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Unsupervided Pattern Recognition for
the Classification of EMG Signals

Christodoulos I. Christodoulou and Constantinos S. Pattichiigmber, IEEE

Abstract—The shapes and firing rates of motor unit action of neuromuscular disorders. EMG signals recorded at low
potentials (MUAP's) in an electromyographic (EMG) signal pro-  to moderate force levels are composed of motor unit action
vide an important source of information for the diagnosis of potentials (MUAP's) generated by different motor units. The

neuromuscular disorders. In order to extract this information L . .
from EMG signals recorded at low to moderate force levels, it is motor unit is the smallest functional unit of the muscle that can

required: i) to identify the MUAP’s composing the EMG signal, i) b€ voluntarily activated. It consists of a group of muscle fibers
to classify MUAP's with similar shape, and iii) to decompose the all innervated from the same motor nerve. The MUAP shape
superimposed MUAP waveforms into their constituent MUAP's.  reflects the structural organization of the motor unit. With

For the classification of MUAP’s two different pattern recognition increasing muscle force the EMG signal shows an increase

techniques are presented: i) an artificial neural network (ANN) . . , - - -
technique based on unsupervised learning, using a modified " the number of activated MUAP’s recruited at increasing

version of the self-organizing feature maps (SOFM) algorithm firing rates, making it difficult for the neurophysiologist to
and learning vector quantization (LVQ) and ii) a statistical distinguish the individual MUAP waveforms. EMG signal

pattern recognition technique based on the Euclidean distance. decomposition and MUAP classification into groups of similar
A total of 1213 MUAP's obtained from 12 normal subjects, gpaneg provide important information for the assessment of

13 subjects suffering from myopathy, and 15 subjects suffering | hol h biecti f thi K i
from motor neuron disease were analyzed. The success rate for"€uromuscular pathology. The objective of this work is to

the ANN technique was 97.6% and for the statistical technique introduce two new pattern recognition techniques for the
95.3%. For the decomposition of the superimposed waveforms, classification of EMG signals.

a technique using crosscorrelation for MUAP's alignment, and a  Recent advances in computer technology have made
combination of Euclidean distance and area measures in order automated EMG analysis feasible. Although a number of
to classify the decomposed waveforms is presented. The succesS e . .
rate for the decomposition procedure was 900/0 C0mputel’-based quant'tat've EMG anaIyS|S a|gorltth have
been developed, some of them commercially available,
practically none of them have gained wide acceptance for
extensive routine clinical use. Most importantly, there are no
uniform international criteria neither for pattern recognition

[. INTRODUCTION of similar MUAP’s nor for MUAP feature extraction [1],

HERE are more than 100 neuromuscular disorders tHgt- A brief survey of quantitative EMG studies carried

affect the brain and spinal cord, nerves, or muscledut during the last two decades follows. LeFever and
Many of these diseases are hereditary and life expectafiR§luca [3], [4] used a special three-channel recording
of many sufferers is considerably reduced. Early detectiectrode and a hybrid visual-computer decomposition scheme
and diagnosis of these diseases by clinical examination diped on template matching and firing statistics for MUAP
laboratory tests is essential for their management as widientification. Stalberget al, in their original system, used
as their prevention through prenatal diagnosis and geneti@veform template matching [S], whereas more recently in
counselling. Such information is also useful in research whi¢heir system called multiple motor unit potentials (multi-
may lead to the understanding of the nature and event®¥P), they used different shape parameters as input to a
treatment of these diseases. Laboratory investigations incliggplate matching technique [6]. Guihenetal. [7] classified
neurophysiological tests, nerve and muscle biopsies, biochdlJAP’s at low levels of voluntary contraction through
ical analysis, and more recently DNA analysis for the locafomparison of shape parameters. Coatrietxal. [8] used
ization and identification of genes. Electromyographic (EM@)oth hierarchical and nonhierarchical clustering techniques for
examination studies the electrical activity of the muscle addUAP classification. McGillet al.[9] developed the automatic

