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Abstract: In this paper we provide an application of neutrosophic bipolar fuzzy sets in daily
life’s problem related with HOPE foundation that is planning to build a children hospital, which
is the main theme of this paper. For it we first develop the theory of neutrosophic bipolar fuzzy
sets which is a generalization of bipolar fuzzy sets. After giving the definition we introduce some
basic operation of neutrosophic bipolar fuzzy sets and focus on weighted aggregation operators in
terms of neutrosophic bipolar fuzzy sets. We define neutrosophic bipolar fuzzy weighted averaging
(N BFWA) and neutrosophic bipolar fuzzy ordered weighted averaging (N BFOWA) operators.
Next we introduce different kinds of similarity measures of neutrosophic bipolar fuzzy sets. Finally
as an application we give an algorithm for the multiple attribute decision making problems under
the neutrosophic bipolar fuzzy environment by using the different kinds of neutrosophic bipolar
fuzzy weighted/fuzzy ordered weighted aggregation operators with a numerical example related
with HOPE foundation.

Keywords: neutrosophic set; bipolar fuzzy set; neutrosophic bipolar fuzzy set; neutrosophic bipolar
fuzzy weighted averaging operator; similarity measure; algorithm; multiple attribute decision
making problem
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1. Introduction

Zadeh [1] started the theory of fuzzy set and since then it has been a significant tool in learning logical
subjects. It is applied in many fields, see [2]. There are numbers of over simplifications/generalization of
Zadeh’s fuzzy set idea to interval-valued fuzzy notion [3], intuitionistic fuzzy set [4], L-fuzzy notion [5],
probabilistic fuzzy notion [6] and many others. Zhang [7,8], provided the generality of fuzzy sets as
bipolar fuzzy sets. The extensions of fuzzy sets with membership grades from [−1, 1], are the bipolar
fuzzy sets. The membership grade [−1, 0) of a section directs in bipolar fuzzy set that the section
fairly fulfils the couched stand-property, the membership grade ]0, 1] of a section shows that the
section fairly fulfils the matter and the membership grade 0 of a section resources that the section is
unrelated to the parallel property. While bipolar fuzzy sets and intuitionistic fuzzy sets aspect parallel
to one another, they are really distinct sets (see [3]). When we calculate the place of an objective
in a universe, positive material conveyed for a collection of thinkable spaces and negative material
conveyed for a collection of difficult spaces [9]. Naveed et al. [10–12], discussed theoretical aspects of
bipolar fuzzy sets in detail. Smarandache [13], gave the notion of neutrosophic sets as a generalization
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of intutionistic fuzzy sets. The applications of Neutrosophic set theory are found in many fields
(see http://fs.gallup.unm.edu/neutrosophy.htm). Recently Zhang et al. [14], Majumdar et al. [15],
Liu et al. [16,17], Peng et al. [18] and Sahin et al. [19] have discussed various uses of neutrosophic set
theory in deciding problems. Now a days, neutrosophic sets are very actively used in applications
and MCGM problems. Bausys and Juodagalviene [20], Qun et al. [21], Zavadskas et al. [22], Chan and
Tan [23], Hong and Choi [24], Zhan et al. [25] studied the applications of neutrosophic cubic sets in
multi-criteria decision making in different directions. Anyhow, these approaches use the maximum,
minimum operations to workout the aggregation procedure. This leads to subsequent loss of data and,
therefore, inaccurate last results. How ever this restriction can be dealt by using famous weighted
averaging (WA) operator [26] and the ordered weighted averaging (OWA) operator [27]. Medina
and Ojeda-Aciego [28], gave t-notion lattice as a set of triples related to graded tabular information
explained in a non-commutative fuzzy logic. Medina et al. [28] introduces a new frame work for
the symbolic representation of informations which is called to as signatures and given a very useful
technique in fuzzy modelling. In [29], Nowaková et al., studied a novel technique for fuzzy medical
image retrieval (FMIR) by vector quantization (VQ) with fuzzy signatures in conjunction with fuzzy
S-trees. In [30] Kumar et al., discussed data clustering technique, Fuzzy C-Mean algorithem and
moreover Artificial Bee Colony (ABC) algorithm. In [31] Scellato et al.,discuss the rush of vehicles in
urban street networks. Recently Gulistan et al. [32], combined neutrosophic cubic sets and graphs and
gave the concept of neutrosophic cubic graphs with practical life applications in different areas. For
more application of neutrosophic sets, we refer the reader to [33–37]. Since, the models presented in
literature have different limitations in different situations. We mainly concern with the following tools:

(1) Neutrosophic sets are the more summed up class by which one can deal with uncertain
informations in a more successful way when contrasted with fuzzy sets and all other versions
of fuzzy sets. Neutrosophic sets have the greater adaptability, accuracy and similarity to the
framework when contrasted with past existing fuzzy models.

(2) And bipolar fuzzy sets are proved to very affective in uncertain problems which can characterized
not only the positive characteristics but also the negative characteristics of a certain problem.

We try to blend these two concepts together and try to develop a more powerful tool in the form
of neutrosophic bipolar fuzzy sets. In this work we initiate the study of neutrosophic bipolar fuzzy
sets which are the generalization of bipolar fuzzy sets and neutrosophic sets. After introducing the
definition we give some basic operations, properties and applications of neutrosophic bipolar fuzzy
sets. And the rest of the paper is structured as follows; Section 2 provides basic material from the
existing literature to understand our proposal. Section 3 consists of the basic notion and properties of
neutrosophic bipolar fuzzy set. Section 4 gives the role of weighted aggregation operator in terms of
neutrosophic bipolar fuzzy sets. We define neutrosophic bipolar fuzzy weighted averaging operator
(N BFWA) and neutrosophic bipolar fuzzy ordered weighted averaging

(
N BFOWA

)
operators.

