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S O M E N E W T H E O R E M S A N A L O G O U S T O G R E E N ' S . 

BY P. G. NUTTING. 

Q T A R T I N G with Gauss' theorem 

fff div codv = ffco • da == ̂ TZM, 

or with Stokes' theorem 

j f curl co -da = J co • dp, 

it is possible, by making some simple substitutions, to arrive at a 

number of useful theorems analogous to these and to Green's. This 

investigation was originally undertaken to discover a relation similar 

to Green's which should be directly applicable to vector functions 

in the same way that Green's applies to scalar functions of position 

in space. Green's celebrated equation, 

f f f\7u- Xjvdv = j \u\/v -da — f ffu\72vdv, 

is very useful in dealing with problems in gravitation, hydrody

namics and electrostatics where scalar functions are to be dealt with 

or where potential functions may conveniently be resorted to, but 

in magnetism, electromagnetism and optics it is more convenient to 

deal directly with vector functions and above all to have an analo

gous equation to which Maxwell's equations may be directly applied. 

In other words, Green's theorem applies best when force lines or 

stream lines run off to infinity or from positive to negative sources, 

the new theorem when these are closed in small circuits. 

Along with the theorem sought, several other useful theorems 

were obtained and are here presented. The vector notation is em

ployed throughout on account of the simple form which the equa

tions take and the ease with which properties and limitations are 

kept in mind. The notation is essentially that of Gibbs, Heaviside, 

Bucherer and others. Greek letters represent vectors, Roman 
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scalars or scalar functions of position. The Hamilton operator V 

is the del of Gibbs, the slope of Heaviside and the gradient of Planck 

and others. The compound operator div V is equivalent to the 

ordinary Laplacian, here written V2 . Vectors which have a diver

gence (not zero) are called for brevity polar vectors and are said to 

have a polar field. Vectors which have a curl are axial vectors 

and have a solenoidal field.1 

Evidently then Gauss' equation can be of service only in polar 

fields, Stokes' in solenoidal fields. Gauss' equation says that the 

surface integral of a vector function must be zero over every closed 

surface in a solenoidal field while in a polar field it is not zero in 

general. Similarly Stokes' equation shows that the line integral 

of a vector function must be zero around every closed path in every 

polar field. 

Consider the compound vectors of simple form that may be sub

stituted for the vector co in Gauss' or Stokes' equation. These are : 

co = \juy curl r, ury uXjvy u curl r, <p x r, <p x curl r, cp x S/u and 

T div cp. 

1. The substitution co = xju in Gauss' equation, i. e., considering 

the vector to to be the gradient of some scalar point function, gives 

( i ) J'J^Js72udv =JJsyu • da, 

the volume integral of the Laplacian equals the surface integral of 

the gradient of a scalar function, the surface being the closed sur

face enclosing the volume integrated over. Corresponding relations 

between vector functions are developed later. The same substitu

tion in Stokes' equation yields nothing since curl v is a zero oper

ator, i. e.y the gradient of a scalar function, al though a vector, can

not have a solenoidal field. Equation ( i ) has already been obtained 

as a particular case of Green's. 

2. The substitution co = curl r in Gauss' equation brings the first 

member to zero, since the curl of a vector can have no divergence. 

The same substitution in Stokes' equation gives 

(2) ff^2* ' d° —ff^7 div TV da — Jc\xr\ z -dpy 

* 1 On the properties of vector functions see M. Abraham, Enzykl. d. Math. Wiss., 
Band IV., 2, Heft I. 
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since the operator curl curl = V div — V2 . This general equation 

breaks up into two. In polar fields 

(2a) ff^2v ' d<* ~ff V div T • da, 

while in solenoidal fields 

(2b) ff^27 • ^a — —f curl T ' dp, 

i. e.t the surface integral of the Laplacian of an axial vector equals 

the line integral of the curl of the vector along the curve bounding 

the surface integrated over. (2d) amounts to an identity in polar 

fields and does not apply elsewhere. 

3. The substitution co = UT in Gauss' and Stokes' equations gives 

two formulas of purely mathematical interest. They have already 

been obtained by Gibbs by integrating by parts the expressions 

div (UT) and curl (UT). 

4. The substitution co = usjv transforms Gauss' equation directly 

into Green's 

fff^u ' \7vdv = J § 11x7 v - da — fffu^vdv 

(Green) 
= J J vxju - da —J J J v\72udvy 

since div (u\/v) = u div \/v + s/u • \/v. Green's equation then in

cludes Gauss' and Gauss' implies Green's whenever the vector 

function of Gauss' equation is the product of one scalar point func

tion into the gradient of another, but the fact that this transforma

tion exists does not of course imply that the two equations are not 

entirely independent. Evidently Gauss' equation cannot be applied 

to solenoidal fields since the gradient of a scaler function (such as u 

and v) cannot have a curl other than zero. The vectors S7u and 

X/v are in general polar, hence we may apply Green's theorem to 

polar fields provided the potential u or v of one of the vectors \/u 

or S7v be known for substitution in the second member. But anal

ogous equations are developed later on which apply directly to 

polar and solenoidal fields without requiring the potential. 

