
ISSN: 2320-5407                                                                                    Int. J. Adv. Res. 6(10), 940-951 

940 

 

Journal Homepage: -www.journalijar.com 

 

 

 

 

Article DOI:10.21474/IJAR01/7892 

DOI URL: http://dx.doi.org/10.21474/IJAR01/7892 

 

RESEARCH ARTICLE 

 
MEASURING THE EFFICIENCY OF EUROPEAN BANKS: A DIRECTIONAL DISTANCE FUNCTION 

APPROACH. 

 

Sonia Rebai 

Institut Supérieur de Gestion, Université de Tunis41, Rue de la Liberté, Cité Bouchoucha 2000 Le Bardo, Tunis-

TUNISIABusiness Analytics and Decision Making (BADEM) Lab. 

…………………………………………………………………………………………………….... 

Manuscript Info   Abstract 

…………………….   ……………………………………………………………… 
Manuscript History 

Received: 11 August 2018 

Final Accepted: 13 September 2018 

Published: October 2018 
 

Keywords:- 
Efficiency, Data envelopment analysis, 

Directional distance function, 

Undesirable outputs, Non-discretionary 

inputs. 

 

 

 

 
 

The aim of this paper was to estimate the technical efficiency of 423 

European banks during the period 2013–2015 while simultaneously 

dealing with discretionary, non-discretionary, desirable, and 

undesirable factors. The author used the Directional Distance Function 

approach. Particularly, he considered the fixed assets as a non-

discretionary input and the non-performing loans as an undesirable 

output. The empirical results revealed significant effects on inefficiency 

measures in comparison to those obtained when excluding undesirable 

outputs. Moreover, the outcomes showed an increasing level of the 

average inefficiency for most European countries. These outcomes 

confirmed the persistence of the negative impact of the financial crises 

and the inability of the European banking system to really recover from 

these crises.  
                 Copy Right, IJAR, 2018,. All rights reserved. 
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Introduction:- 
It is well acknowledged that efficiency models significantly depend on the mixture of used inputs and outputs. 

Indeed, different input/output combinations generate different efficiency scores. Furthermore, a given decision 

making unit (DMU) may or may not be efficient depending on the selected input/output combination. Hence, 

deciding which inputs and outputs the model should take into consideration is particularly important in the 

efficiency assessment process. 

 

Due to the absence of an exact expression of the banking production function and of the factors that may explain the 

performance of a given bank, we conjecture that more than a single inputs/outputs combination should be used to 

evaluate efficiency in order to obtain a better and a more complete picture of a bank performance and also to detect 

relevant factors on which correcting actions have to be undertaken. However, these inputs/outputs can be classified 

to four groups: discretionary, non-discretionary, desirable, and undesirable factors. 

 

Evaluating banks efficiencies using models with discretionary and desirable inputs/outputs have been widely 

studied. Nevertheless, there still lacks of more investigation on banks efficiencies while considering both non-

discretionary and undesirable variables. Indeed, in the banking context, almost all previous studies take into account 

only discretionary inputs and desirable outputs. These studies assume that each bank seeks to improve its results by 

better controlling the amounts of its inputs or outputs. Nevertheless, in the reality many variables are beyond the 

managerial control. Moreover, some variables may be uncontrollable within a short-term period. The adjustment 
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bank ability depends on the time period needed for modification long- or short-run horizon. Factors that cannot be 

varied in the short run should be treated as non-discretionary also known as fixed or quasi-fixed variables. 

 

In this study, we propose to use the DDF method to estimate the technical efficiency of European banks. The main 

argument for using a non-parametric approach rather than parametric technique is that it can be easily put into 

practice without prior knowledge of the frontier form. Moreover, the DDF approach is able to handle simultaneously 

desirable/undesirable outputs as well as discretionary/non-discretionary inputs. It can also produce robust results 

when used to estimate the frontier of efficiency as confirmed by many previous studies. Furthermore, we develop 

three different models specification in order to illustrate the impact of taking into account the undesirable outputs 

and the non-discretionary inputs in the assessment of efficiency scores.  

