
14

A Measurement Framework for Evaluating Emulators
for Digital Preservation

MARK GUTTENBRUNNER, Secure Business Austria
ANDREAS RAUBER, Vienna University of Technology

Accessible emulation is often the method of choice for maintaining digital objects, specifically complex ones
such as applications, business processes, or electronic art. However, validating the emulator’s ability to
faithfully reproduce the original behavior of digital objects is complicated.

This article presents an evaluation framework and a set of tests that allow assessment of the degree to
which system emulation preserves original characteristics and thus significant properties of digital arti-
facts. The original system, hardware, and software properties are described. Identical environment is then
recreated via emulation. Automated user input is used to eliminate potential confounders. The properties of
a rendered form of the object are then extracted automatically or manually either in a target state, a series
of states, or as a continuous stream. The concepts described in this article enable preservation planners
to evaluate how emulation affects the behavior of digital objects compared to their behavior in the original
environment. We also review how these principles can and should be applied to the evaluation of migration
and other preservation strategies as a general principle of evaluating the invocation and faithful rendering
of digital objects and systems. The article concludes with design requirements for emulators developed for
digital preservation tasks.

Categories and Subject Descriptors: H.3.7 [Information Storage and Retrieval]: Digital Libraries—
Standards; systems issues; user issues; H.5.2 [Information Interfaces and Presentation]: User Inter-
faces—Input devices and strategies; I.6.6 [Simulation and Modeling]: Simulation Output Analysis; I.6.8
[Simulation and Modeling]: Types of Simulation—Continuous; discrete event; gaming

General Terms: Reliability, Standardization, Documentation

Additional Key Words and Phrases: Emulation, digital preservation, characteristics of rendered content,
system properties, automated testing, preserving interactive content

ACM Reference Format:
Guttenbrunner, M. and Rauber, A. 2012. A measurement framework for evaluating emulators for digital
preservation. ACM Trans. Inf. Syst. 30, 2, Article 14 (May 2012), 28 pages.
DOI = 10.1145/2180868.2180876 http://doi.acm.org/10.1145/2180868.2180876

Work in this article has been partially funded by COMET K1, FFG – Austrian Research Promotion Agency
and by European Community under the Information Society Technologies (IST) Programme of the 6th FP for
RTD – Project IST-033789/PLANETS and the 7th FP for RTD – Project ICT-269940/TIMBUS. The authors
are solely responsible for the content of this article. It does not represent the opinion of the European
Community, and the European Community is not responsible for any use that might be made of data
appearing therein.
Authors’ addresses: M. Guttenbrunner (corresponding author), SBA Research gGmbH, Favoritenstr. 16,
A-1040 Vienna, Austria; email: guttenbrunner@ifs.tuwein.ac.at; A. Rauber, Vienna University of Technol-
ogy, Vienna, Austria.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1046-8188/2012/05-ART14 $10.00

DOI 10.1145/2180868.2180876 http://doi.acm.org/10.1145/2180868.2180876

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/212101785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14:2 M. Guttenbrunner and A. Rauber

1. INTRODUCTION

Digital preservation deals with the issue of keeping digital data usable even after the
original environment is obsolete. Two main strategies have evolved in previous years:
migration and emulation. While migration is a strategy to convert data to a newer,
not obsolete format, emulation keeps the data in the original format and recreates
the rendering environment for the digital object in a different form. A digital object in
this context can be any kind of digital content in static, dynamic, or even interactive
form. Dynamic and interactive digital artifacts that have to be considered are video
games, interactive art, interactive documents, and other applications such as business
processes and numerical analysis.

Preservation planning is used to evaluate what strategy and what tool is suited
in a specific preservation scenario. In preservation planning the effects of applying
different strategies and/or tools to a corpus of digital objects are evaluated. This is
usually done by analyzing the properties of a digital object, identifying those that are
relevant in the scenario, and inspecting the properties after applying the preservation
action (i.e., after migrating the object to a different format or rendering the object in
an emulated environment). Once the effects of the preservation action on the digital
objects are known, a decision can be taken on one of the alternatives as the optimal
one in the setting. This decision takes not only into account how well the significant
properties are preserved, but also considers other factors, for example, the cost, legal,
and infrastructure properties of the evaluated alternatives [Becker et al. 2009].

If a digital object is migrated, the information necessary to successfully render all
significant properties of the object has to stay intact. It is necessary to evaluate how
the migration of an object influences the ability of applications to display it in a suit-
able form, for example, as close to the original as possible. However, the rendering
plays an even more important role in emulated environments. Not only does the object
have to be rendered by its environment, but also a reproduction of the original envi-
ronment has to be rendered on a host system to enable the rendering of the object. To
evaluate the effects that rendering has on an object, and thus allowing a preservation
planner to judge if the significant properties of an object are faithfully reproduced, it is
necessary to look beyond the content of a file stream. We have to examine the rendered
version of the object in the form in which it is reproduced, which usually is in its visual
form on the screen and audible elements through speakers, or any other input/output
behavior. Note that rendering encompasses not just the visual display of an application
but any effect and interaction that a digital object has with its environment, includ-
ing storage, network communication, and actuator activation. If the behavior of an
object depends on external factors, these factors have to be kept identical to determine
if deviations in behavior are caused by the emulation environment. Depending on the
object it is important to identify from which of the diverse rendered forms of an image
in the original environment or emulated environment the significant properties shall
be extracted and in what state. To make the process of comparing rendering effects
in emulation environments less time-consuming and more objective it is necessary to
develop concepts which allow for automatable evaluation.

This document describes the integration of emulators in the preservation planning
process. It describes a testing environment for evaluating the effects of emulation on
digital artifacts. The remainder of this article is structured as follows: First we show
the different levels on which emulation can be performed. Next we give an overview
on related work in digital preservation and emulation in Section 3. We then take a
closer look at the digital object and what properties with regards to determinism and
significant states we have to differentiate in Section 4. Next we discuss the render-
ing environment in which the digital object is executed in Section 5. We explain the

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:3

necessity of a reference environment to which to compare to. We discuss the view-
path of the digital object and show methods to reduce the side-effects of differences in
user input on the digital object. We describe the implications of these methods and
how to record them in the original environment to apply them in the emulated envi-
ronment. Based on the information collected about object and environment we then
show in Section 6 how to recreate the viewpath for the digital object in the new ren-
dering environment. The different rendered forms of a digital object are shown along
with a discussion about how to extract properties of the rendering process. By com-
bining the concepts in the previous sections we are then able to define a set of tests as
shown in Section 7.1 that allow us to evaluate to what degree the execution of a digital
object in an emulated environment is influenced by the environment’s behavior. We
discuss the necessary requirements for rendering environments to support automatic
evaluation and long-term stability for digital preservation. In Section 8 we discuss the
conclusions that can be drawn from the work presented in this article and how the con-
cepts presented are applicable not only to emulation but to other preservation actions
as well.

2. LEVELS OF EMULATION

Emulation can be done on different levels. The term emulation in general refers to
the capability of a device or software to replicate the behavior of a different device or
software. It is possible to use hardware to emulate hardware or to use software to
emulate software or the hardware. While even a viewer of a document can be seen
as some kind of emulation (if, e.g., fonts not stored in a document are provided by the
viewer), emulation usually is seen as recreating the hardware of the system the digital
object was initially rendered on and using the original software (both the operating
system as well as the application) to display it. With applications distributed over
various systems in a network, it is also necessary to emulate more than one system to
keep a digital object in a usable state. But also social properties (subjective properties
not technically measurable) like input devices or even the environment in which a
system has been used can be necessary to recreate the original look and feel. The
boundaries between the different kinds of emulation are usually blurred and depend
on the digital object that has to be preserved.

In this article the word emulator is used as defined in Slats [2003] as a program
that runs on one computer virtually recreating a different computer’s hardware. We
mainly concentrate on emulators emulating computer architectures, but the concepts
introduced in this article certainly have to be considered with the different levels
of emulation in mind and most can be applied to other levels of emulation as well,
up to the evaluation of migration results within an appropriate rendering viewer
environment.

Environments for digital objects can be emulated on different levels as shown in
Figure 1. These layers can be defined as follows.

Application. Instead of using the original software application used to create and
view a digital object, another piece of software, sometimes also referred to as viewer,
can be used to emulate the original application. In the case of migration, again, a
different viewer application is used to render a modified/transformed object.
Operating System. Program-loaders like Wine1 allow the execution of programs
on different operating systems by providing a translation layer for the operating
system calls. This allows emulation on a much higher level than hardware with-
out having to emulate the whole system. Programs written for the same hardware

1Wine—http://www.winehq.org/.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:4 M. Guttenbrunner and A. Rauber

Fig. 1. Layers of emulated environments for digital objects.

but a different operating system can thus be executed in the new operating system
environment.
Computer Architectures. As the functionality of hardware is usually better docu-
mented than software the most common level of emulation is recreating the com-
puter architecture. Two methods which are widely in use are described next.

— Virtualization. An approach to create a virtual environment by using either some
or all of the hardware of the host system directly is called virtualization (Virtual
Dos Machine under Windows, DOSEMU2 under Linux). Using this approach,
software which is potentially able to run on the host system’s hardware is run
in a virtual machine hosted by the current operating system environment. An
example is to have a host system running Linux and using DOSEMU to create a
virtualized environment running a Microsoft Windows operating system.

— Hardware. The most common use of emulation is the recreation of hardware com-
ponents in software on a new host system. In this case, none of the underlying
hardware components are used. Instead, the whole system is rebuilt in software
and the original digital artifact is executed using the original software in this
simulated hardware environment. Examples are emulators for proprietary hard-
ware such as video game console systems on a PC or emulators for PC hardware
on virtual machines (e.g., Dioscuri3).

