RULED SURFACES WITH ISOTROPIC GENERATORS.

By Luther Pfahler Eisenhart (Princeton, N.J.).

Adunanza del 14 aprile 1912.

Introduction.

Through each point (a, b, c), of ordinary space there pass an infinity of lines which meet the circle at infinity. The cone generated by these isotropic lines may be defined in terms of cartesian coordinates by the equation

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=0
$$

where x, y, z, are current coordinates. An isotropic line is also called a minimal line, since its element of length is zero.

Consider any non isotropic line in the $x y$-plane. It is determined by a point (x_{0}, y_{0}) upon it and by the angle θ which it makes with the x-axis. If x, y, are the coordinates of any point on this line and d denotes its distance from the point (x_{0}, y_{0}), the equations

$$
\begin{equation*}
\left.x=x_{0}+\cos \theta \cdot d, \quad y=y_{0}+\sin \theta \cdot d, \quad z=-i d^{1}\right) \tag{I}
\end{equation*}
$$

defines a minimal line through the point $\left(x_{0}, y_{0}, 0\right)$. Moreover, any minimal line other than those which lie in the $x y$-plane, or in a parallel plane, may be defined by equations of the type (r). Without any loss of generality we may accordingly consider the equations of a minimal line in the form (r). From this point of view we may say that a minimal line is determined by a lineal element in the $x y$-plane, that is a point and a direction through the point in this plane. We call the point the center of the lineal element and the direction the line of the element.

When x_{0}, y_{0} and θ involve a parameter, equations (I) define a ruled surface with isotropic generators. In \S_{I} it is shown that the necessary and sufficient condition that the surface be developable is that the lines of the lineal elements be normal to the curve C_{0} which is the locus of the centers $\left(x_{0}, y_{0}\right)$ of these elements. The edge of regression is a minimal curve and it is an evolute of C_{0}. It is shown that any

[^0]plane curve is the projection of a minimal curve, and in the foregoing sense defines a single parameter family of minimal developables.

When the ruled surface is not developable, it belongs to the class considered from an entirely different point of view by Monge ${ }^{2}$) and which has been the object of subsequent study by a number of geometers, whose specific contributions will be noted later ${ }^{3}$). In $§ 2$ it is shown that such a surface is the envelope of a single parameter family of spheres whose radii are equal to the corresponding arcs of the curve Γ which is the locus of the centers of the spheres. Of particular interest is the case when the lines of the lineal elements meet C_{0} under the same angle.

In a previous memoir ${ }^{4}$) we have shown that the equations of a twisted curve can be put in a very fundamental form by the use of a certain parameter, which we called a normal parameter, there being in fact two such parameters for a general curve. In $\int 3$ this form of parametric representation is applied to the curve Γ. From the fact that there are two normal parameters one discovers that the envelope of spheres with centers on Γ consists of two sheets, both of which are ruled surfaces with isotropic generators. Hence the set of lineal elements with centers on C_{o} and determined directions lead to a second set of lineal elements whose centers describe a new curve \bar{C}_{0}. In order to study the relations between these two sets of lineal elements, we consider first the envelope of the lines of the first set, say C_{e}. It is shown that a normal to C_{e} meets the corresponding normal to C_{o} in the projection upon the $x y$-plane of the corresponding point on Γ. In $\oint 4$ we determine the relative positions of C_{0}, \bar{C}_{o} and the projection of Γ on the $x y$-plane, and we obtain a geometrical construction of the second set when the first set is given.

When Γ is a minimal curve, the ruled surface is of the type first studied by SerRET; its total curvature is constant and positve. The arrays of lineal elements determining the two sheets of such a surface are very interesting. In a certain manner a plane curve determines ∞^{2} of these surfaces. When a given curve is taken as C_{0}, the determination of the lines to be associated so that the surface shall be of the Serret type requires the solution of a Riccati equation, as is found in $\S 5$. Another particular case of importance is that for which \bar{C}_{0} reduces to a point, in which case the second set reduces to a unique lineal element. In $\S 6$ there is given a geometrical construction for the directions to be associated with a given curve C_{0} when a given lineal element is taken for the degenerate second set.

[^1]
$\oint 1$.

Isotropic Developables. Minimal Evolutes of a Plane Curve.