forms a valuable neurophysiological test for the assessmégcomposition electromyography (ADEMG) system that used
template matching and a specific alignment algorithm for
classification. Andreassen [10] followed as closely as possible
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required some operator intervention. Haas and Meyer [13],In this work, two different pattern recognition techniques
in their system called automatic recognition and tracking efere developed to classify MUAP’s: i) An unsupervised
motor unit potentials (ARTMUP) used a hierarchical clusterinigarning ANN using a modified version of the Kohonen self-
method, followed by a two-stage decomposition. Pattigtis organizing feature maps (SOFM) algorithm in conjunction
al. [14], [15] used MUAP parameters as input to a sequentiaith learning vector quantization (LVQ) [21]. The additional
parametric pattern recognition classifier. Loudeial. [16] use of the LVQ aims to improve the classification performance
used eight MUAP features as input to a statistical pattehy slight adaptation of the classification boundaries. The pro-
recognition technique for classification. The decomposition pbsed algorithm requires only one learning epoch for training
superimposed waveforms used a combination of procedusaid is, therefore, fast and suitable for real-time applications.
and knowledge-based methods. Finally Hassetiral. [17], ii) A statistical pattern recognition technique based on the
[18] in their system called neural network extraction oEuclidean distance. The objective is to develop an accurate,
repetitive vectors for electromyography (NNERVE) used th&@mple, fast and reliable system which can perform well even
time domain waveform as input to a three-layer artificiakith a limited amount of data. Furthermore, an algorithm
neural network (ANN) with a “pseudounsupervised” learninépr the decomposition of superimposed MUAP waveforms
algorithm for classification. is presented using: i) crosscorrelation of each of the unique
There are several limitations in the existing quantitativillUAP waveforms, obtained by the classification process, with
EMG analysis methods which limit their wider applicabilityeach of the superimposed waveforms in order to find the best
in clinical practice. The need for operator intervention amatching point and ii) a combination of Euclidean distance
manually adjusted parameters prevents the implementationaofl area measures in order to classify the components of the
a fully automated process. The use of special electrodesdscomposed waveform. The system is intended to decompose
special equipment makes it difficult to adapt the method in t&MG signals at low to moderate force levels where the number
usual clinical environment. Methods that use firing statistics 86 MUAP’s present is 2—-6. The proposed techniques were
a classification criterion will fail in the case of irregular firingsuccessfully applied in the classification and decomposition
patterns as they may be recorded in several diseases. SingflEMG signals recorded from normal (NOR) subjects and
template matching techniques for classification are rath&ubjects suffering from motor neuron disease (MND) and
inflexible because of using a fixed threshold and they withyopathy (MYO). Preliminary results using the algorithms
be less successful in case of high signal variability. Becaudescribed in this work were reported earlier in a conference
noise and variability are inherent in EMG signals, especially fpaper [22].
the case of pathology, the use of adaptive pattern recognitionThe paper is organized as follows. Section Il presents the
techniques is necessary. ANN appear to be attractive f@r0 new pattern recognition techniques, the decomposition
the solution of such a problem because of their followingf the superimposed waveforms, and the measurement of
properties: i) they exhibit adaptation or learning, i) they pursube MUAP parameters. Section Ill covers the results and
multiple hypothesis in parallel, i) may be fault tolerant, iv)Section IV the discussion.
may process degraded or incomplete data, v) make no assump-
tions about underlying data probability density functions, and . METHOD

vi) may create complex classification boundaries [19]. The the proposed system consists of the following modules:
adaptive ANN classification system proposed by Hast@h ) gata acquisition and preprocessing, i) segmentation, iii)
[17], [18], used a customized error backpropagation algorithiihssification, iv) decomposition of superimposed waveforms,

in a three-layer network where the input vector served algpy ) parameter measurement. Fig. 1 illustrates the system
as the target vector. The network was expected to diSCOYRf\chart.

the most often appearing MUAP waveforms after the input
waveforms were presented to the network several times. This
system used a rather complicated network architecture with

many layers which required many learing epochs, makingThe EMG signal was recorded from the biceps brachii
the method computationally demanding. muscle at low to moderate force levels up to 30% of maximum

The classification of MUAP's into groups of similar Shapeg_oluntary contraction (MVC) under isometric conditions. The

is a typical case of an unsupervised learning pattern recoghign@ was acquired for 5 s, using the concentric needle
tion problem. In the ANN supervised learning paradigm, Llectrode. The signal was analpgue bandpass. filtered at 3-10
in error backpropagation, the network is trained by providinff1Z: @nd sampled at 20 kHz with 12-b resolution. The EMG

it with pairs of input and matching output patterns. Since ipignal was then low-pass filtered at 8 kHz.

EMG there is no such priori knowledge of the MUAP classes
composing the EMG signal, supervised learning as such canRo
be used. In unsupervised learning or self-organization, anThe next step is to cut the EMG signal into segments of
output unit is trained to respond to clusters of similar patterp®ssible MUAP waveforms and eliminate areas of low activity.
within the input. In this learning paradigm, there is no foreharithe segmentation algorithm calculates a threshold depending
knowledge of correctly labeled (classified) inputs, but then the maximum valuewax;{z;} and the mean absolute value
system is expected to discover statistically salient features(af' L) >/, |x;| of the whole EMG signal. Peaks over the
the input population [20]. calculated threshold@™ are considered as candidate MUAP's.