Interface Level. Emulating a computer system on the interface level requires to
recreate the original means of input/output of the system to recreate the original
communication experience with the system. For two-way communication we have
to consider the following.

— Output Devices. Using a mobile hand-held with a 3-inch screen as an output de-
vice as the original system has a different look-aspect compared to the emulation
of the same system on a PC screen with 18 inches. An example is an emulator
of a Nintendo DS with two screens on a PC with a normal LCD screen running a
Microsoft Windows operating system. Similarly, actual actuator output in a con-
trol system is different to compare to a simulated actuator output that may be as
a visual-, acoustic-, or voltage-level setting.

2DOSEMU—http://dosemu.org/.
3Dioscuri—http://dioscuri.sourceforge.net/.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:5

— Input Devices. Using paddle controllers to play the game Pong is a different feel-
aspect than using a keyboard or even a mouse to control the same game in an
emulated environment. This applies not only to human-computer interaction, for
example, in a control system, but also to differences in sensitivity, drift, or timing
behavior for all kind of sensor input.

Environment. Playing a game of Space Invaders standing in front of an arcade ma-
chine in a smoke-filled bar creates a different playing experience than the same
arcade machine in a clinical museum environment. To recreate the original experi-
ence the environment has to be emulated as well, as the focus on such recreations
in simulator settings for, for example, safety trainings shows.

When a system component is to be replaced by a different (emulated) component,
such evaluations are standard practice.

It should be noted that digital objects represent information objects, and are thus
always used in a rendered form (which may be as complex as an entire business, a sys-
tem control application, an interactive complex media object or video game, a rendered
office document, but also a simple XML file encoded in Unicode and rendered as read-
able character set or interpreted as machine-readable content). Thus, evaluating any
kind of digital preservation action needs to be based on the connecting point between
interface and environment. In this sense, there is no formal, conceptual difference
between emulation and migration from an evaluation perspective, as even migrated
objects need to be evaluated within the new rendering environment.

3. RELATED WORK

The UNESCO guidelines for the preservation of digital heritage [Webb 2005] list
migration [Marcum 1996] and emulation [Granger 2000; Rothenberg 1999; van der
Hoeven et al. 2007] as the main strategies for digital preservation.

Emulation is widely used in information technology for various applications. In soft-
ware engineering, emulation is used as a programming technique if the architecture
of the system on which the software is developed is different from the architecture of
the target system [Dumke 2003]. Especially for developing software for hand-held sys-
tems or systems which do not have a development environment on the system itself
(e.g., video game consoles) the software is developed and its function is verified in an
emulated environment on the host system. In Devanbu and Stubblebine [2000] the
use of emulation for detecting and contravening software self-destruct approaches by
running the software in an emulated environment in a security context is explained.
Emulation is also an option to keep legacy software running in production environ-
ments after upgrading to a new system if no new version of the software is avail-
able yet. Fidge shows how emulation is used to replace embedded microcomputers
[Fidge 2003]. An emulator program is interposed between the legacy software and a
replacement processor, so that the old code can be reused on the new machine. Kleiner
describes how emulators for arcade machines can bring video games back to life on
modern systems [Kleiner 2001]. A wide variety of emulators is available today that let
users reexperience classic video games on current hardware4.

It is, however, not immediately obvious if all the significant properties of a digital
object rendered in an emulated environment are sufficiently reproduced. For digital
preservation purposes it is necessary to compare the effects of different preservation
actions on the significant properties of digital objects. When migrating a digital object

4http://www.emulator-zone.com/

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:6 M. Guttenbrunner and A. Rauber

to a different format, characteristics of the object are usually extracted from both file
representations and compared.

In Becker et al. [2009] a preservation planning workflow that allows for repeatable
evaluation of preservation alternatives is described. This workflow is implemented in
the preservation planning tool Plato [Becker et al. 2008a]. As part of the preservation
planning, automatic characterization of migrated objects using tools like Droid [Brown
2008] to identify files is used. Migration results can be validated and automatically
supported by the eXtensible Characterization Languages (XCL) [Becker et al. 2008b].
The original and migrated objects are hierarchically decomposed and represented in
XML. These representations can be compared to measure the effects of the migration
on the digital object.

In an emulated environment the digital object is unchanged. Thaller suggests to
separate the information contained within a file from the rendering of the information
[Thaller 2008]. The information stored in the file can, for example, be the coordinates
of text or descriptive information about the font to use while the rendering displays
the text on a specific point on the screen and uses either a font built into the system
or a font stored within the file, which in turn is also rendered in a way specific to the
application used for displaying the document. This is described as the look and feel
aspect of an object. In Guttenbrunner [2009] challenges for the evaluation of emulation
and the rendering aspects of digital objects are analyzed.

Emulation as a strategy for digital preservation is seen as one of the main solutions
for preserving interactive content. Projects like KEEP5 concentrate on researching
a common platform for emulators. A case study to compare different approaches to
preserve video games with one of the approaches being emulation was reported in
Guttenbrunner et al. [2010a] on a human-observable and thus to some extent subjec-
tive level. Emulation was successfully implemented for the preservation of interactive
media on an interactive piece of art as described in Jones [2004]. In Bonardi and
Barthélemy [2008] examples for the fragility of performace works based on electron-
ics under the aspect of reperformance are provided and the question is raised, how
to guarantee authenticity when preserving the electronic material. Matthews et al.
list some categories of significant properties of software depending on rendering like
user interaction and object performance, which have to be considered when evaluating
different renderings of software [Matthews et al. 2008].

Gladney and Lorie [2005] discuss how to encode digital objects for storage over a
long term. Using a specified Universal Virtual Computer (UVC) digital objects can be
encoded now and decoded on a future platform running the UVC. Gladney and Lorie
[2005] show how the UVC handles static data objects. They also give suggestions
about preserving interactive objects using emulators running on the UVC. The output
of these emulators can be compared to the original machine now, thus making sure
that the emulator behaves like the original system while the original system is still
available.

But how can we compare an emulator of a system with the original system to find
out if the rendered result in a new rendering environment preserves all the significant
properties of the digital object rendered on the original system?

Most approaches to evaluate the validity of emulators as a preservation strat-
egy are currently based on users manually reviewing the emulation results. In the
CAMiLEON project [Hedstrom et al. 2006] users compared objects preserved by differ-
ent strategies including emulation. The emulated environments were evaluated by the
users as subjective experience with the preserved digital object. Doyle et al. present an
emulation framework for preserving 3D objects in Doyle et al. [2009]. The evaluation

5http://www.keep-project.eu/

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:7

of the framework was carried out by having a group of anthropometry experts as well
as a larger group of general users compare the emulated environment to the original
system side by side, completing predefined tasks and filling out a questionnaire.

A manual comparison of original and emulated environment is a time-consuming
and very partial process. It would have to be repeated whenever new emulators or
new versions of existing emulators are to be used. Therefore it is necessary to develop
a methodically solid approach which allows one to determine the effects of an emulated
environment on the rendering of objects and to automate the process of evaluation to
some extent. In Aitken et al. [2008] the Planets Testbed that provides a controlled
environment for evaluating preservation actions supporting the automated evaluation
of experiments for migration actions is described.

In Guttenbrunner et al. [2010b] case studies of interactive objects comparing the
rendering outcomes of different rendering environments using the aforementioned
characterization language XCL on the level of screenshots of renderings are presented.
In this article we refine the concepts shown in the case studies to different levels of ex-
traction of information about the rendered object. We discuss methods for applying
interactive communication with the object as well as a workflow for measuring render-
ing environments in general.

4. DESCRIBING THE DIGITAL ARTIFACT

Knowing about the behavior of the digital artifacts under evaluation is essential to de-
termine whether the behavior is properly reproduced by the rendering environment. In
this section we will explain some key characteristics of a digital object and influences
on its behavior that have to be gathered to properly evaluate its rendering process.

It is also necessary to explicitly document which characteristics of a digital object
are relevant for a given preservation scenario, that is, which of these constitute sig-
nificant properties. The degree of preservation of these in an emulated environment
ultimately forms the basis for the evaluation and comparison of the performance of
different potential emulated environments as part of the preservation planning pro-
cess [Becker and Rauber 2011b]. These significant properties are collected as part of
the requirements analysis phase for a digital preservation endeavor and may be docu-
mented, for example, in the form of an objective tree, grouped into different categories.
Several possible preservation actions, such as different emulation environments, may
then be used to render an object and evaluate its performance. A range of properties
usually need to be considered that can be structurally subdivided in object- and action-
specific properties, that is, those pertaining to characteristics of the digital object (e.g.,
reacts correctly to interaction, performs calculations identically to the original, dis-
plays colors correctly) and those pertaining to the action (emulation or migration)
applied (e.g., emulation environment is open source, memory consumption, required
hardware platform, licenses). (See Becker and Rauber [2011a] for a detailed discus-
sion and examples of such properties and means how to measure their performance.)
In the following two subsections we want to focus on two object characteristics that are
particularly relevant for dynamic objects and evaluation settings that tend to call for
emulation strategies as suitable preservation actions.

4.1. Determinism of the Digital Artifact

Before trying to evaluate the behavior of the digital artifact in original form and under
emulation it is necessary to understand the impacts of internal and external events
on the object’s behavior. For evaluating the differences in behavior of an object in
the original environment and an emulated environment it is necessary to ensure that

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:8 M. Guttenbrunner and A. Rauber

the object behaves the same under the same external conditions. Otherwise it is not
possible to determine if changes in behavior are an effect of the emulated environment.

