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Unsupervided Pattern Recognition for
the Classification of EMG Signals

Christodoulos I. Christodoulou and Constantinos S. Pattichis,*Member, IEEE

Abstract—The shapes and firing rates of motor unit action
potentials (MUAP’s) in an electromyographic (EMG) signal pro-
vide an important source of information for the diagnosis of
neuromuscular disorders. In order to extract this information
from EMG signals recorded at low to moderate force levels, it is
required: i) to identify the MUAP’s composing the EMG signal, ii)
to classify MUAP’s with similar shape, and iii) to decompose the
superimposed MUAP waveforms into their constituent MUAP’s.
For the classification of MUAP’s two different pattern recognition
techniques are presented: i) an artificial neural network (ANN)
technique based on unsupervised learning, using a modified
version of the self-organizing feature maps (SOFM) algorithm
and learning vector quantization (LVQ) and ii) a statistical
pattern recognition technique based on the Euclidean distance.
A total of 1213 MUAP’s obtained from 12 normal subjects,
13 subjects suffering from myopathy, and 15 subjects suffering
from motor neuron disease were analyzed. The success rate for
the ANN technique was 97.6% and for the statistical technique
95.3%. For the decomposition of the superimposed waveforms,
a technique using crosscorrelation for MUAP’s alignment, and a
combination of Euclidean distance and area measures in order
to classify the decomposed waveforms is presented. The success
rate for the decomposition procedure was 90%.

Index Terms—Electromyography, motor unit action potentials,
neural networks, pattern recognition, unsupervised learning.

I. INTRODUCTION

T HERE are more than 100 neuromuscular disorders that
affect the brain and spinal cord, nerves, or muscles.

Many of these diseases are hereditary and life expectancy
of many sufferers is considerably reduced. Early detection
and diagnosis of these diseases by clinical examination and
laboratory tests is essential for their management as well
as their prevention through prenatal diagnosis and genetic
counselling. Such information is also useful in research which
may lead to the understanding of the nature and eventual
treatment of these diseases. Laboratory investigations include
neurophysiological tests, nerve and muscle biopsies, biochem-
ical analysis, and more recently DNA analysis for the local-
ization and identification of genes. Electromyographic (EMG)
examination studies the electrical activity of the muscle and
forms a valuable neurophysiological test for the assessment

Manuscript received June 6, 1996; revised February 16, 1998. This work
was supported in part by the Cyprus Institute of Neurology and Genetics,
Nicosia, Cyprus.Asterisk indicates corresponding author.

C. I. Christodoulou is with the Department of Electronic Engineering,
Queen Mary and Westfield College, University of London, London E1 4NS
U.K. He is also with the Cyprus Institute of Neurology and Genetics, Cyprus.

*C. S. Pattichis is with the Department of Computer Science, University of
Cyprus, 1678 Nicosia, Cyprus (e-mail: pattichi@turing.cs.ucy.ac.cy).

Publisher Item Identifier S 0018-9294(99)00826-5.

of neuromuscular disorders. EMG signals recorded at low
to moderate force levels are composed of motor unit action
potentials (MUAP’s) generated by different motor units. The
motor unit is the smallest functional unit of the muscle that can
be voluntarily activated. It consists of a group of muscle fibers
all innervated from the same motor nerve. The MUAP shape
reflects the structural organization of the motor unit. With
increasing muscle force the EMG signal shows an increase
in the number of activated MUAP’s recruited at increasing
firing rates, making it difficult for the neurophysiologist to
distinguish the individual MUAP waveforms. EMG signal
decomposition and MUAP classification into groups of similar
shapes provide important information for the assessment of
neuromuscular pathology. The objective of this work is to
introduce two new pattern recognition techniques for the
classification of EMG signals.

