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Abstract: Since language is used for thinking and expressing habits of humans in real life,
the linguistic evaluation for an objective thing is expressed easily in linguistic terms/values. However,
existing linguistic concepts cannot describe linguistic arguments regarding an evaluated object in
two-dimensional universal sets (TDUSs). To describe linguistic neutrosophic arguments in decision
making problems regarding TDUSs, this study proposes a Q-linguistic neutrosophic variable set
(Q-LNVS) for the first time, which depicts its truth, indeterminacy, and falsity linguistic values
independently corresponding to TDUSs, and vector similarity measures of Q-LNVSs. Thereafter,
a linguistic neutrosophic multi-attribute decision-making (MADM) approach by using the presented
similarity measures, including the cosine, Dice, and Jaccard measures, is developed under Q-linguistic
neutrosophic setting. Lastly, the applicability and effectiveness of the presented MADM approach is
presented by an illustrative example under Q-linguistic neutrosophic setting.

Keywords: Q-linguistic neutrosophic variable set; vector similarity measure; cosine measure;
Dice measure; Jaccard measure; decision making

1. Introduction

Since language is used for thinking and expressing habits of humans in real life, the linguistic
evaluation for an objective thing is expressed easily in linguistic terms/values [1]. Hence, they were
applied to linguistic fuzzy reason [1] and linguistic decision-making (DM) problems [2–9]. Because of
linguistic uncertainty and hesitancy in the linguistic evaluation for an objective thing, there exist the
representations of interval/uncertain linguistic numbers or hesitant linguistic numbers. Hence, on the
one hand, interval/uncertain linguistic numbers were proposed and applied to (group) DM problems
in uncertain linguistic setting [10–14]. On the other hand, hesitant linguistic variables (LVs) and hesitant
uncertain LVs were presented and applied in (group) DM problems in hesitant (uncertain) linguistic
setting [15–19]. In addition, a linguistic cubic variable was put forward based on combining an interval
LV with a unique LV and used for DM problems in linguistic cubic setting [20,21]. Further, a linguistic
cubic hesitant fuzzy number/variable was presented to depict the hybrid information of its uncertain
linguistic argument and its hesitant linguistic argument and utilized for DM problems in linguistic
cubic hesitant fuzzy setting [22]. By combining a neutrosophic number with language, a neutrosophic
linguistic number and some weighted aggregation operators of neutrosophic linguistic numbers [23]
were introduced for neutrosophic linguistic number DM problems, and then the similarity measure
and expected value of hesitant neutrosophic linguistic numbers [24] were further presented for DM
problems with hesitant neutrosophic linguistic numbers.
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In real life environments, the truth, indeterminacy, and falsity linguistic arguments regarding an
objective thing are presented in a human’s thinking and expressing process and linguistic neutrosophic
variables/numbers (LNVs) were presented to depict truth, falsity, and indeterminacy linguistic degrees
independently [25]. Then, some aggregation operators of LNVs [25,26], cosine measures of LNVs [27],
and correlation coefficients of LNVs [28] were proposed, respectively, for DM problems in LNV setting.
Regarding the combination of a neutrosophic linguistic number and an LNV, linguistic neutrosophic
uncertain numbers and their weighted aggregation operators were presented for DM in uncertain
linguistic setting [29]. By the hybrid form of an interval LV (an uncertain linguistic argument) and a
single-valued LNV (an argument of confident degree), single-valued linguistic neutrosophic interval
LVs, and their weighted aggregation operators were proposed for DM along with uncertain/interval
linguistic arguments and their linguistic neutrosophic confident degrees [30]. Regarding hesitant
LNV environment, similarity measures between hesitant LNVs were presented by the least common
multiple cardinality and applied to hesitant linguistic neutrosophic DM problems [31]. By the hybrid
form of LNV [25] and linguistic cubic numbers [20], linguistic neutrosophic cubic numbers and their
aggregation operators were introduced for linguistic neutrosophic cubic DM problems [32,33].