Section 5 includes different kinds of similarity measures. In Section 6, an algorithm for the multiple
attribute decision making problems under the neutrosophic bipolar fuzzy environment by using the
different kinds of similarity measures of neutrosophic bipolar fuzzy sets and neutrosophic bipolar
fuzzy weighted/fuzzy ordered weighted aggregation operators is proposed. In Section 7, we provide
a daily life example related with HOPE foundation, which shows the applicability of the algorithm
provided in Section 6. In Section 8, we provide a comparison with the previous existing methods. In
Section 9, we discuss conclusion and some future research directions.

http://fs.gallup.unm.edu/neutrosophy.htm
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2. Preliminaries

Here we provide some basic material from the literature for subsequent use.

Definition 1. Let Y be any nonempty set. Then a bipolar fuzzy set [7,8], is an object of the form

B = 〈u, 〈µ+(u), µ−(u)〉 : u ∈ Y〉,

and µ+ (u) : Y → [0, 1] and µ− (u) : Y → [−1, 0], µ+(u) is a positive material and µ−(u) is a negative
material of u ∈ Y . For simplicity, we donate the bipolar fuzzy set as B = 〈µ+, µ−〉 in its place of B =

〈u, 〈µ+(u), µ−(u)〉 : u ∈ Y〉.

Definition 2. Let B1 = 〈µ+
1 , µ−1 〉 and B2 = 〈µ+

2 , µ−2 〉 be two bipolar fuzzy sets [7,8], on Y . Then we define
the following operations.

(1) B
′
1 =

{
〈1− µ+

1 (u) ,−1− µ−1 (u)〉
}

;
(2) B1 ∪ B2 = 〈max(µ+

1 (u) , µ+
2 (u)), min(µ−1 (u) , µ−2 (u))〉;

(3) B1 ∩ B2 = 〈min(µ+
1 (u) , µ+

1 (u)), max(µ−1 (u) , µ−2 (u))〉.

Definition 3. A neutrosophic set [13], is define as:

L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

where X is a universe of discoveries and L is characterized by a truth-membership function TruL : X →]0−, 1+[,
an indtermency-membership function IndL : X →]0−, 1+[ and a falsity-membership function FalL : X →
]0−, 1+[ such that 0 ≤ TruL(x) + IndL(x) + FalL(x) ≤ 3.

Definition 4. A single valued neutrosophic set [16], is define as:

L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

where X is a universe of discoveries and L is characterized by a truth-membership function TruL : X → [0, 1],
an indtermency-membership function IndL : X → [0, 1] and a falsity-membership function FalL : X → [0, 1]
such that 0 ≤ TruL(x) + IndL(x) + FalL(x) ≤ 3.

Definition 5. Let [16]
L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

and
B = {〈x, TruB(x), IndB(x), FalB(x)〉 : x ∈ X} ,

be two single valued neutrosophic sets. Then

(1) L ⊂ B if and only if TruL(x) ≤ TruB(x), IndL(x) ≤ IndB(x), FalL(x) ≥ FalB(x).
(2) L = B if and only if TruL(x) = TruB(x), IndL(x) = IndB(x), FalL(x) = FalB(x), for any x ∈ X.
(3) The complement of L is denoted by Lc and is defined by

Lc = {〈x, FalL(x), 1− IndL(x), TruL(x)〉 /x ∈ X} .

(4) The intersection

L ∩ B = {〈x, min {TruL(x), TruB(x)} , max {IndL(x), IndB(x)} , max {FalL(x), FalB(x)}〉 : x ∈ X} .
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(5) The Union

L ∪ B = {〈x, max {TruL(x), TruB(x)} , min {IndL(x), IndB(x)} , min {FalL(x), FalB(x)}〉 : x ∈ X} .

Definition 6. Let Ã1 = 〈Tru1, Ind1, Fal1〉 and Ã2 = 〈Tru2, Ind2, Fal2〉 be two single valued neutrosophic
number [16]. Then, the operations for NNs are defined as below:

(1) λÃ =
〈

1− (1− Tru1)
λ, Indλ

1 , Falλ
1

〉
;

(2) Ãλ
1 =

〈
Truλ

1 , 1− (1− Ind1)
λ, 1− (1− Fal1)

λ
〉

;

(3) Ã1 + Ã2 = 〈Tru1 + Tru2 − Tru1Tru2, Ind1 Ind2, Fal1Fal2〉;
(4) Ã1 Ã2 = 〈Tru1Tru2, Ind1 + Ind2− Ind1 Ind2, Fal1 + Fal2 − Fal1Fal2〉 where λ > 0.

Definition 7. Let Ã1 = 〈Tru1, Ind1, Fal1〉 be a single valued neutrosophic number [16]. Then, the score
function s(Ã1),accuracy function L(Ã1), and certainty function c(Ã1), of an NNs are define as under:

(1) s(Ã1) =
(Tru1+1−Ind1+1−Fal1)

3 ;
(2) L(Ã1) = Tru1 − Fal1;
(3) c(Ã1) = Tru1.

3. Neutrosophic Bipolar Fuzzy Sets and Operations

In this section we apply bipolarity on neutrosophic sets and initiate the notion of neutrosophic
bipolar fuzzy set with the help of Section 2, which is the generalization of bipolar fuzzy set. We also
study some basic operation on neutrosophic bipolar fuzzy sets.

Definition 8. A neutrosophic bipolar fuzzy set is an object of the form N B = (N B+,N B−) where

N B+ = 〈u, 〈TruN B+ , IndN B+ , FalN B+〉 : u ∈ Y〉,
N B− = 〈u, 〈TruN B− , IndN B− , FalN B−〉 : u ∈ Y〉,

where TruN B+ , IndN B+ , FalN B+ : Y → [0, 1] and TruN B− , IndN B− , FalN B− : Y → [−1, 0].

Note: In the Definition 8, we see that a neutrosophic bipolar fuzzy sets N B = (N B+,N B−),
consists of two parts, positive membership functions N B+ and negative membership functions N B−.
Where positive membership function N B+ denotes what is desirable and negative membership
function N B− denotes what is unacceptable. Desirable characteristics are further characterize as:
TruN B+ denotes what is desirable in past, IndN B+ denotes what is desirable in future and FalN B+
denotes what is desirable in present time. Similarly TruN B− denotes what is unacceptable in
past, IndN B− denotes what is unacceptable in future and FalN B− denotes what is unacceptable
in present time.