Recent advances in computer technology have made
automated EMG analysis feasible. Although a number of
computer-based quantitative EMG analysis algorithms have
been developed, some of them commercially available,
practically none of them have gained wide acceptance for
extensive routine clinical use. Most importantly, there are no
uniform international criteria neither for pattern recognition
of similar MUAP’s nor for MUAP feature extraction [1],
[2]. A brief survey of quantitative EMG studies carried
out during the last two decades follows. LeFever and
DeLuca [3], [4] used a special three-channel recording
electrode and a hybrid visual-computer decomposition scheme
based on template matching and firing statistics for MUAP
identification. Stalberget al., in their original system, used
waveform template matching [5], whereas more recently in
their system called multiple motor unit potentials (multi-
MUP), they used different shape parameters as input to a
template matching technique [6]. Guiheneucet al. [7] classified
MUAP’s at low levels of voluntary contraction through
comparison of shape parameters. Coatrieuxet al. [8] used
both hierarchical and nonhierarchical clustering techniques for
MUAP classification. McGillet al.[9] developed the automatic
decomposition electromyography (ADEMG) system that used
template matching and a specific alignment algorithm for
classification. Andreassen [10] followed as closely as possible
the manual method developed by Buchthal [11] also using
template matching with four templates for the recognition
of MUAP’s recorded at threshold contraction. Stashuk and
De Bruin [12] used a single-fiber EMG needle electrode
for signal acquisition and a template matching technique
similar to that of LeFever and DeLuca [3], [4], based on
power spectrum features and firing statistics. Their system
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required some operator intervention. Haas and Meyer [13],
in their system called automatic recognition and tracking of
motor unit potentials (ARTMUP) used a hierarchical clustering
method, followed by a two-stage decomposition. Pattichiset
al. [14], [15] used MUAP parameters as input to a sequential
parametric pattern recognition classifier. Loudonet al. [16]
used eight MUAP features as input to a statistical pattern
recognition technique for classification. The decomposition of
superimposed waveforms used a combination of procedural
and knowledge-based methods. Finally Hassounet al. [17],
[18] in their system called neural network extraction of
repetitive vectors for electromyography (NNERVE) used the
time domain waveform as input to a three-layer artificial
neural network (ANN) with a “pseudounsupervised” learning
algorithm for classification.

There are several limitations in the existing quantitative
EMG analysis methods which limit their wider applicability
in clinical practice. The need for operator intervention or
manually adjusted parameters prevents the implementation of
a fully automated process. The use of special electrodes or
special equipment makes it difficult to adapt the method in the
usual clinical environment. Methods that use firing statistics as
a classification criterion will fail in the case of irregular firing
patterns as they may be recorded in several diseases. Simple
template matching techniques for classification are rather
inflexible because of using a fixed threshold and they will
be less successful in case of high signal variability. Because
noise and variability are inherent in EMG signals, especially in
the case of pathology, the use of adaptive pattern recognition
techniques is necessary. ANN appear to be attractive for
the solution of such a problem because of their following
properties: i) they exhibit adaptation or learning, ii) they pursue
multiple hypothesis in parallel, iii) may be fault tolerant, iv)
may process degraded or incomplete data, v) make no assump-
tions about underlying data probability density functions, and
vi) may create complex classification boundaries [19]. The
adaptive ANN classification system proposed by Hassounet al.
[17], [18], used a customized error backpropagation algorithm
in a three-layer network where the input vector served also
as the target vector. The network was expected to discover
the most often appearing MUAP waveforms after the input
waveforms were presented to the network several times. This
system used a rather complicated network architecture with
many layers which required many learning epochs, making
the method computationally demanding.

The classification of MUAP’s into groups of similar shapes
is a typical case of an unsupervised learning pattern recogni-
tion problem. In the ANN supervised learning paradigm, as
in error backpropagation, the network is trained by providing
it with pairs of input and matching output patterns. Since in
EMG there is no sucha priori knowledge of the MUAP classes
composing the EMG signal, supervised learning as such cannot
be used. In unsupervised learning or self-organization, an
output unit is trained to respond to clusters of similar patterns
within the input. In this learning paradigm, there is no forehand
knowledge of correctly labeled (classified) inputs, but the
system is expected to discover statistically salient features of
the input population [20].

In this work, two different pattern recognition techniques
were developed to classify MUAP’s: i) An unsupervised
learning ANN using a modified version of the Kohonen self-
organizing feature maps (SOFM) algorithm in conjunction
with learning vector quantization (LVQ) [21]. The additional
use of the LVQ aims to improve the classification performance
by slight adaptation of the classification boundaries. The pro-
posed algorithm requires only one learning epoch for training
and is, therefore, fast and suitable for real-time applications.
ii) A statistical pattern recognition technique based on the
Euclidean distance. The objective is to develop an accurate,
simple, fast and reliable system which can perform well even
with a limited amount of data. Furthermore, an algorithm
for the decomposition of superimposed MUAP waveforms
is presented using: i) crosscorrelation of each of the unique
MUAP waveforms, obtained by the classification process, with
each of the superimposed waveforms in order to find the best
matching point and ii) a combination of Euclidean distance
and area measures in order to classify the components of the
decomposed waveform. The system is intended to decompose
EMG signals at low to moderate force levels where the number
of MUAP’s present is 2–6. The proposed techniques were
successfully applied in the classification and decomposition
of EMG signals recorded from normal (NOR) subjects and
subjects suffering from motor neuron disease (MND) and
myopathy (MYO). Preliminary results using the algorithms
described in this work were reported earlier in a conference
paper [22].