However, the various linguistic concepts are all described in a unique universal set, and then in
some decision situations there exist the assessment problems of alternatives over two-dimensional
universal sets (TDUSs). For example, suppose a person would like to purchase a house in a group
of four houses (a set of four alternatives H = {H1, H2, H3, H4}). In his/her attractive evaluation
of houses, the price (x1), environment (x2), and traffic (x3) of the four houses are considered as a
universal set X = {x1, x2, x3}, and selecting two cities c1 and c2 are considered as another universal set
C = {c1, c2}. Obviously, the above various linguistic arguments cannot represent such an assessment
problem for each alternative Hj (j = 1, 2, 3, 4) over the TDUSs X = {x1, x2, x3} and C = {c1, c2} in
linguistic DM setting. Then, a Q-neutrosophic set and a Q-neutrosophic soft set were put forward
regarding TDUSs and applied to Q-neutrosophic soft DM problems [34]. Although they can express
and handle the assessment problems with TDUSs in neutrosophic DM environments, they cannot
carry out linguistic neutrosophic DM problems over TDUSs. To solve this problem, this study presents
a Q-linguistic neutrosophic variable set (Q-LNVS) for the first time to express the linguistic evaluation
problems of the truth, falsity, and indeterminacy over TDUSs from the predefined linguistic term set
(LTS). It then puts forward the vector similarity measures of Q-LNVSs, including the cosine, Dice,
and Jaccard measures of Q-LNVSs, and then establishes a multi-attribute DM approach of Q-LNVSs
by the vector similarity measures of Q-LNVs to solve linguistic neutrosophic DM problems along
with TDUSs. It is obvious that the proposed DM approach shows the advantage of carrying out the
linguistic neutrosophic DM problems regarding TDUSs, which existing linguistic neutrosophic DM
approaches [25–28] and Q-linguistic neutrosophic soft DM approaches [34] cannot solve.

The framework of this study is organized below. The second section proposes Q-LNVSs and
vector similarity measures between Q-LNVSs, including the cosine, Dice, and Jaccard measures of
Q-LNVSs. The third section develops a multi-attribute DM approach of Q-LNVSs by using the vector
similarity measures in Q-linguistic neutrosophic setting. An illustrative example and its sensitivity
analysis to weights are presented in the fourth section. The last section contains conclusions and
future study.

2. Vector Similarity Measures of Q-LNVSs

First, we present the concept of Q-LNVS to depict a linguistic neutrosophic evaluation problem
by the truth, falsity, and indeterminacy linguistic arguments over TDUSs in linguistic setting.
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Definition 1. Set X = {x1, x2, . . . , xn} and Q = {q1, q2, . . . , qm} as TDUSs and let LTS be S = {sl|l ∈ [0, g]},
where g + 1 is an odd cardinality. Then a Q-LNVS L in X and Q is defined by the following form:

L =

{ 〈
(xi, qj), st(xi, qj), su(xi, qj), sv(xi, qj)

〉∣∣xi ∈ X, qj ∈ Q,
st(xi, qj), si(xi, qj), s f (xi, qj) ∈ S, j = 1, 2, . . . , m; i = 1, 2, . . . , n

}

where st(xi, qj), su(xi, qj), sv(xi, qj) are the truth, indeterminacy, and falsity LVs, respectively, in TDUSs for t,
u, v ∈ [0, g].

Then, the basic linguistic element
〈
(xi, qj), st(xi, qj), su(xi, qj), sv(xi, qj)

〉
in L is simply denoted by

lij =
〈
(xi, qj), stij , suij , svij

〉
, which is called a Q-linguistic neutrosophic element (Q-LNE).