Definition 9. Let N B1 = (N B+1 ,N B−1 ) and N B2 = (N B+2 ,N B−2 ) be two neutrosophic bipolar fuzzy sets.
Then we define the following operations:

(1) N Bc

1 =
{〈

1− TruNB+
1

, 1− IndNB+
1

,−1− FalNB+
1

and 1− TruNB−
1

, 1− IndNB−
1

,−1− FalNB−
1

〉}
;

(2)

N B1 ∪N B2 =

〈
max(TruN B+

1
, TruN B+

2
), max(IndN B+

1
, IndN B+

2
), min(FalN B+

1
, FalN B+2

),

max(TruN B−
1

, TruN B−2
), max(IndN B−

1
, IndN B−

2
), min(FalN B−

1
, FalN B−

2
)

〉
;
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(3)

N B1 ∩N B2 =

〈
min(TruN B+

1
, TruN B+

2
), min(IndN B+

1
, IndN B+

2
), max(FalN B+

1
, FalN B+2

),

min(TruN B−
1

, TruN B−2
), min(IndN B−

1
, IndN B−

2
), max(FalN B−

1
, FalN B−

2
).

〉
.

Definition 10. Let N B1 = (N B+1 ,N B−1 ) and N B2 = (N B+2 ,N B−2 ) be two neutrosophic bipolar fuzzy sets.
Then we define the following operations:

(1)

N B+1 ⊕N B+2 =

〈
TruN B+

1
+ TruN B+

2
− TruN B+

1
· TruN B+

2
, IndN B+

1
+ IndN B+

2
− IndN B+

1
· IndN B+

2
,

−(
∣∣∣FalN B+

1

∣∣∣ · ∣∣∣FalN B+
2

∣∣∣)
〉

,

and

N B−1 ⊕N B−2 =

〈
TruN B−

1
+ TruN B−

2
− TruN B−

1
· TruN B−

2
, IndN B−

1
+ IndN B−

2
− IndN B−

1
· IndN B−

2
,

−(
∣∣∣FalN B−

1

∣∣∣ · ∣∣∣FalN B−
2

∣∣∣)
〉

;

(2)

N B+1 ⊗N B+2 =
〈

TruN B+
1
· TruN B+

2
, IndN B+

1
· IndN B+

2
, FalN B+

1
+ FalN B+

2
− (
∣∣∣FalN B+

1

∣∣∣ · ∣∣∣FalN B+
2

∣∣∣)〉 ,

and

N B−1 ⊗N B−2 =
〈

TruN B−
1
· TruN B−

2
, IndN B−

1
· IndN B−

2
, FalN B−

1
+ FalN B−

2
− (
∣∣∣FalN B−

1

∣∣∣ · ∣∣∣FalN B−
2

∣∣∣)〉 ;

(3)

N B+1 −N B+2 =
〈

min(TruN B+
1

, TruN B+
2

), min(IndN B+
1

, IndN B+
2

), max(FalN B+
1

, FalN B+
2

)
〉

,

and

N B−1 −N B−2 =
〈

min(TruN B−
1

, TruN B−
2

), min(IndN B−
1

, IndN B−
2

), max(FalN B−
1

, FalN B−
2

)
〉

.

Definition 11. Let N B = (N B+,N B−) be a neutrosophic bipolar fuzzy set and λ m 0. Then,

(1)

λN B+ = 〈1− (1− TruN B+)
λ, 1− (1− IndN B+)

λ,− |FalN B+ |
λ〉,

λN B− = 〈1− (1− TruN B−)
λ, 1− (1− IndN B−)

λ,− |FalN B− |
λ〉.

(2)

N B+λ
= 〈(TruN B+)

λ , (IndN B+)
λ,−1 + |−1 + FalN B+ |

λ〉,
N B−λ = 〈(TruN B−)

λ, (IndN B−)
λ,−1 + |−1 + FalN B−(u)|

λ〉.

Theorem 1. Let N B1 = (N B+1 ,N B−1 ), N B2 = (N B+2 ,N B−2 ) and N B3 = (N B+3 ,N B−3 ) be neutrosophic
bipolar fuzzy sets. Then, the following properties hold:

(1) Complementary law: (N Bc
1 )c = N B1 .
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(2) Idempotent law:

(i) N B1 ∪N B1 = N B1 ,

(ii) N B1 ∩N B1 = N B1 .

(3) Commutative law:

(i) N B1 ∪N B2 = N B2 ∪N B1 ,

(ii) N B1 ∩N B2 = N B2 ∩N B1 ,

(iii) N B1 ⊕N B2 = N B2 ⊕N B1 ,

(iv) N B1 ⊗N B2 = N B2 ⊗N B1 .

(4) Associative law:

(i) (N B1 ∪N B2 ) ∪N B3 = N B1 ∪ (N B2 ∪N B3 ),

(ii) (N B1 ∩N B2 ) ∩N B3 = N B1 ∩
(
N B2 ∩N B3

)
,

(iii) (N B1 ⊕N B2 )⊕N B3 = N B1 ⊕ (N B2 ⊕N B3 ),

(iv) (N B1 ⊗N B2 )⊗N B3 = N B1 ⊗ (N B2 ⊗N B3 ).

(5) Distributive law:

(i) N B1 ∪ (N B2 ∩N B3 ) = (N B1 ∪N B2 ) ∩ (N B1 ∪N B3 ),

(ii) N B1 ∩ (N B2 ∪N B3 ) = (N B1 ∩N B2 ) ∪ (N B1 ∩N B3 ),

(iii) N B1 ⊕ (N B2 ∪N B3 ) = (N B1 ⊕N B2 ) ∪ (N B1 ⊕N B3 ),

(iv) N B1 ⊕ (N B2 ∩N B3 ) = (N B1 ⊕N B2 ) ∩ (N B1 ⊕N B3 ),

(v) N B1 ⊗ (N B2 ∪N B3 ) = (N B1 ⊗N B2 ) ∪ (N B1 ⊗N B3 ),

(vi) N B1 ⊗ (N B2 ∩N B3 ) = (N B1 ⊗N B2 ) ∩ (N B1 ⊗N B3 ).