Data Acquisition and Preprocessing

tSegmentation
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Fig. 1. Flowchart of the EMG classification and decomposition system.
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Fig. 2. Raw EMG signal. Peaks over threshold are considered as candidate 0
MUAP’s.
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A window with a constant length of 120 sampling points (i.e., _gg
6 ms at 20 kHz) is applied centerd at the identified peak. If

a greater peak is found in the window, the window is centerd -150
at the greater peak; otherwise the 120 points are saved as a
candidate MUAP waveform. The threshold T is calculated as -2000
follows:

L L
. 30 ) Fig. 3. Segmented EMG signal in segments of 6 ms and centered at
it max{a;} > — > lzil, thenT = I > Ll maximum poak ’ ’
=1

i=1
else7 = max{z;}/5
¢ C. Classification
where z; represents the discrete input values ands the The segmented EMG signals are processed in order to
number of samples in the 5 s EMG signal. The threstoid identify groups of similar MUAP’s and to separate superim-
allowed to take values between 30 and 180 The reason for posed ones. In this work two different methods for MUAP
using the mean signal value is that due to occasional recordinggssification are presented: a neural-network-based pattern
of artifacts, the maximum value of the recorded signal magcognition technique using unsupervised learning, and a sta-
exceed significantly a valid amplitude of the EMG signal andistical technique using the Euclidean distance.
therefore, the maximum signal value can not be used alorig Neural-Network Pattern Recognition Techniqu&:single-
for setting the threshold. Potentials with an amplitude increaksgyer neural network is used for the identification and grouping
(minimum to maximum) of less than 40V in 0.1 ms are of similar MUAP’s and separation of superimposed wave-
rejected as not valid MUAP’s. The computed thresh@ld forms. The developed ANN architecture is composed of 120
for the segmentation of the EMG signal was introduced ioput nodes and eight output nodes. The selected number of
accommodate the wide range in amplitude variations in tle@ght output nodes is considered to be satisfactory since the
recorded EMG signal. It is noted that there is no standardizedhximum number of MUAP’s that can be identified with
procedure for estimating the threshold level: Dorfman anteedle EMG at low to moderate force levels is at most five
McGill [2] mentioned an amplitude threshold of 20—, or six. The classification procedure is implemented in three
Stalberget al.[6] used a 30»V threshold, whereas Andreassemhases. In the first phase, unsupervised learning is applied
[10] used an amplitude threshold in excess of /80. The based on a modified one-dimensional self-organizing feature
range of 7" used in this study worked satisfactorily on thenap (Kohonen) [21] and competitive learning. In the second
1213 MUAP’s analyzed. phase, in order to improve classification performance, the
A typical EMG recording is given in Fig. 2, and thelearning vector quantization method (LVQ2 by Kohonen) [21],
segmented signal waveforms are shown in Fig. 3. is applied in a (self) supervised learning manner. In the third
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phase, the actual classification takes place. It should be noted
that in each learning phase the input is presented to the
network only once, for only one learning epoch. This makes
the algorithm fast and suitable for real-time applications.

a) Self-organizing feature map (SOFM)—Learning
phase 1: The objective of this phase is to provide a firstu
“approximate” quantization of the input space (Voronoi
vectors) by adapting the weight vectors of the neurons in
the feature map [19]-[21], [23]. A problem with SOFM when
the weights are initialized at small random values is that
such initialization may give different results at different runs.
This is undesired when trying to evaluate and optimize the
performance of the algorithm or when the physician wants to
review the classification results. In order to avoid this problem,
the weights of the output nodes are not initialized at small
random values but at 0.0001, except for the weights of the fifth
output node which are initialized at 0.01 times the amplitude
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values of the first segmented input. This leads to the result that Output node number &

at the first iteration, the fifth output node is always the winnetig. 4. Adaptation of the learning ratg, at the output nodek at different
since the distancesctalculated as described in Step 2 has tH‘?rations as given in (3) (witg = 1). Itis illustrated that the neighborhood

I | Th h | ificati | | hy is getting narrower with the number of iterationsas well ash;,
smallest value. Thus, the classification results are always Ha@reases depending on the number of times an output hddeselected

same and the classes are assigned to the same output nadiesr. For example, at= 1 the output node 5 is the winner ang = 1,

for different runs. The fifth node was selected since it is iféreas for the neighboring nodés = hs = 0.6, hs = k7 = 0.13,

. . . an hg = hg = 001‘ att = 2, /7,5 = 0.7, h4 = h(; = 0.27; at

the middle of the output nodes in order to preserve the idea;oL 4. 5, = 0.58, hy = he = 0.08, etc.
the neighborhood. The implementation steps are as follows.

Step 1: Initialize weights at 0.0001, except the weights 0\];veights of the specific nodeare not adapted, since the change

the fifth output node which are initialized at values equal to . . - A ;
. . . in the weights vector will be minimal. This is implemented in
0.01 times the values of the first segmented input.

