THE CEPHALIC INDEX

By FRANZ BOAS

I

The top views of the skulls of the races of man show great differences in form. For this reason the shape of the skull has come to be one of the best-studied racial characters. The more or less elongated form of the skull has been proved to be a good means of characterizing varieties of man. The degree of elongation is concisely expressed by the proportion between the anteroposterior diameter or length and the transversal diameter or breadth of the skull. Generally the latter diameter is expressed in percents of the former, and this value is called the cephalic index. The object of the following investigation is a study of the biological significance of this index.

The statement that in a certain race the breadth of the skull is, on the average, a certain percentage of its length, would seem to imply that there exists a certain characteristic relation between length and breadth, so that individuals of a certain length of head would, on the average, have a breadth of head corresponding to the length multiplied by the cephalic index. It is well known that this is not the case, but that the heads which have absolutely the greatest lengths have the lowest indices. I have obtained the following results from a study of 239 Sioux Indians which were measured for me by Mr G. H. Kaven in 1892 :

Number of Individuals.	Length of Head.	Correlated Cephalic Index.
II	$180-184 \mathrm{~mm}$.	84.9
35	$185-189$	81.5
86	$190-194$	79.9
70	$195-199$	78.3
25	$200-204$	77.6
12	$205-210$	75.9

The cephalic index is also greatly influenced by causes other than the length and breadth of head. A comparison of stature, height of face, and breadth of face with the cephalic index of the same series of Sioux Indians, is given in the following table:

$\begin{aligned} & \text { Vumber } \\ & \text { of } \\ & \text { Individu- } \\ & \text { als. } \end{aligned}$	Stature. Corvelated Cephalic Index.$(\mathrm{mm} .)$		Number Height of Correlated of Face. Cephatic Individu. Index.			Number$\begin{aligned} & \text { of } \\ & \text { nalizidu- } \\ & \text { als. } \end{aligned}$	Breadth of Face.	Correlated Cephalic Index.
			als.	(mm.)	(\%)		(mm.)	(\%)
16	1600-1649	81.6	27	1 $15-150$	78.8	18	135-139	78.3
49°	1650-1699	78.9	71	120-124	S0.0	44	140-I44	78.5
86	1700-17.49	79.4	60	125-129	80.2	85	145-149	78.6
68	1750-1799	79.6	55	$130-134$	79.1	85	150-I 54	80.5
19	1800-1849	78.4	16	135-134	78.1	17	I 55-I59	8I.I

Although these values do not change quite regularly, they clearly show correlations between the three measurements which I selected and the cephalic index.

The index-like all other indices-is a complex value depending, as it does, on two measurements. In order to gain an insight into its significance, it will be best to investigate the correlations of its constituent elements. The correlation of length and breadth of head, determined from a series of 923 male adult Indians of the Sioux, Ojibwa, and Crow tribes, is as follows:

Group.	1	II	111	iv	v	v
Length of Head (mm.)	180-184	185-189	190-194	195-199	200-204	205-209
Average Breadth of Head.	153.8	153.8	$15+.8$	156.2	157.8	159.4

This table shows that the average breadth of head of individuals whose length of head is very great or very small, differs little from the average breadth.

When we investigate the correlation of length and breadth of head with stature, it is found that the length of head is more influenced by stature than the breadth of head. Correlation between breadth of face and horizontal diameters of the head shows the two transversal diameters to be very closely correlated, while the length of head is more closely correlated with height of face. The following table illustrates these observations :

AM. ANTH. N. S., I-29.

243 Sioux Indians. (Adult males, 20-59 years.)

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Individu- } \\ \text { als. } \end{gathered}$	Stature. (mm.)	Correlated Length of Head. (mm .)	Correlated Breadth of Head. (mm.)	Number of Individuals.	Height of Face. (mm.)	Correlated Length of Head. (mm.)	Correlated Breadth of Head. (mm.)
16	1600-1649	187.5	153.1	27	$115-119$	191.3	I 50.9
49	1650-1699	193.3	152.6	71	120-124	192.1	154.8
86	1700-1749	194.I	I 54.3	60	125-129	193.3	154.6
68	1750-1799	194.5	155.3	55	130-134	196.0	I 54.7
19	1800-1849	Ig6. 5	I 54.3	16	1 35-139	198.7	I 55.5
		$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Individu- } \\ \text { als. } \end{gathered}$	Breadth of Face. (mm.)	Correlated Length of Head. (mm.)	Correlated Breadth of Head. (mm.)		
		8	135-139	187.8	I47.3		
		44	140-144	190.9	I50.I		
		85	145-149	194.4	152.9		
		86	150-T 54	194.5	I 56.5		
		17	I 55-I59	197.1	160.0		