Example 1. Suppose a person would like to buy a house from a city. There is a set of two potential houses
H = {L1, L2} in two cities. Then, set their price (x1), environment (x2), and traffic (x3) as a universal set
X = {x1, x2, x3} and set the two cities as another universal set Q = {q1, q2}. Based on the predefined LTS
S = {s0 = extremely low, s1 = very low, s2 = low, s3 = slightly low, s4 = medium, s5 = slightly high, s6 = high,
s7 = very high, s8 = extremely high}, the two Q-LNE sets obtained from S are given as follows:

L1 = {<(x1, q1), s6, s1, s2>, <(x1, q2), s5, s2, s3>, <(x2, q1), s4, s3, s2>, <(x2, q2), s7, s1, s3>,
<(x3, q1), s6, s2, s1>, <(x3, q2), s6, s1, s1>},

L2 = {<(x1, q1), s3, s4, s5>, <(x1, q2), s4, s2, s1>, <(x2, q1), s4, s2, s2>, <(x2, q2), s5, s1, s2>,
<(x3, q1), s5, s2, s1>, <(x3, q2), s6, s3, s2>}.

In the following, we give the vector similarity measures between Q-LNVSs, including the cosine,
Dice, and Jaccard measures of Q-LNVSs.

Definition 2. Let TDUSs be X = {x1, x2, . . . , xn} and Q = {q1, q2, . . . , qp} and let l1
ij =

〈
(xi, qj), st1

ij
, su1

ij
, sv1

ij

〉
and l2

ij =

〈
(xi, qj), st2

ij
, su2

ij
, sv2

ij

〉
(j = 1, 2, . . . , p; i =1, 2, . . . , n) be two groups of Q-LNEs in two Q-LNVSs

L1 and L2 regarding the LTS S = {sl|l ∈ [0, g]}. Then, the cosine, Dice, and Jaccard measures of the Q-LNVSs
L1 and L2 are defined, respectively, as follows:

C(L1, L2) = s g∑
p
j=1 ∑n

i=1 (t1ij t2ij+u1
ijv2

ij+v1
ijv2

ij)√
∑

p
j=1 ∑n

i=1 [(t1ij)
2
+(u1

ij)
2
+(v1

ij)
2
]×
√

∑
p
j=1 ∑n

i=1 [(t2ij)
2
+(u2

ij)
2
+(v2

ij)
2
]

, (1)

D(L1, L2) = s 2g∑
p
j=1 ∑n

i=1 (t1ij t2ij+u1
ijv2

ij+v1
ijv2

ij)

∑
p
j=1 ∑n

i=1 [(t1ij)
2
+(u1

ij)
2
+(v1

ij)
2
]+∑

p
j=1 ∑n

i=1 [(t2ij)
2
+(u2

ij)
2
+(v2

ij)
2
]

, (2)

J(L1, L2) = s g∑
p
j=1 ∑n

i=1 (t1ij t2ij+u1
ijv2

ij+v1
ijv2

ij)

∑
p
j=1 ∑n

i=1 [(t1ij)
2
+(u1

ij)
2
+(v1

ij)
2
]+∑

p
j=1 ∑n

i=1 [(t2ij)
2
+(u2

ij)
2
+(v2

ij)
2
]−∑

p
j=1 ∑n

i=1 (t1ij t2ij+u1
ijv2

ij+v1
ijv2

ij)

. (3)

Obviously, the above cosine, Dice, and Jaccard measures satisfy the following properties:

(1) s0 ≤ C(L1, L2), D(L1, L2), J(L1, L2) ≤ sg;
(2) C(L1, L2) = C(L2, L1), D(L1, L2) = D(L2, L1), J(L1, L2) = J(L2, L1);
(3) C(L1, L2) = D(L1, L2) = J(L1, L2) = sg if and only if L1 = L2.

When the importance of elements xi (i = 1, 2, . . . , n) and qj (j = 1, 2, . . . , p) is taken into
account, the weight vectors corresponding to X = {x1, x2, . . . , xn} and Q = {q1, q2, . . . , qp} are given
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as w = {w1, w2, . . . , wn} and w = {w1, w2, . . . , wp}, respectively. Thus, the weighted cosine, Dice, and
Jaccard measures of L1 and L2 can be presented, respectively, as follows:

Cw(L1, L2) = s g∑
p
j=1 ωj∑n

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)√

∑
p
j=1 ωj∑n

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]×
√

∑
p
j=1 ωj∑n

i=1 wi [(t
2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]

, (4)

Dw(L1, L2) = s 2g∑
p
j=1 ωj∑n

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

∑
p
j=1 ωj∑n

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]+∑

p
j=1 ωj∑n

i=1 wi [(t
2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]