4.1.1. Deterministic Behavior. Lamport and Lynch [1990] describe deterministic algo-
rithms as “algorithms in which the actions of each process are uniquely determined
by its local knowledge” [Lamport and Lynch 1990]. A deterministic algorithm is inde-
pendent from external influences like user input, hardware values, random values, or
other concurrent algorithms modifying the same data as the algorithm. Based on this,
we can define deterministic behavior as the behavior of an object that is influenced only
by the input that is applied to the object when it is invoked. The rendering of the object
has to be independent from the factors listed earlier for the object to be considered as
having deterministic behavior.

Some digital objects can be rendered with a deterministic behavior. A spreadsheet
or database application will usually, under the same software and hardware conditions
and after applying the same input, show the same results. Replaying a video or audio
file has to produce the same results independent from the external influences listed
before. A comparison of emulation effects would in this case be rather simple.

4.1.2. Nondeterministic Behavior. If the behavior of a digital object depends on user in-
put, hardware, or random values, or has the data it uses modified by other processes,
then it is not deterministic. To allow an automated comparison of two renderings of
the same object it is necessary to try to create a deterministic behavior. The rendering
of the digital object can be made semideterministic by identifying the external events
influencing the object’s behavior and equalizing the values for these events in the dif-
ferent environments.

Applying automated user input at the exact same moment in the rendering process
can be used to eliminate differences in behavior depending on user input. Random
number generators are usually initialized with values derived from hardware values
like system time or the position of the raster beam on the screen. These external
influences to the digital object can be made predictable by setting the system clock in
the emulation environment to the same time as on the original environment during
execution of the digital object and by using a pixel-exact emulation of the original
system, that is, updating every pixel on the screen with the corresponding CPU cycles.

Especially video games or interactive digital art usually heavily depend on external
or random elements. A recent example of a video game with unusual external events
is metro-wardive6 for the Nintendo DS/Apple iPhone which uses wireless LAN waves
to create in-game objects.

4.1.3. Testing an Object for Determinism. To give hints about the deterministic or nonde-
terministic behavior of an object, the same series of tests with the object (user input,
other external events) can be applied to the object. For a deterministic object the re-
sulting behavior has to be reproducible. This process can be carried out automatically
in a test environment.

4.2. Significant States of a Digital Artifact

When evaluating the result of emulation, two entirely different situations need to be
considered, depending on the type of result to be evaluated: In the first case, only
the target state of a digital object as result of a process is to be evaluated, such
as running a calculation or displaying a static object. In the second, probably more
common case when emulation is chosen as a preservation strategy, a sequence of

6metro-wardive for Nintendo DS/Apple iPhone—http://www.and-or.ch/wardive/.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:9

states is essential, such as rendering dynamic objects, or when emulating interactive
processes.

With emulation and dynamic objects one can deal with two different situations,
namely a target state of the object where it is only necessary to capture the properties
of the rendered object after some period of emulation and a continuously changing
state of the object, which again may be conceived as a series of designated states.
It is necessary to determine which states of the digital object are significant for the
designated user community of the object types for which the rendering environment
should be used.

4.2.1. Target State. An example for rendering an object to a target state would be load-
ing an interactive spread sheet, applying some input events which result in changes
in the state of the spread sheet. Once a defined set of actions is applied to the spread
sheet a certain output is expected. This output can be considered as the target state
and then be compared. One possible solution to a comparison is comparing a screen-
shot of the target state. Another option is to save a document after applying the input
and to compare the file saved on the original system with the file saved in the emu-
lated environment, thus evaluating the effects of handling the object in the emulated
environment. This way of comparing can be used only if the target state is consid-
ered significant and not the states in between. The target state can also be the state
reached after the emulated environment initially rendered the digital artifact without
applying any input that influences the object’s behavior.

4.2.2. Continuous Stream. If a continuous sequence of states has to be compared it can
either be done by recording a stream of the output (e.g., image or sound stream) on the
chosen layer (as will be discussed in Section 6.2) and comparing the resulting streams.
Besides, for example, aspect ratio, brightness settings, changes in color, and audio
frequency also the speed factor has to be taken into account. Images on the stream
from the emulated environment can be slowed down or sped up, and not necessarily
by a fixed factor over the whole stream (e.g., more objects on the screen can poten-
tially slow down the emulation at some point). Advanced comparison mechanisms
have to be used—probably with human interaction—to link certain landmark events
in the stream (e.g., change in scenery in a video game from selection menu to in-game
graphics).

4.2.3. Series of States. In some cases not only a target state of a digital object is suffi-
cient, neither is perfect emulation of the entire sequence of steps required. Sometimes,
only a subset of states in between is of interest for evaluation. If the emulation pro-
cess in between is not of interest, single “snapshots” of these states can be taken and
compared (e.g., if the way how a series of images is computed and rendered is not
important but only the resulting images are of interest for the evaluation, or states
reached during a simulation computation). By using state machines describing the
states in between and a sliding window technology to apply a window for each of the
rendered versions of the digital object, comparison can be done for each state. An ex-
ample would be an image viewer application which switches between images on user
input. It can take considerably longer in the emulated environment to show pictures
when using special hardware effects to switch between images which are not supported
by the emulation environment. If only the rendered images are of interest for the em-
ulation, then only the starting state, the state before applying input (when the image
is fully shown on the screen) and a target state have to be compared.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:10 M. Guttenbrunner and A. Rauber

Table I. Example Digital Objects and Possible Hardware/Software/Output Device Combinations

Digital Object Software Hardware Output Devices Example Usage
Scenarios

Defender (no other
software
required)

Williams arcade
machine

built-in screen and
speakers

no variations possible

Super Mario
Bros.

NES operating
system

Nintendo NES various TV screens small b/w CRT-TV, color
CRT-TV, LCD TV

First Finnish
Underground
(Interactive Art)

Microsoft
Windows 95

Intel x86 PC various output devices
(e.g. monitors, video
projectors)

Museum setting with a
normal CRT screen,
presentation in an
auditorium using a
projector

Website Various different
browsers and
operating
systems

Various
hardware
platforms

all kinds of display devices
(e.g. monitors, mobile
devices, video projectors)

Lynx text-based browser
on Unix system with
terminal output, Internet
Explorer on Microsoft
Windows 95 PC with CRT
monitor

Signed PDF
Document

Various PDF
viewers
Various
operating
systems

Various
hardware
platforms

all kinds of display devices
(e.g. monitors, mobile
devices, video projectors)

PDF Reader on a mobile
phone, PDF Reader on a
PC and connected to a
projector for a
presentation

5. DESCRIBING THE RENDERING ENVIRONMENT

Not only the digital object, but also the environment in which it is executed has to
be documented and recreated for a faithful reproduction of the rendering process. In
this section we describe the elements in the object’s viewpath that potentially influ-
ence rendering results as well as methods to create uniform interaction that has to be
applied to an interactive digital object by a user.

5.1. Selecting the Reference Rendering Environment

Identifying the correct rendering for a digital object means that we have to deter-
mine what the desired rendering we want to compare against actually is. A digital
object can potentially be executed in a wide variety of hardware and software platform
combinations, depending on various usage scenarios, and the resulting output can be
played back on a potentially unlimited number of output devices. That is, most ob-
jects will have several (equally authentic) renderings usually targeted at specific des-
ignated communities (different users or usage scenarios). Some examples are shown in
Table I.

In the least complex case the digital object can be rendered only on one hardware
platform with predetermined software and built-in output devices. In the most com-
plex example a digital object can be rendered by a variety of software products running
on different operating systems, which in turn can be used on different hardware con-
figurations, resulting in a variety of rather different information objects. Depending
on the usage scenario the correct rendering environment of an HTML page may be
anything from a Web browser via a simple HTML editor to an entire content man-
agement system. A specific XML data file may be rendered in an XML editor, being
used to drive an application as input configuration, or used as basis for a visualization.
The rendered output can be played back on a number of different output devices with
different characteristics (e.g., CRT-TV versus LCD-TV).

Determining which of those combinations will be used as a reference environment
is a core step in describing the digital artifact. It may even include the definition of
several reference environments satisfying different stakeholder needs, which may be
served by a single or multiple rendering environments. In an ideal case the rendering

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:11

on these reference environments can be used as a ground truth to compare alterna-
tive rendering environments. When defining the reference environment, the following
factors should be taken into account.

— The hardware and software configuration typically used to render the digital ob-
ject (e.g., configuration of a standardized office PC used to create the object)
must be taken into account. A repository of highly standardized typical system
configurations may be helpful to minimize the effort in maintaining the rendering
environments. Yet, in some cases, the very specific configuration encountered in a
setting will need to be defined as reference environment.

— Another factor is the play-back devices typically used to observe the digital object
(e.g., a CRT TV used to render a video game from the 1980’s instead of a modern
LCD screen with completely different display characteristics, or synthesized voice
output on contemporary mobile phone speaker system versus studio-quality speak-
ers in a museum setting).

— The usage scenario, that is, what purpose(s) the object is being preserved for must be
considered. As different scenarios (e.g., simple replay, providing different views on
data, or providing evidence in legal investigations) may require different renderings
of an object, potentially multiple reference environments need to be defined.

Observing the digital object in its original environment is only possible if the reference
environment can be obtained in working order using the original hardware, software,
and play-back devices. This is when an original rendering environment will still be
available, and when—as part of the documentation of the object and its rendering
environment—evidence for measuring the significant properties of an object’s render-
ing in a potentially different environment has to be collected. In cases where digital
objects are unearthed at a later stage (e.g., through digital archeology on obsolete me-
dia formats) the ground truth has either to be set empirically by comparing either
different rendering environments for a system (e.g., if five out of six emulators ren-
der an image in white/blue and the rendered image are clouds on a sky, then it is
very likely that the colors are rendered incorrectly on one of the emulators) or by using
other sources like software design documents such as use case scenarios, requirements
specification, and software testing as well as video documentation.

