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Deep Water Ship-Waves.* (Continued from Proc. R.S.E.,
June 20th, 1904.) By Lord Kelvin.

(MS. received January 23, 1905. Read same date.)

§§ 32-64. Canal Ship-Waves.
§ 32. To avoid the somewhat cumbrous title " Two-dimensional,"

I now use the designation " Canal t Waves " to denote waves in
a canal with horizontal bottom and vertical sides, which, if
not two-dimensional in their source, become more and more
approximately two-dimensional at greater and greater distances
from the source. In the present communication the source is
such as to render the motion two-dimensional throughout; the
two dimensions being respectively perpendicular to the bottom,
and parallel to the length of the canal: the canal being straight.

§ 33. The word "deep" in the present communication and
its two predecessors (§§ 1-31) is used for brevity to mean
infinitely deep; or so deep that the motion does not differ
sensibly from what it would be if the water, being incompressible,
were infinitely deep. This condition is practically fulfilled in
water of finite depth if the distance between every crest (point
of maximum elevation), and neighbouring crest on either side, is
more than two or three times its distance from the bottom.

§ 34. By "ship-waves" I mean any waves produced in open
sea or in a canal by a moving generator; and for simplicity I
suppose the motion of the generator to be rectilineal and uniform.

* The sectional and equational numbers are reckoned consecutively from
two previous papers " O n deep-water two-dimensional waves produced by any
given initiating disturbance," §§ 1-10, Proc. Boy. Soc. Edin., February 1st,
1904, and Phil. Mag., June 1904 ; and " On front and rear of a free procession
of waves in deep water,'1 §§ 11-31, Proc Hoy. Soc. Edin., June 20th, 1904,
and Phil. Mag., October 1904.

f This designation does not include an interesting class of canal waves of
which the dynamical theory was first given by K el land in the Trans. Boy.
Soc. Edin. for 1839 ; the case in which the wave length is very long in com-
parison with the depth and breadth of the canal, and the transverse section
is of any shape other than rectangular with horizontal bottom and vertical
sides.
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1904-5.] Lord Kelvin on Deep Water Ship- Waves. 563

The generator may be a ship floating on the water, or a submarine
ship or a fish moving at uniform speed below the surface; or,
as suggested by Rayleigh, an electrified body moving above the
surface. For canal ship-waves, if the motion of the water close
to the source is to be two-dimensional, the ship or submarine
must be a pontoon having its sides (or a submerged bar having
its ends) plane and fitting to the sides of the canal, with
freedom to move horizontally. The submerged surface must be
cylindric with generating lines perpendicular to the sides.

§ 35. The case of a circular cylindric bar of diameter small com-
pared with its depth below the surface, moving horizontally at a
constant speed, is a mathematical problem which presents interest-
ing difficulties, worthy of serious work for anyone who may care
to undertake it. The case of a floating pontoon is much more
difficult, because of the discontinuity between free surface of
water and water-surface pressed by a rigid body of given shape,
displacing the water.

§ 36. Choosing a much easier problem than either of those, I
take as wave generator a forcive * consisting of a given continuous
distribution of pressure at the surface, travelling over the surface
at a given speed. To understand the relation of this to the
pontoon problem, imagine the rigid surface of the pontoon to
become flexible; and imagine applied to it, a given distribution II
of pressure, everywhere perpendicular to it. Take 0, any point at
a distance h above the undisturbed water-level, draw O X parallel
to the length of the canal and 0 Z vertically downwards. Let
£ £ be the displacement-components of any particle of the water
whose undisturbed position is (x, z). We suppose the disturbance
infinitesimal; by which we mean that the change of distance
between any two particles of water is infinitely small in comparison
with their undisturbed distance; and that the line joining them
experiences changes of direction which are infinitely small in
comparison with the radian. For liberal interpretation of this
condition see § 61 below. Water being assumed frictionless, its
motion, started primarily from rest by pressure applied to the

* "Porcive" is a very useful word introduced, after careful consultation
with literary authorities, by my brother the late Prof. James Thomson, to
denote any system of force.
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free surface, is essentially irrotational. But we need not assume
this at present: we see immediately that it is proved by our
equations of motion, when in them we suppose the motion to be
infinitesimal. The equations of motion, when the density of the
liquid is taken as unity, are :—

dt2 dx dz dx I

dt2 dx dz dz J

where g denotes the force of gravity and p the pressure at (a;, z, t).
Assuming now the liquid to be incompressible, we have

£4- «•
§ 37. The motion being assumed to be infinitesimal, the second

and third terms of the first members of (59) are negligible, and
the equations of motion become :—

dfi dx
\ ( 6 1 ) .
\

dz)

This, by taking the difference of two differentiations, gives:—

which shows that if at any time the motion is zero or irrotational,
it remains irrotational for ever.

