On a Pseudo Smarandache Ideals of BH-algebra

Husein Hadi Abbass¹, Ahmed Abdulhussein Jabbar²

¹Department of Mathematics, Faculty of Computer Science and Mathematics, Iraq.
²Department of Mathematics, Faculty of Computer Science and Mathematics, Iraq.

Abstract

In this paper the notion of a pseudo Samarandache BH-algebra, a pseudo Samarandache ideal, a pseudo Samarandache closed ideal and a pseudo Samarandache completely closed ideal of a pseudo Samarandache BH-algebra are defined. There notion are studied. The relationships among these types of ideals are discussed.

Keywords: BCK-algebra, BH-algebra, ideal of BH-algebra, a Smarandache of BH-algebra, a pseudo BH-algebra, apseudo ideal of a pseudo BH-algebra, a pseudo completely closed ideal of a pseudo BH-algebra, a pseudo Samarandache ideal of BH-algebra, a pseudo Smarandache closed ideal of BH-algebra, a pseudo Smarandache completely closed ideal of BH-algebra.

1. Introduction

In this paper, we define the concepts of a pseudo Smarandache completely closed ideal and a pseudo Smarandache closed ideal of a pseudo Smarandache BH-algebra. We stated and proved some theorems which determine the relationships between these notions and some types of a pseudo Smarandache ideals of a Smarandache BH-algebra.

2. Materials and Methods

In this section, some basic concepts about a BCK-algebra, a BH-algebra,apseudoBH-algebra, pseudo ideal and a pseudo closed ideal of a pseudo BH-algebra are given.

Definition (1.1) [8] A BCK-algebra is an algebra (X,*,0), where X is a nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms:

i. \((x * y) * (x * z) = (x * y) * z\), \(\forall x, y, z \in X\)

ii. \((x * (x * y)) * y = 0\), \(\forall x, y, z \in X\). iii. \(x * x = 0\), \(\forall x \in X\).

iv. \(x * y = 0\) and \(y * x = 0\) \(\Rightarrow x = y\), \(\forall x, y \in X\).

v. \(0 * x = 0\), \(\forall x \in X\)

Definition (1.2) [6] A BH-algebra is a nonempty set, \(X\), with constant 0 and a binary operation conditioned

\(i.x=x0, \forall x \in X. ii. x0=x, \forall x \in X. iii. x+y=0\ and \ x=x=0 \Rightarrow x = y, \forall x, y \in X.\)

Definition (1.3) [4] A Smarandache BH-algebra is defined to be a BH-algebra \(X\) in which there exists a proper subset \(Q\) of \(X\) such that \(i. 0 \notin Q\) and \(|Q| \geq 2\)

Definition (1.4) [6] Let \(I\) be a nonempty subset of a BH-algebra \(X\) and \(I \neq \emptyset \subseteq X\). Then \(I\) is called an ideal of \(X\) if it satisfies: i. \(0 \in I\), ii. \(x+y \in I \ and \ y \in I \ imply \ x \in I, \forall x, y \in X\)

Now, we define the a Smarandache ideal of \(X\) to the Smarandache BH-algebra \(X\).

Definition (1.5) [4] A nonempty subset \(I\) of a Smarandache BH-algebra \(X\) is called a Smarandache ideal of \(X\) if:

i. \(0 \in I\)

ii. \(x+y \in I \ and \ y \in I \Rightarrow x \in I, \forall x \in Q\)

Proposition (1.6) [4] Every ideal of a Smarandache BH-algebra \(X\) is a Smarandache ideal of \(X\)

Definition (1.7) [3] An ideal \(I\) of a BH-algebra \(X\) is called a closed ideal of \(X\) if and only if \(x \in I \ for \ all \ x \in I\)

Now, we define the Smarandache closed ideal of \(X\) to the Smarandache BH-algebra \(X\).

Definition (1.8) [4] A Smarandache ideal \(I\) of a Smarandache BH-algebra \(X\) is called a Smarandache closed ideal of \(X\) if:

\(for \ all \ x \in I, 0 \neq x \in I\)

Proposition (1.9) [4] Every closed ideal of a Smarandache BH-algebra \(X\) is a Smarandache closed ideal of \(X\).

Definition (1.10) [2] An ideal \(I\) of a BH-algebra \(X\) is called a completely closed ideal of \(X\) if it satisfies: \(x \neq y \in I, \forall x, y \in I\)

Remark (1.11) [2] Every a completely closed ideal of a BH-algebra \(X\) is closed ideal of \(X\).