The substitution co = u\/v in Stokes' equation gives • 

(4) SS^U x Vv -da = Ju \7v . dp = —fv \/u • dp 

file:///7vdv
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since cur l (^V^) = u c u r l v ^ + V ^ X X/v and cu r l \ / v = o. This 

equation has already been obtained by Gibbs by an integration 

by parts (Wilson-Gibbs, p. 199) . It appears to be widely appli

cable to physical problems. Suppose for example, u and v are 

electric and magnetic potential, then \/u and V ^ are electric and 

magnetic force. Each member of (4) is a maximum when these 

forces are normal to each other, as in electromagnetic radiation. 

In this case the first integrand is Poynting's Energy Flow function. 

The theorem states that the integral of this function over the sur

face of a plane of the electric and magnetic forces equals the line 

integral of the product of say electric potential into magnetic force 

around the boundary to the surface chosen. Over an equipotential 

surface (say xjv — cons t ) , equation (4) reduces to one of Foppl 's 

ffvu x da — — Judp. 

5. The substitution co = u curl z in Gauss' equation gives 

(5*2) jjJV^ • curl zdv = J fu curl z -da. 

This relation is perhaps most useful as an energy equation. Sup

pose for example, u is electric potential and z magnetic force. Then 

within a conductor where 4m = curl r, the first member becomes 

the volume integral of the transformed energy Ei. The equation 

states that this is equal to the surface integral of the product of 

the electric potential and electric force. With an insulator where 

KE — curl z and E — pE, p being a complex factor, the first term 

of (50) reduces to the volume integral of E2. This equals the same 

surface integral as in fhe case of a conductor. In a uniform T field, 

(5#) reduces to another equation of Foppl 's 

J J J V udv = J J uda. 

In Stokes ' equation the same substitution co = u curl z gives 

f Cu\7 div z -da + f f\7u X curl z • da 

(5*) JJ J . r , rr , 
= J u curl z • dp -f j j u\/ z • da. 

This very general relation readily breaks up into two. In polar 

fields where curl r = o, 

ffuV div z • da — §§u\72 z -da, 
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which reduces to (2d) when u = const. In solenoidal fields 

($c) j f^u x curl z-dcr = fu curl z-dp + JJU\72T-dcr 

an equation complementary to (5^). On a surface over which the 

scalar function u is constant, (5^) gives the important relation {2b). 

This part of ($c) being independent of u is of course like (2a), a 

general equation in the vector function z. 

6. The substitution co— <p x z in Gauss' equation gives a con

venient transformation formula 

(6) J ff T " cul*l <pdv — j ff <p • curl zdv = j j <p x r • db-, 

apparently of little direct importance in physics. The same substi

tution in Stokes' equation gives a long and complicated expression 

apparently of little value. 

7. The substitution co = <p x curl z in Gauss' equation gives the 

theorem complementary to Green's originally sought, namely 

fj f curl <p • curl zdv 

(7) = j j <p x curl r -da -f J J J >̂ • V div rafo + J J j f - \72zdv 

~ JJ T x c u r ^ 9 ' ^a + J J J r ' V div >̂dz/ + JJ J r • X/2zdv. 

In most problems div r and div ^ will be zero and (7) takes a form 

very similar to Green's. This will be the case in all electromag

netic problems for div j ? = o a s well as d i v H w h e r e E is electric 

and H magnetic field. 

Maxwell 's equations 4x1 + KE = curl / / a n d fiH= — curl E may 

be applied directly to (7) in many different ways. For instance, 

we may substitute so as to eliminate the space operators or H or E 

separately and thus obtain relations between the time operators or 

functions of E or H alone. 

The same substitution co = <p x curl z in Stokes' equation gives 

a complicated expression of little use in physics as does the substi

tution co = <p x V ^ . 

8. The substitution co = <p x sju in Gauss' equation gives 

(8) j J j ^M ' cur^ ? ^ ~ ff 9 x v ^ ' do 
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a relation already obtained by Gibbs. It appears to be a limited 

form of (6) in which the vector z has been replaced by the gradient 

of a scalar \ju. 

9. The substitution w = z div <p in Gauss' equation gives another 

important relation similar to Green's and complementary to (7), 

namely 

j j j div (p div zdv = j j z div <P ' da — j j j T • v div ^afo 

= / / p div r • da - / / / ^ • V div rafc 

This equation applies to polar fields in the same way that (7) ap

plies to solenoidal fields. It should prove very useful in the treat

ment of problems in gravitation and fluid motion. Within a region 

in which one of the vector functions, say <pt has no divergence, the 

relation 

(ga) j j J V div zdu = j j div z • da 

holds for the other. 

The same substitution to — z div <p in Stokes ' equation gives 

(9$) j J div <p curl z -da = j z div <p • dp + J J z x V div y> • ^<T, 

applying to fields which are polar for one vector function and sole

noidal for another. 