§ 38. If at any time there is rotational motion in any part of
the liquid, it is interesting to know what becomes of it. Leaving
for a moment our present restriction to canal waves, imagine our*
selves on a very smooth sea in a ship, kept moving uniformly at
a good speed by a tow-rope above the water. Looking over the
ship's side we see a layer of disturbed motion, showing by dimples
in the surface innumerable little whirlpools. The thickness of
this layer increases from nothing perceptible near the bow to
perhaps 10 or 20 cms. near the stern; more or less according
to the length and speed of the ship. If now the water suddenly
loses viscosity and becomes a perfect fluid, the dynamics of vortex
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motion tells us that the rotationally moving water gets left behind

by the ship, and spreads out in the more and more distant wake

and becomes lost;* without, however, losing its kinetic energy,

which becomes reduced to infinitely small velocities in an

infinitely large portion of liquid. The ship now goes on through

the calm sea without producing any more eddies along its sides

and stern, but leaving within an acute angle on each side of its

wake, smooth ship-waves with no eddies or turbulence of any

kind. The ideal annulment of the water's viscosity diminishes

considerably the tension of the tow-rope,, but by no means annuls

i t ; it has still work to do on an ever increasing assemblage of

regular waves extending farther and farther right astern, and

over an area of 19° 28' (tan - 1 / - j on each side of mid-wake, as

we shall see in about § 80 below. Returning now to two-dimen-

sional motion and canal waves : we, in virtue of (62), put

where <f> denotes what is commonly called the "velocity-
potential"; which, when convenient, we shall write in full
<f>(x, z, t). With this notation (61) gives by integration with
respect to x and z,

<W=~p + g(z + C) (64).

And (60) gives

^ + f t = O (65).
dx2 dz2

Following Fourier's method, take now

<j>{x, z, t) = - lttrmz sin m(x - vt) . . . . (66),
* It now seems to me certain that if any motion be given within a finite

portion of an infinite incompressible liquid originally at rest, its fate is
necessarily dissipation to infinite distances with infinitely small velocities
everywhere; while the total kinetic energy remains constant. After
many years of failure to prove that the motion in the ordinary Helmholtz
circular ring is stable, I came to the conclusion that it is essentially unstable,
and that its fate must be to become dissipated as now described. I came
to this conclusion by extensions not hitherto published of the considerations
described in a short paper entitled : " On the stability of steady arid periodic
fluid motion," in the Phil. Mag. for May 1887.
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which satisfies (65) and expresses a sinusoidal wave-disturbance,

of wave-length 2ir/m, travelling awards with velocity v.

§ 39. To find the boundary-pressure II, which must act on the

water-surface to get the motion represented by (66), when m, v, k

are given, we must apply (64) to the boundary. Let z = 0 be the

undisturbed surface; and let d denote its depression, at (x, o, t),

below undisturbed level; that is to say,

d = t,(x, o, t) = —<f>(x, z, t)z^0 = ink sin mix -vt) . (67),

whence by integration with respect to t,

d = - cos mix - vt) (68).
v

To apply (64) to the surface, we must, in gz, put z = d; and in

d<fi/dt we may put z = 0, because d, k, are infinitely small quantities

of the first order, and their product is neglected in our problem of

infinitesimal displacements. Hence with (66) and (68), and

with II taken to denote surface-pressure, (64) becomes

kmv cos mix - vt) = '-k cos m(x - vt) - II -t- gC . (69);

whence, with the arbitrary constant C taken = 0,

II = kv( — — m ) cos mix - vt) (70);

\v'2 I

and, eliminating k by (68), we have finally,

(71).Thus we see that if v = *Jg/m, we have II = 0, and therefore we

have a train of free sinusoidal waves having wave-length equal to

2ir/m. This is the well-known law of relation between velocity

and length of free deep-sea waves. But if v is not equal to Jg/m,

we have forced waves with a surface-pressure (g - mv2)d which

is directed with or against the displacement according as

v< or >*Jgjm.

§ 40. Let now our problem be:—given II, a sum of sinusoidal

functions, instead of a single one, as in (70);—required d the

resulting displacement of the water-surface. We have by (71)

and (70), with properly altered notation,
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(72),

o 0) y) . (73),
g — mv1 vz

where B, m, /? are given constants having different values in the

different terms of the sums; and v is a given constant velocity.

