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Abstract

The indeterminacy of parameters in actual control systems is inherent property because some parameters in actual control systems are
changeable rather than constants in some cases, such as manufacturing tolerances, aging of main components, and environmental
changes, which present an uncertain threat to actual control systems. Therefore, these indeterminate parameters can affect the control
behavior and performance. Then, a neutrosophic number (NN) z = d + eI consists of its determinate term d and its indeterminate term
eI for d, e 2 R (R is all real numbers and I denotes indeterminacy). In fact, NN implies a changeable interval depending on the indeter-
minate range of I 2 [IL, IU] and easily expresses determinate and/or indeterminate information. Unfortunately, NNs are not introduced
into the modeling, analysis, and design of uncertain control systems with interval/determinate parameters in existing literature so far. To
develop a new neutrosophic design method, this study firstly introduces neutrosophic state space models and the neutrosophic control-
lability and observability in indeterminate linear systems. Then, a neutrosophic state feedback design method is established for achieving
a desired closed-loop state equation or a desired control ratio for single-input single-output (SISO) neutrosophic linear systems. Finally,
the proposed control design method is used for a numerical example with NN parameters, and the simulation results demonstrate that
the designed state feedback control system can reach the desired system tracking performance requirements. Meanwhile, the obtained
state feedback design result demonstrates its effectiveness and robustness.
� 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The uncertainty of parameters in actual control systems
is inherent property because the parameters of the control
system are changeable rather than constants in many cases,
such as manufacturing tolerances, aging of main
components, and environmental changes. Therefore, the
indeterminacy of system parameters can affect the control
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behavior and performance to some extent. In fact, the
parameters of the plant in conventional control problems
are always treated as determinate or nominal values. How-
ever, such variations or indeterminacies of system parame-
ters need special modeling and analysis methods of an
indeterminate control system to hold the desired control
performance. In existing uncertain system studies
(Hussein, 2005, 2010, 2011, 2015; Kolev, 1988), many mod-
eling methods of uncertain systems and robust stability
analysis methods were proposed in interval linear time
invariant systems. Kharitonov’s theorem (Kharitonov,
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1979) have been introduced into the field of robust stability
of systems with parametric uncertainty/interval parame-
ters, which indicated that the strict Hurwitz property of
the entire family is equivalent to the strict Hurwitz prop-
erty of four specifically constructed vertex polynomials,
and control system applications. For example, Meressi
et al. (1993) applied Kharitonov’s theorem to mechanical
systems. Czarkowski et al. (1995) presented a robust stabil-
ity analysis of state feedback control of the pulse width
modulation (PWM) DC-DC (direct current to direct cur-
rent) push-pull converter. Hote et al. (2009) introduced a
robust stability analysis of the PWM push-pull DC-DC
converter. Then, Precup and Preitl (2006) proposed
proportional-integral (PI) and proportional-integral-deriva
tive (PID) controllers tuning for integral-type servo sys-
tems to ensure the robust stability and controller robust-
ness. Elkaranshawy et al. (2009) further presented a
robust control of a flexible-arm robot by using Kharitonov
theorem for the PID controller design. Hote et al. (2010)
used the Kharitonov’s theorem and Routh criterion for
the stability margin of interval systems. However, existing
modeling, analysis, and design methods for systems with
parametric uncertainty/interval parameters are relatively
complex or difficult based on the Kharitonov’s theorem,
which needs to satisfy the independent condition of the
system parameters.