If we put

$$
\begin{equation*}
e^{i \theta}=i u \tag{2}
\end{equation*}
$$

then
(3)

$$
\cos \theta=\frac{i\left(u^{2}-1\right)}{2 u}, \quad \sin \theta=\frac{u^{2}+\mathrm{I}}{2 u},
$$

and consequently equations (I) may be put in the form

$$
\begin{equation*}
x=x_{0}+\left(\mathrm{I}-u^{2}\right) v, \quad y=y_{0}+i\left(\mathrm{I}+u^{2}\right) v, \quad z=2 u v \tag{4}
\end{equation*}
$$

If x_{0} and y_{0} are functions of u, equations (4) define a ruled surface with isotropic generators. We seek the conditions to be satisfied in order that this surface be developable, that is that the generators be tangent to a curve. The analytic condition is that for each value of u there exists a value of v such that the following equations hold

$$
\begin{equation*}
\frac{d x}{\mathrm{I}-u^{2}}=\frac{d y}{i\left(\mathrm{I}+u^{2}\right)}=\frac{d z}{2 u} \tag{s}
\end{equation*}
$$

When the values from (4) are substituted in (5), and the respective terms, both numerator and denominator, are multiplied by $\left(\mathrm{I}-u^{2}\right), i\left(\mathrm{I}+u^{2}\right), 2 u$, and the respective results added, we find that we must have

$$
\begin{equation*}
\left(\mathrm{I}-u^{2}\right) d x_{0}+i\left(\mathrm{I}+u^{2}\right) d y_{0}=0 \tag{6}
\end{equation*}
$$

Hence the lines of the lineal elements must be orthogonal to the curve C_{0}, the locus of the point $\left(x_{0}, y_{0}\right)$.

When this condition is satisfied, equations (5) reduce to the equations for the determination of the evolute of C_{0}. Hence the evolute of C_{0} is the projection on the $x y$-plane of the minimal edge of regression of the developable. Conversely we have that any plane curve has a minimal curve for one of its evolutes ${ }^{5}$). Moreover, any plane curve gives rise to a family of minimal curves as follows:

Let Γ_{0} be a plane curve and C_{0} one of its involutes; the lineal elements whose centers are points of C_{0} and whose lines are tangents to Γ_{0} determine a minimal developable and consequently a minimal curve.

We have shown elsewhere ${ }^{6}$) that the equations of any plane curve can be given the form

$$
\left\{\begin{array}{l}
x=\frac{1}{2}\left(\mathrm{I}-u^{2}\right) f^{\prime \prime}+u f^{\prime}-f \tag{7}\\
y=\frac{i}{2}\left(\mathrm{I}+u^{2}\right) f^{\prime \prime}-i u f^{\prime}+i f
\end{array}\right.
$$

[^2]where the accents indicate differentiation with respect to the argument, a notation which will be made use of throughout this paper. From (7) we have
\[

$$
\begin{equation*}
\frac{d x}{d u}=\frac{\mathrm{I}}{2}\left(\mathrm{I}-u^{2}\right) f^{\prime \prime \prime}, \quad \frac{d y}{d u}=\frac{i}{2}\left(\mathrm{I}+u^{2}\right) f^{\prime \prime \prime}, \quad \frac{d s}{d u}=i u f^{\prime \prime \prime} ; \tag{8}
\end{equation*}
$$

\]

consequently the direction-cosines of the lines have the form (3). If we take

$$
\begin{equation*}
s=i\left(u f^{\prime \prime}-f^{\prime}\right) \tag{9}
\end{equation*}
$$

the corresponding involute, given by

$$
\begin{equation*}
x_{0}=x-s \cdot \cos \theta, \quad y_{0}=y-s \cdot \sin \theta \tag{io}
\end{equation*}
$$

is defined also by

$$
\begin{equation*}
x_{0}=\frac{u^{2}+\mathrm{I}}{2 u} f^{\prime}-f, \quad y_{0}=i \frac{\mathrm{I}-u^{2}}{2 u} f^{\prime}+i f \tag{II}
\end{equation*}
$$

From (3), (4) and (io) it follows that $v=-i$, and hence from (4) and (9) we obtain
(7')

$$
z=u f^{\prime \prime}-f^{\prime}
$$

This expression and (7) are the equations of the minimal evolute in the Weierstrass form.

§ 2.

Skew Ruled Surfaces with Isotropic Generators.