To complete the set of Green equations to cover every possible 

kind of field would require one more relation to be derived from 

Stokes ' containing the vector product of the curls of vector func

tions. This equation I have not yet been able to obtain. The 

substitution co = curl <p x curl z in Gauss' equation gives the relation 

(lO#) J / cu r l <p x curl z • da = o 

over every closed surface not including a source or sink within its 

boundary. The same substitution in Stokes ' equation gives 

j curl z x curl <p • dp = fj (curl z • v)y> • da — 
(io£) 

f J ( c u r l <p • v ) " • day 

the brackets indicating that the enclosed expression is to operate as 

a whole on the vector function outside. 
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Another relation of this type that promises great usefulness in 
electromagnetic problems may be obtained from (7) by substituting 
curl <p for <p namely : 

curl <p x curl v da 

{10c) = fff cu r^ ? " V div rdv — fff curl r • V div <pdv 

+ f ff curl <p • syhdv + fff curl r • \72<pdv — o. 

If the vector functions <p and r represent electric and magnetic 
force, we find by substituting Maxwell's relations that (io#) states 
that the integral of Poynting's energy flow function over a closed 
surface is zero unless the surface encloses a source or sink when it 
is 4.K times the strength of the source or sink. This is true of con
ductors as well as insulators. Equation (106) shows that the integral 
of Poynting's function is zero around every closed path in the field 
in which Maxwell's relations hold, for each term of the second mem
ber reduces to zero when the electric and magnetic forces are the 
form E = (A + Bi)Ey where A and B are functions of only space 
coordinates. Equation (10c) reduces in an electromagnetic field to 

fffcurl E- S72Hdv + / / / c u r l H- V2E= o, 

since E and H have no divergence. Eliminating space operators 
in this by means of the Maxwell relations, we get for insulators the 
relation 

assuming H and E to be of the form E = EQeipt, p being a complex 
function of space coordinates, say p = A + Bi and similarly for H 
q = C + Di. This equation then gives the ratio of the magnetic 
field energy to the electric as fis : qz or As: B3 = C3 : D3

y which are 
of course in terms of wave-lengths and damping factors. Similarly 
for conductors we obtain for the ratio of the field energies ip : 2q2, 
or A:4C£>= B:2(C2-D2). 

For the sake of convenience in intercomparison and reference, the 
equations of the Green type are assembled below : 

(Green) / / / v « • S7vdv =ffu\jv. da —fffu\?2vdv 

II 
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(4) (Gibbs) jJ^7uX ~W-da = —J u\/v- dp 

(9) J j J div <p div rafe; = J j r div ^ • da ~~j j J r • V div ̂ rf^ 

(7) /̂ Ĵ j curl ^ • curl tdv ==j j <p x curl r • dfr 

+ SSS? ' V div r ^ + JX/V ' V Wz; 

( ioa ) j j curl p x curl r - da = o 

(10$) J curl ^ x curlv-dp =j j \curl <p-^7) T'dtr 

— J J (curl r • v ) <p • ̂ . 

The left-hand members of the above being symmetrical in the argu

ments, the arguments may be interchanged in the right-hand mem

bers, care being taken to interchange the signs at the same time in 

equation (10$). The remaining Green equations are not symmetrical. 

(5#) J J J Vu - curl r dv = J J u curl r • da = J J z x \/u • da 

($c) j J sju x curl zda = J u curl r - dp + J J U\J2T • da 

(gb) j j div tp curl r ^ ~ j T div cp-dp + j j r x V div ^ • db\ 

To complete the list would require three more unsymmetrical equa

tions, namely those whose left member integrands are \/u div r, 

S7U-S7 div r and V ^ X V div r, but these may be obtained at once 

from (4) and Green's equation by replacing v by div r. 

A n y of the above equations may be easily rendered into ordinary 

cartesian notation, but they are so long and unwieldly in this form 

that they cannot be rewritten here. The substitution to be made 

are given below. Let co be any vector, then it will be of the form 

. ,r .rr T ~ . d . d 7 d 
co = tX + jY+kZ, V ss 1 +j— + k 

^~ dy dx dz 

V • co = div co i 

V X co — cur l co • 

dX BY dZ 

dx dy dz' 

d 

dx 

X 

J 

d 

dy 

Y 

d 

dz 

z 
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o 

dp == idx + jdy + kdz, da = idydz + jdzdx + kdxdy, dv = dxdydz 

the dot and cross multiplication tables indicating the scalar and 
vector products of the unit vectors so difficult to keep in mind. 

In conclusion it may be noted that the integrals discussed in this 
paper remain invariant with a transformation of coordinates. Many 
very useful theorems relating to this class of invariants are given by 
Ricci and Levi-Civita, Math. Ann., 54, 128-201, 1901, with several 
applications to physical and mechanical problems. 

WASHINGTON, D. C, 1904. 


