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Abstract—Triggered by the increased fluctuations of renewable
energy sources, the European Commission stated the need
for integrated short-term energy markets (e.g., intraday), and
recognized the facilitating role that local energy communities
could play. In particular, microgrids and energy communities
are expected to play a crucial part in guaranteeing the balance
between generation and consumption on a local level. Local
energy markets empower small players and provide a stepping
stone towards fully transactive energy systems. In this paper
we evaluate such a fully integrated transactive system by (1)
modelling the energy resource management problem of a mi-
crogrid under uncertainty considering flexible loads and market
participation (solved via two-stage stochastic programming), (2)
modelling a wholesale market and a local market, and (3)
coupling these elements into an integrated transactive energy
simulation. Results under a realistic case study (varying prices
and competitiveness of local markets) show the effectiveness of
the transactive system resulting in a reduction of up to 75% of the
expected costs when local markets and flexibility are considered.
This illustrates how local markets can facilitate the trade of
energy, thereby increasing the tolerable penetration of renewable
resources and facilitating the energy transition.

Index Terms—Demand response, local electricity markets, mi-
crogrids, transactive energy, smart grids, stochastic optimization.

NOTATION
Indices:
e energy storage systems (ESSs)
i distributed generation (DG) units
l,m, s, t, v loads, markets, scenarios, periods, electric vehicles (EVs)
Sets and subsets:
ΩDG, Ωload set of DG units/loads
ΩdDG,ΩndDG subset of dispatchable/non-dispatchable DG units
Ωcurt

load,Ωinte
load subset of curtailable/interruptible loads

Ωshift
load subset of shiftable loads

Parameters:
CDG generation cost of DG unit (m.u./kWh)
CESS− ,CEV− discharging cost of ESS/EV (m.u./kWh)
Ccurt,Cinte,Cshift load curtailment/interruption/shift cost (m.u./kWh)
Cimb grid imbalance cost (m.u./kWh)
MP electricity market price (m.u./kWh)
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Ne, Ni, Nl number of ESS/DG/loads
Nm, Ns, Nv number of markets/scenarios/EVs
Pcurtmax maximum load reduction of Ωcurt

load (kW)
PDGmax/min

maximum/minimum power of dispatchable DGs (kW)
PDGnd

forecast power of non-dispatchable DGs (kW)
P
ESS/EV +

max
maximum charge rate of ESSs/EV (kW)

P
ESS/EV−

max
maximum discharge rate of ESSs/EV (kW)

PESSmax/min
maximum/minimum energy capacity of ESSs (kWh)

PEVmax/min
maximum/minimum energy capacity of EVs (kWh)

PEVtrip forecasted energy demand for EVs’ trip (kWh)
Pload forecasted active power of loads (kW)
Poffermax/min

maximum/minimum energy offer in markets (kW)

Pshift forecasted power of Ωshift
load in Tshift (kW)

Pshiftmax
maximum load shifted of Ωshift

load in Tshift (kW)
T number of periods
Tshift shift interval of Ωshift

load
T start

shift /T end
shift earliest/latest possible period for load shift of Ωshift

load
ηEV +/EV− charging/discharging efficiency of EVs
π(s) probability of scenario s
Variables:
Etotal total day-ahead solution cost (m.u.)
MT total day-ahead market transactions (m.u.)
OC total day-ahead operation cost (m.u.)
pDG active power generation of DGs (kW)
pESS+ /pESS− active power charge/discharge of ESSs(kW)
pESS energy stored in ESSs (kWh)
pEV + /pEV− active power charge/discharge of EVs (kW)
pEV energy stored in EVs (kWh)
pinte active power interruption of Ωinte

load (kW)
pcurt active power reduction of Ωcurt

load (kW)
pshift shift active power of Ωshift

load in Tshift (kW)
pshift− /pshift+ reduced/increased power of Ωshift

load in Tshift (kW)
psell / pbuy power sell/buy offer (bid) to the market (kW)
pimb+/pimb− exceeded/non-supplied power of DGs units (kW)
Binaries:
xDG state of DG units
xESS−/EV− discharging state of ESSs/EVs
xESS+/EV + charging state of ESSs/EVs
xinte state of interruptible load
xsell/xbuy sell/buy offer to a market

I. INTRODUCTION

THE energy transition foresees an increased adoption
of fluctuating renewable generation, which needs to be

matched by increased demand-side flexibility and storage.
Current European electricity systems employ exchanges for
large-scale ancillary service providers and the participation in
wholesale (WS) markets is only possible for small generators
when associated to energy aggregators or brokers [1].