, (5)

Jw(L1, L2) = s g∑
p
j=1 ωj∑n

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

∑
p
j=1 ωj∑n

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]+∑

p
j=1 ωj∑n

i=1 wi [(t
2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]−∑

p
j=1 ωj∑n

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

. (6)

Example 2. Let us consider two Q-LNE sets L1 = {<(x1, q1), s6, s1, s2>, <(x1, q2), s5, s2, s3>, <(x2, q1), s4, s3,
s2>, <(x2, q2), s7, s1, s3>, <(x3, q1), s6, s2, s1>, <(x3, q2), s6, s1, s1>} and L2 = {<(x1, q1), s3, s4, s5>, <(x1, q2),
s4, s2, s1>, <(x2, q1), s4, s2, s2>, <(x2, q2), s5, s1, s2>, <(x3, q1), s5, s2, s1>, <(x3, q2), s6, s3, s2>} in the LTS
S = {s0, s1, s2, . . . , s8} with g = 8 and the TDUSs X = {x1, x2, x3} and Q = {q1, q2}. Suppose the weight vectors
for X = {x1, x2, x3} and Q = {q1, q2} are given as w = (0.4, 0.25, 0.35) and ω = (0.4, 0.6), respectively. Then,
we compute the measure values of Cw(L1, L2), Dw(L1, L2), Jw(L1, L2).

By using Equations (4)–(6), their calculational processes are shown as follows:

Cw(L1, L2) = s g∑2
j=1 ωj∑3

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)√

∑2
j=1 ωj∑3

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]×
√

∑2
j=1 ωj∑3

i=1 wi [(t
2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]

= s
8


0.4[0.4(6× 3 + 1× 4 + 2× 5) + 0.25(4× 4 + 3× 2 + 2× 2) + 0.35(6× 5 + 2× 2 + 1× 1)]+
0.6[0.4(5× 4 + 2× 2 + 3× 1) + 0.25(7× 5 + 1× 1 + 3× 2) + 0.35(6× 6 + 1× 3 + 1× 2)]

√√√√√√


0.4[0.4(62 + 12 + 22) + 0.25(42 + 32 + 22) + 0.35(62 + 22 + 12)]+

0.6[0.4(52 + 22 + 32) + 0.25(72 + 12 + 32) + 0.35(62 + 12 + 12)]

×
√√√√√√


0.4[0.42(32 + 42 + 52) + 0.25(42 + 22 + 22) + 0.35(52 + 22 + 12)]+

0.6[0.42(42 + 22 + 12) + 0.25(52 + 12 + 22) + 0.35(62 + 32 + 22)]


= s7.0913,

Dw(L1, L2) = s 2g∑2
j=1 ωj∑3

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

∑2
j=1 ωj∑3

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]+∑2

j=1 ωj∑3
i=1 wi [(t

2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]

= s
2×8


0.4[0.4(6× 3 + 1× 4 + 2× 5) + 0.25(4× 4 + 3× 2 + 2× 2) + 0.35(6× 5 + 2× 2 + 1× 1)]+
0.6[0.4(5× 4 + 2× 2 + 3× 1) + 0.25(7× 5 + 1× 1 + 3× 2) + 0.35(6× 6 + 1× 3 + 1× 2)]


0.4[0.4(62 + 12 + 22) + 0.25(42 + 32 + 22) + 0.35(62 + 22 + 12)]+

0.6[0.4(52 + 22 + 32) + 0.25(72 + 12 + 32) + 0.35(62 + 12 + 12)]

+


0.4[0.42(32 + 42 + 52) + 0.25(42 + 22 + 22) + 0.35(52 + 22 + 12)]+

0.6[0.42(42 + 22 + 12) + 0.25(52 + 12 + 22) + 0.35(62 + 32 + 22)]