The last term of (73) expresses, with two arbitrary constants

(A, y), a train of free waves which we may superimpose on any

solution of our problem.

§ 41. It is very interesting and instructive in respect to the

dynamics of water-waves, to apply (72) to a particular case of

Fourier's expansion of periodic arbitrary functions such as a dis-

tribution of alternate constant pressures, and zeros, on equal

successive spaces, travelling with velocity v. But this must be

left undone for the present, to let us get on with ship-waves; and

for this purpose we may take as a case of (72), (73),

n = gG{\ + e cos 0 + e2 cos 20 + etc.) = ™ _ I d l l ^ L . (74),
1 - 2ecos 6 + ei

+ 1i-cos6 + T ^ s
( j J - 1 J — i

where

. . . ( 7 5 ) ;

(76);

- - ga m\-

and e may be any numeric < 1. Eemark that when v = 0, J = oo ,

and we have by (75) and (74), d = II/<7, which explains our unit

of pressure.

§ 42. To understand the dynamical conditions thus prescribed,

and the resulting motion: — remark first that (74), with (76),

represents a space-periodic distribution of pressure on the surface,

travelling with velocity v; and (75) represents the displacement

of the water-surface in the resulting motion, when space-periodic

of the same space-period as the surface-pressure. Any motion

whatever; consequent on any initial disturbance and no subse-

quent application of surface-pressure; may be superimposed on the

solution represented by (75), to constitute the complete solution
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of the problem of finding the motion in which the surface-pressure
is that given in (74).

§ 43. To understand thoroughly the constitution of the forcive-
datum (74) for II, it is helpful to know that, n denoting any
positive or negative integer, we have

ha

if

27r(f+ ecos0 + e2cos20 + etc.)= 2

& = ^Ll og(Ve)

• (78),

(79).

This we find by applying § 15 above to the periodic function
represented by the second member of (78).

The equality of the two members of (78) is illustrated by fig. 11 j

FIG. 11 ; e=-6.

in which; for the case e= -5 and consequently, by (79), 6/a= -1103;
the heavy curve represents the first member, and the two light
curves represent two terms of the second member; which are as
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1901-5.] Lord Kelvin on Deep Water Ship- Waves. 569

many as the scale of the diagram allows to be seen on it. There
is a somewhat close agreement between each of the light curves,
and the part of the heavy curve between a maximum and the
minimum on each side of it. Thus we see that even with e so
small as -5, we have a not very rough approximation to equality

•/ -Z, '3 -4 'S '(> '7 «8 «9 Q*

FIG. 12 ; e=-9.

between successive half periods of the first member of (78) and a
single term of its second member. If e is < 1 by an infinitely
small difference this approximation is infinitely nearly perfect.
It is so nearly perfect for e='9 that fig. 12 cannot show any
deviation from it, on a scale of ordinates 1/10 of that of fig. 11.
The tendency to agreement between the first member of (78) and
a single term of its second member with values of e approaching to
1, is well shown by the following modification of the last member
of (74) :—

j ^ l - e 2 ) | (1 - e2)
n 9 C gC

Thus we see that if e = 1, II is very great when 0 is very small;
and II is very small unless 0 is very small (or very nearly = 2i7r).
Thus when e = 1, we have

which means expressing II approximately by a single term of the
second member of (78).
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§ 44. Return to our dynamical solution (75); and remark that
if J is an integer, one term of (75) is infinite, of which the
dynamical meaning is clear in (70). Hence to have every term
of (75) finite we must have J =j + 8, where / is an integer and 8 is
< 1 ; and we may conveniently write (75) as follows :

ecos 0 e2cos 20

e>+1cosO"+l)0 e*+2 cos (j + 2)6 A - , ) /t!.,N

~~ = ^— r̂ — — JT "~ £10. lUli > (Ojj ) 1

or
d = < ^ + / (83),

where $i and <f denote finite and infinite series shown in (82).

§ 45. "We are going to make 8 = \; and in this case J can be

summed, in finite terms, as follows. First multiply each term by

e"'~J; and we find

/ = - c(8 + j W+s f—.cos (j+1)6+ f —, cos 0' + 2)6 + etc.
L i — o 2 — 6

.. . [ r . . I
= —e(8+j)e:i+s I del e~°cos(y+ l)6 + el~scos(i+ 2)6 + etc.