One solution for the high penetration of distributed gen-
eration (DG) is to expand the distribution grid, however,
the costs could be prohibitive [2]. Another solution is to
handle technical constraints with active control to manage
local resources, storage systems and demand response (DR)
programs [3], however, this may raise privacy concerns [4].
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In this context, moving towards a transactive energy (TE)
system, defined by the GridWise Architecture Council as
“a set of economic and control mechanisms that allow the
dynamic balance of supply and demand across the entire
electrical infrastructure using value as a key operational
parameter” [5], seems to be a promising step to fulfil the
needs of the current situation. A TE framework envisages
that mid- to small-sized generation and consumption can
automatically negotiate their actions with each other using
effective energy resource management (ERM) systems and
electronic market algorithms allowing a dynamic balance of
supply and demand. Despite the efforts made so far, fully TE
systems at the distribution and retail market level are largely
missing mainly due to the complex scenario that such systems
pose [6], [7]. In such conditions, local energy communities
have been recognized by the European Commission (EC) as
a potential way to perform energy management. Local en-
ergy communities have been successfully deployed in several
countries [8], [9] with diverse characteristics (e.g., population
size, location, type of renewable used). This variability gives
raise to different needs and therefore an opportunity to trade
and energy surplus. Moreover, the EC has stated the need
for an adaptation of market and grid operation rules to the
more flexible nature of the market [8]. In fact, this leads to
the ultimate need for a more dynamic marketplace that goes
from the intraday timescale towards the intrahourly scale. This
flexibilization is necessary in order to cope with the large
variation of renewable generation at near real-time, while still
allowing the involved players to establish some commitments
in advance (e.g., day-ahead or some hours-ahead in a smart
grid perspective).

Therefore, the European Commission has declared that
integrated short-term local markets (LMs), as we discuss in
this paper, are still missing [8]. A LM is a platform on which
individual consumers and prosumers trade energy supporting
regional scopes such as a neighbourhood environment [10].
Advantages of LMs include that (1) more self-generated
electricity can be consumed locally, which alleviates transport
losses [11] and reduces the risk of backfeeding at MV/LV
transformers; (2) the local economy is strengthened, which
provides new opportunities for local industry and regional
business, and (3) they support the development of the smart
grid [12]. While system components have been addressed in
related work (Sect. II), our work integrates local optimization
with both local and global exchange.

This paper presents an integrated simulation environment
of energy communities including the market clearing process
for WS and LMs with traditional energy resource optimization
approaches, in order to analyse the impact of TE management
and LMs in power systems. We contribute to the state of the
art in the following ways:

• Adopting an integrated model for simulation which enables
assessing the impact of LMs in a TE environment. The
proposed framework, besides providing a new model for
LMs, allows evaluating the effects of a large number of

participants (MGs1) in the electricity market as well as to
refine business models on a system and small player level.

• To achieve this objective, a two-stage stochastic program-
ming model is implemented to solve the day-ahead energy
resource management (ERM) problem under uncertainty
taking into account MG context, flexibility and market
transaction either to buy or sell energy.

• Considering the expected needs, the WS and LMs are
executed, bringing together different aggregators as well as
small players that desire to participate in market negotiations
directly.

• Finally, we contribute with an evaluation of this paradigm
through simulation, with comparison to baseline DR allo-
cations inspired by current markets.

In this paper, we hypothesize that players receive a competi-
tive advantage when being able to exchange energy with their
peers (i.e., LMs), outperforming two alternative scenarios:
without market access (current situation in many countries),
and when it is possible to only trade in the WS market directly
or through a market broker.

II. RELATED WORK

Electricity markets are undergoing changes to adapt to the
high penetration of renewable resources; since consumers are
becoming prosumers, traditional passive and static supply con-
tracts become insufficient, as they cannot adequately capture
the fluctuating value of energy and flexibility. Two-sided mar-
kets have been adopted in electric power systems to provide
more dynamic and efficient allocations, e.g., local energy
markets were introduced as a way to cope with fluctuating
renewable energy sources [13]. Recently, LMs were identified
as promising to reduce costs, effectively managing DR and
supporting the development of the smart grid [12], yet lacking
quantitative support. Our work complements this line of work
by providing a numerical comparison of how LMs can reduce
costs under different scenarios.

Recent works have proposed new market solutions to cope
with DR, for example, by proposing an extension of the WS
market with a real-time market that will offer transmission
system operators additional balancing resources [14]. In con-
trast, our work integrates local optimization with bidding op-
tions in both local and WS markets. Another related proposal
are day-ahead micro-markets, whose objective is to organize
local resources using market-based rules to participate in
aggregated form in the day-ahead WS market [15]. They
assume a micro-market operator whose aim is to maximize
the profits of the MG, similar to the ERM in our WS market
model. However, in contrast we add a new LM as a subsequent
phase that happens after the WS market is cleared.

Few works have tackled the problem of modelling the
bidding process for small participants. For example, Odegaard
et al. [16] proposed a model for an aggregator that can sell
and buy electricity on behalf of a group of prosumers in a

1In this paper, a microgrid (MG) refers to a distribution system with loads
and DG, that can be operated in a controlled and coordinated way. The MG
considered in our case study represents an energy community connected to
the rest of the grid and controlled by an aggregator [8], [9].
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Fig. 1. The proposed methodology starts with an initialisation step (0) that generates the scenario, followed by six steps where the MG solves the ERM
scheduling and can trade in two different markets, first a WS market after which there is an updated forecast, a new scheduling is performed and now the
MG can trade in a LM. At the end of the simulation, we assume that there is an imbalance market that accounts for any deviation.

WS market. In contrast, we present an integrated modelling
of the bidding process and market modelling for both local
and WS markets.