Step 2: Calculate distances between the input veetoand order to §ave computation time. .
. Step 4: Go to Step 2 and repeat for all segmented inputs.
weight vectorsw;;, for each output nodé

After all inputs are presented to the network, the first

N adaptation of the weights vector is completed and the system
dy = Z(xi —wiy)? wherek =1,---,8andN = 120. proceeds to the second learning phase. Fig. 4 illustrates the
P adaptation of the learning ratk; at the output nodes:

(1) at different iterations as given in (3) (with = 1). It is
illustrated that the neighborhood 6f; is getting narrower as
The output node with minimum distance is the winner. the number of iterations increases. The learning ratg gets
Step 3: Adapt the weights. The weights for each outputs higher value for the winning nodé = %.,), whereas it gets
node k and for eachi are adapted with significantly smaller values for the rest of the output nodes in
the neighborhood. At the same time, decreases depending
on the number of times an output nodés selected winner.
b) Learning vector quantization (LVQ)—Learning
The learning rateh; is a Gaussian function that getsphase 2: The task of this phase is to adapt the weights
narrower with the number of iteratiomswhich means that the vectors slightly (move Voronoi vectors) in order to improve
adaptation of the nodes neighboring to the winner decreasi® classification performance [19], [21]. LVQ is actually
The learning rate is also frequency sensitive for each outgutsupervised learning technique, i.e., it demands forehand
neuron, which means that it gets smaller the more oftenkaowledge of correctly labeled (classified) inputs. Since such
neuron is selected as a winner knowledge is not available, it is assumed that the adaptation
carried out during the first learning phase is correct and,
thus, the segmented inputs will be correctly classified. Weight
adaptation and winner selection is again on-going as described
where0 < g < 1,k, is the winner nodet is the number of in learning phase 1. In this modified version of LVQ2 the
iterations, andy,, is the number of times the specific node ismplementation steps are:
selected as the winner. Setting the initial valugyef 1 forces Step 1: Use the values of the weight vectors as obtained
the network to fast learning even with a limited amount of datdom learning phase 1.
When an output node is selected winner for the first time (i.e.,Step 2: Present input and calculate distancis between
a new class is identified), the factty,, = 1 and the learning the input vector:; and weight vectors;;;, for each output node
ratehy = 1 for k = k,,. If the calculatedh;, < 0.005, then the £ as in (1). The output node with the minimum distan&e

hie = gexp(—(k — ko) ’t/2) [V brw ©)
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Fig. 5. MUAP’s with similar shapes classified into three different classes.

is the first winnerk1 and the output node with the following The physical meaning ofl.,/lx., IS that the greater its

minimum distanced» is the second winnek2. value the greater the dissimilarity between the waveforms.
Step 3: Adapt weights. The weights for the first winner Step 3: Go to Step 2 and repeat for all segmented inputs.
output nodek1 are adapted with Step 4: If the number of members in a class is three
wig (£ +1) :wikl(t)+hkl($i _wikl(t)) (4) or more, the averaged MUAP waveform is computed and

a valid MUAP class is identified; otherwise, the MUAP
waveforms are saved with the superimposed waveforms for
wikg(t—i- 1) = wikg(t) — 0.1(dk1/dk2)hk1 (a:z —wikg(t)). (5) decomposition.

The learning ratehy, is initialized to 0.2 and decreases Fig. 5 illustrates the classification results of the segmented

linearly with the number of timeg.., the specific nodes1 EMG signal given in Fig. 3 where MUAP's with similar
is selected as the first winner shapes are classified into three different classes.

2) Statistical Pattern Recognition Techniquin this itera-
hiy = 0.2 — 0.01t14- (6) tive procedure the Euclidean distance is used in order to
If hyy <0, thenhy, = 0. identify and group similar waveforms using a constant thresh-

In other words, the weight vectom;., with the correct ©!d- The implementation steps are the following:
label (first winner) is moved toward the input vector while the Step 1: Start with the first wavefornx as input, being the
weight vectorw;, with the incorrect label (second winner) isli'St member of the class. _
moved away from it. The factaf; /dj. is used for controlling Step 2: Ca]culate the vector length of the input waveform
the adaptation of the second winner: if the input veatpis * and the distance between and all the other segmented
close to the decision boundaries defined by the two winne¥4aveformsy as
the factord,;/dy. takes a greater value moving the second N
winner .far away from the input vector;; otherwise the I, = fo whereN = 120 (8)
adaptation is smaller. P

Step 4: Go to Step 2 and repeat for all segmented inputs.

After all inputs are presented to the network, the networknd
is trained and the actual classification process starts. N

c¢) Classification phasein this phase all the input vectors d. = Z(” — )2 (9)

will be classified to one of the output nodes and the superim- “ RS
posed waveforms will be separated. The implementation steps
are the following: Step 3: Find the waveformy with the minimum distance

Step 1: Calculate distanceg. between the input vectar;  which is the one with the greatest similarity witrand remove
and the weight vectors;;, as in (1). The output nodew with it from the input data set.
the minimum distancey., is the winner. Step 4: Sliding and baseline correction. First slide the

Step 2: In order to separate the superimposed waveformgaveformy with minimum distance up to two points backward
from simple, nonoverlapping MUAP waveforms, the lengtlnd up to two points forward in order to find the best alignment
Ix Of the weight vector of the winner nodev is calculated position. Recalculate the distangg, for each case and assign

and for the second winné&t2 with

i=1

as the sum of the squares of its vector values the smallest ad,,;,,. Then, using the beginning and the ending
N parts of the MUAP waveforms, calculate baseline correction
I = D Wy (7) bec as
=1