5.2. Describing the Viewpath of a Digital Artifact

The resulting observable form of a digital object depends on the hardware and software
used to render it. Also the configuration of both hardware and software plays a crucial
role. To compare the results of rendering objects in their original environment and in
emulated environments it is necessary to collect and document as much information
about the original environment as possible.

In van Diessen [2002] the viewpath is described as “a full set of functionality for
rendering the information contained in a digital object”. The viewpath contains the
hardware and all the secondary digital objects needed to render an object along with
their configuration. It is possible to use different viewpaths to display the same object
as shown in Figure 2. On various hardware configurations different operating systems
(e.g., WinXP, Linux) can be used to run different applications (e.g., Word, Open Office)
to render the same object (e.g., Word-97 document).

It is practicable to define one viewpath out of all the possible ones to compare the
effects of emulation, even though different viewpaths would be possible. This is the
only way to make sure that the difference in rendering is a result of the emulation and
not a difference due to a different viewpath. The same Microsoft Word document can
be rendered on the same hardware and the same operating system with an identical

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:12 M. Guttenbrunner and A. Rauber

Fig. 2. Different viewpaths for displaying the same object.

set of fonts installed using different versions of Microsoft Word or using Open Office
which all can give different rendered results for the same document.

The information that has to be collected can be split into hardware configuration
and all the necessary software to render the digital object with their respective config-
uration. The following sections provide an overview of the various elements that need
to be documented and recreated or standardized in an emulation setting in order to fa-
cilitate proper evaluation. The focus of this description is not to provide an exhaustive
list, but to illustrate some code aspects as background for the evaluation framework
presented in Section 7.1.

5.2.1. Hardware Configuration. Besides the obvious CPU type and configuration as well
as memory size, configuration, and speed, other hardware components influence the
rendering of an object as well and have to be considered, such as the following.

— Graphics card, physics card. Especially for 3D rendering the used graphics and
physics cards are having a major influence on the resulting rendered images. Also
to be documented are the settings of device drivers.

— Sound card. The sound processor that is used for creating the audible output has
an influence on the characteristics of the output audio signal.

— Input Devices. Special input devices may be necessary not only to recreate the orig-
inal look and feel, they also may be capable of recording all input activity to provide
identical input sequences in the emulated environment.

— Output Devices. The output device plays an important role on the resulting im-
age/sound just as much as the rendering does. Aspect ratio and display settings
of an output device have to be considered if the resulting output is compared not
after computing as a digital image, but after creating an actual analog or digital
output.

Of course this list cannot be complete and depends on the hardware of the system that
has to be documented and emulated. For manufacturing or control application, this
can include sensors and actuators, on older (home-) computers or video game consoles
it also includes additional processing units (e.g., Sega 32X) or memory expansion cards
(e.g., Commodore Amiga, Atari 800).

On some platforms tools can assist in the description of hardware properties
by determining hardware and software settings. A platform-independent tool that

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:13

supports the process of creating a list of properties is the “System Information Gath-
erer” (Sigar)7.

5.2.2. Operating System and Configuration. The operating system type and the version
including all system updates have to be documented. Usually, operating system set-
tings will have an effect on rendering as well. The screen resolution and color depth
have the biggest influence on rendering. Other factors influencing the rendering are
the installed fonts, appearance settings, color schemes, and certain installed utilities
or applications.

5.2.3. Secondary Digital Objects. Other digital objects besides the operating system
are needed to display the digital artifact itself or for running the viewer or editor
application displaying the object. Some examples of these are as follows.

— Virtual Machine (e.g., Java Virtual Machine, .net)
— Database software (e.g., MySQL)
— Libraries (e.g., DirectX, Allegro8)
— Software device drivers (e.g., ODBC drivers)
— Viewing or editing application (e.g., OpenOffice, PDF-Viewer)
— Fonts (for documents where fonts are not stored inside the file)
— Codecs (for decoding, e.g., audio or video data streams)

For all these secondary digital objects, not only the version, but also configuration
options have to be documented to allow the complete recreation in an emulated
environment.

5.2.4. Digital Artifact to be Rendered. The actual digital artifact that has to be preserved
is also part of the viewpath. If this artifact is software, then the options changed
from a default setting of a specific version have to be documented. Not only options
that influence the rendering of the object (e.g., window size, font size, colors), but also
options influencing the behavior have to be considered (e.g., notifications).

5.2.5. Additional Digital Objects Not in the Viewpath. Besides the mentioned elements in
the viewpath of an object it is important to be aware of any other digital objects influ-
encing the behavior of a computer system. Processes running in the background (e.g.,
virus scan software, remote desktop software) can significantly affect the performance
of a system. The influence of semirandom elements on the execution of the digital arti-
fact or on an application rendering the digital artifact has to be reduced to an absolute
minimum to decrease the complexity of the system under evaluation.

5.3. Collecting Test Data

To be able to verify the performance of an object in an emulated environment a set of
input-output data relationships has to be collected. This can range from static I/O data
relationships via system reaction documentation for specific types of input to complex
documentation of system behaviors. A potential source for this kind of information may
be system design documents such as use case scenarios, requirement specifications, or
system testing documentation. It may also include the capturing of system behavior
in other documentary form such as video documentation.

7Sigar—http://www.hyperic.com/products/sigar.html.
8Allegro game programming library—http://alleg.sourceforge.net/.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:14 M. Guttenbrunner and A. Rauber

5.4. Identifying Forms of Interaction with the Environment

As emulation is especially important for the preservation of interactive digital arti-
facts, it is important to evaluate whether the interactive parts of an object can be
accessed in an emulated environment. Depending on the type of digital artifact, it is
more or less crucial to apply the same input to get the same results. Input in this
context means any interaction with the environment, for example, clicking a hyper-
link on an HTML page, pressing a button in an application, and using the mouse to
control a character in a video game, but also system interactions such as polling for
triggers in a Web service setting or reacting to data feeds. While a few pixels and a
few seconds differing from the interaction in the original system/environment may be
irrelevant when clicking on a button in a Word document viewing setting, it will make
a huge difference in a control system reacting on sensor input or a computer game.
But also for automatically measuring the efficiency and effects of the emulation on the
rendered object it is essential to determine whether a time difference in events occurs
due to the emulation and not due to delayed interaction.

It is virtually impossible to manually apply the same interaction twice to a system,
even if it is done shortly after the original interaction and side by side with the original
system. If interaction has to be applied years after applying it on the original system
(e.g., to test the validity of newly developed emulators), it will be even harder. Some
methods of applying automated interaction to a digital artifact are described next.

5.4.1. Use of Macros. Recording a set of user actions along with the delay between
them is one way of automating input to digital artifacts. One of the downsides is the
difference of recording on one system and replaying on the other system, which is a
change in conditions under which the system is running. By running a macro in the
emulated environment a change in speed will not affect the execution of the macro, as
the software replaying the macro also runs at a changed execution rate. The use of
macros is only possible on operating systems where processes can run parallel to the
execution of the viewpath of the object. It would not be possible for the preservation of
games on video game consoles or for applications on most home computers or personal
computers running simple disc operating systems. In some cases the digital object pro-
vides support for applying interactive options automatically either through a scripting
language or by recording macros. One example would be Microsoft Excel which allows
both the recording of macros and offers a scripting language to automate input. An-
other example is the game Quake9, which allows the recording of user actions and is
able to replay them in the game engine. Note that the granularity of timing is differ-
ent for the two examples presented here: while differences in a few frames might not
make a difference for the automated input in Excel, it might make a difference for the
player’s survival in Quake. On real-time systems even a tick-based granularity can be
necessary.

5.4.2. Remote Access. By using remote access to the original system as well as the
emulated system (e.g., at the time of evaluation during a preservation planning pro-
cess) it would be possible to simulate the same input to both systems with the same
amount of interference in both systems. The system from which the remote access is
established will replay the same interaction macro to both destination systems. The
downside of this method is a change in execution speed. If the emulated target system
runs at a different speed than the original system, the input will come either too early
or too late.

9Quake by id Software—http://www.idsoftware.com/games/quake/quake/.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:15

5.4.3. Controller Applications. One problem which arises by using macros is a potential
random (nondeterministic) behavior as described in Section 2. While this is usually not
an issue with interactive software or interactive documents, it plays a major role for
most games and for interactive art. By using controller applications that react to the
digital object’s behavior (e.g., by analyzing the rendered form of the digital object in the
environment) it will to some extent be possible to apply automated input. A controller
application runs either in the same environment or through remote access. It will
handle the input/output communication with the digital artifact. This application can
be used on the original system as well as within the emulation environment. The
advantage is that, contrary to macro-based input, the output of the digital artifact can
be taken into account when having a controller application. Still, the same limitations
as with macros apply. It is necessary to execute the application parallel to the viewpath
of the object that has to be preserved. Another disadvantage of a controller application
is that it has to be customized for each type of digital object which has to be preserved
and as such requires a huge effort compared to the benefits.