We pass to the consideration of the general case in which the surface Σ defined by (4) is not developable. We find by direct calculation that the fundamental quantities $E, F, G ; D^{\prime}, D^{\prime \prime}$ for the surface have the following forms ${ }^{7}$)

$$
\left\{\begin{array}{l}
E=x_{0}^{\prime 2}+y_{\mathrm{o}}^{\prime 2}+4 i u v\left(y_{0}^{\prime}+i x_{\mathrm{o}}^{\prime}\right)+4 v^{2} \tag{I2}\\
F=x_{\mathrm{o}}^{\prime}\left(\mathrm{I}-u^{2}\right)+i y_{\mathrm{o}}^{\prime}\left(\mathrm{I}+u^{2}\right), \quad G=\mathrm{o} \\
D^{\prime}=2, \quad D^{\prime \prime}=\mathrm{o}
\end{array}\right.
$$

Hence the curves $u=$ const., are both asymptotic lines and minimal curves. Furthermore as follows from the general equation of the directions of the lines of curvature on any surface ${ }^{8}$), the two directions coincide at every point. In fact, this direction is tangent to the curve $u=$ const. ${ }^{9}$).

[^3]The equations ${ }^{10}$) of the principal radii reduce in this case to

$$
\frac{1}{\rho_{1} \rho_{2}}=\frac{D^{\prime 2}}{F^{2}}, \quad \frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}=2 \frac{D^{\prime}}{F} .
$$

Hence the two principal radii are equal to one another, and their common value ρ is given by

$$
\begin{equation*}
\left.\rho=\frac{F}{2}^{11}\right) . \tag{I3}
\end{equation*}
$$

Accordingly the two sheets of the focal surface coincide, their equations being

$$
\begin{equation*}
\xi=x+p X, \quad n=y+p Y, \quad \zeta=z+p Z \tag{I4}
\end{equation*}
$$

where X, Y, Z denote the direction-cosines of the normal to the surface. It is readily shown that

$$
\left\{\begin{array}{c}
X=-\frac{2 i}{F}\left[u y_{0}^{\prime}-i\left(\mathrm{I}-u^{2}\right) v\right], \quad Y=\frac{2 i}{F}\left[u x_{0}^{\prime}-v\left(\mathrm{I}+u^{2}\right)\right] \tag{IS}\\
Z=\frac{\mathrm{I}}{F}\left[\left(\mathrm{I}+u^{2}\right) x_{0}^{\prime}+i\left(\mathrm{I}-u^{2}\right) y_{0}^{\prime}-4 u v\right] .
\end{array}\right.
$$

When these values are substituted in (14) we obtain

$$
\left\{\begin{array}{l}
\xi=x_{0}^{\prime}-i u y_{0}^{\prime}, \quad n=y_{0}+i u x_{0}^{\prime}, \tag{I6}\\
\zeta=\frac{1}{2}\left[\left(\mathrm{I}+u^{2}\right) x_{0}^{\prime}+i\left(\mathrm{I}-u^{2}\right) y_{0}^{\prime}\right]
\end{array}\right.
$$

Since these equations do not involve v, they define a curve Γ. Hence the focal surface degenerates into a curve. The $\operatorname{arc} \sigma$ of the curve can be espressed without the sign of a quadrature in the form

$$
\begin{equation*}
\sigma=\frac{\mathrm{I}}{2}\left[\left(\mathrm{I}-u^{2}\right) x_{0}^{\prime}+i\left(\mathrm{I}+u^{2}\right) y_{0}^{\prime}\right] . \tag{17}
\end{equation*}
$$

From (12), (13) and (17) we have (18) Hence:

The surface $\mathbf{\Sigma}$ is the envelope of a single infinity of spheres whose centers describe the curve (16) and whose radii are equal to the corresponding arcs of the curve measured from a given point of the curve.

Evidently consecutive spheres touch one another at points of the involute of the curve (16) given by

$$
\begin{equation*}
\xi_{i}=\xi-\sigma \alpha, \quad n_{i}=n-\sigma \beta, \quad \zeta_{i}=\zeta-\sigma \gamma, \tag{19}
\end{equation*}
$$

where α, β, γ denote the direction-cosines of the tangent to $\Gamma^{{ }^{12}}$).
Returning to the consideration of equations (16), we remark that by means of

[^4](2), these equations are reducible to the form
(20)
\[

\left\{$$
\begin{array}{l}
\xi=x_{0}-\sin \alpha \frac{d s_{0}}{d \theta} \\
n=y_{0}+\cos \alpha \frac{d s_{0}}{d \theta} \\
\zeta=i \sin (\alpha-\theta) \frac{d s_{0}}{d \theta}
\end{array}
$$\right.
\]

where $d s_{0}$ denotes the lineal element of C_{0} and α the angle which the tangent to C_{0} makes with the x-axis. Hence:

When the curve Γ is projected upon the $x y$-plane, each point lies on the principal normal to C_{0} at the corresponding point and at the distance $\frac{d s_{0}}{d \theta}$ from it.