The paper is organized as follows. Section II presents the
two new pattern recognition techniques, the decomposition
of the superimposed waveforms, and the measurement of
the MUAP parameters. Section III covers the results and
Section IV the discussion.

II. M ETHOD

The proposed system consists of the following modules:
i) data acquisition and preprocessing, ii) segmentation, iii)
classification, iv) decomposition of superimposed waveforms,
and v) parameter measurement. Fig. 1 illustrates the system
flowchart.

A. Data Acquisition and Preprocessing

The EMG signal was recorded from the biceps brachii
muscle at low to moderate force levels up to 30% of maximum
voluntary contraction (MVC) under isometric conditions. The
signal was acquired for 5 s, using the concentric needle
electrode. The signal was analogue bandpass filtered at 3–10
kHz, and sampled at 20 kHz with 12-b resolution. The EMG
signal was then low-pass filtered at 8 kHz.

B. Segmentation

The next step is to cut the EMG signal into segments of
possible MUAP waveforms and eliminate areas of low activity.
The segmentation algorithm calculates a threshold depending
on the maximum value and the mean absolute value

of the whole EMG signal. Peaks over the
calculated threshold are considered as candidate MUAP’s.



CHRISTODOULOU AND PATTICHIS: CLASSIFICATION OF EMG SIGNALS 171

Fig. 1. Flowchart of the EMG classification and decomposition system.

Fig. 2. Raw EMG signal. Peaks over threshold are considered as candidate
MUAP’s.

A window with a constant length of 120 sampling points (i.e.,
6 ms at 20 kHz) is applied centerd at the identified peak. If
a greater peak is found in the window, the window is centerd
at the greater peak; otherwise the 120 points are saved as a
candidate MUAP waveform. The threshold T is calculated as
follows:

if then

else

where represents the discrete input values andis the
number of samples in the 5 s EMG signal. The thresholdis
allowed to take values between 30 and 100V. The reason for
using the mean signal value is that due to occasional recordings
of artifacts, the maximum value of the recorded signal may
exceed significantly a valid amplitude of the EMG signal and,
therefore, the maximum signal value can not be used alone
for setting the threshold. Potentials with an amplitude increase
(minimum to maximum) of less than 40V in 0.1 ms are
rejected as not valid MUAP’s. The computed threshold
for the segmentation of the EMG signal was introduced to
accommodate the wide range in amplitude variations in the
recorded EMG signal. It is noted that there is no standardized
procedure for estimating the threshold level: Dorfman and
McGill [2] mentioned an amplitude threshold of 20–50V,
Stalberget al. [6] used a 30-V threshold, whereas Andreassen
[10] used an amplitude threshold in excess of 50V. The
range of used in this study worked satisfactorily on the
1213 MUAP’s analyzed.

A typical EMG recording is given in Fig. 2, and the
segmented signal waveforms are shown in Fig. 3.

Fig. 3. Segmented EMG signal in segments of 6 ms and centered at
maximum peak.

C. Classification

The segmented EMG signals are processed in order to
identify groups of similar MUAP’s and to separate superim-
posed ones. In this work two different methods for MUAP
classification are presented: a neural-network-based pattern
recognition technique using unsupervised learning, and a sta-
tistical technique using the Euclidean distance.
1) Neural-Network Pattern Recognition Technique:A single-

layer neural network is used for the identification and grouping
of similar MUAP’s and separation of superimposed wave-
forms. The developed ANN architecture is composed of 120
input nodes and eight output nodes. The selected number of
eight output nodes is considered to be satisfactory since the
maximum number of MUAP’s that can be identified with
needle EMG at low to moderate force levels is at most five
or six. The classification procedure is implemented in three
phases. In the first phase, unsupervised learning is applied
based on a modified one-dimensional self-organizing feature
map (Kohonen) [21] and competitive learning. In the second
phase, in order to improve classification performance, the
learning vector quantization method (LVQ2 by Kohonen) [21],
is applied in a (self) supervised learning manner. In the third
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phase, the actual classification takes place. It should be noted
that in each learning phase the input is presented to the
network only once, for only one learning epoch. This makes
the algorithm fast and suitable for real-time applications.

a) Self-organizing feature map (SOFM)—Learning
phase 1: The objective of this phase is to provide a first
“approximate” quantization of the input space (Voronoi
vectors) by adapting the weight vectors of the neurons in
the feature map [19]–[21], [23]. A problem with SOFM when
the weights are initialized at small random values is that
such initialization may give different results at different runs.
This is undesired when trying to evaluate and optimize the
performance of the algorithm or when the physician wants to
review the classification results. In order to avoid this problem,
the weights of the output nodes are not initialized at small
random values but at 0.0001, except for the weights of the fifth
output node which are initialized at 0.01 times the amplitude
values of the first segmented input. This leads to the result that
at the first iteration, the fifth output node is always the winner
since the distance dcalculated as described in Step 2 has the
smallest value. Thus, the classification results are always the
same and the classes are assigned to the same output nodes
for different runs. The fifth node was selected since it is in
the middle of the output nodes in order to preserve the idea of
the neighborhood. The implementation steps are as follows.

