2) 22.51 ± 0.50 32.22 ± 0.92 < 0.001

BMI at delivery (kg/m2) 28.22 ± 0.57 35.63 ± 1.18 < 0.001

Glucose (mg/dl) 59.80 ± 2.48 62.10 ± 6.271 0.377

Insulin (UI) 9.47 ± 1.50 14.73 ± 2.68 0.090

TG (mmol/L) 1.94 ± 0.25 1.95 ± 0.17 0.973

Total cholesterol (mmol/L) 6.77 ± 0.40 6.31 ± 0.39 0.399

LDL cholesterol (mmol/L) 3.81 ± 0.31 3.37 ± 0.42 0.385

HDL cholesterol (mmol/L) 2.06 ± 0.24 2.00 ± 0.18 0.834

Results are expressed as mean ± SEM. Abbreviations: BMI body mass index,
TG triacylglycerol, HDL high-density lipoprotein, LDL low-density lipoprotein
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obese subjects showed no significant differences after
Bonferroni correction in any of the lipoprotein subsets,
while a trend (uncorrected p-value < 0.05) towards a
positive association with obesity was found for PCaa
C38:4, SM C36:1 and SM C36:2 in HDL, and SM C36:3,
PCae C32:2 and PCae C38:6 in VLDL (Fig. 1).
The PCA analysis showed a discriminatory trend

between the lipoprotein species based on principal com-
ponents (PrC) 1 and 2. The metabolites with highest
scores in PrC 1 consisted mainly of SM species, and
those in PrC2 of PC species (Fig. 2, Table 2). The score
plot revealed that PrC1 mainly separates LDL from the
other two, HDL and VLDL, whereas PrC2 separates
VLDL from both LDL and HDL. The PCA confirms that
phospholipid composition of obese and lean pregnant
women is similar.
When testing for differences between LDL and HDL

in single metabolite species, LDL mainly contained satu-
rated and monounsaturated SM. SM C36:1, SM C34:1,
SM C32:1, SM C42:3, SM C41:1, SM C42:2, SM C35:1,
SM C33:1, SM C39:1, SM C34:2, SM C33:3, SM C42:1

and PCae C32:1 were found significantly higher in LDL.
Percentages of polyunsaturated fatty acids (PUFA)
containing PC, PCaa C38:5, PCae C38:5, PCae C36:3,
PCae C40:6, PCae C44:5 and PCaa C36:4 were signifi-
cantly higher in HDL than in LDL (Fig. 3).
In the comparison between metabolites of the VLDL

and HDL species, SM C42:2, PCae C38:5, SM C42:1,
PCae C42:6, PCae C44:5, PCae C38:4, PCae C40:6, PCae
C36:3, PCaa C32:0, PCae C44:6 and SM C41:1 have been
significantly higher in HDL compared to VLDL. No
metabolite was significantly higher in VLDL than in
HDL (Fig. 3).
LDL showed significantly higher percentages of SM

C42:2, SM C36:1, SM C41:1, SM C34:1, SM C42:1, SM
C34:2, SM C41:2, SM C36:2, SM C33:3, SM C42:3, SM
C32:1, SM C33:1 and SM C35:1 compared to VLDL
(Fig. 3). In total, 25 (35%) of all measured phospholipids
showed significant differences between lipoprotein
species.
The Spearman correlation between the individual

phospholipid species and total HDL-cholesterol and

Fig. 1 Manhattan plot showing the |–log10(p)| -values (y-axis) of the Wilcoxon Mann Whitney U test, testing for metabolite differences in plasma
between normal weight and obese pregnant women, stratified by lipoprotein species. Scattered line: uncorrected α-level at ±log10(0.05) = ±1.3
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total LDL-cholesterol showed associations with different
species, depending on the lipoprotein, but the scatter-
plots showed no clear tendencies (Additional file 1:
Figures S1-S5). The top metabolites and cholesterol as-
sociations in HDL, with a correlation coefficient > 0.3
were PCae C32:1, PCae C36:3, PCae C38:5, PCaa
C36:4, SM C33:3, SM C34:2, SM C34:1 and SM
C32:1. In LDL the top associations between
cholesterol and phospholipids were PCae C44:5, PCaa
C38:5, SM C42:3, SM C42:1 and SM C32:1
(Additional file 1: Figures S1-S5).