= s7.0777,

Jw(L1, L2) = s g∑2
j=1 ωj∑3

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

∑2
j=1 ωj∑3

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]+∑2

j=1 ωj∑3
i=1 wi [(t

2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]−∑2

j=1 ωj∑3
i=1 wi(t

1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

= s
8


0.4[0.4(6× 3 + 1× 4 + 2× 5) + 0.25(4× 4 + 3× 2 + 2× 2) + 0.35(6× 5 + 2× 2 + 1× 1)]+
0.6[0.4(5× 4 + 2× 2 + 3× 1) + 0.25(7× 5 + 1× 1 + 3× 2) + 0.35(6× 6 + 1× 3 + 1× 2)]



{
0.4[0.4(62 + 12 + 22) + 0.25(42 + 32 + 22) + 0.35(62 + 22 + 12)]+

0.6[0.4(52 + 22 + 32) + 0.25(72 + 12 + 32) + 0.35(62 + 12 + 12)]

}
{

0.4[0.42(32 + 42 + 52) + 0.25(42 + 22 + 22) + 0.35(52 + 22 + 12)]+

0.6[0.42(42 + 22 + 12) + 0.25(52 + 12 + 22) + 0.35(62 + 32 + 22)]

}

−
{

0.4[0.4(6× 3 + 1× 4 + 2× 5) + 0.25(4× 4 + 3× 2 + 2× 2) + 0.35(6× 5 + 2× 2 + 1× 1)]+
0.6[0.4(5× 4 + 2× 2 + 3× 1) + 0.25(7× 5 + 1× 1 + 3× 2) + 0.35(6× 6 + 1× 3 + 1× 2)]

}


= s6.3460,

Obviously, the above vector measure values still belong to the LTS S.

3. DM Approach Based on the Vector Similarity Measures

This section proposes a Q-linguistic neutrosophic multi-attribute DM approach based on the Dice,
cosine, and Jaccard measures (the three vector measures) of Q-LNVSs in Q-LNVS setting.
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Suppose there is a multi-attribute DM problem, in which L = {L1, L2, . . . , Lm} is denoted by a set
of m alternatives. Then, TDUSs (two kinds of attribute sets) are specified as X = {x1, x2, . . . , xn}
and Q = {q1, q2, . . . , qp}, respectively, and then their corresponding weigh vectors are given as
w = (w1, w2, ..., wn) and w = (w1, w2, ..., wp). Whereas, a decision maker is required to assess the
alternatives Lk (k = 1, 2, . . . , m) on the attributes xi (i = 1, 2, . . . , n) and qj (j = 1, 2, . . . , p) by
Q-LNEs regarding the given LTS S = {sl|l ∈ [0, g]} with the odd cardinality g + 1. In the assessment
process, the decision maker gives the truth, falsity, and indeterminacy linguistic values for xi and
qj on an alternative Lk by corresponding linguistic terms in S, which are constructed as a Q-LNE

lk
ij =

〈
(xi, qj), s

tk
ij
, s

uk
ij
, s

vk
ij

〉
(j = 1, 2, . . . , p; i = 1,2, . . . , n; k = 1, 2, . . . , m). Hence, all the Q-LNEs

provided by the decision maker can be composed of a decision matrix of Q-LNEs L =
(

lk
ij

)
m×nq

.

Thus, the proposed DM method using the vector similarity measures of Q-LNVSs is applied to
the multi-attribute DM problem with Q-LNVS information. Whereas, the DM steps are depicted in
detail below:

Step 1: Since l∗ij =

〈
(xi, qj), st∗ij

, su∗ij
, sv∗ij

〉
=

〈〈
(xi, qj), max

k

(
s

tk
ij

)
, min

k

(
s

uk
ij

)
, min

k

(
s

vk
ij

)〉〉
is an

ideal Q-LNE as the best Q-LNE, we can establish the following ideal Q-LNVS:

L∗ =
{〈

(xi, qj), st∗ij
, su∗ij

, sv∗ij

〉∣∣∣∣xi ∈ X, qj ∈ Q, k = 1, 2, . . . , m, j = 1, 2, . . . , p, i = 1, 2, . . . , n
}

. (7)

Step 2: By applying Equations (4)–(6), the cosine/Dice/Jaccard measure between Lk (k = 1, 2, . . . , m)
and L* is given by using the following formula:

