VI. Extract of a memoir on argental mercury. Read before the French National Institute

C. Cordier

To cite this article: C. Cordier (1802) VI. Extract of a memoir on argental mercury. Read before the French National Institute , Philosophical Magazine Series 1, 14:53, 41-45, DOI: 10.1080/14786440208676157

To link to this article: http://dx.doi.org/10.1080/14786440208676157

Published online: 18 May 2009.

Submit your article to this journal

Article views: 2

View related articles
fuch grofs errors. An artift poffeffing common fenfe will never act fo abfurdly as to mix in the fame picture things antique and modern; an error common among the Venetian, Flemifh, and Dutch mafters.

If the fubject we mean to handle lies in Egypt, Athens, or Rome, let us endeavour to tranfport ourfelves thither by the warmth and activity of our imagination, and, by removing every thing local, lead the fpectator through the delightful and magical mazes of fcience, fo that he may actually imagine the fcene tranfacting before his eyes.
VI. Extract of a Memoir on Argental Mercury. Read before the Frencb National Infitiute, by C. Cordier, Engineer of Mines*.

THE mineral called formerly native amalgam of filver, and which fince the labours of C. Haüy is now known under the name of argental mercury, is one of thofe natural metallic combinations, the mineralogical and chemical properties of which had been the leait perfectly defcribed and examined. It is however probable that an accurate knowledge of this fpecies would have been obtained, had not its great rarity prevented chemifts from facrificing the only fpecimens of it which they poffeffed in order to fubject them to complete examination. The places where argental mercury is found are the mines of Rofenar in Hungary, thofe of Morffeldt in the ci-devant Palatinate, now the department of Mont-Tonnerre, and particularly thofe of Mufchel-Landiberg in the fame country: thefe are the only mines by which it has been hitherto furnifhed.

Though this mineral is at prefent too rare to be the object of the labours of the miner, it will be feen that it deferves the attention of the mineralogift, and to make a figure among the noft remarkable of the metallic fpecies.

Argental mercury is found always diffeminated throughout the mafs of the veins, fometimes in very thin leaves which fill up the fiffures, fometimes in fmall cryftals totally engaged in the matrix, or entirely infulated in the cavities.

This mineral fubftance has the colour and refplendence of filver or polifhed tin, or rather more frequently of liquid mercury, becaufe it almoft always retains at its furface a thin fratum of the laft mentioned metal.

Its regular forms are the dodecaedral-rhomboidal, and all its modifications.

[^0]The fmall lamellæform leaves of argental mercury are for the moft part bent, and follow the undulations of the rock to which they are applied. Their furface is generally fmooth and polifhed, but much lefs than that of its cryftals. This metal is eafly fcratched by a piece of fharp-pointed fteel. By feraping it lofes almoft all its fplendour, and becomes dulf. When rubbed on copper it leaves a white metallic trace. It is brittle and eafily broken : its confiftence approaches to that of martial pyrites. Its fracture is conchoid, and exhibits no appearance of laminæ. The fragments of it are indetermined, with very obtufe edges.

Its fpecific gravity, determined from a mean of feveral experiments, is 14.1192 ; argental mercury therefore, next to platina and gold, is the heavief of bodies. When this mineral is heated at the blow-pipe, the mercury becomes volatilized, and a fmall button of filver may be eafily obtained.

The varieties of the regular forms are, $\mathbf{I f t}$, The perfect rhomboidal dodecaedron (fig. I. Plate III). The incidence of the two contiguous faces is 120°. The cryftals not being fufceptible of any mechanical divifion, it is not poffible to know precifely whether this folid be the primitive form of argental mercury, as is probable, and as we thall fuppofe it to be, in order to have the expreffion of the laws of decrement and the value of the angles. This fuppofition can produce no error, becaufe the refults of the calculation may be eafily transferred, fo as to apply them to the octaedron, the tetraedron, or the cube, which are the only other forms poffible.

2d, The dodecaedron truncated on the fix folld angles compofed of four planes. The fix new faces are produced in virtue of a decrement by one row: they belong to the cube, and make with the faces of the primitive form angles of 135°. According to the ingenious method of C. Haüy, the abridged expreffion of the laws of decrement which produce this form is P ${ }^{\prime}$ E.
$3^{\text {d, The fame as the preceding, the place of each ridge of }}$ which is fupplied by a facet making an angle of 150° with the adjacent primitive face: thefe new facets take place by the fubtraction of a row of molecula on all the edges. Its expreffion is P B ${ }^{1} \mathrm{E}^{1}$,
$4^{\text {th }}$, The dodecaedron truncated on all the ridges and all the folid angles, and having new facets on the edges of the truncatures which take place on the edges, and the folid angles compofed of four planes. This form, which had not beea

Philo.Mag. Pl.III.Vol.IzV.

been before obferved, is the moft complex of all thofe exhibited by mineral fubftances. It is produced by the interfection of the faces which belong to the following fix kinds of regular or fymmetric folids, viz. the cube, the octaedron, the rhomboidal dodecaedron, the folid with 24 trapezoidal facets, the folid with 24 ifofceles triangular facets, and the folid with 48 fcalene triangular facets. The complete cryfal is terminated by 122 faces. The expreffion of this form, reprefented fig. 2, is $P \dot{B}_{\mathrm{B}}^{2} \mathrm{~A} E \mathrm{E}$.

The incidence of the faces of the primitive form with thofe of the octaedron is $125^{\circ} 15^{\prime} 52^{\prime \prime}$; with thofe of the folid haying 24 triangular facets is $153^{\prime \prime} 28^{\prime} 4^{\prime \prime}$; with thofe of the folid having 4^{8} faces $16^{\circ} 53^{\prime} 33^{6^{\prime \prime}}$.