10 N 10 N
If dgw /lkw < 0.2, then the input is assigned to the MUAP  be = <Z yi + Z Y — sz - Z a:z> /20. (10)
class of the winner node =1 i=N-9 =1 i=N-9

else, the input is considered as a Subtractbe from waveformy and recalculate distancg,,
superimposed waveform with z. If it is smaller thand,,.;,,, assign it as the new,,;,.
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Step 5:

If dipin/l < 0.125,

then addy to class, calculate class
average and assign class
average to input;

else, if number of class member2,

then form a MUAP class;

else, class members are superimposed
assign waveformy to inputz;

go to Step 2
. . . 0 i
If the minimum distance divided by the vector length of the 0 10 EY Y 40 50 g0 70 80
first waveform is less than a constant threshold, set to 0.125, MUAPs order

then the two waveforms form a class. Then the class aver_ageiéﬁ 6. MUAP waveforms ordered according to their similarity. MUAP's
calculated and the procedure is repeated (go to Step 2 with 8 duin /1. <0.125 are grouped together into three different classes.
class average as input) comparing the class average now with

al thg rest wav.eforms in order to f.|r.1d the next wavgfqrm Withas gained wider acceptance outside the laboratory of origin
the minimum distance. If the condition above is satisfied, thef

f is added to the cl q | (hd there are no standardized criteria for performing decompo-
a ne\:v V\I/a;/edorm(;s adde |fo tet?l assanda ntew C z_afstshavelrgggn analysis. In this study, a simple decomposition procedure
IS caiculated, and so on. 1T not, the process stops, It the ¢ Efgﬁntroduced, where the decomposition algorithm is based on
members are more than or equal to three, then a MUAP cl

is f d and it q ¢ . 4 If th | 8 crosscorrelation of the unigue MUAP waveforms with
IS formed and Its averaged waveform IS saved. €y aré 16xa superimposed waveforms. It is assumed that the correct

than three, they are considereq as superimposed. Waveform,ﬁque MUAP waveforms composing the superimposed ones
The process continues where it stopped comparing the | 8L known through one of the previous classification processes.
h

encountered waveform with all the remaining ones until %g Euclidean distance and area measures are combined in a

waveforms are processed. The baseline correction was appH ristic way for decomposing the superimposed waveforms.
selectively only to the waveform with the greatest similarity The decomposition steps are as follows

to the reference waveform and it was applied only if the

dist bet du with baseli i I Step 1: For each unique MUAP waveform, extract the main
Istance between andy with basefine correction was sma erp rt of the MUAP that contains the main spike as follows:
than the distance without baseline correction. The use

: . L duce the unigue MUAP lengths by dropping the beginning
baseline and slide correction improved the performance of t g ending parts of the waveform that are less than 1/15 of the
statistical pattern recognition technique by 5% as documem@qjjAP amplitude (minimum to maximum). The 1/15 of the

U

in Section Ill. Threshold values were chosen heuristical AP amplitude is an estimate of the beginning and ending

after extensive testing. It is .not.ed that ggajn there are Bints of the MUAP main spike. This is critical in order to
widely applicable threshold criteria for assigning a MUAP t rosscorrelate only the most important part of the MUAP.
a class. The value of 0.125 used in Step 5 was also used b%tep 2: Select a superimposed waveform

Anldreassen [I'ltO]. l\-/lrsl,il;{hrle ShOId.t;]Sh‘.:r'ﬁcal befcause a qu:_?”erStep 3: Crosscorrelate each reduced MUAP with the super-
value may spiita class with high wavetorm vanabiiity, , , e waveforme and find the best matching point, i.e., the
in two or more subclasses, whereas a greater threshold v

Yt where the crosscorrelation coefficient takes its maximum
may merge resembling MUAP classes. The averaged cl

waveforms are again the unique MUAP waveforms compos:ingS
the EMG signal. Fig. 6 illustrates how the segmented Signé‘h
waveforms of Fig. 3 are ordered according to their similaritgI
and how classes are formed whedg,, /I, <0.125. The
MUAP classes are similar to the classes formed by the AN
pattern recognition technique in Fig. 5.

tep 4: For each matching pair calculate the normalized
clidean distance, the area difference, and a varying thresh-
d. The normalized Euclidean distan¢&’d) is the sum of
uares of the values obtained by the subtraction of the reduced
UAP waveform c from the superimposed wavefornfor

the reduced MUAP lengtldZ, divided by the sum of squares

N ) of the reduced MUAP vector values
D. Decomposition of Superimposed Waveforms

The needle EMG signal recorded even at low to moderate M ) M )
force levels, contains superimposed potentials. It is important Nd=> (zi—c)? [ Y . (11)
for correct firing rate analysis to identify as many MUAP’s i=1 i=1

as possible through decomposition of the superimposed wave-

forms into their constituent MUAP’s. Although many studies The average area differendeld) is the average of the
have been published tackling the problem of EMG signabsolute values obtained by the subtraction of the reduced
decomposition [3], [4], [7], [9], [12], [13], [16]-[18], no one MUAP from the superimposed waveform for the reduced
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Fig. 7. Decomposition of a superimposed waveform into its three constituent MUAP’s. (a) Original superimposed waveform, (b) decomposed from MUAP
class 5A, (c) decomposed from MUAP class 3A, (d) decomposed from MUAP class 4A, and (e) residual signal.