(6) De Morgan
′
s laws:

(i) (N B1 ∪N B2 )
c

= N Bc
1 ∩N Bc

2 ,

(ii)
(
N B1 ∩N B2

)c
= N Bc

1 ∪N Bc
2 ,

(iii) (N B1 ⊕N B2 )
c 6= N Bc

1 ⊗N Bc
2 ,

(iv)
(
N B1 ⊗N B2

)c
6= N Bc

1 ⊕N Bc
2 .

Proof. Straightforward.

Theorem 2. Let N B1 = (N B+1 ,N B−1 ) and N B2 = (N B+2 ,N B−2 ) be two neutrosophic bipolar fuzzy sets
and let N B3 = N B1 ⊕N B2 and N B4 = λN B1 (λ > 0). Then both N B3 and N B4 are also neutrosophic bipolar
fuzzy sets.

Proof. Straightforward.

Theorem 3. Let N B1 = (N B+1 ,N B−1 ) and N B2 = (N B+2 ,N B−2 ) be two neutrosophic bipolar fuzzy sets,
λ, λ1, λ2 > 0. Then, we have:
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(i) λ(N B1 ⊕N B2 ) = λN B1 ⊕ λN B2 ,

(ii) λ1N B1 ⊕ λ2N B2 = (λ1 ⊕ λ2)N B1 .

Proof. Straightforward.

4. Neutrosophic Bipolar Fuzzy Weighted/Fuzzy Ordered Weighted Aggregation Operators

After defining neutrosophic bipolar fuzzy sets and some basic operations in Section 3. We in
this section as applications point of view we focus on weighted aggregation operator in terms of
neutrosophic bipolar fuzzy sets. We define (N BFWA) and

(
N BFOWA

)
operators.

Definition 12. LetN Bj = (N B+j ,N B−j ) be the collection of neutrosophic bipolar fuzzy values. Then we define

N BFWA as a mapping N BFWAk : Ωn → Ω by

N BFWAk

(
N B1 ,N B2 , ...,N Bn

)
= k1N B1 ⊕ k2N B2 ⊕, ...,⊕knN Bn .

If k =
(

1
n , 1

n , ..., 1
n

)
then the N BFWA operator is reduced to

N BFA
(
N B1 ,N B2 , ...,N Bn

)
=

1
n

(
N B1 ⊕N B2 ⊕, ...,⊕N Bn

)
.

Theorem 4. Let N Bj = (N B+j ,N B−j ) be the collection of neutrosophic bipolar fuzzy values. Then

N BFWAk

(
N B+1 ,N B+2 , ...,N B+j

)
=



1−Πn
j=1

(
1− TruN B+

j

)kj

,

1−Πn
j=1

(
1− IndN B+

j

)kj

,

−Πn
j=1

∣∣∣∣∣
(

FalN B+
j

)kj
∣∣∣∣∣



N BFWAk

(
N B−1 ,N B−2 , ...,N B−j

)
=



1−Πn
j=1

(
1− TruN B−

j

)kj

,

1−Πn
j=1

(
1− IndN B−

j

)kj

,

−Πn
j=1

∣∣∣∣∣
(

FalN B−
j

)kj
∣∣∣∣∣





. (1)

Proof. Let N Bj = (N B+j ,N B−j ) be a collection of neutrosophic bipolar fuzzy values. We first prove
the result for n = 2. Since

k1N B+L =

[
1−

(
1− TruN B+L

)k1
, 1−

(
1− IndN B+L

)k1
,−(

∣∣∣FalN B+
L

∣∣∣)k1

]
,

k1N B−L =

[
1−

(
1− TruN B−

L

)k1
, 1−

(
1− IndN B−L

)k1
,−(

∣∣∣FalN B−L

∣∣∣)k1

]
,

k1N B+b =

[
1−

(
1− TruN B+b

)k2
, 1−

(
1− IndN B+b

)k2
,−(

∣∣∣FalN B+b

∣∣∣)k2

]
,

k1N B+b =

[
1−

(
1− TruN B−b

)k2
, 1−

(
1− IndN B−b

)k2
,−(

∣∣∣FalN B−b

∣∣∣)k2

]
,
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then

N BFWAk

(
N BL ,N Bb

)
= k1N B1 ⊕ k2N B2 ,

N BFWAk

(
N B+L ,N B+b

)
= k1N B+1 ⊕ k2N B+2 ,

N BFWAk

(
N B−L ,N B−b

)
= k1N B−1 ⊕ k2N B−2 ,

N BFWAk

(
N B+L ,N B+b

)
=



2−
(

1− TruN B+L

)k1 −
(

1− TruN B+b

)k2 −
(

1−
(

1− TruN B+L

)k1
)

×
(

1−
(

1− TruN B+b

)k2
)

,

2−
(

1− IndN B+L

)k1 −
(

1− IndN B+b

)k2 −
(

1−
(

1− IndN B+L

)k1
)

×
(

1−
(

1− IndN B+b

)k2
)

,

−(
∣∣∣FalN B+

L

∣∣∣)k1 (
∣∣∣FalN B+b

∣∣∣)k2


,

N BFWAk

(
N B+L ,N B+b

)
=

 1−
(

1− TruN B+L

)k1
(

1− TruN B+b

)k2
, 1−

(
1− IndN B+L

)k1
(

1− IndN B+b

)k2
,

−(
∣∣∣FalN B+

L

∣∣∣)k1 (
∣∣∣FalN B+b

∣∣∣)k2

 ,

N BFWAk

(
N B−L ,N B−b

)
= k1N B−1 ⊕ k2N B−2 ,

N BFWAk

(
N B−L ,N B−b

)
=



2−
(

1− TruN B−
L

)k1 −
(

1− TruN B−b

)k2 −
(

1−
(

1− TruN B−
L

)k1
)

×
(

1−
(

1− TruN B−b

)k2
)

,

2−
(

1− IndN B−L

)k1 −
(

1− IndN B−b

)k2 −
(

1−
(

1− IndN B−L

)k1
)

×
(

1−
(

1− IndN B−b

)k2
)

,

−(
∣∣∣FalN B−

L

∣∣∣)k1 (
∣∣∣FalN B−b

∣∣∣)k2


,

N BFWAk

(
N B−L ,N B−b

)
=

 1−
(

1− TruN B−
L

)k1
(

1− TruN B−b

)k2
, 1−

(
1− IndN B−

L

)k1
(

1− IndN B−b

)k2
,

−(
∣∣∣FalN B−

L

∣∣∣)k1 (
∣∣∣FalN B−b

∣∣∣)k2

 .