When we wish to consider the joint influences of all these causes upon either length or breadth of head, we must subdivide each group according to the varying values of the new cause and calculate the correlated averages of the breadth of head. It will be seen at once that, in order to carry on the investigation in this manner, practically unlimited material must be available, otherwise the number of individuals in each class will be very small, owing to the great number of classes. Problems of this kind were first discussed by Francis Galton,' but the method of treatment has been fully developed by Karl Pearson. ${ }^{2}$

It may be well, on account of the importance of this method, to give an elementary deduction. The correlations of several organs are to be investigated, the first of which has the average value l_{1}. The various observed values of this organ may be expressed by $l_{1}+x_{1}$, where x_{1} designates the difference between an observed value and the average value. The second, third, and fourth organs have the average values, respectively, $l_{2}, l_{3}, l_{4}, \ldots$

[^0]and the observed values may be expressed by $l_{2}+x_{2}, l_{3}+x_{3}$, $l_{4}+x_{4}$, . . . The values x_{1}, x_{2}, . . are determined by a great many very small causes which we will call ε. Then we may say-
\[

$$
\begin{aligned}
& x_{1}=\alpha_{11} \varepsilon_{1}+\alpha_{12} \varepsilon_{2}+\alpha_{13} \varepsilon_{3}+. . . \\
& x_{2}=\alpha_{21} \varepsilon_{1}+\alpha_{22} \varepsilon_{2}+\alpha_{23} \varepsilon_{3}+. . \\
& . \\
& \dot{x}_{\mathrm{n}}=\alpha_{\mathrm{n} 2} \varepsilon_{1}+\alpha_{\mathrm{n} 2} \varepsilon_{2}+\alpha_{n 3} \varepsilon_{3}+. .
\end{aligned}
$$
\]

where the α are constants. When we wish to investigate the correlations of the series of organs with the first organ, we may substitute the value of ε_{1} from the first equation and we find:

$$
\left\{\begin{array}{l}
x_{2}=q_{21} x_{1}+\beta_{12} \varepsilon_{2}+\beta_{13} \varepsilon_{3}+\ldots \tag{I}\\
\vdots \\
\dot{x}_{\mathrm{n}}=q_{\mathrm{n} 1} x_{1}+\beta_{\mathrm{n} 2} \varepsilon_{2}+\beta_{\mathrm{n} 3} \varepsilon_{3}+\ldots .
\end{array}\right.
$$

Here the q and β are new constants which result from the substitution. Since the causes ε are subject to chance only, their averages will disappear. If, then, we assume x_{1} to be constant, we have
(2) Average $x_{n}=q_{n x} x_{1}$.

Now we will form the products $x_{1} x_{\mathrm{n}}$. These may be arranged in such order that all the x_{1} that have equal values shall be grouped together. Then each of these values for x_{1} will be multiplied by the sum of all the correlated values of $\boldsymbol{x}_{\mathrm{n}}$. Supposing there are p individuals in which the first organ has the deviation from its average x_{1}, we may substitute for the sum of all the correlated values $x_{\mathrm{n}} p$ times the average of x_{n}, or according to (2), $p q_{\mathrm{mI}} x_{1}$. Therefore the sum total

$$
\Sigma x_{1} x_{n}=\Sigma_{x_{1} q_{n t} x_{1}=}=\Sigma_{q_{n t}} x_{1}{ }^{2} .
$$