Cw(Lk, L∗) = s g∑
p
j=1 ωj∑n

i=1 wi(t
k
ij t∗ij+uk

ijv∗ij+vk
ijv∗ij)√

∑
p
j=1 ωj∑n

i=1 wi [(t
k
ij)

2
+(uk

ij)
2
+(vk

ij)
2
]×
√

∑
p
j=1 ωj∑n

i=1 wi [(t
∗
ij)

2+(u∗ij)
2+(v∗ij)

2 ]

, (8)

or
Dw(Lk, L∗) = s 2×g∑

p
j=1 ω2

j ∑n
i=1 w2

i (t
k
ij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

∑
p
j=1 ω2

j ∑n
i=1 w2

i [(t
k
ij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑

p
j=1 ω2

j ∑n
i=1 w2

i [(t
∗
ij)

2+(u∗ij)
2+(v∗ij)

2 ]

, (9)

or

Jw(Lk, L∗) = s g∑
p
j=1 ωj∑n

i=1 wi(t
k
ij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

∑
p
j=1 ωj∑n

i=1 wi [(t
k
ij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑

p
j=1 ωj∑n

i=1 wi [(t
∗
ij)

2+(u∗ij)
2+(v∗ij)

2 ]−∑
p
j=1 ωj∑n

i=1 wi(t
k
ij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

(10)

Step 3: According to the linguistic values of the vector similarity measures, the alternatives are ranked
and the best alternative Lk∗ is chosen regarding the biggest linguistic value for X and Q.

Step 4: Based on xj ∈ X (j =1, 2, . . . , p) or qi ∈ Q (i =1, 2, . . . , n), we need to calculate the measure
values between Lk∗

(
xi, qj

)
and L∗

(
xi, qj

)
:

C
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s g∑n

i=1 (tkij t∗ij+uk
ijv∗ij+vk

ijv∗ij)√
∑n

i=1 [(tkij)
2
+(uk

ij)
2
+(vk

ij)
2
]×
√

∑n
i=1 [(t∗ij)

2+(u∗ij)
2+(v∗ij)

2 ]

for j = 1, 2, . . . , p, (11)

or

C
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s g∑

p
j=1 (tkij t∗ij+uk

ijv∗ij+vk
ijv∗ij)√

∑
p
j=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]×
√

∑
p
j=1 [(t∗ij)

2+(u∗ij)
2+(v∗ij)

2 ]

for i = 1, 2, . . . , n; (12)

D
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s 2g∑n

i=1 (tkij t∗ij+uk
ijv∗ij+vk

ijv∗ij)

∑n
i=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑n

i=1 [(t∗ij)
2+(u∗ij)

2+(v∗ij)
2 ]

for j = 1, 2, . . . , p, (13)
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or

D
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s 2g∑

p
j=1 (tkij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

∑
p
j=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑

p
j=1 [(t∗ij)

2+(u∗ij)
2+(v∗ij)

2 ]

for i = 1, 2, . . . , n; (14)

J
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s g∑n

i=1 (tkij t∗ij+uk
ijv∗ij+vk

ijv∗ij)

∑n
i=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑n

i=1 [(t∗ij)
2+(u∗ij)

2+(v∗ij)
2 ]−∑n

i=1 (tkij t∗ij+uk
ijv∗ij+vk

ijv∗ij)

for j = 1, 2, . . . , p, (15)

or

J
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s g∑

p
j=1 (tkij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

∑
p
j=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑

p
j=1 [(t∗ij)

2+(u∗ij)
2+(v∗ij)

2 ]−∑
p
j=1 (tkij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

for i = 1, 2, . . . , n. (16)

Step 5: According to the linguistic values of C
(

Lk∗(xi, qj), L∗(xi, qj)
)

or D
(

Lk∗(xi, qj), L∗(xi, qj)
)

or
J
(

Lk∗(xi, qj), L∗(xi, qj)
)

for X or Q (depending on some actual situation), we can determine the
best one xi* or qj* corresponding to the biggest linguistic value.

Step 6: End.