However, neutrosophic theory has been successfully
applied to many areas (Abdel-Basset et al., 2017, 2018;
Abdel-Basset and Mohamed, 2018; Abdel-Basset,
Gunasekaran, Mohamed, & Chilamkurti, 2018; Abdel-
Basset, Gunasekaran, Mohamed, & Smarandache, 2018;
Abdel-Basset, Manogaran, Gamal, & Smarandache,
2018; Abdel-Basset, Mohamed, & Smarandache, 2018;
Abdel-Basset, Zhou, Mohamed, & Chang, 2018; Broumi,
Bakali, Talea, & Smarandache, 2016; Broumi, Bakali,
Talea, Smarandache, & Vladareanu, 2016a, 2016b;
Broumi, Talea, Smarandache, & Bakali, 2016) in indeter-
minate setting. Then, a neutrosophic number (NN) z = d
+ eI (Kong et al., 2015; Smarandache, 1998, 2013, 2014;
Ye, 2015, 2016a) consists of both its determinate term d

and its indeterminate term eI for d; e 2 R (R is all real num-
bers and I denotes indeterminacy). Hence, NN easily
express determinate and/or indeterminate information in
indeterminate problems. Therefore, NNs have been applied
to fault diagnosis (Kong et al., 2015; Ye, 2016a); multiple
attribute group decision-making (Ye, 2015, 2016b); linear
and nonlinear optimization/programming (Jiang and Ye,
2016; Ye, 2017a, 2018; Ye et al., 2018); traffic flow linear
equations (Ye, 2017b), and the expression and analysis of
rock joint roughness coefficient (Chen, Ye, & Du, 2017;
Chen, Ye, Du, & Yong, 2017; Ye et al., 2016, 2017) under
indeterminate environments. However, NNs are not
applied to the uncertain/interval control system modeling,
analysis, and design in existing literature so far. Since NN
has the convenient and flexible advantage in the expression
and analysis of indeterminate problems, we need to pro-
pose neutrosophic modeling and control design methods
for single-input single-output (SISO) linear systems so as
to satisfy the desired system performance specifications.
The main contribution of this study is that the neutro-
sophic state space modeling, neutrosophic controllability
and observability, and neutrosophic state feedback design
are proposed for the first time to provide the necessary pre-
liminary basis for the modeling, analysis, and design of
neutrosophic control systems with incomplete and indeter-
minate information.

The arrangement of this article is given as follows.
Section 2 introduces neutrosophic state space models in
indeterminate systems. Section 3 presents the controllabil-
ity and observability of neutrosophic linear systems. In
Section 4, a state feedback design method is proposed in
neutrosophic systems and used for a numerical example
with NN parameters. Section 5 gives conclusions and
future research.

2. Neutrosophic state space model

2.1. NN concept

In indeterminate environments, Smarandache (1998,
2013, 2014) defined the NN z = d + eI for d; e 2 R and
I 2 [IL, IU] to represent its determinate term d and its inde-
terminate term eI simultaneously. Obviously, it easily
expresses the determinate and/or indeterminate informa-
tion in real world. For instance, a capacitor C in a circuit
may contain its uncertainty and deviation from the nomi-
nal value C = 200 lF owing to ageing, temperature, manu-
facturing tolerance or other disturbances. Then, the
capacitor C can be expressed as the NN z = 200 + 2I lF,
which indicates that its determinate term (nominal value)
is 200 lF and its indeterminate term is 2I for I 2 [IL, IU].
In actual applications, however, the indeterminacy I can
be specified as a possible interval range [IL, IU] to suit
actual requirements. If I 2 [�5, 5], it is z 2 [190, 210] lF;
if I 2 [�10, 10], then it is z 2 [180, 220] lF. So a NN
z = d + eI can be also represented as a possible interval
number z = [d + eIL, d + eIU] for z 2 Z (Z is all NNs)
and I 2 [IL, IU], which implies a changeable interval num-
ber with respect to different indeterminate ranges of [IL,
IU]. Especially, there exist z = d for the best case (eI = 0),
z = eI for the worst case (d = 0), and then z reduces to a
real number when IL = IU. Obviously, NN is more suitable
and more flexible than a conventional interval number in
the expression of determinate and/or indeterminate infor-
mation. Hence, NN indicates its expression and analysis
convenience and flexibility in indeterminate problems.