Simulation environments for power systems and energy
markets [1] have provided valuable insights without the bur-
den of risking existing infrastructure, however, current tools
lack the capacity to accurately model both the ERM problem
and the market simulation. Here, we show numerical results of
a simulation that integrates the ERM considering market bids
(in local and WS markets) and comparing different scenarios
highlighting the benefits (i.e., reducing costs) of LMs. Next,
we describe the integrated framework that considers LM.

III. INTEGRATED TRANSACTIVE ENERGY SYSTEM

This section presents the main contribution of this work
and is divided into three main subsections introducing the
methodology, mathematical model and markets.

A. Methodology

The proposed framework comprises the following sequence
of steps, as depicted in Fig. 1. Our experiments will compare
three different cases: no market access (step 1), only WS
market access (steps 1-3), and WS and LMs (steps 1-6).
0) Each scenario has uncertainty from three main sources:

generators, loads and markets (see Section III-B1).
1) The first step is to solve the ERM day-ahead scheduling by

using two-stage stochastic programming including bidding
options for a WS market, if available.

2) The day-ahead WS market takes place and provides a
response to every participant (i.e., if the bids/asks were
accepted or not). Since this is a WS market, we assume
the trading volume to be greater than in the LM.

3) Based on the market clearing, a re-scheduling is computed.
WS market forecasts are updated to reflect information
arriving as time moves closer to the delivery interval.
If the LM is not available, the simulation terminates by
computing the residual imbalance costs.

4) If the LM is available, the next step computes a second
ERM including bidding options in the LM, exploiting the
updated forecast and thus aiding short-term balancing.

5) The LM is cleared assuming that only local MGs can trade.
6) A final re-scheduling is performed having as a result the

expected costs considering imbalance penalties.

B. Scheduling and Bidding Optimization under Uncertainty

The uncertainty modelling and the mathematical formula-
tion of ERM problem are described below.

1) Uncertainty representation: In this paper, to overcome
the lack of historical data to build accurate case-studies, we
assume that a correct set of scenarios that simulate real-world
behaviour can be generated considering forecast and associ-
ated errors based on previous experiences. The uncertainty
comes from different sources such as: i) renewable generators,
ii) load profiles, and iii) market prices.

We apply the technique for scenario generation (and sce-
nario reduction) used in [17]. In a first step, a large number
of scenarios is generated by Monte Carlo Simulation (MCS).
The MCS uses the probability distribution function of the
forecasted errors (which can be obtained from historical
data) to create a number of scenarios according to Xs(t) =
xforecast(t) + xerror,s(t), where xerror,s is a zero-mean noise
with standard deviation σ. To simplify, all forecast errors for
the uncertain inputs are represented by a normal distribution
function. A high accuracy is obtained by using a large set
of scenarios. However, this increase in accuracy comes with
a computational cost associated with the increase in the
number of variables considered, and therefore, including all
scenarios may turn the model into a large-scale optimization
problem [17].

To handle the computational burden and still obtain accurate
results, a standard scenario reduction technique that excludes
scenarios with low probabilities and combines those that are
close to each other in terms of statistical metrics is applied
(for a complete description see [17]). In this way, the size
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of the problem is reduced without losing the main statistical
characteristics of the initial dataset.

2) Two-stage stochastic model: The first-stage decisions
are the WS and LM offers as well as the dispatchable gener-
ation schedules. The second-stage decisions are the ESS/EV
charging and discharging decisions and DR requests. The later
decisions can be done close to real-time in next day but first-
stage decisions need to be addressed day-ahead due to market
closing times. The objective function minimizes the expected
day-ahead operation costs over a scheduling horizon T (i.e.,
the next 24 hrs) [17]:

Minimize Etotal = OC +MT (1)

where OC represents the costs associated with the manage-
ment of the resources:

OC =
T∑
t=1

∑
i∈Ωd

DG

pDG(i,t) · CDG(i,t)+

Ns∑
s=1

T∑
t=1



∑
i∈Ωnd

DG

pDG(i,t,s) · CDG(i,t)+

Ne∑
e=1

pESS− (e,t,s) · CESS− (e,t)+

Nv∑
v=1

pEV− (v,t,s) · CEV− (v,t)+∑
l∈Ωcurt

load

pcurt(l,t,s) · Ccurt(l,t)+∑
l∈Ωinte

load

pinte(l,t,s) · Cinte(l,t)+∑
l∈Ω

shift
load

pshift−(l,t,s) · Cshift(l,t)+

Nl∑
l=1

pimb−(l,t,s) · Cimb−(l,t)+

Ni∑
i=1

pimb+(i,t,s) · Cimb+(i,t)



· π(s)

(2)

while MT is the term that describes the expected market
transactions in any given number of markets:

MT =
Ns∑
s=1

T∑
t=1

(
Nm∑
m=1

(
pbuy(m,t) − psell(m,t)

)
·MP(m,t,s)

)
· π(s).

(3)
The objective function is subject to the following con-

straints:
a) Energy balance constraint: states that the amount of

generated energy should be equal to the amount of consumed
energy at every instant t. This constraint also includes the
expected energy that may be bought/sold in the markets:

∑
i∈Ωd

DG

pDG(i,t) +
∑

i∈Ωnd
DG

pDG(i,t,s)+

Nv∑
v=1

(pEV−(v,t,s) − pEV +(v,t,s))+

Ne∑
e=1

(pESS−(e,t,s) − pESS+(e,t,s))+

Nl∑
l=1

(pcurt(l,t,s) + pinte(l,t,s) + pshift−(l,t,s))−
Nl∑
l=1

(pload(l,t,s) + pshift+(l,t,s)) +
Nm∑
m=1

(pbuy(m,t) − psell(m,t))+∑
i∈Ωnd

DG

pimb+(i,t,s) −
Nl∑
l=1

pimb−(l,t,s) = 0 ∀t, ∀s.