When, in particular, the lines make a constant angle with the curve C_{0}, that is
(21)
then
(22)

$$
\theta=\alpha+c
$$

$$
\frac{d s_{0}}{d \theta}=\rho_{0}
$$

where ρ_{0} denotes the radius of curvature of C_{0}. Consequently Γ lies on the cylinder whose right-section by the $x y$-plane is the evolute of C_{0}.

When C_{0} is real, Γ is imaginary, unless $\theta=\alpha$, in which case the lines of the lineal elements are tangent to C_{o} and Γ is the plane evolute of C_{0}. When c in (2I) is $\frac{\pi}{2}$, that is when the ruled surface Σ is developable, equations (20) define the edge of regression as follows from (I) and (10).

$§ 3$.

Equations of Γ in Normal Form.

It is readily shown that u in (16) is one of the two normal parameters of the curve $\Gamma{ }^{13}$). In fact, if we put

$$
\begin{equation*}
x_{0}=\varphi+\frac{\psi}{u}, \quad y_{0}=i\left(\frac{\psi}{u}-\varphi\right) \tag{23}
\end{equation*}
$$

equations (16) and (17) assume the normal form

$$
\left\{\begin{array}{lr}
\xi=\varphi-u \varphi^{\prime}+\psi^{\prime}, & i n=\varphi-u \varphi^{\prime}-\psi^{\prime} \tag{24}\\
\zeta=\varphi^{\prime}+u \psi^{\prime}-\psi, & \sigma=\varphi^{\prime}-u \psi^{\prime}+\psi
\end{array}\right.
$$

If the curve C_{0} and the direction angle θ are given in terms of any parameter t, from (3) we find u as a function of t and from (23) the functions φ and ψ.

We have seen ${ }^{14}$) that in general a curve Γ possesses two normal parameters u.
${ }^{13}$) Loc. cit. 4), p. 19.
14) Loc. cit 4), p. 21.
and \bar{u} and correspondong functions φ, ψ and $\bar{\varphi}, \bar{\psi}$, and that they are related thus:
(25) $\quad \bar{u}=\frac{\varphi^{\prime \prime}}{\psi^{\prime \prime}}, \quad \bar{\varphi}=\varphi-u \varphi^{\prime}+\left(u \psi^{\prime}-\psi\right) \frac{\varphi^{\prime \prime}}{\psi^{\prime \prime}}, \quad \bar{\psi}=\psi^{\prime} \frac{\varphi^{\prime \prime}}{\psi^{\prime \prime}}-\varphi^{\prime}$.

Hence the curve Γ serves as the locus of centers of curvature of a second ruled surface $\overline{\mathbf{\Sigma}}$ which cuts the $x y$-plane in the curve

$$
\begin{equation*}
\bar{x}_{0}=\bar{\varphi}+\frac{\bar{\psi}}{\bar{u}}, \quad \bar{y}_{0}=i\left(\frac{\bar{\psi}}{\bar{u}}-\bar{\varphi}\right) \tag{26}
\end{equation*}
$$

and whose generators have the direction-cosines

$$
\frac{1-\bar{u}^{2}}{2}, \quad i \frac{\mathrm{I}+\bar{u}^{2}}{2}, \quad \bar{u} .
$$

The significance of this result is seen geometrically when we recall that the spheres of radius σ touch one another and consequently the circle of intersection degenerates into two minimal lines intersecting in the corresponding point (19) ${ }^{15}$).

Later we shall give a discussion of the relative positions of the curves C_{o} and \bar{C}_{0} given by (23) and (26) respectively.