Now, the sum of all the $x_{1}{ }^{2}$ is equal to the mean square variation (or standard variation) of l_{1}, which we will call μ_{1}. Therefore

$$
\Sigma x_{1} x_{\mathrm{n}}=\Sigma_{q_{\mathrm{n}}} \mu_{1}^{2},
$$

or when n the total number of individuals measured

$$
=n q_{\text {nt }} \mu_{1}{ }^{2} .
$$

We can show, in the same manner, that
Therefore

$$
\Sigma \dot{x}_{1} x_{\mathrm{n}}=n q_{\mathrm{tn}} \mu_{\mathrm{n}}{ }^{2} .
$$

$$
q_{\mathrm{nt}} \mu_{1}{ }^{2}=q_{\mathrm{na}} \mu_{\mathrm{n}}{ }^{2} .
$$

We will call

Then

$$
\begin{align*}
q_{\mathrm{nr}} & =r \frac{\mu_{\mathrm{n}}}{\mu_{1}} ; \\
q_{\mathrm{nn}} & =r \frac{\mu_{1}}{\mu_{\mathrm{n}}}, \\
\sum x_{1} x_{\mathrm{n}} & =n r \mu_{1} \mu_{\mathrm{n}} \\
r & =\frac{\sum x_{1} x_{\mathrm{n}}}{n \mu_{1} \mu_{\mathrm{n}}} \tag{3}
\end{align*}
$$

We call r the coefficient of correlation, q the coefficient of regression, because it measures the regression of the correlated value toward the average. ${ }^{\text {. }}$

It remains to determine the variability of the array of values x_{n} which are correlated to a given value x_{1}. According to (I) this variability does not depend upon x_{1}, since the ε are not functions of x_{1}, but are entirely independent. The variability of each array is equal to the mean square of the differences between the members of the array and their average. The latter is $l_{\mathrm{n}}+q_{\mathrm{nr}} x_{1}$, while the value for each member of the array is. $l_{\mathrm{n}}+x_{\mathrm{n}}$. Their difference is

$$
x_{n 1}-q_{n 1} x_{1}
$$

and the mean square variability of the array

Since the value on the left-hand side of this equation remains the same for all values of x_{1}, we may substitute for it ρ, the variability of the array. If we form the sum of these equations for all the values of x_{1}, we have

$$
\begin{aligned}
& \sum x_{n}{ }^{2}=n \mu_{\mathrm{n}}{ }^{2}, \\
& \sum x_{1}{ }^{2}=n=n \mu_{1} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
n \rho^{2} & =n \mu_{n}^{2}-n q_{n 1}^{2} \mu_{1}^{2} \\
\rho & =\mu_{n} \sqrt{1-r^{2}}
\end{aligned}
$$

[^1]
II

We will apply this result to a discussion of the correlation between length and breadth of head. Pearson ${ }^{1}$ has calculated the following data:

I have calculated the coefficients of correlation for the following series:

$$
\begin{aligned}
& \text { Sioux, living, } 243 \text { adult males..................... }+0.24 \\
& \text { Skulls of } 57 \text { adult male Sioux Indians }{ }^{2} \ldots \ldots+0.24 \\
& \text { Skulls of } 47 \text { adult male Eskimo, Smith sound }{ }^{3} \ldots+0.47 \\
& \text { Indians of the northern coast of British Columbia; } \\
& \text { adult males. }+0.08 \\
& \text { Shuswap Indians; adult males.................... }+0.04 \\
& \text { Skulls of adult males, Baden }{ }^{4} \\
& \text { Bágdi caste of Bengal ; adult males }{ }^{5} \text {.............. }+ \text { o. } 13
\end{aligned}
$$

It appears from these data that the degree of correlation between length and breadth of the head is very slight, and that its values differ considerably among various races. The latter fact is rather surprising, since we might expect that in the human species the same organs are subject to the same laws. The coefficient of correlation in the Parisians, for instance, is exceedingly low, in fact so low that we may say that the breadth of head in the Parisians is entirely independent of the length of head.

The most plausible explanation of this phenomenon lies in the effect of mixture of types upon the coefficient of correlation.