Discussion
The phospholipid composition of lipoproteins from 10
lean and 10 obese, pregnant women was not significantly
different between the two groups.
Interestingly, the phospholipid species composition in

the main lipoprotein species, LDL, HDL, and VLDL are
similar to data reported previously for men and
non-pregnant women [17] (Table 3).
We also found SM higher in LDL than VLDL or HDL,

whereas HDL showed higher percentages of PC,
predominantly PCae, than the other two lipoproteins.
Metabolites associated with LDL contain more saturated
and mono-unsaturated species, whilst the phospholipids
found in higher proportions in HDL contained more
polyunsaturated species. SM, in general, mainly consist
of saturated and monounsaturated species [24]. LDL is
associated with more saturated species and the estab-
lished higher SM to PC ratio is indicative of that [25].
This study shows, that not only saturation or SM are
associated more closely with LDL rather than HDL, but
this is also SM species specific.
The phospholipid composition of the lipoproteins in

the last trimester of the pregnancy is of particular im-
portance, as this is when the placental lipid transfer
mainly relies on the activity of the EL, which shows
phospholipase rather than TG lipase activity [26]. Hence,
especially the content of long-chain polyunsaturated and
essential fatty acid species is important for the foetus.
Those are mainly found in HDL [27], as confirmed in
this study. It has been shown that SM has an inhibitory

Fig. 2 Score plot for the Principal Component Analysis of lipoprotein metabolite composition of normal weight and obese pregnant women

Table 2 Top 10 plasma lipoprotein Metabolites with highest
absolute loadings in principal component 1 (PrC1) and 2 (PrC2)

Metabolite PrC1 Metabolite PrC2

SM C34:1 0.2633825 PCae C38:5 0.24530123

SM C36:1 0.23533697 PCae C38:4 0.24105136

SM C42:2 0.21961745 PCae C40:6 0.2195198

SM C41:1 0.215592 PCae C42:6 0.21406066

SM C34:2 0.20837699 PCaa C44:12 0.20189903

SM C42:3 0.20613141 PCae C36:3 0.19888559

PC C38:5 −0.20204572 PCaa C34:1 −0.19755011

SM C33:1 0.19581353 PCae C36:4 0.1966289

SM C32:1 0.1916571 PCaa C32:1 −0.19595342

SM C33:3 0.19136632 PCaa C34:2 −0.19438766

Wilcoxon Mann Whitney U test showed significant differences in the SM to PC
ratios between the lipoproteins with a significantly higher ratio of SM/PC in
LDL compared to HDL and VLDL (Fig. 4)
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Fig. 4 Boxplot of the sphingomyelins (SM) to phosphatidylcholines (PC) ratios in LDL, VLDL and HDL. Significance based on Wilcoxon Mann
Whitney U Test. ***: p-value < 0.001. HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein

Fig. 3 Plot of the ratios between the metabolite medians and sum of all mono-unsaturated sphingomyelins (SM) as well as poly-unsaturated
ester-linked phosphatidylcholines (PCaa) and ether-linked phosphatidylcholines (PCae) in the different lipoprotein species. The 95% confidence
intervals for the ratios are estimated by bootstrapping and significance level calculated by Wilcoxon Mann Whitney U-Test. The definition of the
stars is the following: ‘*’ P < 0.05, ‘**‘P < 0.01, ‘***’ P < 0.001 . Only metabolites that are significantly different in at least one comparison are
included. HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein
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effect on EL, which is important especially for the LDL
phospholipid uptake, although EL prefers HDL [28].
We show similar findings in pregnant women

compared to male and non-pregnant women in other
studies, that for example found LDL containing more
SM C34:1 rather than VLDL or HDL [17, 29]. It appears
quite possible that the association of lipoprotein patterns
with cardiovascular and other diseases might actually be
based on the composition of phospholipids in different
lipoproteins.
Using absolute instead of relative values, previous re-

search on associations of metabolite concentrations and
waist circumference as a marker for obesity found that
the metabolites SM C34:2, SM C36:2, SM C40:2, SM
C42:3, PCaa C38:3, PCaa C40:5, PCaa C38:4, PCaa 40:6
and PCaa C38:5 were associated with obesity [12]. Our
finding of a similar phospholipid pattern in the lipopro-
teins of normal weight and obese subjects might be due
to the fact that higher lipids are part of a normal preg-
nancy in general and change rather dramatically during
the course of gestation [30, 31], as confirmed by the
lipoprotein and TAG levels in this study. Hence, hyper-
lipidemia as seen in obesity [32] might drive metabolic
differences between normal weight and obese subjects,
which did not emerge in this study, as both had higher
lipid levels due to pregnancy. Therefore, it is important
to consider that all women were pregnant, and especially
have been in a situation in which plasma lipids increase

Table 3 Comparison of our findings of associations between
single phospholipid species percentages and lipoproteins with
those of Wiesner et al. 2009 (Bold font: same direction, normal
font: different direction)