4. Illustrative Example and Sensitivity Analysis to Weights

4.1. Illustrative Example

Suppose a person would like to buy a house in one of two cities. There are four potential houses
(alternatives) of Lk (k = 1, 2, 3, 4) in two cities. Then, set their price (x1), environment (x2), and traffic
(x3) as a universal set X = {x1, x2, x3} and set the two cities as another universal set Q = {q1, q2}. Thus,
the Q-LNEs can indicate the influence of both the three attributes of houses and the two cities on
his/her buying attractive degree of a house. Herewith, the two weigh vectors of X and Q are given
as w = (0.4, 0.25, 0.35) and w = (0.4, 0.6), respectively. Whereas, the alternative Lk (k = 1, 2, 3, 4) are
assessed over the TDUSs X = {x1, x2, x3} and Q = {q1, q2} from the given LTS S = {s0 = extremely low,
s1 = very low, s2 = low, s3 = slightly low, s4 = medium, s5 = slightly high, s6 = high, s7 = very high,
s8 = extremely high} with g = 8. In the assessment process, the decision maker/buyer can give the
truth, indeterminacy, and falsity values for xi and qj on an alternative Lk by corresponding linguistic

terms in S, and then establish Q-LNEs lk
ij =

〈
(xi, qj), s

tk
ij
, s

uk
ij
, s

vk
ij

〉
(j =1, 2; i = 1,2, 3; k = 1, 2, 3, 4), which

are constructed as the DM matrix of Q-LNEs:

L =

L1

L2

L3

L4


〈(x1, q1), s6, s2, s1〉 〈(x1, q2), s7, s2, s3〉 〈(x2, q1), s5, s2, s1〉 〈(x2, q2), s4, s1, s1〉 〈(x3, q1), s5, s2, s2〉 〈(x3, q2), s7, s2, s2〉
〈(x1, q1), s6, s1, s2〉 〈(x1, q2), s7, s1, s1〉 〈(x2, q1), s6, s1, s1〉 〈(x2, q2), s5, s1, s2〉 〈(x3, q1), s6, s1, s3〉 〈(x3, q2), s7, s2, s1〉
〈(x1, q1), s5, s2, s3〉 〈(x1, q2), s6, s2, s4〉 〈(x2, q1), s4, s1, s1〉 〈(x2, q2), s5, s2, s2〉 〈(x3, q1), s4, s2, s2〉 〈(x3, q2), s5, s2, s3〉
〈(x1, q1), s5, s1, s1〉 〈(x1, q2), s6, s3, s5〉 〈(x2, q1), s5, s3, s3〉 〈(x2, q2), s6, s2, s4〉 〈(x3, q1), s5, s1, s1〉 〈(x3, q2), s6, s2, s3〉

.

Thus, the proposed multi-attribute DM approach can be used for this Q-linguistic neutrosophic
DM problem. The DM steps are depicted below:

Firstly, we establish the ideal alternative from the DM matrix L by the ideal Q-LNE set:

L∗ =
{〈

(x1, q1), s6, s1, s1
〉
,
〈
(x1, q2), s7, s1, s1

〉
,
〈
(x2, q1), s6, s1, s1

〉
,
〈
(x2, q2), s6, s1, s1

〉
,
〈
(x3, q1), s6, s1, s1

〉
,
〈
(x3, q2), s7, s2, s1

〉}
.

Then, by Equations (8)–(10), the measure results and ranking of the four alternatives are given in
Table 1.
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Table 1. Measure results and ranking of the four alternatives.

Measure Method Measure Value between Lk (k = 1, 2, 3, 4) and L* Ranking

Cw(Lk, L∗) s7.7472, s7.9088, s7.3465, s7.2437 L2 > L1 > L3 > L4
Dw(Lk, L∗) s7.7470, s7.9087, s7.3207, s7.2387 L2 > L1 > L3 > L4
Jw(Lk, L∗) s7.5095, s7.8194, s6.7478, s6.6097 L2 > L1 > L3 > L4

Based on Table 1, all the ranking orders are identical regarding the cosine, Dice, and Jaccard
measures. Then, the best alternative is L2.