(4)

Notice that pimb+/pimb− represent the imbalance energy that
occurs when generation is higher than demand or vice versa.
By putting a high cost to this imbalance energy, we force the
model to avoid this condition as much as possible.

b) DG units constraints: Maximum and minimum power
limits can be formulated as:

pDG(i,t) ≤ xDG(i,t) · PDGmax(i,t),
pDG(i,t) ≥ xDG(i,t) · PDGmin(i,t) ∀t, ∀i ∈ ΩdDG

(5)

where xDG are binary variables representing the status of dis-
patchable DG units (i.e., connected/disconnected status). On
the other hand, non-dispatchable DGs are modelled according
to the generated scenarios:

pDG(i,t,s) = PDGnd(i,t,s) ∀t, ∀i ∈ ΩndDG, ∀s. (6)

c) Energy storage systems constraints: Constraints on
two binary variables per ESS ensure that charging and dis-
charging do not occur simultaneously:

xESS+(e,t,s) + xESS−(e,t,s) ≤ 1 ∀t, ∀e, ∀s. (7)

The maximum discharge limit for each ESS is given by:

pESS−(e,t,s) ≤ PESS−
max(e,t)

· xESS−(e,t,s) ∀t, ∀e, ∀s. (8)

The maximum charge limit for each ESS is given by:

pESS+(e,t,s) ≤ PESS+
max(e,t)

· xESS+(e,t,s) ∀t, ∀e, ∀s. (9)

The maximum ESS capacity limit is given by:

pESS(e,t,s) ≤ PESSmax(e,t) ∀t, ∀e, ∀s. (10)

The minimum ESS stored energy to be guaranteed at the end
of each period can be represented such as:

pESS(e,t,s) ≥ PESSmin(e,t) ∀t, ∀e, ∀s. (11)

The ESS balance can be formulated as:
pESS(e,t,s) = pESS(e,t−1,s) + ηESS+(e) · pESS+(e,t,s)

− 1
η
ESS−(e)

· pESS−(e,t,s) ∀t, ∀e, ∀s. (12)

d) EVs constraints: Two binary variables are used to
guarantee that EVs do not charge and discharge simultane-
ously:

xEV +(v,t,s) + xEV −(v,t,s) ≤ 1 ∀t,∀v,∀s. (13)

The maximum discharge limit for each EV is given by:

pEV−(v,t,s) ≤ PEV−
max(v,t)

· xEV−(v,t,s) ∀t, ∀v, ∀s. (14)

The maximum charge limit for each EV is given by:

pEV +(v,t,s) ≤ PEV +
max(v,t)

· xEV +(v,t,s) ∀t, ∀v,∀s. (15)

The maximum EV capacity limit is given by:

pEV (v,t,s) ≤ PEVmax(v,t) ∀t, ∀v,∀s. (16)

The minimum EV stored energy to be guaranteed at the end
of each period can be represented such as:

pEV (v,t,s) ≥ PEVmin(v,t) ∀t, ∀v,∀s. (17)

The EV balance can be formulated as:
pEV (v,t,s) = pEV (v,t−1,s) − PEVtrip(v,t)+
ηEV +(v) · pEV +(v,t,s) − 1

η
EV −(v)

· pEV−(v,t,s)

∀t, ∀v,∀s.
(18)
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e) Demand response: Flexibility in the loads is modelled
by direct load control programs in which consumers voluntar-
ily participate and receive a monetary compensation if their
loads are reduced, disconnected or shifted [18]. The types of
flexible loads used in this model are described below:

• Curtailable loads.
The maximum active power that each load can be reduced
is formulated as:

0 ≤ pcurt(l,t,s) ≤ Pcurtmax(l,t,s) ∀t, ∀l ∈ Ωcurt
load, ∀s. (19)

• Interruptible loads.
Interruptible loads can be disconnected at any given time for
a compensation cost. A binary variable is used to control
the on/off status of the considered loads:

pinte(l,t,s) = Pload(l,t,s) · xinte(l,t,s) ∀t, ∀l ∈ Ωinte
load, ∀s. (20)

• Shiftable volume loads.
Shiftable loads allow a shift or modification in their profiles
as long as the total volume over such shift period is
respected. Eq. (21) is used to accomplish that condition:

T start
shift ;T end

shift ∈ Tshift(l) ∀l ∈ Ωshift
load

T end
shift∑

T start
shift

pshift(l,t,s) =
T end

shift∑
T start

shift

Pshift(l,t,s)

∀t ∈ Tshift,∀l ∈ Ωshift
load, ∀s.

(21)

Moreover, the maximum quantity of shiftable load is giving
by the follow set of equations:

pshift(l,t,s) ≤ Pshift(l,t,s) + Pshiftmax(l,t,s),
pshift(l,t,s) ≥ Pshift(l,t,s) − Pshiftmax(l,t,s),

∀t, ∀l ∈ Ωshift
load.