So N BFWAk
(
N BL ,N Bb

)
= k1N B1 ⊕ k2N B2 . If result is true for n = k, that is

N BFWAk

(
N B+1 ,N B+2 , ...,N B+j

)
=


1−Πk

j=1

(
1− TruN B+

J

)kj
,

1−Πk
j=1

(
1− IndN B+J

)kj
,

−Πk
j=1

∣∣∣∣∣
(

FalN B+
j

)kj
∣∣∣∣∣


,

N BFWAk

(
N B−1 ,N B−2 , ...,N B−j

)
=


1−Πk

j=1

(
1− TruN B−

J

)kj
,

1−Πk
j=1

(
1− IndN B−

J

)kj
,

−Πk
j=1

∣∣∣∣∣
(

FalN B−
j

)kj
∣∣∣∣∣


,
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then, when k + 1, we have

N BFWAk

(
N B+1 ,N B+2 , ...,N B+j

)
=



1−Πk
j=1

(
1− TruN B+

j

)kj
+

(
1−

(
1− TruN B+

k+1

)kk+1
)

−(1−Πk
j=1

(
1− TruN B+

j

)kj
)×

(
1−

(
1− TruN B+k+1

)kk+1
)

,

1−Πk
j=1

(
1− IndN B+

j

)kj
+

(
1−

(
1− IndN B+

k+1

)kk+1
)

−(1−Πk
j=1

(
1− IndN B+

j

)kj
)×

(
1−

(
1− IndN B+k+1

)kk+1
)

,

−Πk+1
j=1

∣∣∣∣∣
(

FalN B+
j

)kj
∣∣∣∣∣



=


1−Πk+1

j=1

(
1− TruN B+

j

)kj
,

1−Πk+1
j=1

(
1− IndN B+

j

)kj
,

−Πk+1
j=1

∣∣∣∣∣
(

FalN B+
j

)kj
∣∣∣∣∣


,

N BFWAk

(
N B−1 ,N B−2 , ...,N B−j

)
=



1−Πk
j=1

(
1− TruN B−

j

)kj
+

(
1−

(
1− TruN B−

k+1

)kk+1
)

−(1−Πk
j=1

(
1− TruN B+

j

)kj
)×

(
1−

(
1− TruN B−

k+1

)kk+1
)

,

1−Πk
j=1

(
1− IndN B−

j

)kj
+

(
1−

(
1− IndN B−

k+1

)kk+1
)

−(1−Πk
j=1

(
1− IndN B+

j

)kj
)×

(
1−

(
1− IndN B−

k+1

)kk+1
)

,

−Πk+1
j=1

∣∣∣∣∣
(

FalN B−
j

)kj
∣∣∣∣∣



=


1−Πk+1

j=1

(
1− TruN B−

j

)kj
,

1−Πk+1
j=1

(
1− IndN B−

j

)kj
,

−Πk+1
j=1

∣∣∣∣∣
(

FalN B−
j

)kj
∣∣∣∣∣


.

So result holds for n = k + 1.

Theorem 5. Let N Bj = (N B+j ,N B−j ) be the collection of neutrosophic bipolar fuzzy values and k =

(k1, k2, ..., kn)
T is the weight vector of N Bj (j = 1, 2, ..., n), with k j ∈ [0, 1] and Σn

j=1k j = 1. Then we have
the following:

(1) (Idempotency): If all N B∼j (j = 1, 2, ..., n) are equal, i.e.,N Bj = N Bj , for all j, then

N BFWAk

(
N B1 ,N B2 , ...,N Bn

)
= N B .

(2) (Boundary):
N B− ≤ N BFWAk

(
N B1 ,N B2 , ...,N Bn

)
≤ N B+ , for every k.

(3) (Monotonicity) If TruN B+
j
≤ TruN B+∗

j
, IndN B+

j
≤ IndN B+∗

j
and FalN B−

j
≥ FalN B−∗

j
, for all j, then

N BFWAk

(
N B1 ,N B2 , ...,N Bn

)
≤ N BFWAk

(
N B1∗ ,N B2∗ , ...,N Bn∗

)
, for every k.



Symmetry 2018, 10, 331 10 of 26

Definition 13. LetN Bj = (N B+j ,N B−j ) be theN BFWA be a collection of neutrosophic bipolar fuzzy values.

An neutrosophic bipolar fuzzy OWA(N BFOWA) operator of dimension is a mapping N BFOWA : Ωn →
Ω defined by

N BFOWAk

(
N B+1 ,N B+2 , ...,N B+n

)
= k1N B+σ(1) ⊕ k2N B+σ(2)⊕, ...,⊕knN B+σ(n),

N BFOWAk

(
N B−1 ,N B−2 , ...,N B−n

)
= k1N B−σ(1) ⊕ k2N B−σ(2)⊕, ...,⊕knN B−σ(n),

where (σ (1) , σ (2) , ..., σ (n)) is a permutation of (1, 2, ..., n) such that N Bσ(j−1) ≥ N
B
σ(j) for all j. If k =(

1
n , 1

n , ..., 1
n

)T
then BFOWA operator is reduced to BFA operator having dimension n.