 

The rest of the paper is structured as follows. Section 2 presents a brief review of previous studies. Section 3 

presents the adopted methodology. Section 4 illustrates the procedure through a real-world banking data example. 

Section 5 displays the results and some discussions. Section 6 concludes. 

 

Literature review 

Substantial attention has been given to banking efficiency measurement and analysis. Some authors offer interesting 

and wide-ranging reviews such as Hughes and Mester (2015), Fethi and Pasiouras (2010), Berger and Mester 

(2003), and Berger and Humphrey (1997). The majority of the previous studies use either the Data Envelopment 

Analysis (DEA) or the Stochastic Frontier Analysis (SFA). Only recently, some studies start adopting the DDF 

methodology (initiated by Chung et al., 1997).  

 

Furthermore, Most previous efficiency-banking studies have considered only factors that are under managerial 

control (discretionary inputs and outputs). Fujii et al. (2018), Kamarudin et al. (2017), Lee and Huang (2017), Tan 

and Anchor (2017), Subramanyam (2016), Tsionas et al. (2015) are some examples of such studies. Having noticed 

that non-discretionary factors may influence efficiency scores, two different frameworks have been adopted to 

address this issue. The first framework is based on Banker and Morey (1986)’s model. It considers directly the non-

discretionary variables in the assessment process. While the second framework accounts for non-discretionary 

variables in a second stage in order to detect whether these variables have an effect on the achieved efficiency 

scores. Specifically, the assessed efficiency scores obtained in a first stage are explained in particular through these 

non-discretionary variables using a regression analysis, such as the ordinary least squares and the Tobit regression. 

Rouse et al. (1996) state that the outcomes of these two frameworks are significantly different. 

 

Hunter and Timme (1995) handle a sample of 254 US commercial banks over the period 1984-1987 to evaluate their 

efficiency while treating the core deposits and the number of branches as quasi-fixed inputs. Based on the obtained 

results, the authors assert that ignoring quasi-fixed nature of some inputs may generate biased results. To investigate 

the impact of regulation on efficiency level, Färe et al. (2004) compare the estimated profit inefficiency scores 

obtained using two DDF models for a sample of US banks while considering non-discretionary inputs. The first one 

assumes equity and off-balance sheet activity as non-controllable inputs (these inputs correspond respectively to the 

risk-based capital and the leverage regulation constraints). However, the second model treats the leverage ratio as 

the only non-discretionary input. Mavi et al. (2013) take into account a non-discretionary input in the evaluation of 

the efficiency of bank branches. For this, they apply the common set of weights method to 20 Iranian bank branches 

while considering the distance of each branch to the city as the non-discretionary input. Menicucci and Paolucci 

(2016), Aktas et al (2015), Gishkori and Ullah (2013), Raphael (2013), Pasiouras et al. (2011), and Casu and 

Molyneux (2003) study the impact of the size (non-discretionary variable) among other variables on efficiency 

scores by adopting the multi-stage methodology. 

 

Recently researchers attribute much more attention to undesirable-outputs issue. Hamid et al. (2017), Huang and 

Chung (2017), Lozano (2016), Aghayi and Maleki (2016), Cheng and Zervopoulos (2014), Jayaraman and 

Srinivasan (2014), Glass et al. (2014), Barros et al. (2012), and Fukuyama & Weber (2008) have treated non-

performing loans (NPLs) as an undesirable output in bank efficiency measurement and support that ignoring bad 

outputs is misleading. Fujii et al. (2014) and Assaf et al. (2013) display that we need to integrate NPLs in the 

assessment process otherwise we obtain biased results. Curi et al. (2013) strongly affirm that the omission of NPLs 

from the assessment process might generate underestimated efficiency scores. In fact, without including NPLs in the 

model, a high efficiency score for a given bank does not necessarily indicate a better performance than other banks; 

it might be done at the expense of making a high proportion of undesirable outputs. By estimating the efficiency of 
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52 Taiwanese commercial banks over the period 1999-2012, Huang and Chung (2017) establish as well that 

ignoring NPLs from the evaluation process tends to overestimate the inefficiency scores.  