5.4.4. Recording and Applying Input on a Hardware Level. The method of recording and
applying input with the least side-effects on the environment is at the hardware level:
recording the input directly from the input devices and applying this as an input macro
to the emulator. This kind of input macros contain the event (e.g., key X pressed, joy-
stick left) as well as a time relative to elapsed process execution time between these
events. One advantage in the use of macros recorded from the input device and applied
to the emulator is that they can be used on systems that do not allow parallel execu-
tion of processes (old home computers, video game consoles, embedded systems). It is
also possible for the emulator to adjust the timing of these input events depending on
the speed difference between original environment and emulated environment. The
disadvantage is that it is not possible to use only software components but that special
hardware has to be built to intercept the communication of the input devices and the
target system. A possible solution in software would be to use an emulator which is
known to work nearly perfectly and use an input recording feature of the emulator to
capture the input events. Right now emulators are usually not able to record or re-
play input. This feature and a standardized format are one of the requirements that
have to be researched for future emulators as a digital preservation requirement. Ul-
timately, hard real-time system-like behavior [Liu 2000] is necessary to ensure perfect
process-state-level execution of emulations.

6. RECREATING THE RENDERING ENVIRONMENT

Once the digital object, the influences on its behavior, and the environment in which
it is originally rendered are documented, it is necessary to faithfully recreate these
conditions in a rendered environment. In this section we first describe how the original
viewpath has to be restored. After recreating the original environment in a rendering
environment, it is necessary to decide where to extract the rendered form of a digital
object from for comparison. A digital object is rendered to different incarnations inside
the emulation environment, for example, in the main memory, or on the output device.
Next we take a look at how to extract information about the rendering process from
the rendering environment.

6.1. Recreating the Viewpath

Based on the documentation of the original rendering environment it is essential to
recreate an emulated environment which can replicate this original environment.

As emulation is usually done on a hardware level, the emulator used to create the
setting has to support emulation of the hardware components found in the original

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:16 M. Guttenbrunner and A. Rauber

Fig. 3. Different forms of a digital object in a system’s memory. On the left the layers in an original system
are shown, on the right the layers in the system hosting the emulator are shown.

system. If the exact same hardware configuration cannot be rebuilt in software, this
has to be documented and the effects of replacing various parts with alternative parts
have to be considered when comparing the results.

Recreating the viewpath in the emulated environments has to be done following
the documentation of the original system to ensure that potential differences in the
emulated environment are a result of the emulation process and not of side-effects of a
difference in the setting. If it is possible to create a complete image of the viewpath on
the original system, we advise to use this in the emulated environment (e.g., floppy disc
for home computers containing the disc operating system and the viewer application,
hard disc image containing a preinstalled operating system with all the necessary
drivers and applications).

An example for the use of emulators that uses preconfigured images to create em-
ulation environments for displaying digital objects is GRATE (Global Remote Access
to Emulation Services) presented in von Suchodoletz and van der Hoeven [2008]. It is
a framework which allows remote access to emulators running hard disc images and
injection of a digital object into the emulation environment.

6.2. Identifying Levels of Comparing Rendered Forms of a Digital Object

To compare the effects of rendering an object in an emulated environment to the ren-
dering of the same object in its original environment, it is essential to understand the
different incarnations of a digital object when it is being rendered. These forms of a
digital object on different levels are shown in Figure 3. A rendered representation of
the digital object has to be extracted on (a) suitable level(s). The significant properties
of the object can then be evaluated.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:17

6.2.1. Descriptive Form. When using emulation as a digital preservation strategy, the
original binary object is not changed like when using a migration strategy. Thus, the
descriptive information used to render the object stays the same unlike when the object
is migrated to a new manifestation. In the case of migration, this constitutes the first
(and albeit frequently the only) level of comparison to evaluate the quality of migration
actions. Yet, as the ultimate goal of digital preservation is not the preservation of the
descriptive form of a digital object as a static file encoded in whichever way, thorough
evaluation will usually need to consider comparisons at levels further up the viewpath
hierarchy according to the given application scenario.

As the descriptive information of the object cannot be used directly to evaluate the
emulation effects, an already rendered form of the object has to be used.

6.2.2. Rendered Form in Memory. The next level where an incarnation of the digital
object exists is as a rendered form after being processed by the viewer application (or
after being executed). On this level, for example, the registers of the video hardware
are filled or the memory area for video output is filled with the data to be displayed on
screen. If the emulation of the original system is processing the supplied information
properly, then the rendered form in the memory area used by the emulator to store the
rendered information has to be identical to the rendering in the same memory areas
of the original environment. This is the first layer on which a comparison of emulation
effects is possible. Screenshot or video memory dump applications on the original
system and on the emulated system will produce the same output after executing the
same actions on both systems. The same applies to other forms of object output, that
is, audio, port communication, or file system interaction.

This rendered form of the digital object can be used to evaluate the internal pro-
cessing of the object but not the ability of the emulator to translate the output of the
original system to the host system’s environment. It also is necessary to install ap-
plications running on the original system and the host system that can capture the
rendered form of the object (e.g., as dump of specific memory regions or in the form of
memory “screenshots” taken inside the emulated environment).

6.2.3. Rendered Form in Host System Memory. Further on in the rendering process the
emulator has to convert the rendered form from the emulated environment to a ren-
dered form in the host system environment. In this step the emulator has to, for ex-
ample, render the video output of the emulated system for display on the host system.
To do so, for example, the resolution of the image may have to be altered to fit either a
resolution which can be displayed on the host system or by adjusting the image to the
size of a window on the host system. In this step the resulting image will already be
radically different than what it was on the original system, even if it looks similar for
a human observer.

No direct comparison is possible at this layer as there is no similar information in
the original system.

6.2.4. Rendered Form on the Output Interface. The data in, for example, the video memory
is processed by the hardware converting it into a suitable signal for the displaying
unit. This signal exists on both the original system as well as the system hosting the
emulator. The resolution and type of the displaying unit are potentially different, but
using capture devices recording the input directly from this source and transforming
them to the same signals would be possible. An example is a video capture device
that can take different kinds of inputs and display them the same way on the host
system running the capturing software. Similarly, for networked systems, differences

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:18 M. Guttenbrunner and A. Rauber

in internal protocol structures of the network interface, or instruction sets driving a
storage unit need to be considered.

By recording the signal of the emulating system and of the original system the
results can then be compared. The effects of the rendering device on the signal have
to be considered as well (reduction of frame rate, delay in processing, enhancing of the
signal properties, etc.)

6.2.5. Rendered Form on Output Device. The final level on which a rendered form of the
digital object is available is the resulting output on the output device (e.g., the image
displayed on a screen, sound emitted by a loudspeaker, voltage levels present at a port,
or binary sequence present on a storage medium). This has to be captured by devices
recording the signal after it is processed by the output device (e.g., the image on a
TV-screen with a camera or speakers by using microphones). This way the resulting
representation in the recording device converts the output to the same resolution.

A comparison of the rendered object is possible at this layer. The settings of the
output devices have to be taken into account. For example, by comparing the resulting
images from an original system connected to a TV-screen and a host system running
an emulator of this system, the aspect ratio, the brightness settings, contrast settings,
etc., will usually not be the same. In Phillips [2010] the author describes the influ-
ence of the output device (in this case a CRT monitor compared to a modern LCD flat
panel) on the resulting image. Pixels that have sharp edges on the LCD display were
supposed to be displayed as blended pixels on the original screen due to technical char-
acteristics of the two different screen technologies. Similarly, the audio quality offered
by different speaker systems, or the preciseness of a storage media writing device may
be different, resulting in a different rendering of an object in its environment even if
the underlying system memory representations were identified.

More systematically, each transition from one level to the next represents interfaces
between systems, both on the original as well as the recreated viewpath. The proper-
ties of these systems and their effect on the viewpath thus need to be considered, both
individually as well as on an integrated level up to the desired representation level.

6.3. Comparing Objects

Note that different characteristics of an object can be measured at various levels. Thus,
comparison may be required at several levels to determine how faithful the rendering
of an object ultimately is. We will now take a detailed look at these levels, their prop-
erties, and specifically means for comparing original and recreated renderings with
varying degrees of automation. Also note that each level in the hierarchy corresponds
to some kind of computation/transformation being performed on an object. Thus, iden-
tity at some level does not imply identity at the ultimate rendering at the top level of
final output devices, nor does the fact that an object differs at a certain level mean that
it cannot result in an identical rendering at higher levels. For example, consider an
object stored for emulation. This will usually be bit-stream identical in its descriptive
form, yet emulators or viewers may render the object differently on the output inter-
face level, whereas different output devices may result in further differences on the
top level. Conversely, a migrated object will be different in its descriptive form (e.g., a
TIFF version of a GIF image), yet may result in an identical rendering on the output
interface. In some cases it may be required to specifically produce an entirely differ-
ent representation at the output interface level in order to obtain a close to identical
rendering on the actual output devices. See Phillips [2010] for an example of the effort
required to recreate the effects of the fluorescent behavior of analog CRT screens on
modern LCD screens.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:19

6.4. Extracting Properties from the Emulated Environment

Not only the resulting rendered form of the object can be compared, but also certain
characteristics can be measured in the emulated environment. While with migration
it is in principal possible to use tools to examine the resulting object, with emulation
these characteristics would have to be provided by the tool doing the rendering, the
emulator. While none of the available emulators supports it at the moment, it would
certainly make an automation of the process of comparing emulation environments
and the original environments easier. First the characteristics and properties of the
original system and the digital object have to be described. Then these same properties
are extracted from the emulation environment. Ideally the characteristics should be
described in a format usable for tools, which can compare these properties in an auto-
mated way. Using this approach the process of automating preservation planning for
emulators can be similar to the one of automating preservation planning for migration.

Not only system properties, but also screen shots or even a log of events happen-
ing on the system can be provided by emulators. These properties can be extracted
continuously over the emulation process for either a specified time or until an event
occurs. Emulation properties are usually not single-dimension like properties of most
migrated objects. An additional time dimension has to be considered. The frame rate
can change over time, as more objects can result in fewer frames per second on the
output device. Properties also can be extracted at one point in time after applying all
the input events or after a certain amount of seconds, frames, or CPU cycles.