Supposed that two NNs are z1 = d1 + e1I and
z2 = d2 + e2I for d1, e1, d2, e2 2 R, z1, z2 2 Z, and
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I 2 [IL, IU], then they contain the following operational
laws (Jiang and Ye, 2016; Ye, 2017a; Ye et al., 2018):

z1 þ z2 ¼ ðd1 þ e1IÞ þ ðd2 þ e2IÞ
¼ d1 þ d2 þ ðe1 þ e2ÞI ð1Þ

z1 � z2 ¼ ðd1 þ e1IÞ � ðd2 þ e2IÞ
¼ d1 � d2 þ ðe1 � e2ÞI ð2Þ

z1 � z2 ¼ ðd1 þ e1IÞ � ðd2 þ e2IÞ
¼ d1d2 þ ðd1e2 þ d2e1ÞI þ e1e2I2 ð3Þ

z1
z2

¼ d1 þ e1I
d2 þ e2I

ð4Þ
2.2. Neutrosophic state space model

Control system analysis and design need mathematical
models. In indeterminate systems, the differential or
integral-differential equations can describe the behavior
of an indeterminate system, process or component. A state
space model is a description in terms of a set of first-order
differential equations which are written compactly in a
matrix form. This standard form has permitted the devel-
opment of general computer programs, which can be used
for the analysis and design for even very large systems. To
establish neutrosophic state space models of indeterminate
systems, the following examples are presented to show the
modeling method.

Example 1. A series RLC (resistor, inductor, and capac-
itor) circuit composed of a resistor R, an inductor L, and a
capacitor C is shown in Fig. 1. The output voltage uo of the
circuit indicated in Fig. 1 is excited by the input voltage ui.
Then, the parameters R, L, and C of the series RLC circuit
imply variations or indeterminacies from their nominal
values owing to ageing, temperature, manufacturing toler-
ances or other disturbances.

Based on the Kirchhoff’s laws, the equation of the RLC
circuit is given as

ui ¼ Riþ L
di
dt

þ 1

C

Z
idt ð5Þ

Let x1 ¼ i; x2 ¼
R
idt, thus there is the following form:

_x2 ¼ x1; _x1 ¼ �R
L
x1 � 1

LC
x2 þ 1

L
ui ð6Þ
R L

Cui uoi

Fig. 1. Series RLC circuit.
Then, the state space model is expressed as follows:

_x1
_x2

� �
¼ � R

L � 1
LC

1 0

� �
x1
x2

� �
þ

1
L

0

� �
ui

y ¼ 0 1
C

� � x1
x2

� � ð7Þ

where y = uo = x2/C.
Under the indeterminate environment, since R, L, and C

imply some variations or indeterminacies, they are com-
posed of determinate terms (nominal values) and indetermi-
nate terms (changeable values). ThusR/L, 1/LC, 1/L, and 1/
C can be expressed as four NNs z1 = d1 + e1I, z2 = d2 + e2I,

z3 = d3 + e3I, and z4 = d4 + e4I, respectively, for I 2 [IL, IU].
Then, the state spacemodel of theRLC circuit withNNs can
be represented as the following neutrosophic state space
model:

_x1
_x2

� �
¼ �z1 �z2

1 0

� �
x1
x2

� �
þ z3

0

� �
ui

y ¼ 0 z4½ � x1
x2

� � for z1; z2; z3; z4 2 Z

ð8Þ
or

_x ¼ AðIÞxþ bðIÞui
y ¼ cðIÞx for A Ið Þ 2 Z2�2;

b Ið Þ 2 Z2�1; c Ið Þ 2 Z1�2; I 2 IL; IU
� � ð9Þ

In Fig. 1, it is assumed that the tolerance in all compo-
nents of the circuit is to be 10%, such that R = 500
+ 500I X, C = 0.01 + 0.01I F, L = 0.2 + 0.2I H, and then
LC = 0.002 + 0.004I for I 2 [�0.1, 0.1]. Thus, z1 = R/L =
(500 + 500I)/(0.2 + 0.2I) = 2500, z2 = 1/LC = 1/(0.002 +
0.004I) = 520.8334 + 1041.667I, z3 = 1/L = 1/(0.2 + 0.2I)
= 5.0505 + 5.051I, and z4 = 1/C = 1/(0.01 + 0.01I) =
101.0101 + 101.01I, respectively, for I 2 [IL, IU] =
[�0.1, 0.1]. Hence, the neutrosophic state space model
can be expressed as