Species Wiesner et al. 2009 Our analysis

polyunsaturated HDL > LDL HDL > LDL

saturated/monounsaturated LDL > HDL LDL > HDL

PCaa C32:0 VLDL<LDL VLDL>LDL

VLDL>HDL VLDL>HDL

LDL > HDL LDL > HDL

PCaa C36:4 VLDL>LDL VLDL>LDL

VLDL<HDL VLDL<HDL

LDL < HDL LDL < HDL

PCaa C38:5 VLDL>LDL VLDL>LDL

VLDL<HDL VLDL<HDL

LDL < HDL LDL < HDL

SM C32:1 VLDL>LDL VLDL<LDL

VLDL>HDL VLDL>HDL

LDL > HDL LDL > HDL

SM C33:1 VLDL>LDL VLDL<LDL

VLDL>HDL VLDL>HDL

LDL > HDL LDL > HDL

SM C34:2 VLDL>LDL VLDL<LDL

VLDL<HDL VLDL<HDL

LDL < HDL LDL > LDL

SM C34:1 VLDL>LDL VLDL<LDL

VLDL>HDL VLDL<HDL

LDL > HDL LDL > HDL

SM C35:1 VLDL>LDL VLDL<LDL

VLDL>HDL VLDL>HDL

LDL > HDL LDL > HDL

SM C36:2 VLDL>LDL VLDL<LDL

VLDL<HDL VLDL<HDL

LDL < HDL LDL > HDL

SM C36:1 VLDL<LDL VLDL<LDL

VLDL>HDL VLDL<HDL

LDL > HDL LDL > HDL

SM C41:2 VLDL<LDL VLDL<LDL

VLDL<HDL VLDL<HDL

LDL < HDL LDL > HDL

SM C41:1 VLDL<LDL VLDL<LDL

VLDL<HDL VLDL<HDL

LDL > HDL LDL > HDL

SM C42:3 VLDL>LDL VLDL<LDL

VLDL<HDL VLDL<HDL

LDL < HDL LDL > HDL

SM C42:2 VLDL<LDL VLDL<LDL

Table 3 Comparison of our findings of associations between
single phospholipid species percentages and lipoproteins with
those of Wiesner et al. 2009 (Bold font: same direction, normal
font: different direction) (Continued)

Species Wiesner et al. 2009 Our analysis

VLDL<HDL VLDL<HDL

LDL < HDL LDL > HDL

SM C42:1 VLDL<LDL VLDL<LDL

VLDL<HDL VLDL<HDL

LDL > HDL LDL > HDL

PCae C36:3 VLDL<LDL VLDL<LDL

VLDL<HDL VLDL <HDL

LDL < HDL LDL < HDL

PCae C38:5 VLDL<LDL VLDL<LDL

VLDL<HDL VLDL<HDL

LDL < HDL LDL < HDL

PCae C38:4 VLDL>LDL VLDL<LDL

VLDL<HDL VLDL<HDL

LDL < HDL LDL < HDL

PCae C40:6 VLDL>LDL VLDL<LDL

VLDL>HDL VLDL<HDL

LDL < HDL LDL < HDL
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gradually during gestation, reaching 2–3 times higher
plasma fatty acids concentration at the end of pregnancy
compared to non-pregnant women [33]. On the other
hand, it is also possible that the small sample size of the
lean vs. obese group in our study did not allow for de-
tection of small group differences. Trends for differences
were seen in two out of the six metabolites which have
also been associated with obesity in a previous study
(uncorrected p-value < 0.05) [12]. These are SM C36:2,
and PCaa C38:4.
SM is known to negatively influence the activity of

LCAT, as it is structurally similar to PC and is hence
suggested to compete with PC for the receptors of the
enzyme [34]. This might lead to more PC in the blood
lipoproteins [35, 36].
The two main sites for SM production are either the

liver or the intestine. The last and rate limiting step for
the synthesis of SM is either sphingomyelin synthetase 1
or 2 (SMS1/SMS2) [37]. SMS1 is mainly located in the
trans-Golgi, whereas SMS2 is located in the plasma
membrane [37]. In the synthesis of sphingomyelin, the
backbone can either be a sphingosine or another sphin-
goid base, mainly sphingadienine [17, 38].
It was proposed that lipoprotein SM might interact

with cholesterol. The van der Waals forces between SM
and cholesterol are strong, and it has been observed that
not only in lipoproteins but also on the surface of any
other cell, mainly consisting of phospholipids, the SM
and cholesterol molecules are aligned [39]. This can also
be explained by the saturated fatty acid side chain of SM
and therefore a preferred binding [25]. The same is also
apparent in lipid rafts [40], indicating a functional pur-
pose of this assembly. This alignment was not apparent
for SM/PC ratio or specific species in our study.
PCae are phospholipids that are characterized by an