Theorem 6. Let N Bj = (N B+j ,N B−j ) be the collection of neutrosophic bipolar fuzzy values. Then

N BFOWAk

(
N B+1 ,N B+2 , ...,N B+n

)
=



1−Πn
j=1

(
1− TruN B+

(σ(j))

)kj

,

1−Πn
j=1

(
1− IndN B+

(σ(j))

)kj

,

−Πn
j=1

∣∣∣∣∣
(

TruN B+
(σ(j))

)kj
∣∣∣∣∣


,

N BFOWAk

(
N B+1 ,N B+2 , ...,N B+n

)
=



1−Πn
j=1

(
1− TruN B−

(σ(j))

)kj

,

1−Πn
j=1

(
1− IndN B−

(σ(j))

)kj

,

−Πn
j=1

∣∣∣∣∣
(

TruN B−
(σ(j))

)kj
∣∣∣∣∣


,



, (2)

where
k = (k1, k2, ..., kn)

T ,

is the weight vector of N BFOWA operator with k j ∈ [0, 1] and Σn
j=1k j = 1, for all j = 1, 2, ..., n, i.e., all

N B∼j (j = 1, 2, ..., n), are reduced to the following form:

N BFOWAk

(
N B+1 ,N B+2 , ...,N B+n

)
= 1−Πn

j=1

(
1− TruN B+

(σ(j))

)kj

,

N BFOWAk

(
N B−1 ,N B−2 , ...,N B−n

)
= 1−Πn

j=1

(
1− TruN B−

(σ(j))

)kj

.

Theorem 7. LetN B∼j = 〈NB+NB∼j
,N B−

NB∼j
〉 (j = 1, 2, ..., n) be a collection of neutrosophic bipolar fuzzy values and

k = (k1, k2, ..., kn)
T ,

is the weighting vector of N BFOWA operator with k j ∈ [0, 1] and Σn
j=1k j = 1; then we have the following.

(1) Idempotency: If all N Bj (j = 1, 2, ..., n) are equal, i.e., N Bj = N B , for all j, then

N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
= N B .

(2) Boundary:
N B− ≤ N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
≤ N B+ ,
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for where k, where N Bj = (N B+j ,N B−j ) be the N BFWA N B+j = 〈TruN B+
j

, IndN B+
j

, FalN B+
j
〉

(j = 1, 2, ..., n) andN B−j = 〈TruN B−
j

, IndN B−
j

, FalN B−
j
〉 (j = 1, 2, ..., n) be a collection of neutrosophic

bipolar fuzzy values

N B− =

[
min

j

(
TruN B−

j

)
, min

j

(
IndN B−

j

)
,−max

j

(
FalN B−

j

)]
,

N B+ =

[
max

j

(
TruN B+

j

)
, max

j

(
IndN B+

j

)
,−min

j

(
FalN B+

j

)]
.

(3) Monotonicity: Let N B+∗j and N B−∗j (j = 1, 2, ..., n) be a collection of neutrosophic bipolar fuzzy values.
If TruN B+

j
≤ TruN B+∗

j
, IndN B+

j
≤ IndN B+∗

j
and FalN B−

j
≥ FalN B−∗

j
, for all j, then

N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
≤ BFWLk

(
N B1∗ ,N B2∗ , ...,N Bn∗

)
, for every k.

(4) Commutativity: Let N Bj = (N B+j ,N B−j ) be a collection of neutrosophic bipolar fuzzy values. Then

BFOWLk

(
N B1 ,N B2 , ...,N Bn

)
= BFOWLk

(
N B′1 ,N B

′

2 , ...,N B′n

)
,

for every w, where
(
N B′1 ,N B

′

2 , ...,N B′n

)
is any permutation of

(
N B1 ,N B2 , ...,N Bn

)
.

Theorem 8. Let N Bj = (N B+j ,N B−j ) be a collection of neutrosophic bipolar fuzzy values

k = (k1, k2, ..., kn)
T ,

is the weighting vector of N BFOWA operator with

k j ∈ [0, 1] and Σn
j=1k j = 1;

then we have the following:

(1) If k = (1, 0, ..., 0)T , then

N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
= max

j

(
N Bj

)
.

(2) If k = (0, 0, ..., 1)T , then

N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
= min

j

(
N Bj

)
.

(3) If k j = 1, ki = 0, and i 6= j, then

BFOWAk

(
N B∼1 ,N B∼2 , ...,N B∼n

)
= N B∼σ(j),

where N B
σ(j) is the largest of N Bi (i = 1, 2, ..., n) .

5. Similarity Measures of Neutrosophic Bipolar Fuzzy Sets

In Section 4 we define different aggregation operators with the help of operations defined in
Section 3. Next in this section we are aiming to define some similarity measures which will be used
in the next Section 6. A comparisons of several different fuzzy similarity measures as well as their
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aggregations have been studied by Beg and Ashraf [38,39]. Theoretical and computational properties
of the measures was further investigated with the relationships between them [15,40–42]. A review, or
even a listing of all these similarity measures is impossible. Here in this section we define different
kinds of similarity measures of neutrosophic bipolar fuzzy sets.

5.1. Neutrosophic Bipolar Fuzzy Distance Measures

Definition 14. A function E : N BFSs (X)→ [0, 1] is called an entropy for N BFSs (X) ,

(1) E
(
N B

)
= 1⇔ N B is a crisp set.

(2) E
(
N B

)
= 0⇔

TruN B+
1

(x) = −TruN B−
1

(x), IndN B+
1

(x) = −IndN B−
1

(x), FalN B+
1

(x) = −FalN B−
1

(x) ∀ x ∈ X.

(3) E
(
N B

)
= E

(
N Bc) for each ∀N B ∈ BFSs (X).

(4) E
(
N B1

)
≤ E

(
N B2

)
if N B1 is less than N B2 , that is,

TruN B+1
(x) ≤ TruN B+

2
(x) ,IndN B+1

(x) ≤ IndN B+
2

(x), FalN B+
1

(x) ≥ FalN B+2
(x),

TruN B−1
(x) ≤ TruN B−

2
(x) ,IndN B−1

(x) ≤ IndN B−
2

(x), FalN B−
1

(x) ≥ FalN B−2
(x),

for TruN B+
2

(x) ≤
∣∣∣TruN B−

2
(x)
∣∣∣

or TruN B+1
(x) ≥ TruN B+

2
(x), IndN B+1

(x) ≥ IndN B+
2

(x),

and
FalN B−

1
(x) ≤ FalN B−2

(x) ≤ N B−B2
(x) for TruN B+1

(x) ≥ FalN B−2
(x).