_x1
_x2

� �
¼ �2500 �ð520:8334þ 1041:667IÞ

1 0

� �
x1
x2

� �

þ 5:0505þ 5:051I

0

� �
ui

y ¼ 0 101:0101þ 101:01I½ � x1
x2

� �
ð10Þ

Example 2. Assume that a neutrosophic transfer function
without zeros can be expressed as follows:

Y ðsÞ
RðsÞ ¼

z
s3 þ z3s2 þ z2sþ z1

or y
vþz3€y þ z2 _y þ z1y ¼ zr

for z1; z2; z3; z 2 Z ð11Þ
A neutrosophic state space model for the indeterminate

system described by this neutrosophic transfer function or
equivalent neutrosophic differential equation is not unique
but depends on the choice of a set of state variables. For
example, let x1 ¼ y; x2 ¼ _y; x3 ¼ €y, thus _x1 ¼ x2;
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_x2 ¼ x3; and _x3 ¼ �z1x1 � z2x2 � z3x3 þ zr. Then, the neutro-
sophic state space model is represented as follows:

_x¼
0 1 0

0 0 1

�z1 �z2 �z3

2
64

3
75

x1
x2
x3

2
64

3
75þ

0

0

z

2
64

3
75r

y¼ 1 0 0½ �x

for z1;z2;z3;z2 Z;

ð12Þ
or

_x ¼ AðIÞxþ bðIÞr
y ¼ cðIÞx for A Ið Þ 2 Z3�3;

b Ið Þ 2 Z3�1; c Ið Þ 2 Z1�3; I 2 IL; IU
� � ð13Þ
3. Controllability and observability of neutrosophic linear

systems

Before introducing the state feedback design methods,
we need to introduce the necessary conditions for the neu-
trosophic controllability and observability of indeterminate
systems since optimal linear control systems are governed
by the neutrosophic controllability and observability prop-
erties of indeterminate systems. An important objective of
state variable control is the design of neutrosophic systems
which reaches an optimum control performance. For
example, in order to be able to relocate or reassign the
open-loop plant poses to more desirable closed-loop loca-
tions in the s plane (complex plane), it is necessary that
the plant satisfies the controllability property. Then, the
indeterminate system analysis and design need mathemati-
cal models. To represent a common mathematical model of
the indeterminate system, a neutrosophic state space model
for the indeterminate linear system is described by the fol-
lowing neutrosophic state and output equations:

_x ¼ AðIÞxþ BðIÞu Neutrosophic state equationð Þ for A Ið Þ
2 Zn�n; B Ið Þ 2 Zn�p; I 2 IL; IU

� �
; ð14Þ

y ¼ CðIÞxþDðIÞu Neutrosophic output equationð Þ for C Ið Þ
2 Zq�n; D Ið Þ 2 Zq�p; I 2 IL; IU

� �
; ð15Þ

where x is the n dimensional state variable vector, u is the p
dimensional input vector, and y is the q dimensional output
vector; then A(I) is called the plant neutrosophic matrix or
system neutrosophic matrix and B(I) as the control neutro-
sophic matrix; the unnamed neutrosophic matrices C(I) and
D(I) relate the output variables to the state and control
variables.

Based on conventional controllability and observability
definitions in linear systems, we can extend them to neutro-
sophic linear systems and give the following neutrosophic
controllability and observability definitions in neutro-
sophic linear systems.

Definition 1. A neutrosophic linear system is said to be
completely state-controllable if for any initial time t0 each
initial state x(t0) can be transferred to any final state x(tf) in
a finite time tf > t0 by means of an unconstrained control
input vector u(t). An unconstrained control vector has no
limit on the amplitudes of u(t).

The definition of controllability implies that u(t) can
affect each state variable in the state equation (14).

Definition 2. A neutrosophic linear system is said to be
completely observable if every initial state x(t0) can be
exactly determined from the measurements of the output y
(t) over the finite interval of time t0 � t � tf.