Now, we define the Smarandache a completely closed ideal of \(X\) to the Smarandache BH-algebra \(X\).

Definition (1.12) [4] A Smarandache ideal I of a Smarandache BH-algebra X is called a Smarandache completely closed ideal of X if: \(x \neq y \in I, \forall x, y \in I\)
Proposition (1.13) [4] Every completely closed ideal of a BH-algebra X is a Smarandache completely closed ideal of X.

Remarks (1.14) [4] Every a Smarandache completely closed ideal of Smarandache BH-algebra X is a Smarandache closed ideal of X.

Definition (1.15)[7]
A pseudoBH algebra is a nonempty set X with a constant 0 and two binary operations "*" and "#" satisfying the following conditions: \(x * x = x # x = x \) \(\forall x \in X \). \(x * 0 = x # 0 = x \forall x \in X \). \(x * y = y # x = 0 \implies x = y, \forall x, y \in X \).

Definition (1.16)[7] Let \((X, *, #) \) be a pseudo BH-algebra. Then \(I \) is called a pseudo ideal of \(X \) if it satisfies:
\[i. \ 0 \in I, \ ii. \ x * y, x # y \in I, \exists x \in X, \forall x, y \in X \]

Definition (1.17) [7] A pseudoideal I of a pseudo BH-algebra X is called a pseudo closed ideal of X, if for every \(x \in l \), we have 0* x, 0# x \in I.

Definition (1.18) [1] A pseudoideal I of a pseudo BH-algebra X is called a pseudo completely closed ideal of X, if satisfies: \(x * y, x # y \in I, \forall x, y \in I \).

Remarks (1.19) [1] Every a pseudo completely closed ideal of a pseudo BH-algebra X is a pseudo closed ideal of X.

3. Main Results

In this section, the concepts a pseudo Smarandache BH-algebra, a pseudo Smarandache ideal, a pseudo Smarandache closed ideals and a pseudo Smarandache completely closed ideals of a pseudo Smarandache BH-algebra are given.

Definition (2.1) A pseudo Smarandache BH-algebra \((X, *, #, 0) \) is defined to be a pseudo BH-algebra in which there exists a proper subset \(Q \) of \(X \) such that
\[i. \ 0 \in Q \text{ and } |Q| \geq 2 \]

ii. \(Q \) is BCK-algebra under the operations "*" and "#" of \(X \).

Example (2.2) the a pseudo BH-algebra \(X = \{0, 1, 2, 3, 4\} \) with constant 0 and binary operations "*" and "#" defined the following tables and \(Q = \{0, 1, 2, 3\} \) is a pseudo Smarandache BH-algebra.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

And \(Q = \{0, 1, 2, 3\} \) the subset \(I = \{0, 1, 3\} \) is a pseudo Smarandache ideal of \(X \).

Proposition (2.5) Let \(X \) be a pseudo Smarandache BH-algebra .Then every a pseudo ideal of \(X \) is a pseudo Smarandache ideal of \(X \).

Proof: It is clear.

Remark (2.6) The following example shows that convers of proposition is not correct in general.

Example (2.7) Consider the pseudo Smarandache BH-algebra \(X = \{0, 1, 2, 3\} \) with binary operations "*" and "#" defined by the following tables.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

And \(Q = \{0, 1\} \). The subset \(I = \{0, 1\} \) is a pseudo Smarandache ideal of \(X \) but it is not a pseudo ideal of \(X \) since \(3 * 2 = 2 \in l \) and \(3 # 2 = 2 \in l \) but \(3 \notin l \).

Theorem (2.8) Let \(X \) be a pseudo Smarandache BH-algebra and \(I \) be a pseudo Smarandache ideal such that \(x * y, x # y \notin I \) for all \(x \notin l \) and \(y \notin l \), then \(I \) is a pseudo ideal of \(X \).

Proof: Let \(I \) be a pseudo Smarandache ideal of \(X \), \(x \in X \), and \(y \in X \). Then we have two cases. Case 1: if \(x \in Q \) \(\implies x \in l \)

Case 2: if \(x \notin Q \), either \(x \in l \), or \(x \notin l \).

If \(x \in l \) \(\implies l \) is a pseudo ideal of \(l \) and \(x * y, x # y \notin l \).

And this contradiction since \(x * y, x # y \notin l \) if and only if \(x \in l \).

Therefore, \(l \) is a pseudo ideal.