(22)

The negative (i.e., the reduction of load) or positive shift
(i.e., the increase in load) for each period is captured using
the next set of equations:

pshift+(l,t,s) ≥ 0 ∀t, ∀l ∈ Ωshift
load,∀s, (23)

pshift−(l,t,s) ≥ 0 ∀t, ∀l ∈ Ωshift
load, ∀s, (24)

Pshift(l,t,s) + pshift+(l,t,s) = pshift(l,t,s) + pshift−(l,t,s)

∀t, ∀l ∈ Ωshift
load,∀s.

(25)

f) Market/bidding constraints: Market rules due to min-
imum required amount to access or strategical planning.

pbuy(m, t) ≤ P offermax
(m, t) · xbuy(m,t) ∀t, ∀m,

pbuy(m, t) ≥ P offermin
(m, t) · xbuy(m,t) ∀t, ∀m,

psell(m, t) ≤ P offermax
(m, t) · xsell(m,t) ∀t, ∀m,

psell(m, t) ≥ P offermin
(m, t) · xsell(m,t) ∀t, ∀m.

(26)

where xsell(m,t) +xbuy(m,t) ≤ 1 ∀t are binary variables used
to guarantee that the market transactions in each period are
unique. Each MG optimizes its resources and if necessary
makes bids in the WS and LMs which we described in the
next section.

C. Markets

In our experiments, simultaneous auctions are held for each
power delivery interval corresponding to hours of the day.
Each bid/ask is a tuple < t, q, p > where a participant (i.e.,
MG) bids for q energy units at a maximum price p for timeslot
t. We model markets as a clearing house [19], i.e., clearing
happen at a fixed time once at the end of the trading period.
Traders submit bids and asks until the end of the trading period
and these are used to determine the supply and demand curves
for energy. The price at which supply equals demand is known
as the equilibrium price. Models on how traders decide on
what offers to make are known as price formation models [19].
Zero intelligence (ZI) agents [20] are a well-known trading
approach, in particular ZI-U (unconstrained) agents pick a bid
or ask from anywhere within a given price range and ZI-C
(constrained) agents2 pick offers constrained to be profitable
if accepted; they are not allowed trade with directly negative
results, that is, to sell below cost or buy above value.

In our experiments, we simulate ZI-C agents that make
bids and asks, this is, their offers are constrained in a range
(pmin, pmax). There are two main differences between the
considered markets: 1) the information available before the
market clearing, i.e., the LM always happens after the WS
market was cleared; 2) the volume and liquidity of energy
traded in each market, i.e., LMs presents smaller amounts of
energy traded, as well as liquidity than the WS market.

LMs are inherently diverse, and the smaller scale gives
rise to large diversity in the possible composition of the
participants, which contrasts national markets in which local
fluctuations average out. In order to capture the LM charac-
teristics that are most relevant for the local optimisation, we
evaluate different success rates while controlling for expected
market price. The success rate represents the probability of
the market to accept the bid, as a fundamental and abstract
model subsuming market liquidity and price competition. By
varying success rate, we get insights under different situational
competitiveness, independent of whether it is caused by a
lack of competition, an abundance of complementary market
participants, or other factors. We induce the desired success
rate in experiments by varying the competing offer distribution
in the market.

IV. CASE STUDY

Our proposed methodology is tested using a case
study3 based on a 25-bus MG that represents a residential
energy community with 22 DGs (5 dispatchable units and 17
PV generators), 2 ESSs, 34 EVs, and 90 households with loads
of different classes including inflexible, curtailable, shiftable
and interruptible loads. Table I outlines the resources available
in the MG.

With these available devices, we generate the required data
for one week of simulation based on a real forecast of energy
generation and load consumption. To summarize, prices of

2Gode and Sunder [20] showed that a market consisting of ZI-C agents
produced results similar to the allocative efficiency of a market with human
traders.

3Published in: http://www.gecad.isep.ipp.pt/ies/public-data/ites
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DG/loads and household consumption patterns used in the
paper are available online3. The solar radiation forecast was
based on the profiles from a regular week.4 The selected
week includes four regular days (i.e., following a typical solar
radiation pattern), and three atypical profiles (corresponding
to cloudy days). Regarding the load, one typical pattern was
used to generate the forecast of consumption of week days,
while a different pattern was used for weekend days. EV
schedules were created using the tool presented in [21]. WS
market prices correspond to real data taken from the EPEX
Spot market in the week of August 7-13, 2017.5 LMs were
simulated assuming 99 other MGs with similar characteristics
(capacity, forecasts) to the one described above, this is, a
LM is composed of 100 participants (MGs) and each MG
is composed of different loads, generators and ESS.

The uncertainty was incorporated in a first step by creating
5000 scenarios for PV generation, load consumption and
market price variations. For the PV uncertainty generation, an
error of 15% was used for regular days, while an error of 20-
25% was used for the cloudy days (to add more uncertainty).
For the load and market prices, errors of 10% and 20% were
used respectively. The errors follow a normal distribution
according to Sect. III-B1. In a second step, the number of
scenarios was reduced to 100 scenarios with the method from
[17].