In order to obtain further information concerning Γ, we consider the envelope of the lines of the array of lineal elements defining a surface $\boldsymbol{\Sigma}$. Analytically this comes to the determination of t in the espressions

$$
\begin{equation*}
x_{\varepsilon}=x+t \cdot \cos \theta, \quad y_{\mathrm{t}}=y+t \cdot \sin \theta \tag{27}
\end{equation*}
$$

so that

$$
\frac{d x_{\varepsilon}}{\cos \theta}=\frac{d y_{\varepsilon}}{\sin \theta} .
$$

Substituting the values from (3) and (24) in this equation, we obtain

$$
\begin{equation*}
t=i\left(\varphi^{\prime}+u \psi^{\prime}-\psi\right)=i \zeta, \tag{28}
\end{equation*}
$$

where ζ is the z-coordinate of Γ, as follows from (24). When this value is substituted in (27), by means of (24) the result is reducible to

$$
\begin{equation*}
x_{\varepsilon}=\xi+\frac{\mathrm{I}+u^{2}}{2 u} \sigma, \quad y_{\varepsilon}=n+\frac{i\left(\mathrm{I}-u^{2}\right)}{2 u} \sigma . \tag{29}
\end{equation*}
$$

If we call Γ_{0} the projection of Γ on the $x y$-plane, and if $P_{0}, P_{\mathrm{s}}, \Pi_{0}$ denote corresponding points on the curve C_{0}, the envelope C_{ε} of the lines of the lineal elements and Γ_{0} respectively, the lines $P_{0} P_{t}$ and $P_{t} \Pi_{0}$ are perpendicular to one another and the lengths of these segments are

$$
\begin{equation*}
P_{0} P_{\varepsilon}=i \zeta, \quad P_{\varepsilon} \Pi_{o}=\sigma . \tag{30}
\end{equation*}
$$

Evidently we have also

$$
P_{0} \Pi_{0}=\sqrt{\sigma^{2}-\zeta^{2}} .
$$

[^5]From these results and the preceding discussion of equations (21), (22) we have incidentally the theorem of Réaumur ${ }^{\text {re }}$).

If a family of straight lines in a plane meet a curve under constant angle, the normals to the envelope of these lines meet the corresponding normals to the original curve in the evolute of this curve.

From (29) we find that the lineal element of C_{ε} is

$$
\begin{equation*}
d s_{e}=i\left[\psi^{\prime \prime}+u \psi^{\prime \prime}-\frac{\mathrm{I}}{u}\left(\varphi^{\prime}-u \psi^{\prime}+\psi\right)\right] \tag{31}
\end{equation*}
$$

and consequently the radius of curvature of C_{e} is

$$
\begin{equation*}
i_{e}=\frac{d s_{e}}{d \theta}=\sigma-u \frac{d \zeta}{d u} \tag{32}
\end{equation*}
$$

$\oint 4$.

Relative Positions of the Curves C_{0}, \bar{C}_{0} and Γ_{0}.
Since the functions ζ and σ are determined by the curve Γ, it follows from (30) and analogous equations for \bar{C}_{0}, that corresponding points P_{0} and \bar{P}_{o} of C_{o} and \bar{C}_{o} are equidistant from the corresponding point Π_{o} of Γ_{0}.

If σ_{0} denotes the arc of the curve Γ_{o}, from (24) and (25) we have

$$
\begin{equation*}
\frac{d \xi}{d \sigma_{o}}=i \frac{u \bar{u}-\mathrm{I}}{2 \sqrt{u \bar{u}}}, \quad \frac{d n}{d \sigma_{0}}=\frac{\bar{u} u+1}{2 \sqrt{u \bar{u}}} \tag{33}
\end{equation*}
$$

By means of (2) and the analogous equation

$$
e^{i \bar{\theta}}=i \bar{u}
$$

where $\bar{\theta}$ is the direction angle of the lines of the second system of lineal elements, equations (33) may be given the form

$$
\frac{d \xi}{d \sigma_{0}}=-\cos \frac{\theta+\bar{\theta}}{2}, \quad \frac{d n}{d \sigma_{0}}=-\sin \frac{\theta+\bar{\theta}}{2}
$$

Hence the tangent to Γ_{0} at a point $\mathbf{I I}_{0}$ makes the angle $\boldsymbol{\Pi}+\frac{\theta+\bar{\theta}}{2}$ with the x-axis,

[^6]and consequently bisects the angle between the directions $P_{\varepsilon} H_{o}$ and $\bar{P}_{\varepsilon} I_{o}$, where \bar{P}_{ε} is the corresponding point of the envelope $\overline{\mathcal{C}}_{\varepsilon}$ of the second system of lines.