Definition 15. Let X = {x1, x2, ..., xn} and N B = (N B+,N B−) be an N BFS. The entropy of N BFS is
denoted by E(N B+,N B−) and given by

E(N B+) = 1
n ∑n

i=1

min((TruNB+1
(́x)),min(IndNB+1

(́x)),
∣∣∣∣FalNB+1

(́x)
∣∣∣∣)

max((TruNB+1
(́x)),max(IndNB+1

(́x)),
∣∣∣∣FalNB+1

(x)
∣∣∣∣)

E(N B−) = 1
n ∑n

i=1

min((TruNB−1
(́x)),min(IndNB−1

(́x)),
∣∣∣∣FalNB−1

(́x)
∣∣∣∣)

max((TruNB−1
(́x)),max(IndNB−1

(́x)),
∣∣∣∣FalNB−1

(x)
∣∣∣∣)


, (3)

and for a neutrosophic bipolar fuzzy number N B = 〈N B+L ,N B−L 〉, the bipolar fuzzy entropy is given by

E(N B+L ) =
min((TruL+1

(́x),min(IndL+1
(x)́),

∣∣∣∣FalL+1
(x)́
∣∣∣∣)

max(TruL+1
(x)́),max(IndL+1

(x)́),
∣∣∣∣FalL+1

(́x)
∣∣∣∣)

E(N B−L ) =
min((TruL−1

(́x),min(IndL−1
(x)́),

∣∣∣∣FalL−1
(x)́
∣∣∣∣)

max(TruL−1
(x)́),max(IndL−1

(x)́),
∣∣∣∣FalL−1

(́x)
∣∣∣∣)


. (4)

Definition 16. Let X = {x1, x2, ..., xn}. We define the Hamming distance between N B1 and N B2 belonging to
N BFSs(X) defined as follows:
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(1) The Hamming distance:

d(N B+1 ,N B+2 ) = 1
2 ∑n

j=1(|TruN B+
1

(xj)− TruN B+
2

(xj)|
+|IndN B+

1
(xj)− IndN B+

2
(xj)|

+||FalN B+
1

(xj)− FalN B+
1

(xj)||)
Hamming distance for positive neutrosophic bipolar sets

d(N B−1 ,N B−2 ) = 1
2 ∑n

j=1(|TruN B−
1

(xj)− TruN B−
2

(xj)|
+|IndN B−

1
(xj)− IndN B−

2
(xj)|

+||FalN B−
1

(xj)− FalN B−
1

(xj)||)
Hamming distance for negative neutrosophic bipolar sets



. (5)

(2) The normalized Hamming distance:

d(N B+1 ,N B+2 ) = 1
2n ∑n

j=1(|TruN B+
1

(xj)− TruN B+
2

(xj)|
+|IndN B+

1
(xj)− IndN B+

2
(xj)|

+||FalN B+
1

(xj)− FalN B+
1

(xj)||)
normalized Hamming distance for positive neutrosophic bipolar sets

d(N B−1 ,N B−2 ) = 1
2n ∑n

j=1(|TruN B+
1

(xj)− TruN B+
2

(xj)|
+|IndN B+

1
(xj)− IndN B+

2
(xj)|

+||FalN B+
1

(xj)− FalN B+
1

(xj)||)
normalized Hamming distance for negative neutrosophic bipolar sets



. (6)

(3) The Euclidean distance:

d(N B+1 ,N B+2 ) =

√√√√√√√
1
2 ∑n

j=1(TruN B+
1

(xj)− TruN B+
2

(xj))
2

+(IndN B+
1

(xj)− IndN B+
2

(xj))
2

+(FalN B+
1

(xj)− FalN B+
1

(xj))
2

d(N B−1 ,N B−2 ) =

√√√√√√√
1
2 ∑n

j=1(TruN B−
1

(xj)− TruN B−
2

(xj))
2

+(IndN B−
1

(xj)− IndN B−
2

(xj))
2

+(FalN B−
1

(xj)− FalN B−
1

(xj))
2


. (7)

(4) The normalized Euclidean distance:

d(N B+1 ,N B+2 ) =

√√√√√√√
1

2n ∑n
j=1(TruN B+

1
(xj)− TruN B+

2
(xj))

2

+(IndN B+
1

(xj)− IndN B+
2

(xj))
2

+(FalN B+
1

(xj)− FalN B+
1

(xj))
2

d(N B−1 ,N B−2 ) =

√√√√√√√
1

2n ∑n
j=1(TruN B−

1
(xj)− TruN B−

2
(xj))

2

+(IndN B−
1

(xj)− IndN B−
2

(xj))
2

+(FalN B−
1

(xj)− FalN B−
1

(xj))
2


. (8)
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(5) Based on the geometric distance formula, we have

d(N B+1 ,N B+2 ) =


1
2 ∑n

j=1(TruN B+
1

(xj)− TruN B+
2

(xj))
L

+(IndN B+
1

(xj)− IndN B+
2

(xj))
L

+(FalN B+
1

(xj)− FalN B+
1

(xj))
L


1
α

d(N B−1 ,N B−2 ) =


1
2 ∑n

j=1(TruN B−
1

(xj)− TruN B−
2

(xj))
L

+(IndN B−
1

(xj)− IndN B−
2

(xj))
L

+(FalN B−
1

(xj)− FalN B−
1

(xj))
L


1
α


. (9)

(6) Normalized geometric distance formula:

d(N B+1 ,N B+2 ) =


1

2n ∑n
j=1(TruN B+

1
(xj)− TruN B+

2
(xj))

L

+(IndN B+
1

(xj)− IndN B+
2

(xj))
L

+(FalN B+
1

(xj)− FalN B+
1

(xj))
L


1
α

d(N B−1 ,N B−2 ) =


1

2n ∑n
j=1(TruN B−

1
(xj)− TruN B−

2
(xj))

L

+(IndN B−
1

(xj)− IndN B−
2

(xj))
L

+(FalN B−
1

(xj)− FalN B−
1

(xj))
L


1
α


, (10)

where α > 0.