Next, the measure values of Equations (11), (13), and (15) regarding Q, and the best city regarding
L2 are given in Table 2.

Table 2. Measure results regarding Q and the best city.

Measure Method Measure Result The Best City

C(L2(xi, q1), L∗(xi, q1)), C(L2(xi, q2), L∗(xi, q2)) s7.8409, s7.9457 q2
D(L2(xi, q1), L∗(xi, q1)), D(L2(xi, q2), L∗(xi, q2)) s7.8326, s7.9424 q2
J(L2(xi, q1), L∗(xi, q1)), J(L2(xi, q2), L∗(xi, q2)) s7.6721, s7.8857 q2

Lastly, the results based on Table 2 indicate that the buyer should buy the house L2 in the best city q2.

4.2. Sensitivity Analysis to Weights

To indicate the influence of the weights on ranking orders in the illustrative example, we consider
that the two weigh vectors of X and Q are given as w = (1/3, 1/3, 1/3) and w = (1/2, 1/2), respectively,
to analyze the sensitivity of the weights with respect to the ranking orders of the four alternatives.
In this case, by Equations (8)–(10) the measure results and ranking of the four alternatives are indicated
in Table 3.

Table 3. Measure results and ranking of the four alternatives with w = (1/3, 1/3, 1/3) and w = (1/2, 1/2).

Measure Method Measure Value between Lk (k = 1, 2, 3, 4) and L* Ranking

Cw(Lk, L∗) s7.7470, s7.8918, s7.3878, s7.2922 L2 > L1 > L3 > L4
Dw(Lk, L∗) s7.7430, s7.8917, s7.3448, s7.2892 L2 > L1 > L3 > L4
Jw(Lk, L∗) s7.5019, s7.7863, s6.7888, s6.6944 L2 > L1 > L3 > L4

In this case, there exists the same ranking order in Tables 1 and 3 regarding the cosine, Dice,
and Jaccard measures. Then, the best alternative is sill L2, which means the buyer should also buy
house L2 in the best city q2 based on Table 2. It is obvious that all the ranking orders imply the decision
robustness based on the cosine, Dice, and Jaccard measures regarding the change of weights in this
illustrative example, which also show no sensitivity of all the ranking orders with respect to the change
of the weights. In the actual DM applications, however, one of three vector measures can be selected
by decision makers’ preference or actual requirements.

However, existing various linguistic neutrosophic DM approaches [25–28] cannot handle the
DM problems in Q-LNVS setting; while our proposed DM method can carry out both the existing
DM problems with LNV information [25–28] and the DM problems with Q-LNVS information, which
shows its advantage in Q-LNVS setting because the LNV set is a special case of Q-LNVS under a
universal set. Furthermore, the existing Q-neutrosophic soft DM approach [34] cannot deal with the
DM problems with Q-LNVS information because the Q-neutrosophic soft set [34] cannot express
Q-linguistic neutrosophic information. Hence, our proposed Q-linguistic neutrosophic DM method
provides a new way for linguistic neutrosophic DM with TDUSs.



Symmetry 2018, 10, 531 8 of 9

5. Conclusions

This study presented the concept of Q-LNVS for the first time to describe the truth, falsity,
and indeterminacy linguistic arguments in TDUSs, and then the cosine, Dice, and Jaccard measures of
Q-LNVSs in vector space. Next, a Q-linguistic neutrosophic multi-attribute DM approach in Q-LNVS
setting was established by using the cosine, Dice, and Jaccard measures of Q-LNVSs to solve linguistic
neutrosophic DM problems regarding TDUSs. Lastly, the application of the developed DM approach
was given by an illustrative example in Q-LNVS setting. The decision results show that the established
multi-attribute DM approach of Q-LNVSs can solve linguistic neutrosophic DM problems regarding
TDUSs (two-dimensional attribute sets) in Q-LNVS setting, which indicates its main advantage and
contribution. Based on the first study, the three vector measures of Q-LNVSs will be further used for
medical diagnosis, data mining, and clustering analysis for future research in Q-LNVS setting.
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final version.
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