MUAP length duration is in most of the cases longer than 6 ms and the

signal expansion is, therefore, necessary for a correct duration
and the other parameter measurement. In order to eliminate
discrepancies from the class average due to superpositions in
the expanded window, the average and the standard deviation
(SD) for each sampling point of all MUAP’s in a class are

M
Ad ="l — ¢l /M. (12)
=1

The varying area threshold@’) is defined as

M calculated. Values of points beyongl SD from the average
Th=0b+ az |ci| /M (13) are excluded from computing the class average [6]. For each
i=1 25-ms-long averaged MUAP waveform baseline correction is

whereb anda are constants with = 4 anda = 0.5. calculated as follows: Starting from the center of the MUAP

Equation (13) was derived empirically to maximize thd/aveform a measurement window 2-ms long and.10Ohigh
success rate of the decomposition algorithm. is slid toward the beginning of the waveform until the signal is

Step 5: The best matching MUAP is identified as the ongompletely enclosed in it. The beginning point for the baseline
with min{Ndx Ad)/(Thx M)} and is classified as belongingcorrection is the middle of the window. The ending point for
to the reduced MUAP class iNd < 0.2 or (Ad <Th and the baseline correction is calculated in a similar way. The
Nd<0.5). If not classified, the next superimposed waveforverage of the MUAP signal to the left of the beginning point
is fed in (go to Step 2). and the right of the ending point, is calculated and subtracted

Step 6: The best matching MUAP, if classified in Step 5, ifrom the waveform. For each MUAP waveform the following
subtracted from the superimposed waveform. The so obtairgatameters are measured.

new waveform is fed in for a next cycle (go to Step 2) until no Amplitude: Amplitude difference between maximum nega-
other MUAP is identified or the maximum waveform value is tive and minimum positive peaks.

less than 30uV. Duration: Starting from the beginning of the MUAP wave-
Step 7: Complete firing rate table with the newly identified form find the first point where the signal is

MUAP’s. greater than a threshold equal to 1/15 of the
Fig. 7 shows the decomposition of a superimposed wave- amplitude. The threshold is allowed to take

form into its three constituent MUAP’s given in Fig. 5.

E. Parameter Measurement

For all classified MUAP waveforms, the 6-ms-long MUAP
segments are expanded to 25 ms on the original EMG sig-
nal where the position of the identified MUAP peak was
marked during segmentation. The rationale is that the MUAP

values betweer-10 and+20 V. This allows

the algorithm to identify the waveform areas
close to which the MUAP beginning and ending
points are expected to be found. It is also
noted that threshold values in this range were
used by Stalbergt al. [1]. Starting from that

point and moving backward to the beginning
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CLASSIFICATION SUCCESSRATE OF THE THREE ALGORITHMS (IN BR/I:AKEIT_ETLE NuMBER OF IDENTIFIED CLASSES TO TOTAL NUMBER OF CLASSES
Subjects (Nr) SOFM with LYQ SOFM Statistical
NOR (12) (358/362) 98.89% (355/362) 98.07% (359/362) 99.17%
MYO (13) (382/387) 98.71% (368/387) 95.09% (373/387) 96.38%
MND (15) (444/464) 95.69% (427/464) 92.03% (424/464) 91.38%
TOTAL: (1184/1213) 97.61% (1150/1213) 94.81% (1156/1213) 95.30%

Amp=169 uV, Dur=5.85 ms, Area=1212 uV"ms Amp=231V, Dur=3.90 ms, Area=75.2 ww*ms  Only subjects with no history or signs of neuromuscular

1 S I disorders were considered as normal. Table | shows the clas-
sification success rate on 1213 MUAP'’s, obtained from 576
EMG recordings. The classification success rate was defined as
the percentage ratio of the correctly identified MUAP classes

200} -+ b 200} by the algorithm and the number of true MUAP classes present
5 10 15 20 25 5 10 15 20 25 in the signal as identified by an experienced neurophysiologist.
RsT=0.25 ms, Phases=4, Turns=4, [ms] RsT=0.20 ms, Phases=2, Turns= 3, [ms]

Amp=450 uV. DUI=5.00 ms, Area=214.7 wV"ms The average success rate for the SOFM with LVQ algorithm