The research work was developed using a computer with
an Intel Xeon W3565 processor and 6 GB of RAM running
Windows 10. MATLAB 2014b and TOMLAB 8.1 64 bits with
CPLEX solver (version 12.5) were used to solve the two-stage
stochastic model, whereas JAVA JDK1.7 was used to simulate
market clearing algorithms.

TABLE I
AVAILABLE ENERGY RESOURCES: CAPACITY OF THE ENERGY

RESOURCES, FORECAST RANGE OF VARIABLE INPUTS AND LIMITS
CONSIDERED IN THE WS AND LM

Energy Resources Prices (m.u./kWh) Capacity (kW) Units

DGs 0.07-0.11 10-100 5

External Supplier 0.074-0.16 0-150 1

ESS Charge - 0-16.6 2Discharge 0.03 0-16.6

EV Charge - 0-111 34Discharge 0.06 0-111

Loads Inflex - 6.47-21.9 15

DR
Curtailable 0.0375 4.06-8.95 30
Interruptible 0.085 6.26-14.03 20
Shiftable 0.01 3.51-8.80 25

Forecast (kW)

Photovoltaic - 0-106.81 1 (17agg.)
Load - 35.82-83.39 90

Limits (kW)

WS Market 0.021-0.039 10-85 1
Local Market - 2-40 1

4Taken from http://meteo.isep.ipp.pt
5Available online in https://www.epexspot.com/

V. EXPERIMENTS AND RESULTS

We applied our methodology to the case study presented in
Section IV. First, we present results on a base case without
market access and later we evaluate the impact of adding WS
and LMs. In each case we consider two distinct flexibility
cases, without flexibility (i.e., all the loads are inflexible) and
with flexibility (as described in Table I). Our experimental
design is intended to show that improvements persist under
different conditions (e.g., variations in prices due to market
arbitrage, lower liquidity and shorter time to delivery), and
that they are not simply due to, e.g. prices being equal.

A. Scenario: base case (no market access)

The base case assumes that the MG has no access to any
market, rather relies on an external supplier.6 The stochastic
scheduling model is applied to optimize the resources and
minimize the costs over the 7 days of simulation. Table II
presents the total cost by using only WS market, and both
WS and LM (WS+LM with 75% success rate and equal
prices for both markets) while contrasting availability and
unavailability of flexible loads. Improvements are calculated
w.r.t. no-flexibility and no-market-access (leftmost column).
It can be seen an improvement in all cases when the MG
has access to the LMs, i.e., highlighting the advantages
provided by local transactions. Also, it is worth noting that
the incremental improvement considering WS+LM is smaller
when flexibility loads are available. This can be explained by
the fact that flexible loads significantly contribute to decrease
operational costs, thus mitigating the improvements provided
by the LMs. On the other hand, when flexible loads are
not available, LMs are fully exploited intensifying the gains
provided by the access to them.

B. Scenario: access to WS and LM

To evaluate the impact of both markets on a MG, we analyse
different cases varying (1) the success rate, with values of
{25%, 50%, 75%, 95%}, for bids/asks to be accepted in
the LM, (2) a price difference between the WS and the
LM with values {±75%,±50%,±25%, equal}, for example,
+75% means that the LM is 75% more expensive than the
WS, and (3) the two distinct flexibility cases.

Fig. 2(a) clearly shows that the percentage of improvement
with LMs is tightly related with the success of an offer to be
accepted in the LM. The success rate can be learned by the
trader, which future work may take into consideration in the
optimisation. Regarding the price variation between WS and
LM, Fig. 2(b) shows that the MG can take advantage of this
situation achieving a higher profit when the price difference is
large. This behaviour is explained by the optimization model
which foresees whether the price is better for a sell offer (i.e.,
when the price is higher) or a buy offer (i.e., when the price
is lower).

6We established a variable tariff for the external supplier based on real
tariffs for the year 2016 provided by the Energy Services Regulatory
Authority (ERSE) in Portugal: http://www.erse.pt→electricity→tariff and
prices→Tarifas de anos anteriores→Tarifas Reguladas em 2016.
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TABLE II
COSTS USING ONLY WS MARKET, OR BOTH WS AND LM (WS+LM) WITH 75% SUCCESS RATE AND EQUAL PRICES FOR BOTH MARKETS.

IMPROVEMENTS ARE CALCULATED W.R.T. NO-FLEXIBILITY NO-MARKET-ACCESS (NO MA) REFERENCE.

No Flexibility Using flexibility
No MA WS Imp (%) WS+LM Imp (%) No MA Imp (%) WS Imp (%) WS+LM Imp (%)

day 1 72.68 41.84 42.43 31.37 56.83 60.41 16.87 32.90 54.73 27.19 62.58
day 2 48.28 34.06 29.46 26.08 45.99 42.35 12.28 24.11 50.07 23.85 50.59
day 3 47.88 25.48 46.79 19.49 59.28 41.46 13.41 24.19 49.47 24.15 49.56
day 4 87.05 57.48 33.96 44.31 49.09 79.69 8.44 45.31 47.95 42.93 50.67
day 5 61.43 30.15 50.91 28.33 53.88 54.45 11.34 28.24 54.02 27.27 55.61
day 6 56.64 25.15 55.59 23.17 59.09 49.81 12.07 29.38 48.13 22.67 59.98
day 7 44.49 21.12 52.53 16.38 63.18 38.37 13.74 15.63 64.86 17.08 61.61

418.45 235.28 43.77 189.13 54.80 366.55 12.43 199.76 52.26 185.14 55.75

Fig. 2(c) shows the total energy traded after the seven days
of simulation in the WS and LM considering price variations
in the LM. The results show that the MG mainly uses the WS
market to buy energy needed to supply its demand. On the
contrary, the MG uses the LM to buy or sell, depending on
the price. This also confirms the behaviour show in Fig. 2(b).
For instance, the MG mainly uses the LM to sell energy when
the price is high (increasing incomes) and to buy energy when
the price is low (reducing operational cost).