ether bond, usually localized at the sn-1 position of the
glycerol-backbone (plasmalogens) [41]. PCae have previ-
ously been shown to be associated with apoA-I, which is
the major protein in HDL [42]. Our finding of higher
PCae values in HDL in comparison with the other
lipoprotein species supports that. Also, it has been
shown that PCae are needed to enable cholesterol efflux
to HDL [42].
There are some studies analysing the functional

contributions of phospholipids to the lipoproteins. For
example, SM was shown to inhibit the activity of LCAT,
as discussed above [30]. PCae have been shown to
associate with cholesterol efflux from peripheral cells for
the reverse cholesterol transport [43]. In a model
experiment, a higher amount of saturated PCaa in the
monolayer seemed to decrease the ability of HDL to
accept free cholesterol [43], whereas in our study no
clear trend for cholesterol and phospholipid preference
could be shown.

Another interesting finding is the significant difference
in phospholipid species between VLDL and LDL. VLDL
and its phospholipid monolayer are formed in the liver
and are a precursor of LDL, so the composition should
be very similar. The difference might be according to the
phospholipid and cholesteryl ester transfer proteins
(PTP/CETP), which promote the exchange of cholesterol
and phospholipids between the different phospholipid
species [44]. This indicates, that the phospholipid
composition of different lipoproteins might have direct
effects on the others.

Insights into functional significance
The phospholipid composition of lipoproteins in the
third trimester of pregnancy, as shown in this study, is
of particular interest, as it reflects an important source
of fatty acids provided to the foetus. This is, as
mentioned above, because at this stage in pregnancy, the
placental lipid transfer mainly relies on the activity of
the EL, showing predominantly phospholipase activity
[26]. To support this, another study in pregnant women
found decreased long-chain fatty acid concentrations in
the mothers plasma in later pregnancy, which, as the au-
thors suggest, may reflect conversion to triacylglycerols
and phospholipids for energy supply to the foetus [45].
The tendency of obese pregnant women for higher

concentrations of SM C36:2 and PCaa C38:4 in this
study, previously related to obesity [12], might represent
the hyperlipidemic state associated with both pregnancy
[46] and obesity [47]. The phospholipid composition is
of particular interest, as research has shown that
pre-pregnancy diet might be associated with the com-
position of phospholipids, especially PCs containing
dihomo-γ-linolenic acid species (20:3n-6) [48].
Dihomo-γ-linolenic acid is related to insulin resistance
and adiposity in children [49, 50] and its concentrations
throughout pregnancy in maternal blood are related to
higher BMI of the offspring at age 6–7 [51, 52]. Obese
mothers are more likely to give birth to children that de-
velop obesity later on, so hence the phospholipid com-
position of lipoproteins might hold valuable insights
both into dietary fatty acid intake before pregnancy, as
well as biomarker for the offspring’s risk of developing
obesity, holding the potential to unravel this intricate
association network.
Further insight into these long-term associations has

the potential for dietary recommendations in persona-
lised medicine. In order to explore this association
network, future studies are required to measure both the
phospholipid composition of lipoproteins in pregnant
mothers, as well as the non-esterified fatty acid and
phospholipid concentrations in the offspring.
Further, most metabolomics studies have quantified

serum or plasma metabolites without separation of
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lipoprotein species, which may have overlooked
functional implications of lipoprotein composition that
might well be related to the etiology of disorders such as
diabetes, obesity or cardiovascular disease.

Limitations
The small sample size with only twenty pregnant women
limits the power of the study. Obese women were
normolipidemic with respect to pregnancy, and our find-
ings cannot be directly extrapolated to more extreme
hyperlipidemic pregnant or non-pregnant obese women.
Plasma samples were taken during caesarean section,
which may imply possible alterations in blood metabolites
secondary due to surgery-related stress, even though the
similarity of metabolite patterns with reported data for
non-pregnant adults suggests, that no major changes
would have been induced.
Also, since the approach is novel, our institutional

review board did not want us to study a large number of
pregnant women before demonstrating that the method
is feasible.
The strength of this study is the separation of individual

phospholipid species in lipoproteins from lean and obese
pregnant women. This method is demanding and not easy
to scale-up to larger sample sizes. Despite the small sam-
ple size, we found significant associations with metabolites
and lipoprotein species, which still persisted after correc-
tion for multiple testing.

Conclusions
We showed for the first time different distributions of
phospholipids in plasma lipoproteins of pregnant
women, resembling those of men and non-pregnant
women. This is indicating that the functionality of the
lipoproteins might be influenced by molecular species
composition independently of pregnancy status. More
studies are needed to better understand the individual
fatty acid and phospholipid composition of different
lipoproteins to understand their implications for lipopro-
tein metabolism, health and disease.
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