J L J

= -c(8+j)ei+s

where q denotes e'9; and, as in § 3 above, {RS} denotes

realisation by taking half sum for +1. Summing the infinite

series, and performingySe, for the case 8 = J, we find

(84),

where

and therefore
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1904-5.] Lord Kelvin on Deep Water Ship- Waves. 571

Hence finally

For our present case, of 8 = \ , (82) gives

^ } (87).

With t/ and §> thus expressed, (83) gives the solution of our
problem.

§ 46. In all the calculations of §§ 46-61 I have taken e= '9, as
suggested for hydrokinetic illustrations in Lecture X. of my
Baltimore Lectures, pp. 113, 114, from which fig. 12, and part of
fig. 11 above, are taken. Results calculated from (83), (86), (87),
are represented in figs. 13-16, all for the same forcive, (74) with
e="9, and for the four different velocities of its travel, which
correspond to the values 20, 9, 4, 0, of /. The wave-lengths
of free waves having these velocities are [(77) above] 2a/41,
2a/19, 2a/9, and 2a. The velocities are inversely proportional
to ^41 , ^19, ^9, sji. Each diagram shows the forcive by one
curve, a repetition of fig. 12; and shows by another curve the
depression, d, of the water-surface produced by it, when travelling
at one or other of the four speeds.

§ 47. Taking first the last, being the highest, of those speeds,
we see by fig. 16 that the forcive travelling at that speed produces
maximum displacement upwards where the downward pressure is
greatest; and maximum downward displacement where the pressure
(everywhere downward) is least. Judging dynamically it is easy
to see that greater and greater speeds of the forcive would still
give displacements above the mean level where the downward
pressure of the forcive is greatest, and below the mean level where
it is least; but with diminishing magnitudes down to zero for
infinite speed.

And in (75) we have, for all positive values of J < 1 , a series
always convergent, (though sluggishly when e=l , ) by which the
displacement can be exactly calculated for every value of $.

§48. Take next fig. 15, for which J = 4| , and therefore, by
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(77), v = Jgaj^ir, and X = a/i-5. Eemark that the scale of
ordinates is, in fig. 15, only 1/2-5 of the scale in fig. 16 j and see how
enormously great is the water-disturbance now in comparison with
what we had with the same forcive, but three times greater speed
and nine times greater wave-length (v = Jga/Tr, A. = 2a). Within
the space-period of fig. 15 we see four complete waves, very approxi-
mately sinusoidal, between M, M, two maximums of depression
which are almost exactly (but very slightly less than) quarter
wavelengths between C and C. Imagine the curve to be exactly
sinusoidal throughout, and continued sinusoidally to cut the zero
line at C C.

We should thus have in C C a train of 4 | sinusoidal waves;
and if the same is continued throughout the infinite procession
. . . . CCC . . . . we have a discontinuous periodic curve
made up of continuous portions each 4J periods of sinusoidal
curve beginning and ending with zero. The change at each point
of discontinuity C is merely a half-period change of phase. A
slight alteration of this discontinuous curve within 60° on each
side of each C, converts it into the continuous wavy curve of fig. 15,
which represents the water-surface due to motion at speed Jga/'9ir
of the pressural forcive represented by the other continuous curve
of fig. 15.

§ 49. Every word of § 48 is applicable to figs. 14 and 13 except
references to speed of the forcive, which is ^ga/lQir for fig. 14

and Jga/Alir for fig. 13; and other statements requiring modifica-
tion as follows:—

For 4J "periods" or "waves," in respect to fig. 15; substitute
9 | in respect to fig. 14, and 20J in respect to fig. 13.

For "depression" in defining M M in respect to figs. 15, 14;
substitute elevation in the case of fig, 13.

§ 50. How do we know that, as said in § 48, the formula
{(83), (86), (87)} gives for a wide range of about 120° on each
side of 0=180°,

d(0)==(-iyd(18O°). sin (j +|)0 . . . (88),

which is merely §§ 48, 49 in symbols 1 it being understood that j
is any integer not < 4 ; and that e is -9, or any numeric between
•9 and 11 I wish I could give a short answer to this question
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without help of hydrokinetic ideas! Here is the only answer I

can give at present.