Regarding the behavior of LMs, Figs. 3(a) and 3(b) de-
pict the equilibria distribution of weekdays (black dots) and
weekend (grey dots) using (a) equal forecast price for both
markets and (b) +75% LM forecast price. As expected, it can
be seen that LM clearing prices were higher when the forecast
price was +75% higher than WS market. From the figures we
observe that weekend prices are in average lower than those
of weekdays. Looking at specific hours, as example we see
higher prices in h = 4 than those in h = 12 or h = 18
(weekend and weekdays). This is due to the fact that most
MGs have no PV generation at h = 4 and that EVs require
demand during the night, thus, trades in the LM are needed.
Fig. 3(c) depicts supply/demand curves of hours 1 and 23 on
two distinct days, i.e. Friday (day 5) and Sunday (day 7) where
we can observe variation on the same hour for the selected
days. These results show the high diversity of behaviours that
could be found in LM. The contributing factor is that players
bids and asks have a higher variation compared to WS market.

To summarize, our experimental results highlight that LMs
provide an efficient mechanism to reduce costs with the
following conclusions.

• If information is received after the WS market cleared
a rescheduling needs to be performed which gives an
opportunity to trade in LM.

• Accurate clearing price forecasts are needed in order to
ensure the ERM models bids accordingly.

• The added value of markets is proportional to cost differ-
ences between traders or markets.

VI. CONCLUSIONS AND FUTURE WORK

Current electricity markets lack an integrative approach
that efficiently allocates resources between stakeholders of
multiple scales (e.g., microgrids, aggregators, large-scale gen-
erators). Inspired by diverse projects working on local en-
ergy communities, we present an integrated framework that
models the problem of ERM, scheduling and bidding in
WS and LMs. This provides a short-term balancing market
in line with the ambitions of the European Commission.
Our case study analyses and highlights the potential benefits
of LMs showing improvement with accurate forecasts and
when there is a high diversity of traders in the market. The
implementation of LM in Europe is still in an embryonic
stage, which makes the study of viable alternative models
crucial to increase the active participation of consumers. This
work explores possible models for LM negotiation considering
active consumer participation, in line with the EU guidelines
and towards a more flexible power system [8]. Due to the
complexity of the matter, several assumptions have been made
that may be relaxed in future work. One key limitation of
this work is the assumption of consumers being price takers,
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Fig. 2. (a) Impact of the success rate for an offer to be accepted in the LM. A clear trend of improvement is observed when the success rate increases. (b)
Effect of LM price deviation regarding WS market price. (c) Energy traded in the markets.
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Fig. 3. Equilibria distribution in LMs for 24 hours on weekdays (black dots) and weekends (grey dots) using (a) equal forecast price for both markets and
(b) +75% LM forecast price; prices on weekdays are higher than on weekends. (c) Supply and demand curves in the LM; comparison of hour 1 on day 5
(grey) and day 7 (blue), and hour 23 on day 5 (green) and day 7 (black); curves show different behaviour for same hours on two different days.

i.e., neglecting the influence of the traded quantity on the
price. This assumption is tenable in WS markets but becomes
a coarser (albeit common) approximation in LMs. Modelling
the price elasticity (effect of price on quantity) of the market
may provide a competitive advantage to a MG in LMs [22].
In addition, our method may be taken further by learning
market and opponent parameters from experience [23], thus
reducing the need for prior knowledge and broadening the
scope of applicability into more realistic scenarios where
agents might change behaviours [24]. The modelling of tech-
nical constraints, including power flow validation and network
costs in the negotiated prices, is another research avenue.
Some works have suggested that when a considerable number
of price-sensitive loads is present, maximizing surplus is a
preferred objective over minimizing operational costs [25].
Therefore, contrasting our model with such approach will
represent another step to achieve practical implementations
of LMs.

REFERENCES

[1] Gabriel Santos, Tiago Pinto, Isabel Praca, and Zita Vale. MASCEM:
Optimizing the performance of a multi-agent system. Energy, 111:513–
524, 2016.

[2] Rahmatallah Poudineh and Tooraj Jamasb. Distributed generation,
storage, demand response and energy efficiency as alternatives to grid
capacity enhancement. Energy Policy, 67:222–231, 2014.

[3] J. Soares, H. Morais, T. Sousa, Z. Vale, and P. Faria. Day-ahead
resource scheduling including demand response for electric vehicles.
IEEE Transactions on Smart Grid, 4(1):596–605, March 2013.