The definition of observability implies that every state of
x(t) can affect the output of y(t) in the output equation (15).

For a SISO neutrosophic linear system, the neutro-
sophic state space model can be expressed as the following
form:

_x ¼ AðIÞxþ bðIÞu
y ¼ cðIÞx for A Ið Þ 2 Zn�n; b Ið Þ 2 Zn�1;

c Ið Þ 2 Z1�n; I 2 IL; IU
� �

ð16Þ

Then, the SISO neutrosophic linear system is completely
controllable if the following neutrosophic controllability
has the property:

Rank b Ið ÞA Ið Þb Ið Þ . . .A Ið Þn�1
b Ið Þ

h i
¼ n or

Det b Ið ÞA Ið Þb Ið Þ . . .A Ið Þn�1
b Ið Þ

h i
–0 for I 2 IL; IU

� �
ð17Þ

The SISO neutrosophic linear system is completely
observable if the following neutrosophic observability has
the property:

Rank½cðIÞcðIÞAðIÞ . . . cðIÞAðIÞn�1�T ¼ n or

Det½c Ið Þc Ið ÞA Ið Þ . . . c Ið ÞA Ið Þn�1�T–0 for I 2 ½IL; IU �
ð18Þ

Example 3. Assume that the neutrosophic state and output
equations are as follows:

_x ¼ �2� I 0

�1� I �1� 2I

� �
xþ 1

1

� �
u

y ¼ 0 1½ �x
for I 2 1; 2½ �

Then, there are the following results:

McðIÞ ¼ ½bðIÞ AðIÞbðIÞ� ¼ 1 �2� I

1 �2� 3I

� �
and

Det Mc Ið Þð Þ ¼ �2I – 0 for I 2 1; 2½ �
Thus, the neutrosophic system is completely control-

lable if I 2 [1, 2].
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MoðIÞ ¼
cðIÞ

cðIÞAðIÞ

� �
¼ 0 1

�1� I �1� 2I

� �
and

Det Mo Ið Þð Þ ¼ 1þ I – 0 for I 2 1; 2½ �:
Then, the neutrosophic system is completely observable

if I 2 [1, 2].

4. Neutrosophic state feedback design for SISO neutrosophic

systems

This section covers the design method of SISO neutro-
sophic linear systems where the set of closed-loop eigenval-
ues is assigned by some state feedback. The plant state and
output equations have the following form:

_x ¼ AðIÞxþ bðIÞu
y ¼ cðIÞx for A Ið Þ 2 Zn�n; b Ið Þ 2 Zn�1;

c Ið Þ 2 Z1�n; I 2 IL; IU
� �

:

ð19Þ
The state feedback control law is given by

u ¼ r � Kx ð20Þ
where r is the input and K is the state feedback vector for
K 2 Z1�n. By combining the state equation with the state
feedback control law, the closed-loop state equation is
yielded as

_x ¼ ðAðIÞ � bðIÞKÞxþ bðIÞr ð21Þ
Thus, the closed-loop system neutrosophic matrix pro-

duced by the state feedback is

AcðIÞ ¼ AðIÞ � bðIÞK ð22Þ
Then, the closed-loop neutrosophic characteristic equa-

tion is obtained by

Dðk; IÞ ¼ kU � ðAðIÞ � bðIÞKÞj j ¼ 0 ð23Þ
Fig. 2. Neutrosophic state feed
where U is a unit matrix and k is the eigenvalue vector.
Thus, Eq. (23) reveals that the closed-loop eigenvalues
can be assigned by the proper selection of the state feed-
back vector K. A necessary and sufficient condition for
the selection K is that the plant is completely controllable.