Step 1: Initialize weights at 0.0001, except the weights of
the fifth output node which are initialized at values equal to
0.01 times the values of the first segmented input.

Step 2: Calculate distances between the input vectorand
weight vectors for each output node

where and

(1)

The output node with minimum distance is the winner.
Step 3: Adapt the weights. The weights for each output

node and for each are adapted with

(2)

The learning rate is a Gaussian function that gets
narrower with the number of iterations, which means that the
adaptation of the nodes neighboring to the winner decreases.
The learning rate is also frequency sensitive for each output
neuron, which means that it gets smaller the more often a
neuron is selected as a winner

(3)

where is the winner node, is the number of
iterations, and is the number of times the specific node is
selected as the winner. Setting the initial value of forces
the network to fast learning even with a limited amount of data.
When an output node is selected winner for the first time (i.e.,
a new class is identified), the factor and the learning
rate for If the calculated , then the

Fig. 4. Adaptation of the learning ratehk at the output nodesk at different
iterations as given in (3) (withg = 1). It is illustrated that the neighborhood
of hk is getting narrower with the number of iterationst, as well ashk
decreases depending on the number of times an output nodek is selected
winner. For example, att = 1 the output node 5 is the winner andh5 = 1,
whereas for the neighboring nodesh4 = h6 = 0:6; h3 = h7 = 0:13;
and h2 = h8 = 0:01; at t = 2; h5 = 0:7; h4 = h6 = 0:27; at
t = 4; h5 = 0:58; h4 = h6 = 0:08; etc.

weights of the specific nodeare not adapted, since the change
in the weights vector will be minimal. This is implemented in
order to save computation time.

Step 4: Go to Step 2 and repeat for all segmented inputs.
After all inputs are presented to the network, the first

adaptation of the weights vector is completed and the system
proceeds to the second learning phase. Fig. 4 illustrates the
adaptation of the learning rate at the output nodes
at different iterations as given in (3) (with . It is
illustrated that the neighborhood of is getting narrower as
the number of iterations increases. The learning rate gets
its higher value for the winning node , whereas it gets
significantly smaller values for the rest of the output nodes in
the neighborhood. At the same time, decreases depending
on the number of times an output nodeis selected winner.

b) Learning vector quantization (LVQ)—Learning
phase 2: The task of this phase is to adapt the weights
vectors slightly (move Voronoi vectors) in order to improve
the classification performance [19], [21]. LVQ is actually
a supervised learning technique, i.e., it demands forehand
knowledge of correctly labeled (classified) inputs. Since such
knowledge is not available, it is assumed that the adaptation
carried out during the first learning phase is correct and,
thus, the segmented inputs will be correctly classified. Weight
adaptation and winner selection is again on-going as described
in learning phase 1. In this modified version of LVQ2 the
implementation steps are:

Step 1: Use the values of the weight vectors as obtained
from learning phase 1.

Step 2: Present input and calculate distancesbetween
the input vector and weight vectors for each output node

as in (1). The output node with the minimum distance
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Fig. 5. MUAP’s with similar shapes classified into three different classes.

is the first winner and the output node with the following
minimum distance is the second winner .

Step 3: Adapt weights. The weights for the first winner
output node are adapted with

(4)

and for the second winner with

(5)

The learning rate is initialized to 0.2 and decreases
linearly with the number of times the specific node
is selected as the first winner

(6)

If , then .
In other words, the weight vector with the correct

label (first winner) is moved toward the input vector while the
weight vector with the incorrect label (second winner) is
moved away from it. The factor is used for controlling
the adaptation of the second winner; if the input vectoris
close to the decision boundaries defined by the two winners,
the factor takes a greater value moving the second
winner far away from the input vector ; otherwise the
adaptation is smaller.

Step 4: Go to Step 2 and repeat for all segmented inputs.
After all inputs are presented to the network, the network

is trained and the actual classification process starts.
c) Classification phase:In this phase all the input vectors

will be classified to one of the output nodes and the superim-
posed waveforms will be separated. The implementation steps
are the following:

Step 1: Calculate distances between the input vector
and the weight vectors as in (1). The output node with
the minimum distance is the winner.