[4] Eoghan McKenna, Ian Richardson, and Murray Thomson. Smart meter
data: Balancing consumer privacy concerns with legitimate applications.
Energy Policy, 41:807–814, 2012.

[5] RB Melton. Gridwise transactive energy framework version 1. Grid-
714 Wise Archit. Council, Richland, WA, USA, Tech. Rep. PNNL-22946,
715:716, 2015.

[6] Junjie Hu, Guangya Yang, Koen Kok, Yusheng Xue, and Henrik W.
Binder. Transactive control: a framework for operating power systems
characterized by high penetration of distributed energy resources. Jour-
nal of Modern Power Systems and Clean Energy, 5(3):451–464, May
2017.

[7] Farzaneh Abbaspourtorbati, Antonio J Conejo, Jianhui Wang, and
Rachid Cherkaoui. Is being flexible advantageous for demands? IEEE
Transactions on Power Systems, 32(3):2337–2345, 2017.

[8] European Commission, Directorate-General for Energy. Proposal for a
Regulation of the European Parlaiment and of the council on the internal
market for electricity 2016/0379/COD, November 2016.

[9] Tineke van der Schoor and Bert Scholtens. Power to the people:
Local community initiatives and the transition to sustainable energy.
Renewable and Sustainable Energy Reviews, pages 1–10, 2015.

[10] P. Goncalves Da Silva, D. Ili, and S. Karnouskos. The impact of smart
grid prosumer grouping on forecasting accuracy and its benefits for local
electricity market trading. IEEE Transactions on Smart Grid, 5(1):402–
410, Jan 2014.

[11] J. K. Kok, C. J. Warmer, and I. G. Kamphuis. PowerMatcher:
multiagent control in the electricity infrastructure. In Proceedings of
the 4th International Conference on Autonomous Agents and Multiagent
Systems, pages 75–82, Utrecht, Netherlands, 2005.

[12] M. Rahimiyan and L. Baringo. Strategic bidding for a virtual power
plant in the day-ahead and real-time markets: A price-taker robust opti-
mization approach. IEEE Transactions on Power Systems, 31(4):2676–
2687, July 2016.

[13] Frede Hvelplund. Renewable energy and the need for local energy
markets. Energy, 31(13):2293–2302, October 2006.

[14] Preben Nyeng, Koen Kok, Salvador Pineda, Ove Grande, Jonathan
Sprooten, Bob Hebb, and Frans Nieuwenhout. Enabling demand
response by extending the European electricity markets with a real-time
market. In IEEE Innovative Smart Grid Technologies Europe, 2013.

[15] Pol Olivella-Rosell, Guillem Vinals-Canal, Andreas Sumper, Roberto
Villafafila-Robles, Bernt A. Bremdal, Iliana Ilieva, and Stig Odegaard
Ottesen. Day-ahead micro-market design for distributed energy re-
sources. In IEEE International Energy Conference, apr 2016.

[16] Stig Ødegaard Ottesen, Asgeir Tomasgard, and Stein-Erik Fleten. Pro-
sumer bidding and scheduling in electricity markets. Energy, 94:828–
843, January 2016.

[17] J. Soares, B. Canizes, M. A. Fotouhi Gazvhini, Z. Vale, and G. K.
Venayagamoorthy. Two-stage stochastic model using benders decom-
position for large-scale energy resources management in smart grids.
IEEE Transactions on Industry Applications, PP(99):1–1, 2017.

[18] P. Jazayeri, A. Schellenberg, W. D. Rosehart, J. Doudna, S. Widergren,
D. Lawrence, J. Mickey, and S. Jones. A survey of load control
programs for price and system stability. IEEE Transactions on Power
Systems, 20(3):1504–1509, Aug 2005.

[19] Simon Parsons, Marek Marcinkiewicz, Jinzhong Niu, and Steve Phelps.
Everything you wanted to know about double auctions, but were afraid
to (bid or) ask. Department of Computer & Information Science,
University of New York, 2006.

[20] Dhananjay K Gode and Shyam Sunder. Allocative Efficiency of
Markets with Zero-Intelligence Traders: Market as a Partial Substitute
for Individual Rationality. Journal of Political Economy, 101(1):119–
137, February 1993.

[21] João Soares, Bruno Canizes, Cristina Lobo, Zita Vale, and Hugo
Morais. Electric vehicle scenario simulator tool for smart grid operators.
Energies, 5(6):1881–1899, 2012.

[22] Meng Song and Mikael Amelin. Price-maker bidding in day-ahead elec-
tricity market for a retailer with flexible demands. IEEE Transactions
on Power Systems, 2018.

[23] Steven Gjerstad and John Dickhaut. Price Formation in Double
Auctions. Games and Economic Behavior, 22(1):1–29, January 1998.

[24] Pablo Hernandez-Leal, Matthew E. Taylor, Enrique Munoz de Cote,
and L. Enrique Sucar. Learning Against Non-Stationary Opponents in
Double Auctions. In Workshop Adaptive Learning Agents ALA 2015,
Istanbul, Turkey, 2015.

[25] Sahand Behboodi, David P. Chassin, Ned Djilali, and Curran Crawford.
Interconnection-wide hour-ahead scheduling in the presence of intermit-
tent renewables and demand response: A surplus maximizing approach.
Applied Energy, 189:336–351, mar 2017.