Some possible characteristics to be extracted are as follows.

— Frame rate (average, max, min)
— CPU cycles per second (average, max, min)
— Number of files opened on a certain I/O device
— Number of bytes read from I/O devices
— Number of certain input/output events

Not all of the properties make sense for deterministic and nondeterministic behavior,
for example, a minimum frame-rate would make sense in both cases whereas a number
of files opened can differ if the behavior of the object is nondeterministic.

Usually not all the significant properties of a digital object can be measured au-
tomatically. In that case as many properties about the object’s behavior in the envi-
ronment as possible should be extracted from the emulation environment whereas all
the properties that are either social (e.g., connected to the feel aspect) or that are too
difficult to measure technically have to be evaluated manually.

By defining the properties of the digital object that has to be rendered, measuring
and comparing them to the original reference system and setting importance factors
(exact speed is probably an issue for a computer game but not for an interactive spread-
sheet), emulation alternatives can be compared and the best alternative for a certain
scenario can be chosen as described in Strodl et al. [2007].

7. FRAMEWORK FOR THE EVALUATION OF EMULATION EFFECTS

In this section we present a workflow for evaluating the (behavior of) information
objects in their rendering environment(s). After presenting the workflow we show
some sample scenarios along with the decisions to be taken and finally propose design
requirements for developing emulators that fulfill basic needs of digital preservation
purposes.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:20 M. Guttenbrunner and A. Rauber

7.1. Evaluation Workflow

To evaluate the degree to which the emulation of an original environment preserves
the original characteristics of a digital object in comparison to documentation of its
behavior, the concepts presented in this article lead to an evaluation workflow with
the following steps.

(1) Describe the original environment
The original system’s hardware and software components have to be documented
along with all their settings to allow the recreation in an emulated environment as
described in Section 2. To reduce the complexity of the system it is recommended
to eliminate all unnecessary secondary digital objects (software and hardware) in
the viewpath (e.g., no virus scan software or use of standardized minimum OS
configurations).

(2) Determine external events that influence the object’s behavior
Only for objects with deterministic behavior is it possible to ensure that differ-
ences in rendering compared to the original environment are results of the emu-
lated environment. To ensure deterministic behavior of the object it is necessary to
investigate what external events influence its behavior and simulate those in the
emulated environment (e.g., set a random number generator to the same seed to
produce the same sequence of random numbers).

(3) Decide on what level to compare the digital object
As the digital object is available in various rendered forms as shown in Section 5,
it is necessary to select the one that is most suitable for the digital objects that
have to be preserved and their desired form of representation. Depending on the
original system only some of the various techniques may be technically possible
(e.g., on early home computer hardware no operating system allows the execution
of multiple processes, so no screenshot applications can be installed).

(4) Recreate the environment in emulation
Next, an emulator on a host system has to be configured to match the hardware
and software configuration of the original environment. The viewpath of the dig-
ital artifact has to be recreated, ideally by using, for example, a hard disc image
configured the same way as on the original system. We recommend the use of the
same viewpath to eliminate the side-effects of different renderings by using differ-
ent secondary objects.

(5) Apply standardized input to both environments
Depending on the digital object the most suitable way to apply automated input
has to be selected. Then, the input to the original object has to be recorded and
applied to the emulated environment. The closer the input is done to the hardware
level (e.g., as described in Section 4.4) the fewer side-effects on the rendering of the
object it will have.

(6) Extract significant properties
Next, the significant properties of the rendered object have to be extracted from
the emulation environment as described in Section 6. Depending on the digital
object and if it reaches a target state this has to be done once or in a continuous
way. Also, depending on the deterministic or nondeterministic nature of the digital
object, only certain properties make sense to be extracted.

(7) Compare the significant properties
Finally, the significant properties that have been extracted automatically as well
as those that were not measured automatically but evaluated, manually have to
be compared, evaluated, and documented. This may serve as input to a preserva-
tion planning process, or serve as evidence for the authenticity and faithfulness
provided by the emulator.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:21

Table II. Example Categories and Digital Objects Rendered in Emulation Environments

Category: Example object Description

Static Document:
Signed PDF Document

— Static PDF document that is signed and cannot be migrated as the signature
has to stay intact
— Interaction not necessary once the document is displayed
— View-path consists mainly of the viewer-application and the operating system

Interactive Document:
Adobe Acrobat 3D PDF

— Document containing various 3D objects embedded using the 3D PDF
Standard
— Viewer-application, operating system and 3D drivers (e.g., Direct3D)
necessary in view-path
— Interaction with the document has to be possible (e.g., rotating a 3D object)

Standalone Application:
Assumed proprietary database
application to manage customer
data (Java-application developed by
external partner, no source
available)

— Conversion to new format not possible as logic and data are not completely
separated
— Querying the data has to be possible for future inquiries
— View-path includes JAVA virtual machine, operating system, application
— Interaction necessary for querying data

Distributed Application:
Distributed business process across
various systems communicating
over a network

— Application behavior has to be preserved to execute the business process in
the new environment
— View-path different for every application in the distributed environment
— Interaction with at least some components of the system necessary

Scientific Application:
Chemical process simulator used to
provide proving for design of
machine tools

— Exact behavior of the application and created data has to be preserved for
legal reasons
— Experiments taken in the simulation have to be repeatable, so decision
making upon the data is provable
— Exact view-path has to be stored with the application (operating system, data
storage, virtual machine)
— Results have to be rendered exactly as presented to the user at the time of
decision making

Linked Documents:
website harvested by web crawler

— View path consists of operating system, browser, all necessary drivers, codecs,
browser-plug-ins (e.g., Shockwave Flash)
— Interaction necessary to follow hyper-links

Interactive Art:
First Finnish Underground
(Krkkinen/Okkonen) (Intel x86 PC)

— Interactive artwork from 1995 (Ars Electronica collection)
— View-path contains specific PC-hardware (e.g., sound card) and needs MS
Windows 95
— No random element
— Interaction as part of the artwork and experience

Action game with fixed events:
Super Mario Bros. (Nintendo NES)

— Video game on an early console system
— No additional view-path besides the game itself, game runs directly on the
hardware
— Events in the game happen always at the same moment (enemies appear
on fixed positions with repeatable behaviour when the screen scrolled a certain
amount)

Action game with random events:
Defender (Williams arcade
machine)

— Video game from 1980
— Runs on dedicated hardware, no additional elements in view path
— Random element—even with the same input applied the game’s enemies are
placed differently
— Without re-engineering the game it is not possible to determine the external
events making the game non-deterministic

Interactive Fiction:
Zork: The Great Underground
Empire—Part I (Atari 800XL home
computer)

— View-path consists of the application-files and the hardware
— Interactivity is important to enter commands through a keyboard
— No random elements appear
— The graphical representation (original font, original colors) may be important
depending on the context (story content vs. original appearance)

7.2. Sample Scenarios

By following the steps in the presented workflow it is possible to reduce the side-effects
of external events on the rendering of a digital object. Some examples for various cat-
egories of digital objects are listed in Table II. For every example object some key
features (e.g., viewpath, reasoning for emulation as a preservation strategy, kind of
interaction necessary, random elements) are included in the table. In Table III pos-
sible decisions and reasoning for, for example, emulation level, application of input,
extraction level of manifestation of the object, are shown for each category of objects.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:22 M. Guttenbrunner and A. Rauber

Table III. Example Types of Digital Objects and Possible Test Environment Decisions

Category Decisions

Static
Document

— Emulation on application level possible (viewer)
— Original speed is not a significant property
— No interaction necessary
— Extraction and comparison as a screenshot on video memory level possible
— One target state significant

Interactive
Document

— Emulation on application level possible (viewer)
— Original speed is not a core significant property (within limits)
— Interaction through macros possible on original system and in emulated environment
— Extraction either on video memory level or after rendering for the host system
— Series of target states significant (state before next input)

Standalone
Application

— Emulation on operating system level possible
— Original speed is not a core significant property
— Interaction through macros possible on original system and in emulated environment
— Extraction either on video memory level or after rendering for the host system
— Series of target states significant (state before next input)

Distributed
Application

— Emulation on application, hardware or operating system level possible (depending on the
component)
— Original speed might be a core significant property if communication requires exact timing
— Interaction through macros possible where necessary
— Extraction on rendering application interface level (e.g. network layer)
— Series of target states significant (different steps in the process where the system is in a valid
state)

Scientific
Application

— Emulation on hardware level (to not change any of the application’s parameters)
— Original speed usually not a significant property
— Interaction necessary to execute the simulation in the new rendering environment
— Extraction either on video memory level or after rendering for the host system
— Usually one target state significant (result of the simulation), however intermediary results
can be of interest

Linked
Documents

— Emulation on application or operating system level possible
— Original speed is not a significant property
— Interaction through macros possible on original system and in emulated environment
— Extraction either on video memory level or after rendering for the host system
— Series of target states significant (state before next input)

Interactive
Art

— Emulation only on computer architecture level (hardware emulation or virtualization)
— Original speed has to be preserved
— Interaction through macros possible on original system and in emulated environment
— Extraction either on video memory level or after rendering for the host system
— Continuous stream of output significant

Action game
with fixed
events

— Emulation only on computer architecture level (hardware emulation)
— Original speed has to be preserved
— Interaction with original system possible only on a hardware level
— Extraction after rendering through original system (display interface or device)
— Continuous stream of output significant

Action game
with random
events

— Emulation only on computer architecture level (hardware emulation)
— Original speed has to be preserved
— Interaction with original system possible only on a hardware level
— Extraction after rendering through original system (display interface or device)
— Continuous stream of output significant

Interactive
Fiction

— Emulation only on computer architecture level (hardware emulation)
— Original speed has to be preserved
— Interaction with original system possible only on a hardware level
— Extraction after rendering through original system (display interface or device)
— Series of target states significant (state before next input)

As first example for static documents a signed PDF document was selected. As
the signature and the whole file have to stay unchanged, migration is not the pre-
ferred method of preservation. Emulation for this type of document could be done on
application level, as a viewer for obsolete documents on a current hardware can be
created. Neither speed nor interaction with the document are significant, and only the
final target state of the document (the document displayed on a screen) is significant,
not the loading process.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:23

The next category are interactive documents. A 3D PDF document was chosen as
an example for this category. As with the static signed PDF document, emulation
can be performed on an application level and the original speed is not a significant
property. However, the possibility of interaction with the 3D object in the document
has to stay intact. Also, not only the final target state but also a series of target states
after applying interaction are significant.