[^2]Supposing two types which have the measurements $l_{1}, l_{2}, . .$. l_{n}, and λ_{1}, λ_{2}, . . . λ_{n}, respectively, inhabit the same area, so that it is impossible to determine to what type each individual belongs. If the component types are not known, we should find for the whole series the averages $\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots \mathrm{~L}_{\mathrm{n}}$ with the variabilities M_{1}, M_{2}. . . M_{2}, and the coefficient of correlation calculated according to the method given above would be

$$
\mathrm{R}=\frac{\Sigma \mathrm{X}_{1} \mathrm{X}_{\mathrm{n}}}{\bar{n} \mathrm{M}_{1} \mathrm{M}_{\mathrm{n}}}
$$

If we divide this sum into two groups, the one embracing all the individuals of one type, the other those of the other type, we may substitute for the former

$$
\begin{array}{ll}
\mathrm{L}_{1}+\mathrm{X}_{1}=l_{1}+x_{1}, & \mathrm{X}_{1}=l_{1}-\mathrm{L}_{1}+x_{1} \\
\mathrm{~L}_{\mathrm{n}}+\mathrm{X}_{\mathrm{n}}=l_{\mathrm{n}}+x_{\mathrm{n}} ; & \mathrm{X}_{\mathrm{n}}=l_{\mathrm{n}}-\mathrm{L}_{\mathrm{n}}+x_{\mathrm{n}}
\end{array}
$$

for the latter

$$
\begin{aligned}
& \begin{array}{ll}
\mathrm{L}_{1}+\mathrm{X}_{1}=\lambda_{1}+\xi_{1} & \mathrm{X}_{1}=\lambda_{1}-\mathrm{L}_{1}+\xi_{1} \\
\mathrm{I}_{\mathrm{n}}+\mathrm{X}_{\mathrm{n}}=\lambda_{\mathrm{n}}+\xi_{\mathrm{n}} & \mathrm{X}_{\mathrm{n}}=\lambda_{\mathrm{n}}-\mathrm{L}_{\mathrm{n}}+\dot{\xi}_{\mathrm{n}}
\end{array} \\
& \mathrm{R}=\frac{\boldsymbol{\Sigma}\left(x_{1}+l_{1}-\mathrm{L}_{1}\right)\left(x_{\mathrm{n}}+l_{\mathrm{n}}-\mathrm{L}_{\mathrm{n}}\right)}{n \mathrm{M}_{1} \mathrm{M}_{\mathrm{n}}}+\frac{\boldsymbol{\Sigma}\left(\xi_{1}+\lambda_{1}-\mathrm{L}_{1}\right)\left(\xi_{\mathrm{n}}+\lambda_{\mathrm{n}}-\mathrm{L}_{n}\right)}{n \mathrm{M}_{1} \mathrm{M}_{\mathrm{n}}} \\
& =\frac{\sum x_{1} x_{n}}{n \mathrm{M}_{1} \mathrm{M}_{\mathrm{n}}}+\frac{\sum \xi_{1} \xi_{\mathrm{n}}}{n \mathrm{M}_{1} \mathrm{M}_{\mathrm{n}}}+\frac{n_{1}\left(l_{1}-\mathrm{I}_{1}\right)\left(l_{\mathrm{n}}-\mathrm{L}_{\mathrm{n}}\right)+n_{2}\left(\lambda_{1}-\mathrm{L}_{1}\right)\left(\lambda_{\mathrm{n}}-\mathrm{L}_{\mathrm{n}}\right)}{n \mathrm{M}_{1} \mathrm{M}_{\mathrm{n}}}
\end{aligned}
$$

and by substituting the values of r_{1}, r_{n} and of

$$
\begin{gathered}
\mathrm{L}=\frac{n_{1} l+n_{\mathrm{e}} \lambda}{n} \\
\mathrm{R}=r_{1}^{n_{1} \mu_{1} \mu_{n}} \mathrm{M}_{1} \mathrm{M}_{1} \mathrm{M}_{\mathrm{n}}^{-}+r_{\mathrm{n}} \frac{n_{z} \mu_{1}^{\prime} \mu_{\mathrm{l}^{\prime}}}{n \mathrm{M}_{1} \mathrm{M}_{\mathrm{n}}}+\frac{n_{1} n_{2}\left(l_{1}-\lambda_{1}\right)\left(l_{\mathrm{n}}-\lambda_{\mathrm{n}}\right)}{n^{2} \mathrm{M}_{1} \mathrm{M}_{n}}
\end{gathered}
$$

Supposing that in the component elements of the series r_{1} and r_{n}, μ_{1} and $\mu_{1}{ }^{\prime}, \mu_{\mathrm{n}}$ and $\mu_{\mathrm{n}}{ }^{\prime}$ are equal, we have

$$
\mathrm{R}=r \frac{\mu_{1} \mu_{\mathrm{n}}}{M_{1} M_{\mathrm{n}}}+\frac{n_{1} n_{2}\left(l_{1}-\lambda_{1}\right)\left(l_{n}-\lambda_{n}\right)}{n_{1}{ }^{2} \mathrm{M}_{1} \mathrm{M}_{n}}
$$

It will be noticed that whenever the second term of this sum
is negative, R will be less than r. This will be the case when l_{1} is larger than λ_{1} and l_{n} smaller than λ_{n}, or vice versa.