From (33) and the expressions for the direction-cosines of $\mathbf{1 1}_{0} P_{\varepsilon}$, it follows that the angle β between this line and the tangent Γ_{o} at I_{0} is given by

$$
\cos \beta=\frac{i}{2 \sqrt{u \bar{u}}}(\bar{u}-u), \quad \sin \beta=\frac{\mathbf{1}}{2 \sqrt{u \bar{u}}}(\bar{u}+u)
$$

Interchanging u and \bar{u}, we obtain the equations defining $\bar{\beta}$, the analogue of β. Evidently β and $\bar{\beta}$ are supplementary, but σ and $\bar{\sigma}$ differ only in sign.

It should be remarked that C_{0} is normal at P_{0} to the line $\Pi_{0} P_{0}$; likewise for \bar{C}_{0}. Also the point I_{1}, being the intersection of the tangent to Γ_{0} and the corresponding lines of the two systems of lineal elements, is the projection on the $x y$-plane of the point whose coordinates are given by (19).

From the foregoing result we remark that the second system may be obtained from the first as follows: Take two nearby points on C_{0} and find the corresponding points I_{0} by constructing the envelope of the lines and finding the intersections of the normals to C_{ε} and to C_{0}; in the limit the line joining these points is $\Pi_{0} \Pi_{1}$ and \bar{P}_{0} is the symmetric of P_{0} with respect to this line: furthermore $\bar{P}_{0} \Pi_{0}$ is the direction of the lineal element with center at \bar{P}_{0}.

$\$ 5$.

Surfaces of Serret.

When Γ is a minimal curve, $\bar{u}=u^{17}$) and only in this case. Then $\sigma=c$, where c is constant; also $\rho=c$ and consequently the surface $\mathbf{\Sigma}$ has constant positive curvature. These surfaces were considered first by Serret ${ }^{\text {r8 }}$), and accordingly we shall refer to them as the surfaces of Serret.

From (24) it follows that

$$
\varphi^{\prime}=u \psi^{\prime}-\psi+c .
$$

Hence if we put $\psi=f^{\prime}$ we have

$$
\begin{equation*}
\varphi=u f^{\prime}-2 f+c u, \quad \psi=f^{\prime} \tag{34}
\end{equation*}
$$

${ }^{17}$) Loc. cit. 4), p. 19.
${ }^{18}$) J.A. Serret, Note sur une équation aux dérivées partielles [Journal de Mathématiques pures et appliquées, Ière série, t. XIII (1848), pp. 361-368]. Darboux has shown in his Lecons sur la théoria générale des surfaces et les applications géométriques du Calcul infinitésimal (Paris, Gauthier-Villars), t. III (1894), p. 315 , that these are the ruled surfaces resulting from a deformation of a sphere of radius c. Study \{Minimalcurven und Serret'sche Flächen [American Journal of Mathematics, Vol. XXXII (igio), pp. $264 \cdot 278]\}$ considered these surfaces as the loci of curves of constant torsion associated with minimalcurves.

Accordingly the equations of C_{0} are

$$
\begin{equation*}
x_{0}=\frac{u^{2}+\mathrm{I}}{u} f^{\prime}-2 f+c u, \quad y_{0}=\frac{i\left(\mathrm{I}-u^{2}\right)}{u} f^{\prime}+2 i f-i c u \tag{35}
\end{equation*}
$$

When these values are substituted in (4), we obtain the equations of a surface of Serret ${ }^{19}$).

From (33) it follows that for a surface of Serret, and only in this case, a tangent to the curve Γ_{0} is parallel to the direction of the corresponding lineal element. Hence a surface of Serret may be obtained as follows: Given any plane curve Γ_{0}; if σ_{0} denotes its arc measured from a certain point, the curve Γ_{0} is the projection of the minimal curve for which $z=-i \sigma_{0}$. If we lay off on a normal to Γ_{o} segments of length c measured from the curve in both directions along the normal, and at the end points $P_{\varepsilon}, \bar{P}_{\varepsilon}$ draw parallels to the corresponding tangent to Γ_{o}, the points on these parallels at the distance σ_{0}, in the positive direction of the tangent, from P_{ε} and \bar{P}_{ε} describe curves C_{0} and \bar{C}_{0}, as follows from $\S 3$, and the lines of the lineal elements are $P_{\varepsilon} P_{o}$ and $\bar{P}_{\varepsilon} \bar{P}_{o}$. Since σ_{o} is determined only to within an additive constant, and since c is arbitrary, the curve Γ_{0} determines a two parameter family of surfaces of Serret ${ }^{20}$).