Hitherto no complete anatomy of argental mercury has been publifhed; mineralogifts were fatisfied with acquiring an approximate knowledge of its compofition from fimple experiments: it was therefore of importance to determine with accuracy the elementary principles of this mineral, and to fix the proportions. This analyfis was attended with no kind of difficulty *.

Sixty parts of this mineral were expofed in a crucible to the action of a low heat, which was fucceffively increafed, and continued as long as was neceffary to volatilize all the mercury. The cryftals, without fuffering any fenfible lofs of volume, were changed into fpongy maffes, which towards the end of the operation funk down and united into a metallic button; the weight of this button was found to be 16.5 parts, from which it was concluded that the weight of the mercury volatilized was 43.5 .

This button was perfectly malleable, and had all the appearances of the pureft filver. To afcertain its purity it was expofed to the action of nitric acid proved by nitrate of filver, The folution was effected without any refiduum.

Oxygenated muriatic acid was poured into the folution, and the precipitate of muriate of filver was collected on the filter. The liquor tried by carbonate of potafh furnifhed no precipitate: the filver then contained no foreign metallic fubftance.

In regard to the fate of the mercury in its combination, it is certainly not neceffary to prove that it exifts in a folid ftate. To be convinced of it, nothing will be neceffary but

[^1]to confider, firft, that it forms almoft three fourths of the whole mafs; in the next place, that the fecific denfity of the natural combination not only furpaffes, by a great deal, the mean fpecific denfity of filver and liquid mercury, but alfo that it is much more confiderable than that of the latter metal, which is the heavier of the two. The fpecific gravity indeed of the combination, calculated according to the formula of C. Haüy, would be only 12.5448 , fuppofing the mercury liquid, whereas it is $14 \cdot 1192$; that of the mercury is only 13.568 .
A hundred parts of argental mercury, folid and
cryftallifed, contain then of folid mercury -
Silver $-\quad-\quad-\quad 27.5$

Two other trials, made indeed with quantities lefs confiderable, gave abfolutely the fame proportions.

The identity of the refults of the analyfis of this mineral, its peculiar feecific gravity, its faculty of cryftallizing, its confiftence, and all the other mineralogical characters belonging to it, evidently prove that it ought to be confidered as a real chemical combination, poffeffing tixed and invariable proportions, and that it is with propriety that a particular fpecies has been formed of it in the mineralogical nomenclature.

It may be of utility to remark here how improper the denomination of native amalgam was to denote this mineral fubftance. The name fill employed in chemiftry and the arts does not denote a folid combination, but a pafte-like mixture, compofed of exceedingly fmall cryftals of argental mercury, adhering to each other by the medium of a certain quantity of liquid mercury. The confiftence of the maffes of artificial amalgam is even very variable: it may be increafed or diminithed at pleafure, fometimes by adding mercury, fometimes by taking away a part of this metal, interpofed by means of a proper filter, fuch as a piece of fhammoy leather. It is the difficulty, perhaps, of feparating entirely the excefs of mercury in the folid combination that has occafioned a belief that filver and mercury may be combined in all proportions: this opinion feems to be as unfounded as that in confequence of which argil, rendered ductile by the means of water, was confidered as a real combination, the proportions of which might be indefinitely varied. It is proper to add, that at the common temperature argental mercury is always perfectly folid, and befides
that it is infoluble in liquid mercury: this has been afcer* tained by experiment.

An exact knowledge of the fpecific denfity of argental mercury, as well as of the proportions of its two component principles, has fuggefted the idea of making fome refearches in regard to the denfity of folid mercury. Chemifts have fet out with the fuppofition that the moleculæ of the two metals experience no dilatation nor penetration in combining: knowing the fecific gravity of filver $=10.4743$, that of argental mercury $=14 \cdot 1192$, and the ratio of the two metals $\frac{20}{2}$, it will be found that the feecific gravity of folid mercury ought to be 16.2662 . In the cafe of there being a penetration of moleculx, as is probable, the real denfity would be fomewhat lefs: on the other hand, if there be dilatation, it will be found to be more confiderable. In a word, this approximative refalt ought the lefs to be neglected, as it is probable that it will be always very difficult to attain directly to an eftimation perfectly exact.
VII. Extract of a Notice, read in the Frencb National Infitute, on a nezw Varrety of Epidote. By Champeaux and Cressac, Engineers of Mines *.
T
HE fubftance which forms the object of this notice was found in the primitive chain which traverfes the country of the Grifons, and unites the mountains of St. Gothard to thofe of the Tyrol.
It has always been found united to a variety of red garnet, which Sauffure has deferibed \dagger as a particular fpecies under the name of byacintb de Diffentis. To complete the defcription of this fyecies, he gives a fhort defcription of the fubfance which forms the fubject of this article, and he gives it the name of phrenite, becaufe he thought he could diftinguilh in it characters which brought it near to the phrenite of Oifans.

In this defcription we fhall follow the method adopted by profeffor Haüy.

Effential Cbaracter.

Divifible in a direction parallel to the planes of a right rhomboidal prifm, which form with each other angles of $114^{\circ} 37^{\prime}$ and $65^{\circ} 23^{\prime}$.

> * From ine Yortrnal des Mines, No. 67 .
> + Voyage dans les Alpes, § 1 go2.

Pbyjcal

[^0]: * From the Gournal des Mines, No. 67.

[^1]: * The cryftals fubjected to analyfis were covered with a fratum of liquid mercury, which was removed by preffing then between the fingers in foft wax,