§ 51. Look at figs. 12-16, and see how, in the forcive de-

fined by e = -9, the pressure is almost wholly confined to the

spaces 0<6O° on each side of each of its maximums, and is very

nearly null from (9=60° to 6 = 300°. It is obvious that if the

pressure were perfectly annulled in these last-mentioned spaces,

while in the spaces within 60° on each side of each maximum

the pressure is that expressed by (74), the resulting motion would

be sensibly the same as if the pressure were throughout the whole

space C C (6 = 0° to 6 = 360"), exactly that given by (74). Hence

we must expect to find through nearly the whole space of 240°,

from 60° to 300°, an almost exactly sinusoidal displacement of

water-surface, having the wave-length 360°/(^ + J) due to the

translational speed of the forcive.

§ 52. I confess that I did not expect so small a difference from

sinusoidality through the whole 240°, as calculation by {(83), (86),

(87)} has proved; and as is shown in figs. 18, 19, 20, by the

D-curve on the right-hand side of C, which represents in each

case the value of

-(-iya(l80°). sin (j+ $)$. . . (89) ,

being the difference of d(0) from one continuous sinusoidal curve.

The exceeding smallness of this difference for distances from

C exceeding 20° or 30°, and therefore through a range between

C C of 320°, or 300°, is very remarkable in each case.

§ 53. The dynamical interpretation of (88), and figs. 18, 19, 20,

is this:—Superimpose on the solution {(83), (86), (87)} a "free

wave " solution according to (73), taken as

- ( - i y a { 1 8 0 ° ) . a i n ( j + $)0 . . . . ( 9 0 ) .

This approximately annuls the approximately sinusoidal portion

between C and C shown in figs. (13), (14), (15); and approxi-

mately doubles the approximately sinusoidal displacement in the

corresponding portions of the spaces C C, and C C on the two

sides of C C. This is a very interesting solution of our problem

§ 4 1 ; and, though it is curiously artificial, it leads direct and

short to the determinate solution of the following general problem

of canal ship-waves :—
PROC. ROY. SOC. EDIN.—VOL. XXV. 37
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§ 54. Given, as forcive, the isolated distribution of pressure
defined in fig. 12, travelling at a given constant speed; required
the steady distribution of displacement of the water in the place
of the forcive, and before it and behind it; which becomes estab-
lished after the motion of the forcive has been kept steady for
a sufficiently long time. Pure synthesis of the special solution
given in §§ 1-10 above, solves not only the problem now proposed,
but gives the whole motion from the instant of the application
of the moving forcive. This synthesis, though easily put into
formula, is not easily worked out to any practical conclusion. On
the other hand, here is my present short but complete solution of
the problem of steady motion for which we have been preparing,
and working out illustrations in §§ 32-53.

Continue leftward, indefinitely, as a curve of sines, the D curve
of each of figs. 18, 19, 20; leaving the forcive curve, F, isolated,
as shown already in these diagrams. Or, analytically stated :^—
in (89) calculate the equal values of d(0) for equal positive and
negative values of 6 from 0° to 40° or 50° by {(83), (86), (87)} ;
and for all larger values of 6 take

(91),

where d(180°) is calculated by {(83), (86), (87)}. This used in
(89), makes D(#)=0 for all positive values of 6 greater than 40°
or 50°; and makes it the double of (91) for all negative values of
6 beyond - 40° or - 50°.

§§ 55, 56. Rigid Covers or Pontoons, introduced to apply the given
forcive {pressure on the water-surface).

§ 55. In any one of our diagrams showing a water-surface
imagine a rigid cover to be fixed, fitting close to the whole water-
surface. Now look at the forcive curve, F, on the same diagram,
and wherever it shows no sensible pressure remove the cover.
The motion (non-motion in some parts) of the whole water remains
unchanged. Thus, for example, in figs. 13, 14, 15, 16, let the
water be covered by stiff covers fitting it to 60° on each side of
each C; and let the surface be free from 60° to 300° in each of
the spaces between these covers. • The motion remains unchanged
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under the covers, and under the free portions of the surface. The
pressure II constituting the given forcive, and represented by the
F curve in each case, is now automatically applied by the covers. •

§ 56. Do the same in figs. 18, 19, 20 with reference to the
isolated forcives which they show. Thus we have three different
cases in which a single rigid cover, which we may construct as the
bottom of a floating pontoon, kept moving at a stated velocity rela-
tively to the still water before it, leaves a train of sinusoidal waves
in its rear. The D curve represents the bottom of the pontoon in
each case. The arrow shows the direction of the motion of the
pontoon. The F curve shows the pressure on the bottom of the
pontoon. In fig. 20 this pressure is so small at - 2q that the
pontoon may be supposed to end there; and it will leave the
water with free surface almost exactly sinusoidal to an indefinite
distance behind it (infinite distance if the motion has been
uniform for an infinite time). The F curve shows that in fig. 19
the water wants guidance as far back as - 3q, and in fig. 18 as far
back as - 8q to keep it sinusoidal when left free ; q being in each
case the quarter wave-length.