I think this effect of mixture is a sufficient explanation of the low value of the coefficient of correlation for Paris, where we find a very heterogeneous population embracing narrow- and longheaded subjects from northern France and very broad- and shortheaded ones from southern France. The same explanation seems plausible for the Shuswap and the tribes of northern British Columbia. The high value for Eskimo skulls may be due to the fact that a number of female skulls were counted as male skulls. This would have the effect of raising the coefficient of correlation between the diameters of the head.

When the type is dis-homogeneous owing to mixed descent, the coefficient of correlation will depend upon the law of heredity. If the mixed race should range in a probability curve around a type intermediate between the parental types, we should expect to find the coefficient of correlation slightly influenced by mixture, if any. If the mixture should result in a tendency of reversion to either parental type, the effect would be similar to that observed in the case of mechanical mixture which was discussed before. Evidently in such cases the coefficient of correlation has no direct biological significance.

III

It is quite evident that both breadth and length of head are influenced by a great number of causes, some of which act upon both measurements in the same manner, while others may influence each in a peculiar way. Such causes may be investigated by determining their correlations with length and breadth of head separately. Thus, we may determine the correlation between capacity of skull, stature, dimensions of face, and the two diameters of the head. l have calculated a number of such correlations for adult males of a few Indian tribes with the following results :

Coefficient of Correlation.

Indians of Northern Coast	Shuswap	Sioux
of British Columbia.	Indiaws.	Indians.
		$+0.26$
		$+0.09$
Head. +0.30	+0.28	$+0.27$
of Head. +0.53	+0.62	+0.52
Head. . + 0.24	$+0.27$	$+0.30$
f Head. . - $0.10{ }^{1}$	$+0.22$	$+0.22$

Stature and Length of Head.
Stature and Breadth of Head
Breadth of Face and Length of Head.. +0.30
Breadth of Face and Breadth of Head. +0.53
Height of Face and Length of Head.. +0.24
Height of Face and Breadth of Head.. - 0.10^{1}
$+0.22+0.22$
If we desire to eliminate the influences of these causes from the apparent correlation between length and breadth of head, we must consider each of these a function not only of the other, but also of all the measurements the effect of which we desire to exclude. In doing so, we may pursue the same method that we used in the beginning (p. 450) and by a series of substitutions in (I) we find
(4) Average $x_{\mathrm{r}}=q_{\mathrm{r} 23} \ldots \ldots \mathrm{p}_{\mathrm{p}} x_{2}+q_{\mathrm{r} 32} \ldots \ldots{ }_{\mathrm{p}} x_{3}+\ldots q_{\mathrm{p}_{2}} \ldots{ }_{(\mathrm{p}-\mathrm{x})} x_{\mathrm{p}}$

The values q may be determined in the following manner. We will call
(5)

$$
q_{\mathrm{abc}} \ldots=r_{\mathrm{abc}} \cdot \frac{\mu_{\mathrm{a}}}{\mu_{\mathrm{b}}}
$$

By multiplying (4) successively with $x_{2}, x_{3} \ldots x_{p}$, we have

By multiplying the last of these equations successively by $r_{\mathrm{p} 2}, r_{\mathrm{p} 3} \ldots$ and subtracting from the first, second . . . equation, we find

$$
\begin{aligned}
r_{12}-r_{1 p} r_{p 2} & =r_{123} \ldots \mathrm{p}\left(\mathrm{I}-r_{2 \mathrm{p}} r_{\mathrm{p} 2}\right)+r_{132} \ldots \mathrm{p}\left(r_{32}-r_{3 \mathrm{p}} r_{\mathrm{p} 2}\right) \\
& +\ldots+r_{I(\mathrm{p}-1) 2} \ldots \mathrm{p}\left(r_{(\mathrm{p}-1) 2}-r_{(\mathrm{p}-\mathrm{I}) \mathrm{p}} r_{\mathrm{p} 2}\right)
\end{aligned}
$$

[^3]We call

It will be seen that (7) is identical with (6) except insofar as to all the r representing correlations between two measurements, the element p has been added, and insofar as the number of equations and of unknown quantities has been decreased by one. We may, therefore, continue a series of successive substitutions which will always result in equations of the same form. The next substitution would be

The last substitution will give us

Thus the coefficients of correlation between p variables may be reduced to those between ($p-1$) variables.