As example for the category standalone application a proprietary application with
integrated database was selected. In the assumed scenario, data and application logic
are not perfectly separated. As it is necessary to perform queries on data in the
database in an emulated environment, interaction is significant. Also, the preservation
of a series of states (before and after applying interaction to the application) is impor-
tant, while original speed is not a core issue.

For the category distributed application we considered a distributed business pro-
cess. Different applications involved in the process can be replaced either at different
points in time while keeping the interface intact or at the same time by preserving all
of the distributed system’s components at once. Rendering of the replaced components
can be done either on an application, operating system, or hardware layer, depending
on the type of application. If single components of the system are preserved using
different environments, it is necessary for the rendering environments to provide the
interfaces of the rendered environment to the environment they are executed in (e.g.
the network layer), to keep the communication between the different components of
the distributed application intact (communication with the world “outside” the render-
ing environment). Timing will be an issue to synchronize activities between system
components, unless clear linear workflows are specified without concurrency issues.

As a scientific application we chose an application for simulating chemical processes.
This kind of application is used in the design process of machine tools. It is important
in the event of failure to prove that the design was done considering all facts and hav-
ing the original data and experiments available. The application and its data have to
be rendered exactly the same way as presented to the user at the time the simulation
was carried out, so it is necessary to keep the viewpath of the application intact. Em-
ulation has to be done on a hardware level to not change any parameters which might
influence the results of the simulation. Interaction with the application is necessary to
start the simulation process and examine the data, however, original speed is usually
not a necessity.

A Website harvested by a Web crawler is an example for linked documents. Interac-
tion is necessary to follow the links between the documents and the rendered pages are
the significant target states, while the loading process of pages is not essential. (Note
that additional requirements may arise from the actual documents being collected,
which may include examples of most of the scenarios listed in this section.)

For interactive art we selected an artwork from the Ars Electronica10 collection as
an example. No random elements are included in the program, but the interactivity is
a crucial part of the artwork, as the user has to explore the virtual room and all the
pieces of the artwork connected in it. As special hardware is necessary to execute the
application, so emulation is thus only possible on a computer architecture level. The
original speed as well as the continuous stream of output are significant properties of
this digital object to maintain the original experience of the artwork.

When it comes to preserving video games one has to differentiate between games
with random elements and games which behave the same if the player also behaves
the same. As an example for a game that is not really random “Super Mario Bros.”
for the Nintendo entertainment system has enemies that always appear on the same

10Ars Electronica—http://www.aec.at/.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:24 M. Guttenbrunner and A. Rauber

position allowing a game with recorded inputs to replay the interaction on consecutive
games and thus comparing the outcome of the emulation process. On the other hand
the arcade game “Defender” uses a randomizer to create enemies on different positions
in the game every time. It is a complex task to determine the source of randomization
(e.g., seed value dependent on time, position of video beam) and create the same behav-
ior. In these cases an emulation on a computer architecture level is the only possible
level to preserve the game and the continuous output streams are significant.

For interactive fiction11 we selected the text adventure “Zork: The Great Under-
ground Empire—Part I”. While interactivity is important to enter text commands, not
the complete output stream is significant, but only the states between the interaction.
Depending on the purpose of the preservation the graphical representation of the game
can be significant (e.g., for museum purposes to show how early games looked like) or
only the game content (e.g., for preserving the storyline of “Zork”).

The proposed steps make it possible to evaluate the actual effects that the emulation
has on the rendering of these objects compared to the rendering in the original envi-
ronment. With automated extraction from the emulated environment it also would be
possible to automate the process of evaluation of emulators to some extent.

7.3. Design Requirements for Emulation Environments for Digital Preservation

To support the presented workflow it is necessary to create design requirements for
emulators that are to be used for digital preservation purposes, as these requirements
differ from those used for creating emulators today and the features they offer. Some
of these requirements which are necessary to support the evaluation of emulators are
as follows.

— Extraction of significant properties of the digital object, the emulation environment,
and the process of emulating the system: As neither the set of properties nor a format
to extract it to is specified yet, it would be necessary to carry out more research in
this field. Especially as this is a feature not yet supported by emulators a standard
may be devised that can be implemented by emulator-developers to get the proper-
ties in a unified format. One example of a characterization language that can be
used is XC*L [Becker et al. 2008b].

— Recording and applying automated input on a hardware level: For automated and
repeatable testing it is necessary to apply input commands to emulation environ-
ments. Doing this on a hardware level makes it independent from operating sys-
tems. This feature not only eases automated testing but also makes it possible
to automate actions for users of objects in emulated environments (e.g., booting a
system and starting an application automatically without special knowledge of the
handling of the environment on the user-side). As no standard exists so far it is
necessary to develop a standard for handling of user input to use the same input
definitions in the same format for all emulators that have to be evaluated.

Other requirements that are not directly connected to the testing of emulation en-
vironments but that are crucial for the long-term stability and usability of emulators
for digital preservation include the following.

— Video game system or mobile platform emulators are generally developed for speed
and immediate usage. For portability and long-term stability the use of virtual
machines, platform-independent code, or modular development is necessary and
recommended. A virtual machine specifically to be used for emulation is currently
under development in the EC project KEEP.

11Wikipedia—Interactive Fiction—http://en.wikipedia.org/wiki/Interactive_fiction.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:25

— Depending on the intended use of an emulator, the requirements on the emulator
are quite different. While a compromise between speed and correctness of emula-
tion (e.g., timing between CPU and output components) usually can be taken into
consideration for office applications, a much closer alignment between the inter-
nal components is necessary for video game emulators, with the most demanding
requirement on correctness being real-time applications. Emulators have to be de-
signed with the intended application in mind.

— Most emulators do not offer a possibility to copy contents from the emulated en-
vironment to the host environment. Phelps and Watry [2005] see this as a major
drawback for using emulators for digital preservation. Usually it is necessary to
be able to access documents and reuse the contents of those documents in the host
environment. In most emulation environments data extraction can only be done by
using transfer methods like clipboard sharing over the network or by using tools to
extract data from disc images. One notable exception is Dioscuri [van der Hoeven
et al. 2007]. Dioscuri is an emulator specifically developed with digital preservation
purposes in mind and allowing the user, amongst others, to copy data between host
environment and emulated environment.

8. CONCLUSIONS AND FUTURE WORK

In this article we presented a workflow to evaluate the emulation effects on a digital
object compared to the object’s behavior in its original environment. In this section
we present the conclusions of the work presented in this article along with how the
concepts apply to other digital preservation strategies. Finally we give an outlook to
necessary future work.

8.1. Evaluating Emulation

The most important task when evaluating emulators is to reduce the side-effects that
occur not due to the emulation but due to external events that are different in the
original and the emulated environment. To reduce the influence of these events on the
rendering of a digital object, it is necessary to document the original system and its
properties as precisely as possible and then recreate the original setting on the host
system using an emulator. To make the behavior of the digital object as deterministic
as possible it is necessary to apply input in an automated form.

We showed various methods on how to capture input on the original system and
apply it to the emulated environment. Depending on the object and the technical pos-
sibilities it has to be decided which of the various rendered manifestations of a digital
object on the original system and in the emulated environment have to be compared.
The selection depends also on the significant properties of the object that has to be
evaluated.

Using the workflow shown in this article the effects of rendering an object in an
emulated environment can be evaluated. By testing how the significant properties
of the object are affected in different emulation environments it is possible to choose
the optimal solution for a preservation planning case by comparing them using, for
example, the Planets preservation planning approach [Becker et al. 2009].

This article describes the evaluation of rendering effects in emulated environments
compared to the original environment. There will be cases where the original envi-
ronment is no longer available or cannot be accessed with reasonable effort (e.g., data
archeology). The concepts shown here also allow for a comparison between different
emulated environments. Usually it is possible to get an idea about the rendering in the
original environment by evaluating various emulated environments, even if the origi-
nal appearance is no longer known. For example, if the music in a piece of interactive

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:26 M. Guttenbrunner and A. Rauber

art is present in one emulated environment and missing in another environment, then
it is obvious that this emulator lacks some ability to render audible characteristics of
the object.

8.2. General Applicability to Other Preservation Actions

Conventionally, emulation is seen as a distinct type of preservation action, sig-
nificantly different from migration, standardization, and other approaches. It is
attributed with changing the environment rather than the object, and due to its char-
acteristics frequently recommended for (inter)active digital objects. However, at closer
inspection this view seems too limited.

Migration focuses on transforming the object from one file format or encoding to
another. Consequently, evaluation of migration solutions predominantly focuses on
the characteristics of the source and target object type, and in how far these significant
properties can be preserved. Yet, this approach to evaluation is falling short of several
of the key requirements of evaluating the authentic preservation of digital objects. It
basically views the digital object solely in its encoded form, rather than as intellectual
object that only becomes such via interpretation via some form of rendering process,
for example, opening in a specific viewer software or running in a certain environment.