§§ 57-60. Shapes for Waveless Pontoons, and their Forcives.

§ 57. Taking any case such as those represented in figs. 18, 19,
20; we see obviously that if any two equal and similar forcives
are applied, with a distance JA. between corresponding points, and
if the forcive thus constituted is caused to travel at speed equal to
»Jg\/2ir, being, according to (77) above, the velocity of free waves
of length A., the water will be left waveless (at rest) behind the
travelling forcive.

§ 58. Taking for example the forcives and speeds of figs. 18, 19,
20, and duplicating each forcive in the manner defined in § 57, we
find, (by proper additions of two numbers, taken from our tables
of numbers calculated for figs. 18, 19, 20,) the numbers which give
the depressions of the water in the three corresponding waveless
motions. These results are shown graphically in fig. 21, on scales
arranged for a common velocity. The free wave-length for this
velocity is shown as Aq in the diagram.

§ 59. The three forcives, and the three waveless water-shapes
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produced by them, are shown in figs. 22, 23, 24 on different scales,

of wave-length, and pressure, chosen for the convenience of each

case.

§ 60. As most interesting of the three cases take that derived

from j — 9 of our original investigation. By looking at fig. 23 we

see that a pontoon having its bottom shaped according to the

D curve from - 2>q to + 3q, 1 | free wave-lengths, will leave the

water sensibly flat and at rest if it moves along the canal at the

velocity for which the free-wave-length is 4g\ And the pressure

of the water on the bottom of the pontoon is that represented

hydrostatically by the F curve.

§ 61. Imagine the scale of abscissas in each of the four diagrams,

figs. 21-24, to be enlarged tenfold. The greatest steepnesses of the

D curve in each case are rendered sufficiently moderate to allow it

to fairly represent a real water-surface under the given forcive.

The same may be said of figs. 15, 16, 18, 19, 20; and of figs. 13,

14 with abscissas enlarged twentyfold. In respect to mathematical

hydrokinetics generally; it is interesting to remark that a very

liberal interpretation of the condition of infinitesimality (§ 36

above) is practically allowable. Inclinations to the horizon of as

much as 1/10 of a radian (5°-7 ; or, say, 6°), in any real case of

water-waves or disturbances, will not seriously vitiate the mathe-

matical result.

§ 62. Fig. 17 represents the calculations of d(0°) and

(-l)'d(180°) for twenty-nine integral values of j ; 0, 1, 2, 3,

. . . . 19, 20, 30, 40, . . . . 90, 100; from the following

formulas, found by putting 6 = 0" and 0=180°; and with e = -9

in each case, and c = 1

. - Je' ' 3 ' 5 1j-\

d/180°) = ( -

The asymptote of d(0°) shown in the diagram is explained by

remarking that when j is infinitely great, the travelling velocity of
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the forcive is infinitely small; and therefore, by end of §41, the
depression is that hydrostatically due to the forcive pressure. This,
at 6 = 0°, is equal to

§ 63. The interpretation of the curves of fig. 17 for points
between those corresponding to integral values of j is exceedingly
interesting. We shall be led by it into an investigation of the
disturbance produced by the motion of a single forcive, expressed

by
J?L (94) ;

but this must be left for a future communication, when it will be
taken up as a preliminary to sea ship-waves.

§ 64. The plan of solving by aid of periodic functions the
two-dimensional ship-wave problem for infinitely deep water,
adopted in the present communication, was given in Part IV.
of a series of papers on Stationary Waves in Flowing Water,
published in the Philosophical Magazine, October 1886 to January
1887, with analytical methods suited for water of finite depths.
The annulment of sinusoidal waves in front of the source of
disturbance (a bar across the bottom of the canal), by the super-
position of a train of free sinusoidal waves which double the
sinusoidal waves in the rear, was illustrated (December 1886) by
a diagram on a scale too small to show the residual disturbance
of the water in front, described in §53 above, and represented
in figs. 18, 19, 20.

In conclusion, I desire to thank Mr J. de Graaff Hunter for
his interested and zealous co-operation with me in all the work of
the present communication, and for the great labour he has given
in the calculation of results, and their representation by diagrams.
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(Issued separately April 18, 1905.)
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