 

To deal with undesirable outputs, researchers generally choose one between two approaches. Either they apply the 

traditional parametric and non-parametric methodologies after performing a prior transformation on the undesirable 

output, or without any transformation of the undesirable outputs they use the DDF methodology.  

 

Among techniques that can be applied to deal with the amount of bad output is using a decreasing function by 

considering the undesirable output as an input or deducing the undesirable output value from a relative good output. 

More discussion and details are given in Scheel (2000). For instance, in the case of NPLs, previous studies either 

treat them as an input to be reduced as much as possible or deduce them from gross loans and then use obtained net 

loans as a good output to be maximized as much as possible. Sufian (2007) appraises the efficiency of 17 Malaysian 

Islamic banks over the period 2001-2005 using Data envelopment analysis approach while taking into account the 

NPLs as inputs. Pan et al. (2010) among other studies affirm that such approaches provide biased results. Drake and 

Hall (2003) while considering the provisions for loan losses as an input in the evaluation process of the efficiency of 

a sample of Japanese banks, they show that the overall average efficiency scores have almost significantly increased 

alongside the number of efficient banks has almost doubled compared to the case where this undesirable variable is 

ignored.  

 

Recently, some researchers have adopted the second approach based on the DDF methodology. It allows the 

accommodation of the undesirable outputs in their initial form. Hamid et al. (2017) adopt a DDF approach to assess 

the efficiency of 21 commercial banks in Malaysia over the period 2005-2014 while considering NPLs as the only 

bad output. Huang et al. (2015) under a stochastic framework apply a new meta-frontier directional distance 

function to appraise the efficiency of 17 banking systems in the Central and Eastern European countries. To do this, 

they identify three discretionary inputs, three good outputs and the NPLs as a bad output. Moreover, they perform a 

likelihood ratio test to show the non-significance of the efficiency results when the undesirable output is ignored. 

Jayaraman and Srinivasan (2014) assess as well the technical inefficiency for a sample of Indian banks over the 

period 2005-2012 using a DDF approach based on a database of four inputs, two outputs and one undesirable output 

(Non-performing assets). Aghayi and Maleki (2016) use as well the DDF approach while treating the undesirable 

output as input. They apply the obtained model to a sample of 52 branches of the Iranian National Bank over the 

period 2011-2014, using two inputs: deposits and interest rate on each loan to produce four good outputs and a bad 

output (NPLs). Through a hyperbolic distance function, Mamatzakis et al. (2016) appraise for a sample of Japanese 

commercial banks over the period 2000-2013, the efficiency scores using a data for three discretionary inputs, two 

good outputs and two undesirable outputs; namely, the problem loan and the non-loan assets. 

 

Based on this brief literature review, we can notice that despite the large number of empirical studies investigating 

on banking efficiency assessment, those that have explored banking efficiency evaluation using a DDF methodology 

still to be restricted. Furthermore, to our knowledge, there is no study that has applied DDF while taking into 

account simultaneously both non-discretionary inputs and undesirable outputs. Moreover, more investigations still to 

be required in the context of the Eurozone banking system particularly post the sovereign debt crisis. 

 

Methodology:- 

Let us consider a production activity using a set of discretionary inputs, 𝑋 =  𝑋𝑖 , 𝑖 = 1, … , 𝑚1 , and  non-

discretionary inputs, 𝑍 = {𝑍𝑖 , 𝑖 = 1, … , 𝑚2}, employed to produce jointly a vector of s desirable outputs, 

, and a vector of d undesirable outputs, . The production technology is 

defined as 

𝛹 =   𝑥, 𝑧, 𝑦, 𝑏 ∈ ℜ+
𝑚1+𝑚2+𝑠+𝑑   𝑥, 𝑦 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)} 