Example 4. Let us consider the following neutrosophic
SISO system:

_x ¼
0 1 0

0 0 1

0 �2þ I �3þ 2I

2
64

3
75xþ

0

0

1

2
64

3
75u

y ¼ 10 0 0½ �x

for I 2 0; 1½ �:

where x is the state vector x = (x1, x2, x3)
T, y is one output

variable, and u is the input value. The neutrosophic system
is completely controllable since from Eq. (17) there exists
the following result:

McðIÞ ¼ ½bðIÞ AðIÞbðIÞ AðIÞ2bðIÞ�

¼
0 0 1

0 1 2I � 3

1 �3þ 2I ð2I � 3Þ2 þ I � 2

2
64

3
75 and

Det Mc Ið Þð Þ ¼ �1 – 0 for I 2 0; 1½ �

From Eq. (23), the closed-loop eigenvalues with K =
[k1, k2, k3] are determined as

Dðk; IÞ ¼ kU � ðAðIÞ � bðIÞKÞj j
¼ k3 þ ðk3 þ 3� 2IÞk2 þ ð2� I þ k2Þkþ k1 ¼ 0

ð24Þ
Assigning the closed-loop eigenvalues k1 = �2, k2 = �1

+ i, and k3 = �1 � i requires the characteristic polynomial
to be
back system with I 2 [0, 1].
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Fig. 3. Step responses of the traditional state feedback system (a special case of the neutrosophic state feedback system) corresponding to K = [4, 4, 1] and
the indeterminate plant with I = 0, 1. (a) State variable responses; (b) output responses.
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DrðkÞ ¼ k3 þ 4k2 þ 6kþ 4 ¼ 0: ð25Þ
Equating the coefficients of this desired characteristic

equation Eq. (25) with those of Eq. (24) results in the fol-
lowing values:
k1 ¼ 4; k2 ¼ 4þ I 2 ½4; 5�; and k3 ¼ 1þ 2I 2 ½1; 3� for I 2 ½0; 1�:
Obviously, the state feedback vector K = [k1, k2, k3] is

an NN vector. This neutrosophic state feedback system is
shown in Fig. 2.
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Fig. 4. Step responses of the neutrosophic state feedback system corresponding to K = [4, 4.5, 2] and the indeterminate plant with I = 0, 1. (a) State
variable responses; (b) output responses.
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When the system has the certain/crisp parameters for
I = 0, the state feedback vector obtained by the traditional
state feedback design method is K = [k1, k2, k3] = [4, 4, 1],
which is the special case of the indeterminate/neutrosophic
system. Since the neutrosophic state feedback values
k1 = 4, k2 2 [4, 5], and k3 2 [1, 3] for I 2 [0, 1], the neutro-
sophic state feedback design values usually are in the inter-
val ranges, and then the neutrosophic state feedback
systems usually indicate their response ranges/areas
(indeterminate areas) in indeterminate systems. If different
state feedback values are specified in the state feedback
interval values, then we can get the best curves from the



0 5 10 15 20 25 30
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t(s)

x 1, x
2, x

3

x3 for I=1

x3 for I=0

x2 for I=0

x1 for I=1

x1 for I=0

x2 for I=1

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

t(s)

y

y for I=0

y for I=1

(b)

Fig. 5. Step responses of the neutrosophic state feedback system corresponding to K = [4, 5, 3] and the indeterminate plant with I = 0, 1. (a) State variable
responses; (b) output responses.
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response curves to find out the optimal state feedback val-
ues. To show the control performance and optimal state
feedback values of the neutrosophic state feedback system,
we only consider three specified neutrosophic state feed-
back vectors K = [4, 4, 1]; [4; 4.5; 2], [4, 5, 3] for taking
I = 0, 0.5, 1, respectively, so as to find out the optimal state
feedback values. Herewith, Fig. 3 indicates the step
response curves of the neutrosophic state feedback system
corresponding to K = [4, 4, 1] and the indeterminate plant
with I = 0, 1, which actually is the responses of the tradi-
tional state feedback design for K = [4, 4, 1] (taking
I = 0) as a special case of the neutrosophic state feedback
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design. In Fig. 3(a), the three state variables x1, x2, x3 can
also show the areas/ranges of their response curves with
respect to the indeterminate plant for I = 0, 1 in the
dynamical process, and then they are tending to the corre-
sponding determine state values in approaching to the
steady state regarding the step responses of the neutro-
sophic state feedback system for K = [4, 4, 1]. In Fig. 3
(b), the output responses of y indicate their response curve
areas/ranges with respect to the indeterminate plant with
I = 0, 1 in the dynamical process, and then their output
response curves are tending to the corresponding steady
output value in approaching to the steady state regarding
the step responses of the neutrosophic state feedback sys-
tem for K = [4, 4, 1].