Step 2: In order to separate the superimposed waveforms
from simple, nonoverlapping MUAP waveforms, the length

of the weight vector of the winner node is calculated
as the sum of the squares of its vector values

(7)

If then the input is assigned to the MUAP

class of the winner node

else, the input is considered as a

superimposed waveform

The physical meaning of is that the greater its
value the greater the dissimilarity between the waveforms.

Step 3: Go to Step 2 and repeat for all segmented inputs.
Step 4: If the number of members in a class is three

or more, the averaged MUAP waveform is computed and
a valid MUAP class is identified; otherwise, the MUAP
waveforms are saved with the superimposed waveforms for
decomposition.

Fig. 5 illustrates the classification results of the segmented
EMG signal given in Fig. 3 where MUAP’s with similar
shapes are classified into three different classes.

2) Statistical Pattern Recognition Technique:In this itera-
tive procedure the Euclidean distance is used in order to
identify and group similar waveforms using a constant thresh-
old. The implementation steps are the following:

Step 1: Start with the first waveform as input, being the
first member of the class.

Step 2: Calculate the vector length of the input waveform
and the distance between and all the other segmented

waveforms as

where (8)

and

(9)

Step 3: Find the waveform with the minimum distance
which is the one with the greatest similarity withand remove
it from the input data set.

Step 4: Sliding and baseline correction. First slide the
waveform with minimum distance up to two points backward
and up to two points forward in order to find the best alignment
position. Recalculate the distance for each case and assign
the smallest as . Then, using the beginning and the ending
parts of the MUAP waveforms, calculate baseline correction

as

(10)

Subtract from waveform and recalculate distance
with . If it is smaller than , assign it as the new .
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Step 5:

If

then add to class, calculate class

average and assign class

average to input

else, if number of class members ,

then form a MUAP class;

else, class members are superimposed

assign waveform to input ;

go to Step 2

If the minimum distance divided by the vector length of the
first waveform is less than a constant threshold, set to 0.125,
then the two waveforms form a class. Then the class average is
calculated and the procedure is repeated (go to Step 2 with the
class average as input) comparing the class average now with
all the rest waveforms in order to find the next waveform with
the minimum distance. If the condition above is satisfied, then
a new waveform is added to the class and a new class average
is calculated, and so on. If not, the process stops; if the class
members are more than or equal to three, then a MUAP class
is formed and its averaged waveform is saved. If they are less
than three, they are considered as superimposed waveforms.
The process continues where it stopped comparing the last
encountered waveform with all the remaining ones until all
waveforms are processed. The baseline correction was applied
selectively only to the waveform with the greatest similarity
to the reference waveform and it was applied only if the
distance between and with baseline correction was smaller
than the distance without baseline correction. The use of
baseline and slide correction improved the performance of the
statistical pattern recognition technique by 5% as documented
in Section III. Threshold values were chosen heuristically
after extensive testing. It is noted that again there are no
widely applicable threshold criteria for assigning a MUAP to
a class. The value of 0.125 used in Step 5 was also used by
Andreassen [10]. This threshold is critical because a smaller
value may split a MUAP class with high waveform variability
in two or more subclasses, whereas a greater threshold value
may merge resembling MUAP classes. The averaged class
waveforms are again the unique MUAP waveforms composing
the EMG signal. Fig. 6 illustrates how the segmented signal
waveforms of Fig. 3 are ordered according to their similarity
and how classes are formed where . The
MUAP classes are similar to the classes formed by the ANN
pattern recognition technique in Fig. 5.

D. Decomposition of Superimposed Waveforms

The needle EMG signal recorded even at low to moderate
force levels, contains superimposed potentials. It is important
for correct firing rate analysis to identify as many MUAP’s
as possible through decomposition of the superimposed wave-
forms into their constituent MUAP’s. Although many studies
have been published tackling the problem of EMG signal
decomposition [3], [4], [7], [9], [12], [13], [16]–[18], no one

Fig. 6. MUAP waveforms ordered according to their similarity. MUAP’s
with dmin=lx< 0:125 are grouped together into three different classes.

has gained wider acceptance outside the laboratory of origin
and there are no standardized criteria for performing decompo-
sition analysis. In this study, a simple decomposition procedure
is introduced, where the decomposition algorithm is based on
the crosscorrelation of the unique MUAP waveforms with
the superimposed waveforms. It is assumed that the correct
unique MUAP waveforms composing the superimposed ones
are known through one of the previous classification processes.
The Euclidean distance and area measures are combined in a
heuristic way for decomposing the superimposed waveforms.
The decomposition steps are as follows.