We consider a production activity using a set of discretionary and non-discretionary inputs to produce jointly a 

vector ofdesirable and undesirable outputs. Based on production theory (Färe and Grosskopf, 2006), the production 

technology set is assumed to be closed, convex and nonempty. In addition, we assume strong (free) disposability for 

both discretionary inputs and desirable outputs. However, we assume weak disposability of non-discretionary inputs 

and undesirable outputs. Free disposability for discretionary inputs indicates that the quantity of any given 

discretionary input can be increased while holding other inputs and outputs constant. Weak disposability assumption 

of non-discretionary inputs states that a proportional increase in the inputs can yield the production of the same 

1m 2m

 , 1, ,r ry y s    , 1, ,u ub b d  
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amount of outputs.Strong disposability of desirable outputs implies that if a given desirable and undesirable output 

vector is feasible then any output vector with a reduced quantity of desirable output is also feasible. Weak 

disposability of undesirable outputs means that proportional reductions of good and bad outputs are feasible. Weak 

disposability implies that it is costly to reduce bad outputs. For example, if a bank wants to reduce the amount of 

NPLs, it would be brought to make fewer loans. This assumption is complemented with the Null-jointness 

assumption. This later says that we cannot produce desirable outputs without producing undesirable ones. For 

example, if a bank does not want to produce NPLs, it would be led to not produce any loan. 

To evaluate the output oriented inefficiency measure for a given bank, we use the DEA estimator under variable 

return to scale to obtain a measure of the distance function. Furthermore, in order to investigate the impact of 

considering non-discretionary inputs and undesirable outputs in the assessment process we estimate three different 

models M1, M2, and M3. In addition to the conventional inputs and outputs, M1 accounts for both non-discretionary 

inputs and bad outputs. M2 differs from M1 only by treating all inputs as discretionary ones. M3 considers all inputs 

as discretionary and takes into account only desirable outputs. The inputs and outputs of M3 are similar to those of 

M2 after ignoring the undesirable output. More specifically, model M2 is developed in order to analyze the effect of 

ignoring the non-discretionary nature of the input. However, model M3 is designed to study the effect of ignoring the 

undesirable output. To evaluate the output oriented inefficiency measure for a given bank according the three 

models, we use respectively the following three DEA estimators under variable return to scale to obtain a measure of 

the corresponding distance function. 

 

 

 

Data 

The dataset used in this study is obtained from the Orbis Bank focus previously called Bankscope database compiled 

by Van Dijk Electronic Publishing Bureau. Our sample is composed of 423 commercial banks from 27 EU countries 

covering the period 2013-2015. Obviously, our sample is large enough to certify robustness of the obtained 

efficiency scores. We use three inputs and three outputs. The inputs are universally adopted in several studies: labor 

(personnel expenses), funds (total deposits), and capital (Fixed assets), while the outputs are loans (net loans = Total 

loans – Non-performing loans), other assets, and NPLs. To measure banks efficiency, many authors believe that 

deposits and loans are key variables in DEA model. Within model M1, we treat the capital as non-discretionary input 

since it cannot be altered in a short-term horizon. However, in order to investigate the impact of this treatment, we 

handle capital as controllable for model M2. Finally, in order to examine the impact of ignoring the undesirable 

outputs, we develop model M3 in which we consider only discretionary inputs and good outputs. Below, Table 1 

summarizes the selected inputs and outputs variables for each developed model and Table 2 displays descriptive 

statistics of the selected inputs and outputs variables of the pooled sample. 

 

Results and Discussion:- 
All the results of the efficiency analysis were obtained using SAS software. The obtained values can be interpreted 

as the inefficiency level of a given bank according to each model. A score equal to zero designates that the bank is 

efficient however a value greater than zero indicates that the bank is inefficient. For example according to M1, the 

bank 100 had an inefficiency of 0.044 which means that to operate efficiently, the bank should expand its net loans 

by 0.044*233,852602=10,289514; expand its other assets by 0.044*26,273711=11,760043; and contract its NPLs by 

0.044*14899796=655591, while using the same quantities of labor, deposits, and capital.  

 

The findings exhibited that the average inefficiency scores have increased over the studied period according to all 

models with a small drop for M3 on 2014. Table 3, below, shows some descriptive statistics of technical inefficiency 
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scores for the three models. In particular, it shows that in 2013 the inefficiency problem touches 86.29% of banks 

according to M1.  