The variability ρ of the array of x_{1} which is correlated to a series of values for x_{2}, x_{3}. .

$$
\begin{aligned}
\rho^{2}= & \text { Average of }\left(x_{1}-q_{123} \ldots x_{2}-q_{132} \ldots x_{3} \ldots\right)^{2} \\
= & \text { A verage of }\left(x_{1} q_{1}+q_{123} x_{2}^{2}+q_{232} \ldots x_{3}+\ldots\right. \\
& -2 q_{123} \ldots x_{1} x_{2}-2 q_{132} \ldots x_{1} x_{3}-\ldots \\
& \left.+2 q_{123} \ldots q_{132} \ldots x_{2} x_{3}+\ldots\right)
\end{aligned}
$$

By substituting the values of the types r and μ^{2} for the averages of the types $x x$ and x^{2} and for q its related r, according to (5), we find

$$
\begin{aligned}
\rho^{2}=\mu_{1}^{2}(1+ & +r_{123}^{2} \ldots+r_{132}^{2} \ldots+\ldots \\
& -2 r_{123} \ldots r_{12}-2 r_{132} \ldots r_{13}-\ldots \\
& +2 r_{123} \ldots r_{132} r_{23}+\ldots .
\end{aligned}
$$

By introducing in the negative elements of this sum the values for r_{12}, r_{13}. . . from (6), we obtain
(8) $\rho^{2}=\mu_{1}^{2}\left(1-r_{123}^{2} \ldots-r_{132}^{2} \ldots-2 r_{132} \ldots r_{132} \ldots r_{32}-\ldots\right)$, or in a shorter form

$$
\rho^{2}=\mu_{1}^{2}\left[1-\Sigma\left(r_{\mathrm{Ia}} \ldots \mathrm{p} \cdot r_{\mathrm{tb}} \ldots \mathrm{p}, r_{\mathrm{ab}}\right)\right]
$$

in which sum a and b must be made to assume all the values from 2 to p.

> IV

I have treated, according to this method, the measurements of the 57 skulls of adult male Sioux Indians to which I referred above (page 453). I have compared length (l) and breadth (b) of skull with its height (h), the bizygomatic diameter of the face (z), and with the capacity of the skull. For the last purpose I have made a reduction which seemed necessary, because the capacity of the skull is a cubic measure, while all the others are linear measures. For this reason I have compared the latter with the cubic root of the capacity of the skulls (c). The averages and variabilities of these measurements are as follows:

```
Average (mm.)........ I12.9 181.7 143.5 1330 141.6
```


The following coefficients of correlation were found:

I. Coefficients of Single Correlation.

Determined by:

It appears from this table that the correlations of the diameters with the capacity are strongest, while that between length and breadth is one of the lowest values in the table. This condition is still more strongly brought out when double, triple, and quadruple correlations are considered.

II. Coefficients of Duuble Correlation.

III. Coefficients of Triple Correlation.

IV. Coefficients of Quadruple Correlation.
Determined by $c \quad l \quad b \quad k \quad z \quad$ Variability of Array.

Average c.. $\ldots .+0.32+0.67+0.36-0.08$ of $\mathrm{c}=0.47 \mu_{\mathrm{c}}$ Average 1.. $+0.63 \ldots-0.3^{6}+0.03+0.29$ of $1=0.79 \mu_{1}$ Average b.. $+0.69-0.16 \ldots-0.5^{2}+0.4 \mathrm{I}$ of $\mathrm{b}=0.5+\mu_{\mathrm{b}}$ Average h.. $+0.77+0.03-0.65 \cdots+0.18$ of $h=0.78 \mu_{\mathrm{h}}$ Average $2 . .-0.17+0.27+0.70+0.19 \ldots$ of $z=0.61, \mu_{\text {, }}$

