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NOTES ON ELEMENTARY DYNAMICS. NOTES ON ELEMENTARY DYNAMICS. 

Elasticity" is defined by Thomson and Tait as "the number 
obtained by dividing the number expressing a stress by the 
number expressing the strain it produces." It is sometimes 
inaccurately called a "coefficient of elasticity." The term 
"resilience" is sometimes used as a substitute for "coefficient 
of restitution" in elementary Impact-theory: but though not so 
misleading as the term "coefficient of elasticity," is perhaps 
better reserved for other uses. See "Elasticity," ?? 53-66, in 
the Encyc. Brit. 

R. F. MUIRHEAD. 

MATHEMATICAL NOTES. 

32. On the proof of the formula S = ut + ft2. 
I should like to elicit opinions from mathematical teachers as to how far 

ordinary students can be expected to grasp what is implied in the proofs of 
this formula which dispense with the notion of infinitesimals, by introducing 
instead the conception of 'mean velocity.' It seems to me that, properly 
understood, these proofs imply all that is explicitly stated in such a proof as 
that given in Todhunter's elementary book; and that if the new proof appears 
simpler to the student, it is only because he does not understand it-because 
to him it is merely "a fudge." In the Elements of Dynamics, by the Rev. J. 
L. Robinson, for example, the proof commences with the statement (p. 47): 

"Since the velocity increases uniformly throughout the given time, the 
mean velocity during the interval will be half the sum of the extreme velocities." 

I am sure most students would accept this statement as a mere truism. 
Very possibly they would even fail to reproduce it if asked to write out the 
proof, and merely say: 

Velocity at beginning= u, 
end = u+at, 

. Mean velocity =u+?at, 

.. Space described - ut +at2. 

And if they were asked to find the space described under uniformly 
increasing acceleration they would cheerfully proceed to do so, thus: 

Acceleration at beginning =a, 
,, end =a+/ft, 

Mean acceleration =a + jt, 
.. Velocity at time t = u+ at+ ft2. 

But velocity at beginning=u, 
.. Mean velocity =u+iat+B3t2, 
. Space described =ut+jat2+ at3. 

It is true that in another part of the book in question a careful definition 
of 'mean velocity' is given; but the apparent simplicity of the proof is due 
to the fact that this definition is forgotten, or its force ignored. To really 
convince oneself that the 'mean velocity' is the arithmetic mean of the 
extreme velocities because the acceleration is uniform, one has to go through 
a process of reasoning not less complex than that given by Todhunter. 
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Prof. S. L. Loney in his Elementary Dynamics attempts-but not I think 
quite successfully-to exhibit the reasoning more clearly. He says (p. 28) : 

"Now the velocity increases uniformly throughout the interval t. Hence 
the velocity at any instant preceding the middle of this interval by time T 
is as much less than V as the velocity at a moment at the same time T after 
the middle of the interval is greater than V." 

"Hence, since the time t could be divided into pairs of such corresponding 
instants, the space described is the same as if the point moved for time t with 
uniform velocity V." 

Here there seems to be a confusion between an instant or moment of time 
at which the point has a particular velocity and a small interval during which 
it describes a small space, and the reasoning by which it may be shown that 
we may in the limit treat the velocity as uniform during such a small interval 
is suppressed. In fact, when properly explained, the argument again would 
turn out to be no more simple than Todhunter's. No doubt the teacher can 
see the force of the reasoning without going into details; but if the student 
accepts it readily, it is almost certainly because he fails to see all that is 
implied in the specious phraseology. 

I am glad to see that both Messrs. Robinson and Loney give the old proof 
as an alternative. But if the student has to learn both proofs, it cannot be 
urged that the new proof is introduced to save him trouble, any more than, 
I hope, it is presented as a model of formal reasoning. 

EDWARD T. DIXON. 

33. Note on Division. 
If f(x) be any rational integral function of x, we know that 

f(x) f(a) 
-=a quotient Q + ) 

X-a x-a 

f f(r)- f(a) 
X-a 

This may be used to write down the value of Q. Thus, if 

f(x) ax3 + bx2x + c d, 
x3-a3 X-a2 x-a then Q = a- aq - +c 
X-a X--ct X-- 

= a(x2 + ax + a2) + b(x+ a) +c. 
If f(x)=( (x- a)( - a2)(X - 

a3) ......( - a,), 
= ( -a a a- al)(x - a2)......(x - an), 

then f(a) =(a - al)(a - a2). .............. (a - a), 
** f(x)- f(a)- )- )...-^ 

+ (a - al)(x - a2)... ( - - a 2,) 
x-o 

We may now put x- a =x- a+a - 
a- and continue the process. The quotient then may be written down in the useful form 

(x - 
a2I)(x 

- a3)..(X (- an) +- (a - 
al)(x - a3)...(x - an) 

+ (a - 
al)(a 

- 
a2)(x - a4) .. (x - a,,) + (a - al)(a - a2)(a - a3) ( - a5)...(X - a,) 

+etc. + (a- a,)(a -a2)... (a - a,,_), 

in which the a's gradually replace the x's, just as in x" - a 
X-a 

It is plain that on putting a==x we obtain the usual expression for f'(x). 
R. W. GENESE. 
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