 

Table 1:-Overview of inputs and outputs for each model. 

Model name Model 1 Model 2 Model 3 

Input 1: Labor ✓ ✓ ✓ 

Input 2: Deposits ✓ ✓ ✓ 

Input 3: Fixed assets as non-discretionary ✓   

Input 3: Fixed assets as discretionary  ✓ ✓ 

Output 1: Net loans ✓ ✓ ✓ 

Output 2: Other assets ✓ ✓ ✓ 

Output 3: NPLs as bad output ✓ ✓  

 

Table 2:-Descriptive statistics of selected inputs and outputs. 

Year 2013 2014 2015 

Input variables   

Labor 583 787 527 594 483 424 

 (2 109 332) (1 878 941) (1 737 916) 

Funds 507 295 464 685 457 667 

 (2 025 904) (2 004 045) (2 149 052) 

Non-discretionary input   

Capital 51 020 903 45 006 473 40 753 994 

 (157 268 170) (139 390 249) (127 584 790) 

Output variables   

Loans 38 137 914 34 492 403 31 946 433 

 (112 174 422) (102 930 270) (96 119 394) 

Other assets 37 436 892 34 537 001 29 072 466 

 (155 166 582) (146 935 536) (117 908 166) 

Undesirable output   

Non-performing loans 3 330 954 2 650 809 2 119 241 

 (9 714 039) (7 852 789) (6 545 897) 

 

It also displays 39, 41, and 40 efficient banks according to M3; however, it shows 58, 61, and 56 efficient banks 

according to M1 respectively during 2013, 2014, and 2015. These beforehand mentioned banks constituted the best-

observed practice frontier and were used as references for inefficient ones. In addition, Table 3 shows in line with 

Drake and Hall (2003) that the efficiency scores had significantly improved together with an increase of the number 

of efficient banks compared to the case where the NPLs were ignored as an undesirable output.  

 

Furthermore, the results showed that M3 had the highest technical inefficiency scores over the examined period, 

while there was only a slight difference between the results of the two first models differing in the specification of 

fixed assets as discretionary or non-discretionary input. This leads us to wonder whether the use of fixed asset as a 

non-discretionary input makes a significant difference if this input was treated as discretionary. 

Table 3:-Summarystatistics of inefficiency scores. 

Inefficiency Year Mean Std. 

Dev. 

Min Max Number 

Efficient 

Percent 

Efficient 

 2013 

2014 

2015 

0.662 

0.699 

0.741 

0.349 

0.356 

0.349 

0 

0 

0 

0.999 

0.997 

0.999 

58 

61 

56 

13.71 

14.42 

13.24 

 2013 

2014 

2015 

0.663 

0.702 

0.745 

0.347 

0.353 

0.344 

0 

0 

0 

0.999 

0.997 

0.999 

56 

57 

52 

13.24 

13.47 

12.29 

 2013 

2014 

2015 

3.756 

3.124 

4.076 

3.559 

2.586 

2.886
 

0 

0 

0 

18.489 

18.447 

13.135 

39 

41 

40 

9.21 

9.69 

9.46 

b̂
1

b̂
2

b̂
3
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Did it make significant difference when using fixed assets as non-discretionary? 

To answer this question, we propose to test if this slight difference between the scores of the first two models is 

statistically significant. That is why; we performed three non-parametric tests; namely, the Pearson’s Correlation, 

Wilcoxon matched-pairs signed-rank tests, and the two-sample Kolmogorov-Smirnov test as displayed in Table 4.  

 

First, we performed the Pearson’s Correlation test to identify if there were any correlation relationship between the 

scores of M1 and that of M2. This test permits to evaluate the strength of a linear relationship between the scores of 

the two models. As shown in Table 4, the correlation is very high and almost equal to 1 with p-values less than 1% 

obtained over the entire period (statistically significant at the level of 1%). We therefore rejected the hypothesis that 

the correlation is equal to 0.  