Step 1: For each unique MUAP waveform, extract the main
part of the MUAP that contains the main spike as follows:
Reduce the unique MUAP lengths by dropping the beginning
and ending parts of the waveform that are less than 1/15 of the
MUAP amplitude (minimum to maximum). The 1/15 of the
MUAP amplitude is an estimate of the beginning and ending
points of the MUAP main spike. This is critical in order to
crosscorrelate only the most important part of the MUAP.

Step 2: Select a superimposed waveform.
Step 3: Crosscorrelate each reduced MUAP with the super-

imposed waveform and find the best matching point, i.e., the
point where the crosscorrelation coefficient takes its maximum
value.

Step 4: For each matching pair calculate the normalized
Euclidean distance, the area difference, and a varying thresh-
old. The normalized Euclidean distance is the sum of
squares of the values obtained by the subtraction of the reduced
MUAP waveform c from the superimposed waveformfor
the reduced MUAP length , divided by the sum of squares
of the reduced MUAP vector values

(11)

The average area difference is the average of the
absolute values obtained by the subtraction of the reduced
MUAP from the superimposed waveform for the reduced
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(a) (b) (c)

(d) (e)

Fig. 7. Decomposition of a superimposed waveform into its three constituent MUAP’s. (a) Original superimposed waveform, (b) decomposed from MUAP
class 5A, (c) decomposed from MUAP class 3A, (d) decomposed from MUAP class 4A, and (e) residual signal.

MUAP length

(12)

The varying area threshold is defined as

(13)

where and are constants with and
Equation (13) was derived empirically to maximize the

success rate of the decomposition algorithm.
Step 5: The best matching MUAP is identified as the one

with and is classified as belonging
to the reduced MUAP class if or and

. If not classified, the next superimposed waveform
is fed in (go to Step 2).

Step 6: The best matching MUAP, if classified in Step 5, is
subtracted from the superimposed waveform. The so obtained
new waveform is fed in for a next cycle (go to Step 2) until no
other MUAP is identified or the maximum waveform value is
less than 30 V.

Step 7: Complete firing rate table with the newly identified
MUAP’s.

Fig. 7 shows the decomposition of a superimposed wave-
form into its three constituent MUAP’s given in Fig. 5.

E. Parameter Measurement

For all classified MUAP waveforms, the 6-ms-long MUAP
segments are expanded to 25 ms on the original EMG sig-
nal where the position of the identified MUAP peak was
marked during segmentation. The rationale is that the MUAP

duration is in most of the cases longer than 6 ms and the
signal expansion is, therefore, necessary for a correct duration
and the other parameter measurement. In order to eliminate
discrepancies from the class average due to superpositions in
the expanded window, the average and the standard deviation
(SD) for each sampling point of all MUAP’s in a class are
calculated. Values of points beyond1 SD from the average
are excluded from computing the class average [6]. For each
25-ms-long averaged MUAP waveform baseline correction is
calculated as follows: Starting from the center of the MUAP
waveform a measurement window 2-ms long and 10-V high
is slid toward the beginning of the waveform until the signal is
completely enclosed in it. The beginning point for the baseline
correction is the middle of the window. The ending point for
the baseline correction is calculated in a similar way. The
average of the MUAP signal to the left of the beginning point
and the right of the ending point, is calculated and subtracted
from the waveform. For each MUAP waveform the following
parameters are measured.

Amplitude:Amplitude difference between maximum nega-
tive and minimum positive peaks.

Duration: Starting from the beginning of the MUAP wave-
form find the first point where the signal is
greater than a threshold equal to 1/15 of the
amplitude. The threshold is allowed to take
values between 10 and 20 V. This allows
the algorithm to identify the waveform areas
close to which the MUAP beginning and ending
points are expected to be found. It is also
noted that threshold values in this range were
used by Stalberget al. [1]. Starting from that
point and moving backward to the beginning
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TABLE I
CLASSIFICATION SUCCESSRATE OF THE THREE ALGORITHMS (IN BRACKETS THE NUMBER OF IDENTIFIED CLASSES TOTOTAL NUMBER OF CLASSES)

Fig. 8. Average MUAP waveforms expanded to 25 ms with the calculated
parameters.

of the waveform, a measurement window 1 ms
long and 10 V high is slid until the signal
is completely enclosed in it. The point in the
window closer to the baseline is the MUAP
beginning point. The MUAP ending point is
calculated in a similar way. The duration of
the MUAP is the time interval between MUAP
beginning and ending points.

Area: Rectified MUAP integrated over the calculated
duration.

Rise Time:Time between maximum negative peak and the
preceding minimum positive peak within the
duration.

Phases: Number of baseline crossings within the dura-
tion where amplitude exceeds25 V, plus
one.