Then, Figs. 4 and 5 indicate the step responses of the
neutrosophic state feedback system corresponding to K
= [4, 4.5, 2], [4, 5, 3] and the indeterminate plant with
I = 0, 1. In Figs. 4(a) and 5(a), the three state variables
x1, x2, x3 also similarly show the areas/ranges of their
response curves with respect to the indeterminate plant
with I = 0, 1 in the dynamical process, and then they are
tending to the responding determine state values in
approaching to the steady state regarding the step
responses of the neutrosophic state feedback system; while
Figs. 4(b) and 5(b) also similarly indicate that the output
response curves of y show their response areas/ranges with
respect to the indeterminate plant with I = 0, 1 in the
dynamical process, and then their output response curves
are tending to the responding steady output value in
approaching to the steady state regarding the step
responses of the neutrosophic state feedback system.

From Figs. 3–5, we see that the response curves based on
the neutrosophic state feedback design are superior to ones
of the traditional state feedback design for K = [4, 4, 1] and
demonstrate the better response performance and robust-
ness of the control system corresponding to the state feed-
back vector K = [4, 5, 3] for I 2 [0, 1] than ones of the
traditional control system with K = [4, 4, 1]. Obviously,
the neutrosophic state feedback system can get better con-
trol performance in indeterminate/neutrosophic control
systems, while the traditional state feedback design result
is only the special case of the neutrosophic state feedback
design results, but difficult to reach better control perfor-
mance in indeterminate/neutrosophic systems.

5. Conclusion

This article first introduced the neutrosophic state space
model of SISO linear systems in indeterminate environ-
ment and presented the controllability and observability
properties of a neutrosophic system, which are important
in the application of many indeterminate control system
designs. Then, we proposed the neutrosophic state feed-
back design method for SISO neutrosophic systems, where
the desired system tracking performance specifications are
used to realize a state variable feedback control system.
The simulation results demonstrated the effectiveness and
rationality of the proposed design method for indetermi-
nate control systems.

The main advantages of the proposed neutrosophic state
feedback design method are summarized as follows:

(1) Existing state feedback design methods like the state
space modeling, controllability and observability
properties, and state feedback design can be extended
to neutrosophic/indeterminate systems, which show
the convenience of the neutrosophic state feedback
design.

(2) The neutrosophic state feedback design can obtain the
state feedback NNs/interval values (usually NNs but
not always), which can indicate possible interval
ranges of the neutrosophic state feedback values when
indeterminacy I 2 [IL, IU] is specified as a possible
interval range in real situations and actual require-
ments, so as to select a desired/optimal state feedback
vector K. Therefore, the proposed design method
shows its flexibility and rationality for choosing the
optimal state feedback values in the designed vectorK.

(3) The neutrosophic state feedback design is the general-
ization of the traditional state feedback design and
more general, simpler, and more feasible in the mod-
eling, analysis, and design than existing unconcern
design methods under indeterminate environments.

(4) The neutrosophic state feedback design method was
proposed for the first time to solve the neutrosophic
control system problems with NNs which existing
uncertain control system design methods cannot do.

However, this study of the neutrosophic control theory
was proposed for the first time. Therefore, it is believed
that this promising research opens the door for using the
very powerful tool of the neutrosophic state feedback sys-
tem modeling, analysis, and control design and provides a
new effective way for neutrosophic/indeterminate control
systems. In the future, we shall further propose neutro-
sophic state feedback design methods based on state obser-
vers and the modeling, analysis, and design methods of
neutrosophic transfer functions in neutrosophic/indetermi-
nate systems.
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