 

Second, we applied the Wilcoxon matched-pairs signed ranks test to examine the equality of the corresponding 

distribution functions of the inefficiency scores obtained via the two Models M1 and M2. It is a non-parametric test 

that does not require any assumptions regarding the form of the distributions. The p-values shown in Table 4 

allowed us to accept the null hypothesis asserting that we did not have compelled evidence that the two distributions 

differ. 

 

Finally, the Two-sample Kolmogorov-Smirnov test strengthened the results of the two previous tests. Indeed, as 

exposed in Table 4 the related p-values revealed that it is reasonable to assume that the inefficiency scores lists came 

from the same distribution and hence M1 and M2 provided significantly the same results, over the three years. 

 

Table.4:-Did it make significant difference when using the fixed assets as non-discretionary? 

Year Pearson Wilcoxon Kolmogorov-Smirnov 

Correlation p-value p-value p-value 

2013 0.999 < 2.2e-16*** 0.9747 1 

2014 0.999 < 2.2e-16*** 0.9615 1 

2015 1 < 2.2e-16*** 0.9436 1 

*** Indicate significance at the level of 0.01. 

 

Therefore, we concluded that treating the fixed assets as non-discretionary makes no significant difference with the 

case where they were treated as discretionary. This last result is in line with that of Färe et al. (2004) who had shown 

that the distribution function of inefficiency obtained when considering both equity and off-balance sheet activities 

as fixed inputs was the same as the distribution function of inefficiency found when only off-balance sheet was 

treated as fixed input. These obtained results may explain the reasons behind which most previous studies did not 

consider such inputs as non-discretionary as discussed previously. In the following, discussions and analyses will 

focus on the results of M1 and M3.  

 

Did it make any significant difference when ignoring NPLs as undesirable outputs? 

By comparing the results of M1 and M3, the findings confirmed the sensitivity of efficiency scores to the 

specification of outputs and inputs. Furthermore, the results displayed that every time a given bank was inefficient 

according to M1, it was also inefficient with regard to M3. In addition, each time a bank was efficient according to 

M3; it was efficient with regard to M1. Moreover, the inefficiency scores had considerably changed according to M3. 

This may confirm that ignoring NPLs tends to overestimate the inefficiency scores and that only models handling 

both desirable and undesirable outputs, can produce robust results as was previously advocated by Eskelinen (2017), 

Fujii et al. (2014), Assaf et al. (2013), and Curi et al. (2013). That is why; in the following we limit our discussion 

mainly on the outcomes of M1. 

 

Barros et al. (2007) indicated that location among other factors might influence the performance of banks in the EU. 

Table 5 offers the average inefficiency scores for each country over the studied period. Accordingly, the average 

inefficiency scores of M1range from 0.435 (Finland) to 0.98 (Romania), while those of M3 vary from 1.0170303 

(Ireland) to 8.2418753 (Romania) suggesting the inexistence of fully inefficient country (with a score equal to zero). 

For both models Romania appears to be the less efficient country, which indicates that the Romanian banks’ 

managerial ability requires large room for improvement. 

 

Moreover, when analyzing the scores of each country over the whole period, the outcomes suggest that almost all 

banking systems had suffered from a drop of their efficiency scores as shown below in Fig 1. This finding is in line 
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with those of Degl’Innocenti et al. (2017) and Kevork et al. (2017) claiming that after 2010 European banks 

efficiency scores had decreased following the sovereign debt crisis. 

 

Table 5:-Average technical inefficiency scores by country over time according to M1 and M3. 