These data show that the diameters of the skull are primarily determined by its capacity. The height of the skull appears to be most closely associated with its capacity, the length seems to be least closely related to it. I presume this is due to the fact
that the development of the frontal sinuses and of the occipital protuberances does not depend upon the form of the inner cavity of the skull, but upon the general development of the skeleton. Since this is partly expressed by stature, we might expect that this influence would partly be eliminated by the introduction of stature in the series of correlations. Unfortunately this element cannot be introduced on account of lack of data. Furthermore, the errors of the values of multiple correlations are so great that it is not advisable to carry on the investigation of a series of no more than 57 skulls beyond quadruple correlations which may be considered approximately correct in their first decimal.

It is of great interest to note that when capacity is introduced in our consideration a compensatory growth is found to exist between breadth of head on the one hand, and height and length of head on the other. We find, therefore, as a result of our investigation, that the law of compensation which Virchow formulated after an analysis of the forms of skulls with premature synostosis of sutures, holds good also in normal skulls. Among skulls belonging to the same type a breadth above the average is compensated by a height and a length below the average. The correlation between length and breadth is not an expression of a biological relation between the two measurements, but an effect of the changes which both undergo when the capacity of the skull increases or decreases. The cephalic index, therefore, is not the expression of a law of direct relation between length and breadth of the skull. The proportion between the diameters of the skull and its capacity, on the other hand, expresses an intimate biological relation between these measurements. It appears that the diameters of the head must be considered as due to the tendency of the inner cavity of the skull, or more probably of the brain, to assume a certain size and form in a given type of man, this form being expressed by the proportion of the diameters of the brain and its size. If one of the diameters differs from the norm in being excessively large, the others will
tend to be too small. This is definitely shown to be the case when the transversal diameter differs from the norm.

The variabilities of the arrays show that the reduction of variability of capacity is greatest. This proves that the four linear measurements which we have treated largely determine the capacity. The variability of the length and height of skull is very slightly reduced. This shows that these measurements are largely influenced by causes which we have not included in our considerations. The same is true of the bizygomatic diameter of the face. When we compare the reduction in variability of the linear measurements as determined by c, and as determined by the quadruple correlation, we find the following :

Variability of Array.		
	Determinet by c.	Deternined by
l	0.84	0.79
b	0.74	0.54
h	0.90	0.78
z	0.87	0.69

This comparison proves that breadth, height, and bizygomatic diameter have an insignificant effect upon length as compared with the effect of capacity. The great reduction of variability for breadth of head and bizygomatic diameter is due to the intimate correlation between these two values.

It follows from these considerations that while the cephalic index is a convenient practical expression of the form of the head, it does not express any important anatomic relation. On the other hand, the relation between capacity and head diameters is found to be of fundamental importance, and among these the relation between transversal diameter and capacity is most significant. Since in measurements on the living we are unable to measure capacity of the head, it is necessary to find a substitute. It would seem that circumferences are the most available means for judging cranial size. Therefore such circumferences should be included in all anthropometrical schedules designed to investigate racial characters.

[^0]: ${ }^{1}$ Natural Inheritance.
 ${ }^{2}$ Mathematical Contributions to the Theorv of Evolution, III; Philosophical Transactions of the Royal Society of London, vol. 187, pp. 253 ff.

[^1]: ${ }^{1}$ See Galton, Natural Inheritance, pp. 95 ff .

[^2]: ${ }^{1}$ Loc. cit., pp. 279, 280.
 ${ }^{2}$ George L. Otis, List of Specimens in the Anatomical Section of the U. S. A. Medical Museum, 1880, pp. 104 ff .
 ${ }^{3}$ Ibid., pp. 9 ff.
 ${ }^{4}$ Die Schädel in der Grossherzoglichen Anatomischen Anstalt zu Heidelberg; Archiv für Anthropologie, vol. 24, pp. 24 ff.
 ${ }^{5}$ H. H. Risley, The Tribes and Castes of Bengal, vol. I, pp. 16 ff.

[^3]: ${ }^{1}$ This low value may be due to the cause that on the coast of British Columbia two types come into contact, one with a very high face, the other with a low face. Their mixture would probably result in a decrease of the correlations for height of face in the mixed race.