We proceed to the consideration of the converse problem: Given a curve C_{0}; what directions must be associated with it so that the resulting system of lineal elements shall determine a surface of Serret?

Suppose that the equations of C_{0} are

$$
x_{0}=F_{1}(v), \quad y_{0}=F_{2}(v)
$$

From (34) and (35) it follows that we must have

$$
\begin{gathered}
u f^{\prime}-2 f+c u=\frac{1}{2}\left(F_{1}+i F_{2}\right) \\
\frac{f^{\prime}}{u}=\frac{\mathrm{I}}{2}\left(F_{\mathrm{I}}-i F_{2}\right)
\end{gathered}
$$

Differentiating we have

$$
\begin{aligned}
& \left(u f^{\prime \prime}-f^{\prime}+c\right) \frac{d u}{d v}=\frac{\mathrm{I}}{2}\left(F_{1}^{\prime}+i F_{2}^{\prime}\right), \\
& \left(u f^{\prime \prime}-f^{\prime}\right) \frac{\mathrm{I}}{u^{2}} \frac{d u}{d v}=\frac{\mathrm{I}}{2}\left(F_{1}^{\prime}-i F_{2}^{\prime}\right)
\end{aligned}
$$

Hence the determination of u requires the integration of the Riccati equation

$$
c \frac{d u}{d v}=\frac{\mathrm{I}}{2}\left(F_{1}^{\prime}+i F_{2}^{\prime}\right)-\frac{\mathrm{I}}{2}\left(F_{1}^{\prime}-i F_{2}^{\prime}\right) u^{2}
$$

After u has been found, the function f is given without quadrature by

$$
f=\frac{\mathrm{I}}{4}\left(F_{\mathrm{I}}-i F_{2}\right) u^{2}-\frac{\mathrm{I}}{4}\left(F_{1}+i F_{2}\right)+\frac{c}{2} u .
$$

${ }^{19}$) Cff. Stackel, loc. cit. ${ }^{9}$), p. if8.
${ }^{20}$) The foregoing results may be verified readily by means of the preceding equations.

$§ 6$.

One of the Curves \bar{C}_{0}, C_{0} a Point.
Another particular case of interest is that for which

$$
\begin{equation*}
\varphi^{\prime \prime}=c \psi^{\prime \prime}, \tag{36}
\end{equation*}
$$

where c is a constant. This equation may be replaced by

$$
\begin{equation*}
\varphi=c \psi+c_{1} u+c_{2} \tag{37}
\end{equation*}
$$

where c_{1} and c_{2} are constants. Now the equations of Γ assume the form

$$
\left\{\begin{align*}
x & =c \psi-\psi^{\prime}(c u-1)+c_{2}, \tag{38}\\
i y & =c \psi-\psi,(c u+1)+c_{2}, \\
z & =(c+u) \psi^{\prime}-\psi+c_{1},
\end{align*}\right.
$$

from which we find that Γ lies in the isotropic plane

$$
\begin{equation*}
\left(\mathrm{I}-c^{2}\right) x+i\left(\mathrm{I}+c^{2}\right) y+2 c z=A \tag{39}
\end{equation*}
$$

where A denotes a determinate constant.
The equations of C_{o} become
(40) $x_{0}=\left(c_{0}+\frac{1}{u}\right) \psi+c_{1} u+c_{2}, \quad y_{0}=i\left[\left(\frac{1}{u}-c\right) \psi-c_{1} u-c_{2}\right]$.

If ψ be eliminated from these equations, we have

$$
\begin{equation*}
u=\frac{x_{0}+i y_{0}-2 c_{2}}{c\left(x_{0}-i y_{0}\right)+2 c_{\mathrm{r}}} . \tag{4I}
\end{equation*}
$$

Hence the equations of any curve C_{0} may be put into the form (40) without quadrature and in only one way for each set of values of c, c_{1} and c_{2}.