 Average 

Countries Model 1 Model 3 

Austria 0,7921239 2,7507132 

Belgium 0,7297719 2,2921387 

Bulgaria 0,8839328 4,7333659 

Croatia 0,9518965 5,9849131 

Cyprus 0,9193225 4,8925948 

Czech Republic 0,806252 3,3142781 

Denmark 0,76771 5,3949048 

Estonia 0,7637154 5,9648991 

Finland 0,4355487 2,6985982 

France 0,6910367 4,05312 

Germany 0,5059086 2,5505892 

Greece 0,9416579 3,3179254 

Hungary 0,8174911 4,7178558 

Ireland 0,5680794 1,0170303 

Italy 0,7107336 2,9196957 

Latvia 0,8715223 4,5762584 

Luxembourg 0,5915674 1,9625012 

Malta 0,9252946 6,1641563 

Netherlands 0,5376187 2,3553529 

Poland 0,8500325 4,1164289 

Portugal 0,7918188 3,1709703 

Romania 0,9800407 8,2418753 

Slovakia 0,9422211 4,8611779 

Slovenia 0,9551607 5,9905995 

Spain 0,6110115 1,6007011 

Sweden 0,4635567 3,3425288 

United Kingdom 0,4648796 2,5551082 

Average 0,7507373 3,9088993 

 

 
Fig 1:-Evolution of the inefficiency scores per country over the period 2013-2015. 

 

The inefficiency increase may be in particular explained by the continuing piling up during the studied period of 

NPLs by Eurozone banks as displayed in Fig 2, especially, the banks in Cyprus, Bulgaria, Greece, Latvia, and Italy. 

Indeed, high levels of NPLs weighed on banks’ ability to lend as well as to invest which hence degraded its 

efficiency.  
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Fig 2:-Evolution of the NPLs per country over the period 2013-2015. 

 

To gain further insights into the impact of a bank’s location on its efficiency and following EBF Facts & Figures 

(2015), we proposed to classify the studied countries into four different geographical areas. This grouping was 

undertaken according to some previous studies as well as some adopted traditions and patterns (Table 6).  

Fig 3 reveals that the average inefficiency scores had increased over time, suggesting the diffusion of inefficiency of 

European banks across all regions. Moreover, the Northern region seems to be somewhat more efficient followed by 

the Western European countries. In contrast, the Eastern region appears as the least efficient region advanced by the 

Southern one. 

 

Table 6:-Classification of the countries in four main regions. 

Region Countries Number of banks 

Central-Eastern and Eastern 

European countries 

Bulgaria, Czech Republic, Croatia, Estonia, Latvia, 

Hungary, Romania, Poland, Slovakia and Slovenia 

106 

Central-Western and Western 

European countries 

Austria, France, Belgium, Germany, Luxembourg, 

Ireland, Netherlands and United Kingdom 

176 

Northern European countries Denmark, Finland and Sweden 46 

Southern European countries Cyprus, Italy, Greece, Malta, Spain and Portugal 95 

 

Fig 3 reveals that the average inefficiency scores had increased over time, suggesting the diffusion of inefficiency of 

European banks across all regions. Moreover, the Northern region seems to be somewhat more efficient followed by 

the Western European countries. In contrast, the Eastern region appears as the least efficient region advanced by the 

Southern one.  

 

Based on Table 7, a deeper analysis demonstrated, from one hand, that the relatively less inefficiency of the 

Northern banks was due to the 26.7% Sweden efficient banks as well as to the fairly inefficiency level of the Finnish 

banks. Furthermore, in 2014 and 2015 the percentage of efficient Finnish banks increased to 20%. However, the 

score of the Western region owed to the moderately high percent of efficient Irish, Luxembourg, and English banks 

(28.6%, 28.6%, and 32.6% respectively). From the other hand, while the lowest efficiency scores of the Eastern 

region mainly originated from the weak efficiency of the Romanian, the Croatian, and the Slovenian banks, the 

feeble scores of the banks in Cyprus had marked the Southern region. 

 

Furthermore, Table 8 reveals that, over all the period 2013-2015, the highest number of efficient banks was in the 

Western region. Nevertheless, the average inefficiency score of this region was higher than that of the banks in the 

Northern one. This may provide evidence that Northern banks compared to their counterparts had better converged 

during the studied period.  In addition, Table 8 shows that the least number of efficient banks is situated in the 

Eastern region. This may as well justify the weak efficiency scores of the banks of this region besides the existence 

of the most inefficient countries in the region (Romania, Croatia, and Slovenia). 
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Figure 3:-Inefficiency evolution per region over 2013-2015. 