In reality, when preservation actions are being evaluated, characterization tools
that analyze object structure and content are usually combined with a visual evalua-
tion when both source and target objects are opened in viewer software and verified
visually. This corresponds to the evaluation approach presented in this article, focus-
ing on a single target state. In fact, every intellectual object in digital form needs to
be evaluated with its entire viewpath, even when this may consist of any of presum-
ably interchangeable standard viewers such as Adobe Acrobat for PDF or any of the
myriad of image viewers. There seems to be a tacit understanding that in the case
of static and standard object formats it is only the object structure that is important
to be evaluated rather than the combination of object and recommended rendering
environment—although experience and best practice teach the opposite. We thus ar-
gue that the approach presented in this article is not only recommended for interactive
content and in combination with emulation and viewer approaches to preservation, but
basically applies to the evaluation of any preservation action taken.

8.3. Applicability and Future Work

Following the framework shown in this article it is possible to compare different ren-
derings of the same digital object in different environments. The framework supports
institutions in taking an informed decision on a rendering environment in a preserva-
tion planning process. As one example a video game museum can use the framework to
select the best emulator for certain digital objects in its collection. In an industry set-
ting the execution of (the software components of) a business process can be evaluated
to ensure that the rendering is authentic with respect to the properties identified.

With the concepts provided in this article it would also be possible to automate the
process of evaluating emulators to some extent. However, emulators today lack some
of the features necessary for supporting automated evaluation, like the possibility to
supply files for automated input or the extraction of significant properties of the envi-
ronment and the digital object. By following the design requirements for emulators for
digital preservation purposes as proposed in this article, standardization and to a cer-
tain extent automation of evaluation of emulators will be possible. It is also necessary
to develop a measurement framework that supports the extraction of properties from
rendering environments and the automated comparison of rendering results.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

A Measurement Framework for Evaluating Emulators for Digital Preservation 14:27

REFERENCES
AITKEN, B., HELWIG, P., JACKSON, A. N., LINDLEY, A., NICCHIARELLI, E., AND ROSS, S. 2008. The plan-

ets testbed: Science for digital preservation. Code4Lib 3.
BECKER, C. AND RAUBER, A. 2011a. Decision criteria in digital preservation: What to measure and how.

J. Amer. Soc. Inf. Sci. Technol. 62, 6, 1009–1028.
BECKER, C. AND RAUBER, A. 2011b. Preservation decisions: Terms and conditions apply. Challenges,

misperceptions and lessons learned in preservation planning. In Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries (JCDL’11).

BECKER, C., KULOVITS, H., RAUBER, A., AND HOFMAN, H. 2008a. Plato: A service-oriented decision sup-
port system for preservation planning. In Proceedings of the ACM/IEEE Joint Conference on Digital
Libraries (JCDL’08). ACM.

BECKER, C., RAUBER, A., HEYDEGGER, V., SCHNASSE, J., AND THALLER, M. 2008b. A generic XML lan-
guage for characterising objects to support digital preservation. In Proceedings of the 23rd Annual ACM
Symposium on Applied Computing (SAC’08). Vol. 1. ACM, 402–406.

BECKER, C., KULOVITS, H., GUTTENBRUNNER, M., STRODL, S., RAUBER, A., AND HOFMAN, H. 2009.
Systematic planning for digital preservation: Evaluating potential strategies and building preservation
plans. Int. J. Digital Librar. 10, 4, 133–157.

BONARDI, A. AND BARTHÉLEMY, J. 2008. The preservation, emulation, migration, and virtualization of live
electronics for performing arts: An overview of musical and technical issues. J. Comput. Cult. Herit. 1, 1,
1–16.

BROWN, A. 2008. Automatic format identification using PRONOM and DROID. Digital Preservation
Tech. paper 1. http://www.nationalarchives.gov.uk/aboutapps/fileformat/pdf/automatic format
identification.pdf (Last accessed 2/12).

DEVANBU, P. T. AND STUBBLEBINE, S. 2000. Software engineering for security: A roadmap. In Proceedings
of the Conference on The Future of Software Engineering. ACM, New York, 227–239.

DOYLE, J., VIKTOR, H., AND PAQUET, E. 2009. Long-Term digital preservation: Preserving authenticity
and usability of 3-D data. Int. J. Digital Librar. 10, 1, 33–47.

DUMKE, R. 2003. Software Engineering-Eine Einführung für Informatiker und Ingenieure: Systeme,
Erfahrungen, Methoden, Tools. 4. Vieweg.

FIDGE, C. J. 2003. Verifying emulation of legacy mission computer systems. In Proceedings of the FME’03
Conference on Formal Methods. 187–207.

GLADNEY, H. M. AND LORIE, R. A. 2005. Trustworthy 100-year digital objects: Durable encoding for when
it’s too late to ask. ACM Trans. Inf. Syst. 23, 3, 299–324.

GRANGER, S. 2000. Emulation as a digital preservation strategy. D-Lib Mag. 6, 10.
http://www.dlib.org/dlib/october00/granger/10granger.html. (Last accessed 2/12).

GUTTENBRUNNER, M. 2009. Challenges for the evaluation of emulation. In Proceedings of the Workshop on
Data Analysis (WDA’09). 29–35.

GUTTENBRUNNER, M., BECKER, C., AND RAUBER, A. 2010a. Keeping the game alive: Evaluating strategies
for the preservation of console video games. Int. J. Digital Cur. 5, 1, 64–90.

GUTTENBRUNNER, M., WIENERS, J., RAUBER, A., AND THALLER, M. 2010b. Same same but different -
Comparing rendering environments for interactive digital objects. In EuroMed, M. Ioannides, D. W.
Fellner, A. Georgopoulos, and D. G. Hadjimitsis Eds., Lecture Notes in Computer Science, vol. 6436,
Springer, 140–152.

HEDSTROM, M., LEE, C., OLSON, J., AND LAMPE, C. 2006. The old version flickers more: Digital preserva-
tion from the user’s perspective. Amer. Archiv. 69, 28.

JONES, C. 2004. Seeing double: Emulation in theory and practice. The Erl King case study. In Proceedings of
the Annual Meeting of the American Institute for Conservation of Historic and Artistic Works. Electronic
Media Group.

KLEINER, K. 2001. I love space invaders. New Sci. 172, 2313, 46–8.
LAMPORT, L. AND LYNCH, N. 1990. Handbook of Theoretical Computer Science Vol. B: Formal Models and

Semantics. Elsevier Science Publishers B.V., 1157–1200.
LIU, J. W. S. W. 2000. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ.
MARCUM, D. B. 1996. The preservation of digital information. J. Acad. Librarian. 22, 6, 451–454.
MATTHEWS, B., MCILWRATH, B., GIARETTA, D., AND CONWAY, E. 2008. The significant properties of soft-

ware: A study. JISC Study. http://www.jisc.ac.uk/media/documents/programmes/preservation
/spsoftware report redacted.pdf. (Last accessed 2/12).

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

14:28 M. Guttenbrunner and A. Rauber

PHELPS, T. A. AND WATRY, P. 2005. A no-compromises architecture for digital document preservation. In
Proceedings from 9th European Conference on Research and Advanced Technology for Digital Libraries
(ECDL’05). 266–277.

PHILLIPS, G. 2010. Simplicity betrayed. Comm. ACM 53, 6, 52–58.
ROTHENBERG, J. 1999. Avoiding Technological Quicksand: Finding a Viable Technical Foundation for Dig-

ital Preservation. Council on Library and Information Resources.
http://www.clir.org/pubs/reports/rothenberg/contents.html. (Last accessed 2/12).

SLATS, J. 2003. Emulation: Context and current status. Tech. rep. http://www.nationaalarchief.nl
/kennisbank/emulation-context-and-current-status-2003. (Last accessed 2/12).

STRODL, S., BECKER, C., NEUMAYER, R., AND RAUBER, A. 2007. How to choose a digital preservation strat-
egy: Evaluating a preservation planning procedure. In Proceedings of the ACM IEEE Joint Conference
on Digital Libraries (JCDL’07). 29–38.

THALLER, M. 2008. Interaction testing benchmark deliverable PC/2 - D6. Internal Deliverable, EU
Project Planets. http://planetarium.hki.uni-koeln.de/planets cms/sites/default/files/PC2D15
CIM.pdf (Last accessed 2/12).

VAN DER HOEVEN, J., LOHMAN, B., AND VERDEGEM, R. 2007. Emulation for digital preservation in prac-
tice: The results. Int. J. Digital Cur. 2, 2, 123–132.

VAN DIESSEN, R. J. 2002. Preservation requirements in a deposit system. IBM/KB Long-Term Preservation
Study Report Series Number 3 Chapter 3.
http://www.kb.nl/hrd/dd/dd_onderzoek/reports/3-preservation.pdf (Last accessed 2/12).

VON SUCHODOLETZ, D. AND VAN DER HOEVEN, J. 2008. Emulation: From digital artefact to remotely
rendered environments. In Proceedings of the 5th International Conference on Preservation of Digital
Objects (iPRES’08). 93–97.

WEBB, C. 2005. Guidelines for the Preservation of the Digital Heritage. Information Society Division United
Nations Educational, Scientific and Cultural Organization (UNESCO) – National Library of Australia.
http://unesdoc.unesco.org/images/0013/001300/130071e.pdf. (Last accessed 2/12).

Received April 2011; revised January 2012; accepted February 2012

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 14, Publication date: May 2012.