‘ T was 97.6%, for the SOFM algorithm alone 94.8%, and for
the statistical pattern recognition algorithm 95.3%. The ANN
technique also yielded good results without the LVQ learning
phase. Examining the classification success rate for each class,

100

uv
53

-100

200 ,,,,,, ,,,,, ...... the highest success rate was obtained for the NOR group and
ST s a0 28 the lowest for the MND group. This was the case for all three
ReT=0.25 ms, Phases=4, Tums=5, [ms] algorithms. The lowest success rate for the MND group is
Fig. 8. Average MUAP waveforms expanded to 25 ms with the calculat@triouted to the more complex and variable waveform shapes.
parameters. Also, as shown in Table I, the SOFM with LVQ algorithm

improved significantly the success rate for the MND group
of the waveform, a measurement window 1 msompared to the other two algorithms. The statistical algorithm
long and 104V high is slid until the signal gave the highest success rate for the NOR group and the lowest
is completely enclosed in it. The point in thefor the MND group compared to the other two algorithms.
window closer to the baseline is the MUAPThe use of slide and baseline correction in the statistical
beginning point. The MUAP ending point istechnique improved the classification success rate by about
calculated in a similar way. The duration of596. In general, where all three algorithms failed to identify
the MUAP is the time interval between MUAP g MUAP class, it was because of inadequate number of class

beginning and ending points. members in the signal and due to waveform variability. In
Area: Rectified MUAP integrated over the calculatedome rare cases MUAP classes with very similar shapes were
duration. grouped together. Downsampling the signal by a factor of two

Rise Time:Time between maximum negative peak and thg 10 kHz, saved computation time but reduced the success rate
preceding minimum positive peak within thepy ahout 1.5% in all cases. The very small reduction in the
duration. . . . success rate, is attributed to the fact that approximately 95%

Phases: Number of basel!ne crossings within the durags the power content of the whole population of MUAP’s
tion where amplitude exceed&25 nV, plus jyyestigated falls below 2500 Hz [24]. Thus, downsampling

one. - _ the EMG signal by two, it minimally affects the information
Turns: Number of positive and negative peaks whergynient of the signal.

the differences from the preceding and follow- gqr the decomposition of the superimposed waveforms,

ing turn exceed 25:V. the algorithm correctly identified about 90% of the MUAP
Fig. 8 displays the expanded MUAP waveforms of Fig. §ccurrences in the superimposed waveforms. Fig. 7 illustrates
with the calculated parameters. an example where a superimposed waveform composed of

three different MUAP’s was successfully decomposed.
lll. RESULTS MATLAB was used for implementing the above algorithms.

EMG data collected from 40 subjects were analyzed usifdie processing time on a PC Pentium 233 MHz for a 5-s
the pattern recognition techniques described in Section Il. D&poch EMG signal with 77 waveforms was about 0.5 s for the
were recorded from 12 normal (NOR) subjects, 13 subjectegmentation and about 0.6 s for the classification with SOFM
suffering from myopathy (MYO) and 15 subjects sufferingvith LVQ, 0.4 s for SOFM, and 1 s for the statistical technique.
from motor neuron disease (MND). Diagnostic criteria werghe processing time for the decomposition of each superim-
based on clinical opinion, biochemical data and muscle biopgposed waveform with three classes was about 0.02 s. Since
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MATLAB is an interpreter, all the timings may be significantlynot frequency sensitive, whereas in competitive learning only
improved by the use of a compiled version of the algorithmthe first winner is adapted (winner takes it all). The “pseudoun-
supervised” learning algorithm as proposed by Hasstual.
[17], [18] has a complicated network architecture, requires
IV. DiscussIiON many learning epochs, and is computationally demanding.

The decomposition of real EMG Signa|s into their con- The statistical technique utilized in this StUdy has the
stituent MUAP’s and their classification into groups of similaglisadvantage of using a constant threshold for classification
shapes is a typical case of an unsupervised learning pattélat makes it less flexible, especially when the signal is noisy
recognition problem. The number of MUAP classes composi@jid with high variability. This has as a result that during the
the EMG signal, the number of MUAP’s per class, their firinglassification phase less MUAP occurrences are identified in
pattern, and the expected shape of the MUAP waveforms &@mparison to the ANN technique. Also, the computational
unknown. The problem gets even more difficult because e increases geometrically with the amount of processed
MUAP waveform variability, jitter of single fiber potentials,data. On the other hand, the number of classes which can be
and MUAP superpositions. Any automated method for EM@etected by the statistical technique is unlimited depending
analysis should require no operator intervention; should B&ly on the number of actual MUAP classes existing in the
fast, robust and reliable; and achieve high success rate in ordighal. A similar approach was used by Loudenal. [16],
to be of clinical use. Most of the previous methods brieflyith the difference that waveforms were compared with the
described in Section | used mainly template matching whidfst encountered waveform instead of the group average which
requires a predetermination of the classification boundari@sly lead to less accurate classification results.
and may fail to detect classes with insufficient frequency of It was also observed in both techniques that often, due to
MUAP repetitions and MUAP’s with high shape variability.waveform variability, MUAP classes coming from the same
Also, the need for operator intervention, especially in sonfgotor unit, although they looked similar, were not grouped
of the earlier works on the topic [3], [4], and long processintpgether. Merging of these classes can be achieved by: i)
time make their applicability in routine clinical environment!sing the firing statistics after the decomposition process or ii)
difficult, although a high success rate has been reported. Using the statistical pattern recognition technique in a second