Turns: Number of positive and negative peaks where
the differences from the preceding and follow-
ing turn exceed 25 V.

Fig. 8 displays the expanded MUAP waveforms of Fig. 5
with the calculated parameters.

III. RESULTS

EMG data collected from 40 subjects were analyzed using
the pattern recognition techniques described in Section II. Data
were recorded from 12 normal (NOR) subjects, 13 subjects
suffering from myopathy (MYO) and 15 subjects suffering
from motor neuron disease (MND). Diagnostic criteria were
based on clinical opinion, biochemical data and muscle biopsy.

Only subjects with no history or signs of neuromuscular
disorders were considered as normal. Table I shows the clas-
sification success rate on 1213 MUAP’s, obtained from 576
EMG recordings. The classification success rate was defined as
the percentage ratio of the correctly identified MUAP classes
by the algorithm and the number of true MUAP classes present
in the signal as identified by an experienced neurophysiologist.
The average success rate for the SOFM with LVQ algorithm
was 97.6%, for the SOFM algorithm alone 94.8%, and for
the statistical pattern recognition algorithm 95.3%. The ANN
technique also yielded good results without the LVQ learning
phase. Examining the classification success rate for each class,
the highest success rate was obtained for the NOR group and
the lowest for the MND group. This was the case for all three
algorithms. The lowest success rate for the MND group is
attributed to the more complex and variable waveform shapes.
Also, as shown in Table I, the SOFM with LVQ algorithm
improved significantly the success rate for the MND group
compared to the other two algorithms. The statistical algorithm
gave the highest success rate for the NOR group and the lowest
for the MND group compared to the other two algorithms.
The use of slide and baseline correction in the statistical
technique improved the classification success rate by about
5%. In general, where all three algorithms failed to identify
a MUAP class, it was because of inadequate number of class
members in the signal and due to waveform variability. In
some rare cases MUAP classes with very similar shapes were
grouped together. Downsampling the signal by a factor of two
at 10 kHz, saved computation time but reduced the success rate
by about 1.5% in all cases. The very small reduction in the
success rate, is attributed to the fact that approximately 95%
of the power content of the whole population of MUAP’s
investigated falls below 2500 Hz [24]. Thus, downsampling
the EMG signal by two, it minimally affects the information
content of the signal.

For the decomposition of the superimposed waveforms,
the algorithm correctly identified about 90% of the MUAP
occurrences in the superimposed waveforms. Fig. 7 illustrates
an example where a superimposed waveform composed of
three different MUAP’s was successfully decomposed.

MATLAB was used for implementing the above algorithms.
The processing time on a PC Pentium 233 MHz for a 5-s
epoch EMG signal with 77 waveforms was about 0.5 s for the
segmentation and about 0.6 s for the classification with SOFM
with LVQ, 0.4 s for SOFM, and 1 s for the statistical technique.
The processing time for the decomposition of each superim-
posed waveform with three classes was about 0.02 s. Since
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MATLAB is an interpreter, all the timings may be significantly
improved by the use of a compiled version of the algorithms.

IV. DISCUSSION

The decomposition of real EMG signals into their con-
stituent MUAP’s and their classification into groups of similar
shapes is a typical case of an unsupervised learning pattern
recognition problem. The number of MUAP classes composing
the EMG signal, the number of MUAP’s per class, their firing
pattern, and the expected shape of the MUAP waveforms are
unknown. The problem gets even more difficult because of
MUAP waveform variability, jitter of single fiber potentials,
and MUAP superpositions. Any automated method for EMG
analysis should require no operator intervention; should be
fast, robust and reliable; and achieve high success rate in order
to be of clinical use. Most of the previous methods briefly
described in Section I used mainly template matching which
requires a predetermination of the classification boundaries
and may fail to detect classes with insufficient frequency of
MUAP repetitions and MUAP’s with high shape variability.
Also, the need for operator intervention, especially in some
of the earlier works on the topic [3], [4], and long processing
time make their applicability in routine clinical environment
difficult, although a high success rate has been reported.