Definition (2.9) A pseudo Smarandache BH-algebra \(X = \{0, 1, 2, 3, 4\} \) with binary operations "*" and "#" defined by the following tables.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

And \(Q = \{0, 1\} \). The subset \(I = \{0, 1\} \) is a pseudo Smarandache ideal of \(X \) in example (2.4) is a pseudo Smarandache closed ideal of \(X \).

Example (2.10) the a pseudo Smarandache ideal \(I = \{0, 1, 3\} \) of \(X \) in example (2.4) is a pseudo Smarandache closed ideal of \(X \).

Definition (2.11) A pseudo Smarandache ideal of a pseudo Smarandache BH-algebra is called a pseudo Smarandache completely closed ideal of \(X \) if \(x * y, x # y \in l \) for all \(x \notin l \) and \(y \notin l \).

Example (2.12) the a pseudo Smarandache ideal \(I = \{0, 4\} \) of \(X \) in example (2.4) is a pseudo Smarandache completely closed ideal of \(X \).

Proposition (2.13) Let \(X \) be a pseudo Smarandache BH-algebra .Then every a pseudo Smarandache completely closed ideal of \(X \) is a pseudo Smarandache ideal of \(X \).

Proof: It is clear.

Remark (2.14) The following example shows that convers of proposition is not correct in general.

Example (2.15) Consider the a pseudo Smarandache BH-algebra \(X = \{0, 1, 2, 3\} \) with binary operation "*" and "#" defined by the following tables.
And \(Q = \{0, 1\} \). Then \(X \) a pseudo Smarandache BH-algebra where the pseudo Smarandache ideal \(I = \{0, 1, 2\} \) is a pseudo Smarandache closed ideal of \(X \).

But is not a pseudo Smarandache completely closed ideal of \(X \).

Since, \(1 \# 2 = 3 \in I \) and \(1, 2 \in I \)

Remark (2.16) Let \(X \) a pseudo Smarandache BH-algebra and \(I \) be a pseudo completely closed ideal of \(X \) then \(I \) is a pseudo Smarandache completely closed ideal of \(X \).

Proposition (2.17) Let \(I \) be a pseudo Smarandache BH-algebra and \(I \) be a pseudo Smarandache closed ideal such that \(x \# y, x \# y \notin I \) for all \(x \in I \) and \(y \in I \), then \(I \) is a pseudo closed ideal of \(X \).

Proof: Let \(I \) be a pseudo Smarandache closed ideal of \(X \).

By theorem \(1 \), \(I \) is a pseudo Smarandache closed ideal of \(X \).

It follows that \(0 \# x, 0 \# x \notin I \).

Therefore, \(I \) is a pseudo closed ideal of \(X \).

Proposition (2.18) Let \(X \) be a pseudo Smarandache BH-algebra and \(I \) be a pseudo Smarandache completely closed ideal such that \(x \# y, x \# y \notin I \) for all \(x \in I \) and \(y \in I \). Then \(I \) is a pseudo completely closed ideal of \(X \).

Proof: Let \(I \) be a pseudo Smarandache completely closed ideal of \(X \).

This yield

\(I \) is a pseudo Smarandache ideal of \(X \).

By theorem (2.8) we have \(I \) is a pseudo ideal of \(X \) since \(I \) a pseudo Smarandache completely closed ideal of \(X \).

Hence, \(I \) is a pseudo completely closed ideal of \(X \).

Proposition (2.19) Let \(\{ I_i, i \in I \} \) be a family of \(X \).

A Pseudo Smarandache ideal of pseudo Smarandache BH-algebra. Then \(\bigcap_{\lambda} I_i \) is a pseudo Smarandache ideal of \(X \).

Proof: Since \(I \) is a pseudo Smarandache ideal of \(X \).

ii. Let \(x \# y, x \# y \in \bigcap_{\lambda} I_i \) and \(y \in \bigcap_{\lambda} I_i \), \(\forall i \in I \).

\[\Rightarrow x \# y, x \# y \in I_1 \text{ and } y \in I_1, \forall i \in I \]

\[\Rightarrow x \in I_1 \text{ and } y \in I_1 \text{ since } I_1 \text{ is a pseudo Smarandache ideal of } X \]

\[\Rightarrow x \in \bigcap_{\lambda} I_i \Rightarrow \bigcap_{\lambda} I_i \text{ is a pseudo Smarandache ideal of } X. \]

Proposition (2.20) Let \(\{ I_i, i \in I \} \) be a family of \(X \).

A Pseudo Smarandache ideal of pseudo Smarandache BH-algebra. Then \(\bigcap_{\lambda} I_i \) is a pseudo Smarandache ideal of \(X \).