 

Based on our findings, it seems that the European banking sector needs more challenging efforts in order to pin up 

recovery signs from the previous crises. Furthermore, the recovery economic sign perceived during the post-crises 

appears to be not complemented by a similar symptom at the banking sector efficiency level. Indeed, as displayed by 

Fig 4, in contrast to the revealed efficiency decrease, the European banks had generated a positive ROE and an 

apparent increase over the three years 2013, 2014 and 2015 after suffering from negative values during the years 

2008, 2011 and 2012. Specifically, since 2013, the profitability had known a slight recovery with an average ROE of 

2.2%, 4.8% and 6.5% on 2013, 2014 and 2015, respectively.  

 

Table.7:-Percentage of efficient bank per country over time. 

  2013 2014 2015 

Countries Number of 

banks 

Efficient 

bank 

Percenta

ge 

Efficient 

bank 

Percenta

ge 

Efficient 

bank 

Percenta

ge 

Belgium 7 0 0 0 0 0 0 

Croatia 12 0 0 0 0 0 0 

Cyprus 7 0 0 0 0 0 0 

Czech 

Republic 

14 0 0 1 0,071 1 0,071 

Estonia 4 0 0 0 0 0 0 

Finland 5 0 0 1 0,2 1 0,2 

Greece 6 0 0 0 0 0 0 

Malta 3 0 0 0 0 0 0 

Romania 11 0 0 0 0 0 0 

Slovakia 9 0 0 0 0 0 0 

Slovenia 8 0 0 0 0 0 0 

Poland 21 1 0,048 1 0,048 1 0,048 

Denmark 26 2 0,077 3 0,115 2 0,077 

Bulgaria 11 1 0,091 1 0,091 1 0,091 

Austria 9 1 0,111 0 0 0 0 

Portugal 9 1 0,111 1 0,111 1 0,111 

Spain 18 2 0,111 3 0,167 3 0,167 

France 60 8 0,133 9 0,15 8 0,133 

Italy 52 8 0,154 8 0,154 7 0,135 

Germany 25 4 0,16 5 0,2 5 0,2 

Hungary 6 1 0,1667 1 0,167 1 0,167 

Latvia 10 2 0,2 0 0 0 0 

Netherlands 12 3 0,25 1 0,083 1 0,083 

Sweden 15 4 0,267 4 0,267 4 0,267 

Ireland 7 2 0,286 2 0,286 2 0,286 

Luxembourg 7 2 0,286 2 0,286 2 0,286 
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United 

Kingdom 

49 16 0,326 18 0,367 16 0,326 

Total 423 58  61  56  

 

Table 8:-Percentage of efficient bank per region over time. 

 2013 2014 2015 

 Number Percentage Number Percentage Number Percentage 

Central-Western and Western countries 36 20,45 37 21,02 34 19,32 

Central-Eastern and Eastern countries 5 4,72 4 3,77 4 3,77 

Northern countries 6 13,04 8 17,39 7 15,22 

Southern countries 11 11,58 12 12,63 11  11,58 

Total 58 13,71 61 14,42 56  13,24 

 

 
Fig 4: Evolution of the EU banking system ROE. 

 

Conclusion:- 
This paper provides a thorough analysis of the efficiency of European banking systems. It contributes to previous 

research on bank efficiency at many levels. To our knowledge, this is the first study in the banking context that 

considers simultaneously both non-discretionary and undesirable variables in the efficiency assessment. 

Nevertheless, treating fixed assets as non-discretionary inputs seems to not significantly affect the efficiency scores 

compared to the case where they are treated as discretionary. Furthermore, this study is among very few ones that 

introduce the NPLs as undesirable outputs in the efficiency assessment process. The obtained outcomes confirmed 

that ignoring them tends to overestimate the inefficiency scores.  

 

Moreover, the results reveal an increasing level of the average inefficiency for most EU country as well as for the 

different EU regions. These outcomes may indicate the persistence of the impact of the financial crises and the 

inability of the European banking system to really recover from the crises. Furthermore, the apparent positive 

increase in the profitability of the European banks over the three years 2013, 2014 and 2015 seems to be an illusion 

due to inflation.  
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