From (25) we have

$$
\begin{equation*}
\bar{u}=c, \quad \bar{\varphi}=c_{2}, \quad \bar{\psi}-c_{1} . \tag{42}
\end{equation*}
$$

Hence the curve \bar{C}_{o} degenerates into the point

$$
\begin{equation*}
\bar{x}_{0}=c_{2}+\frac{c_{1}}{c}, \quad \bar{y}_{0}=i\left(\frac{c_{1}}{c}-c_{2}\right), \tag{43}
\end{equation*}
$$

and there is a single direction which is given by

$$
\begin{equation*}
\cos \bar{\theta}=\frac{i\left(c^{2}-1\right)}{2 c}, \quad \sin \bar{\theta}=\frac{1+c^{2}}{2 c} . \tag{44}
\end{equation*}
$$

In other words, the second system of lineal elements consists of one element and consequently one of the nappes of the envelope of spheres is an isotropic line.

From (41), (43) and (44) it follows that any lineal element in the $x y$-plane and any curve in this plane determine a surface of the type under consideration. For the former determines c, c_{1} and c_{2}, and by means of the given curve C_{0} we find from
(41) the parameter u and consequently the directions of the lineal elements whose centers lie on C_{0}. From the general results of $§ 4$ we obtain the following geometrical construction for these directions: Join the fixed point \bar{P}_{o} to any point P_{o} of C_{0}, and at its mid-point erect the perpendicular to $\bar{P}_{0} P_{o}$; let III_{1} denote the point where this perpendicular meets the line of the single lineal element whose center is \bar{P}_{0}; the line ${ }^{11} P_{\mathrm{a}}$ gives the direction ${ }^{\mathrm{Z}}$ of the lineal element whose center is P_{o}.

Pisa, March 5, 1912.
L. P. Eisenhart.

[^0]: ${ }^{1}$) Evidently a second line is given by equations similar to (1) in which $z=i d$.

[^1]: ${ }^{2}$) G. Monge, Application de l'Analyse à la Geometrie, 5^{e} édition (Paris, 1849), pp. 196-211.
 3) A historical discussion of these surfaces may be found in an article by L. Raffy, Etude sur les surfaces imaginaires de Monge à lignes de courbure confondues [Bulletin de la Société Mathématique de France, t. XXXVI (1908), pp. 150-184].
 ${ }^{4}$) L. P. Eisenhart, A Fundamental Parametric Representation of Space Curves [Annals of Mathematics, Series II, Vol. XIII (191I-1912), pp. 17-35].

[^2]: ${ }^{5}$) Cfr. G. Scheffers, Anwendung der Diferential- und Integralrechnung auf Geometrie, Bd. I (Leipzig, Veit \& Co., 1900).
 ${ }^{6}$) Loc. cit. ${ }^{4}$), $§ 5$ and replace u by $-i u$ and ψ by $-i f \frac{1}{2}$.

[^3]: ${ }^{7}$) L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces (London and Boston, Ginn and Co., 1909), pp. 70, 1 I 5.
 ${ }^{8}$) Loc. cit. 7), p. 12 I.
 9) Stackel in his memoir Beiträg zur Ilächentheorie [Berichte über die Verhandlungen der Kgl. Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, Bd. LIV (1902), pp. IoI-120], p. Io8, remarked that ruled surfaces with isotropic generators are characterized by this property and it is from this point of view that he proceeds with his investigation.

[^4]: ${ }^{10}$) Loc. cit. 7), p. 120.
 ${ }^{11}$) Monge [loc. cit. ${ }^{2}$)] discovered the ruled surfaces with isotropic generators in seeking the surfaces whose principal radii are equal.
 ${ }^{12}$) Monge [loc. cit. ${ }^{2}$)] observed that if the curve of centers Γ is real, the curve (19) is the locus of the only real points on the surface.

[^5]: ${ }^{15}$) Cfr. Stacrel, loc. cit. ${ }^{9}$), p. 113.

[^6]: ${ }^{16}$) Rene Antoine Ferchault de Reaumur, Methode générale pour déterminer le point d'intersection de deux lignes infiniment proches, qui rencontrent une courbe quelconque vers le même côté sous des angles egaux, ou plus grands qu'un droit [Histoire de l'Acadèmie Royale des Sciences (Paris, 1709), pp. 185-192]. These curves for the case (21) have been studied by various geometers under the names evolutoides, developpoids, oblique evolutes and imperfect evolutes. For a discussion of their properties the reader is referred to the treatise by Gino Loria, Spexielle algebraische und transzendente ebene Kurven, Theorie und Geschichte (Leipzig, Teubner, 1902), pp. 626-643.

