
MATHEMATICAL ASPECTS OF QUANTUM THEORY*

BY
H. B. PHILLIPS

1. Fundamental Hypotheses.-Without attempting to present
the somewhat divergent views of the many writers on the subject,
I propose in this paper to sketch a method of treatment (mainly
following Sommerfeld) which suffices for the applications so far
made. In the application existing theories, such as statistical
mechanics, have been used. We are concerned only with the
peculiarly quantum part of such applications.

There are two types of problems to which quantum theory has
been applied, each being solved by making a fundamental hypo-
thesis.

(1) To determine the frequency of the radiation emitted when
an electron changes from one steady (non-radiating) state to
another.

This is accomplished by the hypothesis of Planck and Bohr,
that

W1 -W 2 =hv, (1)

where W1 is the energy of the electron in the first state, W2

its energy in the second, and h is Planck's constant. This may
be briefly called the hypothesis of energy quanta.

(2) To determine the fixed orbits, or steady states, in which the
electron can move without radiating.

To handle this with some degree of generality, consider a
conservative system whose position is determined by r coordinates

q1, q2, - , r-

Let its kinetic energy by T and let
* ~ ~ aT . dqPi = dT . q = dt

*Presented at Toronto, Dec. 29, 1921, before Joint Session of American Physical
Society with Sections B and C of the American Association for the Advancement of
Science.
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Suppose further that its kinetic and potential energy
T = T (pi) P2, -- Pr q 2 qr) X
V = V(qi, q. .. r)

do not explicitly contain the time.
Sommerfeld's hypothesis is that if the integrals are taken

around a closed orbit described by the electrons in a steady state

J 2T dt = 2 pi dqi=n I, (2)

where n is an integer.
In the most important cases the variables can be separated,

that is, each momentum pi can be expressed in the form
Pi= fi (qix Cl, C2, ** Cr)

where cl, 2, ... Cr are constants of integration. In general qi
then oscillates periodically between fixed limits a, b. In this
case, Sommerfeld assumes that an equation of the form (2)
applies separately to each coordinate, that is,

2 bi Pi dq i = i t (3)

where ni is an integer.
Equations (2) and (3) express what may be called the principle

of action quanta. Equation (2) expresses that the total action
around a closed orbit is a multiple of Planck's constant. Equa-
tion (3) states that in case the variables separate, each component
of action is a multiple of Planck's constant.

The orbits of the electrons are determined by ordinary
dynamics, equations (2) and (3) being used merely to determine
the constants of integration in terms of the quantum integers n.

It is interesting to note that if we apply (2) to the emitted
radiation, (1) may be considered a consequence of (2) and so the
whole theory may be considered a theory of action quanta.
For in electrical systems magnetic energy is kinetic and electric
energy potential. Since in radiation these are equal, the total
energy is

W=2T.
Apply (2) to the entire system of waves emitted by an electron
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in a change from one steady state to another. The total energy
of this system is the constant W1 - W 2 and its period is

1
V

Hence

2Tdt= (W-W")dt= 2 -n h.
.f. T f. V

This gives
W 1-W2=h 

if we take n = 1. From this it might appear that radiant energy
exists in only one quantum state, nr= 1.

2. Method of General Dynamics.-Sommerfeld defines a func-
tion S by the integral

S=f 2T dt, (4)

the integral being taken along an orbit from the time 0 to . It is
a function of the initial values of Pi - P, Air - qn, and the time.
If the total energy is

W=T+V=H (pl, - P q qr), (5)
the function S can be expressed in terms of q, q2, - q, W, and
r - 1 constants of integration, a2, . . . , a, in the form

S = S (qT, . . . , hn W. a2, ...,a,)
Then

aS
= Pi,

aqi

US
a = t.
aw

Substituting these values in (5) it is seen that S is
Jacobi's partial differential equation

(as as qi
TV=H( . . . -) q, . r

Conversely, Jacobi's theory shows that any solution
form

f (q,, * . , rnW. 2 , ...CT) + ,
will satisfy (6) and so can be used for S.

The most important cases are those in which
can be separated, that is, when

S=SI+S2+ * . . +Sr,.

(6)

a solution of

(7)

of (7) in the

the variables
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Si containing only the one coordinate qi and the constants of
integration. In this case

as asi
Pi = - =

aqi aqi

contains only one coordinate qi. If this oscillates between the
limits a, b, thequantum condition is applied in the form (3)

2J Pi dqi =ni h.
Jai

If one of the coordinates is an agle k, this is naturally replaced by

fo2 p d=n h.

Systems of the kind just discussed are called conditionally
perio dic. Since all the cases so far treated on conditionally

periodic, we might limit the hypothesis of action quanta to this
case and leave the question whether the theory applies to any
other cases undetermined.

As a simple example, consider the case of an electron of charge
-e, moving around a nucleus of charge E. In this case

T e 2 2¢2 X 2 eET=l, 2mL2±r(Pb], V -
r

Pr = rn* pq, = nri2 g,

W± [ 2 pc,2 (8)

If we take
as
-= Po = const.,

equation (8) shows that
PI as

-=yPr

will be a function of r only. The variables can therefore be
separated. The quantum condition

f2r p d=nh
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gives
nhl
nAp = -(9)
2 7r

Substituting this value in (8) and solving for pr, the second quan-
tum condition

2f Prar = nli

can be integrated between the limiting values of r and the result
solved for W, giving

27r2 me2 E 2

Equations (9) and (10) express the constants of integration
P'k and W in terms of the quantum integers n and ni.

3. Degenerate Systems.-In some cases, called degenerate, the
variables are separable in more than one system of coordinates.
In case, for example, of the electron moving in an elliptic orbit
around a nucleus, the variables can be separated in rectangular
as well as in polar coordinates. The quantum conditions (3)
obtained by using different systems of coordinates do not in
general agree. This appears to violate the fundamental hypothesis.
This is not actually the case; for, if the problem is treated
exactly, the variables are always found to separate in only one
way. Thus, in case of the elliptic orbit, if we take account of
relativity, the variables are separable in polar but not in rectan-
gular coordinates.

Geometrically, the orbit usually oscillates between a set of
curves or surfaces. In the general case, the orbit is what is
known as a space filling curve, that is, it traces over the entire
area or volume of a cell. With change of initial conditions the
size of the cell changes. Thus the walls of the cells define sys-
tems of parameter curves or surfaces. Using these as coordinate
curves or surfaces, the variables can be separated. In case of a
degenerate system the orbit lies in a lower space, and does not
fill the interior of the cell. Hence the boundaries can be de-
termined in more than one way.

Thus, in relativity the orbit about a center of force does not
close but slowly precesses, and so fills the whole interior of a
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circle. With change of initial conditions the circle changes size.
The natural coordinates are therefore the system of concentric
circles and the straight lines orthogonal to them, i. e., polar co-
ordinates. If, however, we neglect relativity, each orbit is a
definite ellipse. A series of curves tangent to the different ellipses
can be determined in more than one way.
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