In this work, two different pattern recognition techniques foiteration with a greater constant threshal¢ 0.3) and the
the classification of MUAP’s were investigated: i) an artificiaRveraged class waveforms as input.
neural network technique based on unsupervised learningAnother concern is the selection of the length of the
using modified SOFM and LVQ, and ii) a statistical patterfégmentation window. In this work the 6-ms-long window
recognition technique based on the Euclidean distance. B¥tAS chosen as covering the main MUAP spike duration in
pattern recognition techniques described are quite simpleMest of the disease cases. A shorter window would fail to
their concepts, and gave a high success rate. The ANN te€Rntain the main MUAP spike in the case of motor neuron
nique performed better than the statistical pattern recognitidigease where MUAP's usually have a much longer duration.
technique and yielded a higher success rate. ANN's sediis would cause the classification algorithms to fail or would
more appropriate for the classification of MUAP’s becaugd!t a long polyphasic MUAP into two artificial potentials.
of their ability to adapt and to create complex classificatioRn the other hand, a shorter segmentation window would
boundaries. The additional use of the LVQ algorithm witkesult in the identification of more potential occurrences during
the SOFM algorithm optimizes the classification boundariége classification process in the case of normal or myopathic
through slight adaptation of the weights vectors. The resgignals, since only the main spike would be included. The
of this process is twofold: i) MUAP’s with high variability decomposition of the superimposed waveforms complements
which during the first learning phase were sorted out #ais drawback in this work.
superimposed, to be moved into the MUAP waveform classes,The time domain vector of the segmented signal was used
and ii) multiple classes of the same MUAP to be merge@s input to the classification algorithms without any normal-
The improvement of the classification performance is cleargation. This proved to give better results than the frequency
demonstrated in the case of the MND group which contaif@main vector [25] or the use of features characterizing the
MUAP’s with more complex and variable waveform shapes&ignal. This is due to the relatively simple shapes of the MUAP
where the classification success rate of the SOFM with tM@veforms as these may still be identified at low to moderate
LVQ a|gorithm was Considerab|y h|gher Compared to th@rce levels. Furthermore, the results in this study can be
statistical one. The combination of SOFM with LVQ for finecompared with a parametric pattern recognition algorithm
tuning of the network was also used successfully in spee¢here MUAP parameters were input to the classifier [14],
recognition [21]. Moreover, the ANN technique presented ii#5] and which was evaluated with the same data set. The
this study performed well even with a limited amount of datélassification performance was poorer but the algorithm was
and achieved fast learning in only one epoch. Standard SOERMputationally more efficient since the dimension of the input
and standard competitive learning algorithms, investigated fégctor was significantly reduced.
the same real data, required a much greater number of learnin§everal new ideas were introduced in this work in order to
epochs in order to converge. The difference between tieprove the performance of the algorithms.

SOFM algorithm implemented in this study and the standard1) Learning achieved in only one epoch in the SOFM and
SOFM [21] is that in the standard SOFM the learning rate is  LVQ algorithms.
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2) The learning rate in the SOFM algorithm features thii]
following characteristics: a) it is frequency sensitiv?l]
i.e., it decreases its value depending on the number 0%
times an output node is selected winner and b) it gets
narrower as the number of iterations increases (i.e.,[?'l?>
gets its higher value for the winning node where it gets
significantly smaller values for the rest of the outputs
nodes in the neighborhood). [14]
The factordy; /dy2 in the LVQ algorithm in order to [15]
optimize the adaptation of the weights vector of the
second winner. [16]
The threshold in the classification phase of the ANN
technique in order to separate the superimposed wa\f%-]
forms.

The combination of Euclidean distance and area mea-
sures in the decomposition of the superimposed anﬁé]
forms in order to classify the decomposed waveforms.

In conclusion, the pattern recognition technigques as d 9
scribed in this work make possible the development of a ful
automated EMG signal analysis system which is accurafeql
simple, fast, and reliable enough to be used in routine C"le]
ical environment. Future work will evaluate the algorithms
developed in this study on EMG data recorded from moté?]
muscles and more subjects. In addition, this system may be
integrated into a hybrid diagnostic system for neuromuscular
diseases based on ANN where EMG [15], muscle biopsk3]
biochemical and molecular genetic findings, and clinical dafgy,
may be combined to provide a diagnosis [26].

3)

4)

5)
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