Proof: Since \(I_i \) is a pseudo Smarandache ideal of \(X \).

\(\forall i \in I \)

\[\Rightarrow I_i \text{ is a pseudo Smarandache ideal of } X, \forall i \in I. \]

[From proposition (2.9) we get]

\[\bigcap_{\lambda} I_i \text{ a pseudo Smarandache ideal of } X. \]

And \(0 \# x, 0 \# x \notin I_1 \).

Then \(x \# y, x \# y \notin I_1 \).

\[\Rightarrow I_1 \text{ a pseudo Smarandache closed ideal of } X, \forall i \in I. \]

Then \(I_1 \text{ a pseudo Smarandache BH-algebra. Then } \bigcap_{\lambda} I_i \text{ a pseudo Smarandache completely closed ideal of } X \).

Proof Since \(I_i \) is a pseudo Smarandache completely closed ideal of \(X \).

\[\bullet x \# y, x \# y \notin I_1 \text{ and } y \notin I_1, \forall i \in I \]

Then \(x \# y, x \# y \notin I_1 \).

\[\Rightarrow 0 \# x, 0 \# x \notin I_1 \]

So \(\bigcap_{\lambda} I_i \text{ is a pseudo Smarandache closed ideal of } X. \]

Proposition (2.21) Let \(\{ I_i, i \in I \} \) be a family of a pseudo Smarandache closed ideal of a pseudo Smarandache BH-algebra. Then \(\bigcap_{\lambda} I_i \text{ is a pseudo Smarandache BH-algebra. Then } \bigcap_{\lambda} I_i \text{ is a pseudo Smarandache closed ideal of } X. \)

Proof Since \(I_i \) is a pseudo Smarandache completely closed ideal of \(X \).

\[\bullet x \# y, x \# y \notin I_1 \text{ and } y \notin I_1, \forall i \in I \]

Then \(x \# y, x \# y \notin I_1 \).

\[\Rightarrow 0 \# x, 0 \# x \notin I_1 \]

Therefore, \(\bigcap_{\lambda} I_i \text{ a pseudo Smarandache completely closed ideal of } X. \)

Remark (2.22) Let \(\{ I_i, i \in I \} \) be a family of a pseudo Smarandache BH-algebra \(X \). \(\bigcup_{\lambda} I_i \) may not be a pseudo Smarandache ideal of \(X \).

Example (2.23) Consider the a pseudo Smarandache BH-algebra \(X = \{0, 1, 2, 3, 4\} \) with the binary operation “*” and “#” defined by the following tables.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

And \(Q = \{0, 1\} \) the subsets \(I_1 = \{0, 2\} \) and \(I_2 = \{0, 3\} \) are a pseudo Smarandache ideal of \(X \).

But \(I_1 \cup I_2 = \{0, 2, 3\} \) is not a pseudo Smarandache ideal of \(X \).

Since \(1 \# 2 = 3 \in I_1 \cup I_2 \), \(1 \# 2 = 2 \in I_1 \cup I_2 \) but \(1 \notin I_1 \cup I_2 \).
Proposition (2.24) Let \(\{ I_i, i \in I \} \) be a chain of a pseudo Smarandache ideal of a pseudo Smarandache BH-algebra X. Then \(\bigcup_{i \in \lambda} I_i \) is a pseudo Smarandache ideal of X.

Proof
i. \(0 \in I_i \), \(\forall i \in \lambda \) [since each \(I_i \) is a pseudo Smarandache ideal of X, \(0 \in \bigcup_{i \in \lambda} I_i \)].

ii. Let \(x \ast y, x \# y \in \bigcup_{i \in \lambda} I_i \) and \(y \in \bigcup_{i \in \lambda} I_i \). There exists \(I_k \in \lambda \) such that \(x \ast y, x \# y \in I_k \) and \(y \in I_k \) since \(\bigcup_{i \in \lambda} I_i \) is a chain. So, \(x \in I_i \) since \(I_i \) is a pseudo Smarandache ideal of X.

Therefore \(\bigcup_{i \in \lambda} I_i \) a pseudo Smarandache ideal of X.

4. Conclusion

In this paper, the notions of a pseudo Smarandache BH-algebra, a pseudo Smarandache ideal of BH-algebra, a pseudo Smarandache closed ideal of BH-algebra, a pseudo Smarandache completely closed ideal of BH-algebra are introduced. Furthermore, the results are examined in terms of the relationships between a pseudo Smarandache closed ideal of BH-algebra, a pseudo Smarandache completely closed ideal of BH-algebra.

References