In this work, two different pattern recognition techniques for
the classification of MUAP’s were investigated: i) an artificial
neural network technique based on unsupervised learning,
using modified SOFM and LVQ, and ii) a statistical pattern
recognition technique based on the Euclidean distance. Both
pattern recognition techniques described are quite simple in
their concepts, and gave a high success rate. The ANN tech-
nique performed better than the statistical pattern recognition
technique and yielded a higher success rate. ANN’s seem
more appropriate for the classification of MUAP’s because
of their ability to adapt and to create complex classification
boundaries. The additional use of the LVQ algorithm with
the SOFM algorithm optimizes the classification boundaries
through slight adaptation of the weights vectors. The result
of this process is twofold: i) MUAP’s with high variability
which during the first learning phase were sorted out as
superimposed, to be moved into the MUAP waveform classes,
and ii) multiple classes of the same MUAP to be merged.
The improvement of the classification performance is clearly
demonstrated in the case of the MND group which contains
MUAP’s with more complex and variable waveform shapes,
where the classification success rate of the SOFM with the
LVQ algorithm was considerably higher compared to the
statistical one. The combination of SOFM with LVQ for fine
tuning of the network was also used successfully in speech
recognition [21]. Moreover, the ANN technique presented in
this study performed well even with a limited amount of data
and achieved fast learning in only one epoch. Standard SOFM
and standard competitive learning algorithms, investigated for
the same real data, required a much greater number of learning
epochs in order to converge. The difference between the
SOFM algorithm implemented in this study and the standard
SOFM [21] is that in the standard SOFM the learning rate is

not frequency sensitive, whereas in competitive learning only
the first winner is adapted (winner takes it all). The “pseudoun-
supervised” learning algorithm as proposed by Hassounet al.
[17], [18] has a complicated network architecture, requires
many learning epochs, and is computationally demanding.

The statistical technique utilized in this study has the
disadvantage of using a constant threshold for classification
that makes it less flexible, especially when the signal is noisy
and with high variability. This has as a result that during the
classification phase less MUAP occurrences are identified in
comparison to the ANN technique. Also, the computational
time increases geometrically with the amount of processed
data. On the other hand, the number of classes which can be
detected by the statistical technique is unlimited depending
only on the number of actual MUAP classes existing in the
signal. A similar approach was used by Loudonet al. [16],
with the difference that waveforms were compared with the
last encountered waveform instead of the group average which
may lead to less accurate classification results.

It was also observed in both techniques that often, due to
waveform variability, MUAP classes coming from the same
motor unit, although they looked similar, were not grouped
together. Merging of these classes can be achieved by: i)
using the firing statistics after the decomposition process or ii)
using the statistical pattern recognition technique in a second
iteration with a greater constant threshold 0.3) and the
averaged class waveforms as input.

Another concern is the selection of the length of the
segmentation window. In this work the 6-ms-long window
was chosen as covering the main MUAP spike duration in
most of the disease cases. A shorter window would fail to
contain the main MUAP spike in the case of motor neuron
disease where MUAP’s usually have a much longer duration.
This would cause the classification algorithms to fail or would
cut a long polyphasic MUAP into two artificial potentials.
On the other hand, a shorter segmentation window would
result in the identification of more potential occurrences during
the classification process in the case of normal or myopathic
signals, since only the main spike would be included. The
decomposition of the superimposed waveforms complements
this drawback in this work.

The time domain vector of the segmented signal was used
as input to the classification algorithms without any normal-
ization. This proved to give better results than the frequency
domain vector [25] or the use of features characterizing the
signal. This is due to the relatively simple shapes of the MUAP
waveforms as these may still be identified at low to moderate
force levels. Furthermore, the results in this study can be
compared with a parametric pattern recognition algorithm
where MUAP parameters were input to the classifier [14],
[15] and which was evaluated with the same data set. The
classification performance was poorer but the algorithm was
computationally more efficient since the dimension of the input
vector was significantly reduced.

Several new ideas were introduced in this work in order to
improve the performance of the algorithms.

1) Learning achieved in only one epoch in the SOFM and
LVQ algorithms.
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2) The learning rate in the SOFM algorithm features the
following characteristics: a) it is frequency sensitive
i.e., it decreases its value depending on the number of
times an output node is selected winner and b) it gets
narrower as the number of iterations increases (i.e., it
gets its higher value for the winning node where it gets
significantly smaller values for the rest of the outputs
nodes in the neighborhood).

3) The factor in the LVQ algorithm in order to
optimize the adaptation of the weights vector of the
second winner.

4) The threshold in the classification phase of the ANN
technique in order to separate the superimposed wave-
forms.

5) The combination of Euclidean distance and area mea-
sures in the decomposition of the superimposed wave-
forms in order to classify the decomposed waveforms.

In conclusion, the pattern recognition techniques as de-
scribed in this work make possible the development of a fully
automated EMG signal analysis system which is accurate,
simple, fast, and reliable enough to be used in routine clin-
ical environment. Future work will evaluate the algorithms
developed in this study on EMG data recorded from more
muscles and more subjects. In addition, this system may be
integrated into a hybrid diagnostic system for neuromuscular
diseases based on ANN where EMG [15], muscle biopsy,
biochemical and molecular genetic findings, and clinical data
may be combined to provide a diagnosis [26].
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