(i) If α = 1, then Equations (9) and (10), reduce to Equations (5) and (6).
(ii) If α = 2, then Equations (9) and (10), reduce to Equations (7) and (8).

(iii) We define a weighted distance as follows:

d(N B+1 ,N B+2 ) =

 1
2 ∑n

j=1 k j


∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣L
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣L



1
α

d(N B−1 ,N B−2 ) =

 1
2 ∑n

j=1 k j


∣∣∣(TruN B−

1
(xj)− TruN B−

2
(xj))

∣∣∣L
+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

1
(xj))

∣∣∣L



1
α



, (11)

where k = (k1, k2, ..., kn)T is the weight vector of xj(j = 1, 2, ..., n), and α > 0.

(i) Especially, if α = 1, then Equation (11) is reduced as

d(N B+1 ,N B+2 ) =

 1
2 ∑n

j=1 k j


∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣




d(N B−1 ,N B−2 ) =

 1
2 ∑n

j=1 k j


∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣





. (12)
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If k = ( 1
n , 1

n , ..., 1
n )

T , then Equation (11) goes to Equation (10), and Equation (12) goes to
Equation (6).

(ii) If α = 2, then Equation (11) is reduced to the as:

d(N B+1 ,N B+2 ) =

√√√√√√√
1
2 ∑n

j=1(TruN B+
1

(xj)− TruN B+
2

(xj))
2

+(IndN B+
1

(xj)− IndN B+
2

(xj))
2

+(FalN B+
1

(xj)− FalN B+
1

(xj))
2

d(N B−1 ,N B−2 ) =

√√√√√√√
1
2 ∑n

j=1(TruN B−
1

(xj)− TruN B−
2

(xj))
2

+(IndN B−
1

(xj)− IndN B−
2

(xj))
2

+(FalN B−
1

(xj)− FalN B−
1

(xj))
2


. (13)

If k = ( 1
n , 1

n , ..., 1
n )

T , then Equation (13) is reduced to Equation (8).

5.2. Similarity Measures of Neutrosophic Bipolar Fuzzy Set

Definition 17. Let ŝ be a mapping ŝ : Ω(X)2 → [0, 1], then the degree of similarity betweenN B1 ∈ Ω(X) and
N B2 ∈ Ω(X) is defined as ŝ(N B1 ,N B2 ), which satisfies the following properties: [43,44].

(1) 0 ≤ ŝ(N B1 ,N B2 ) ≤ 1;
(2) ŝ(N B1 ,N B2 ) = 1 if N B1 = N B2 ;
(3) ŝ(N B1 ,N B2 ) = ŝ(N B2 ,N B1 );
(4) If ŝ(N B1 ,N B2 ) = 0 and ŝ(N B1 ,N B3 ) = 0, N B3 ∈ Ω(X), then ŝ(N B2 ,N B3 ) = 0. We define a similarity

measure of N B1 and N B2 as:

ŝ(N B+1 ,N B+2 ) = 1−


1

2n ∑n
j=1(TruN B+

1
(xj)− TruN B+

2
(xj))

L

+(IndN B+
1

(xj)− IndN B+
2

(xj))
L

+(FalN B+
1

(xj)− FalN B+
1

(xj))
L


1
α

ŝ(N B−1 ,N B−2 ) = 1−


1

2n ∑n
j=1(TruN B−

1
(xj)− TruN B−

2
(xj))

L

+(IndN B−
1

(xj)− IndN B−
2

(xj))
L

+(FalN B−
1

(xj)− FalN B−
1

(xj))
L


1
α


, (14)

where α > 0, and ŝ(N B1 ,N B2 ) is the degree of similarity of N B1 and N B2 . Now by considering the weight
of every element we have,

ŝ(N B+1 ,N B+2 ) = 1−

 1
2 ∑n

j=1 k j


∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣L
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣L



1
α

d(N B−1 ,N B−2 ) = 1−

 1
2 ∑n

j=1 k j


∣∣∣(TruN B−

1
(xj)− TruN B−

2
(xj))

∣∣∣L
+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

1
(xj))

∣∣∣L



1
α



. (15)
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If we give equal importance to every member then Equation (15) is reduced to Equation (14). Similarly we
may use

ŝ(N B+1 ,N B+2 ) = 1−



∑n
j=1(

∣∣∣(TruN B+
1

(xj)− TruN B+
2

(xj))
∣∣∣α

+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣L
∑n

j=1(
∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣α
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣L)



1
α

ŝ(N B−1 ,N B−2 ) = 1−



∑n
j=1(

∣∣∣(TruN B−
1

(xj)− TruN B−
2

(xj))
∣∣∣α

+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

1
(xj))

∣∣∣L
∑n

j=1(
∣∣∣(TruN B−

1
(xj)− TruN B−

2
(xj))

∣∣∣α
+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

1
(xj))

∣∣∣L)



1
α



. (16)

Now by considering the weight of every element we have

ŝ(N B+1 ,N B+2 ) = 1−



∑n
j=1 k j(

∣∣∣(TruN B+
1

(xj)− TruN B+
2

(xj))
∣∣∣α

+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+2

(xj))
∣∣∣L

∑n
j=1 k j(

∣∣∣(TruN B+
1

(xj)− TruN B+
2

(xj))
∣∣∣α

+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

2
(xj))

∣∣∣L)



1
α

ŝ(N B−1 ,N B−2 ) = 1−



∑n
j=1 k j(

∣∣∣(TruN B−
1

(xj)− TruN B−
2

(xj))
∣∣∣α

+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

2
(xj))

∣∣∣L
∑n

j=1 k j(
∣∣∣(TruN B−

1
(xj)− TruN B−

2
(xj))

∣∣∣α
+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

2
(xj))

∣∣∣L)



1
α



. (17)

If we give equal importance to every member, then Equation (17) is reduced to Equation (16).
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5.3. Similarity Measures Based on the Set-Theoretic Approach

Definition 18. Let N B1 ∈ Ω(X) and N B2 ∈ Ω(X). Then, we define a similarity measure N B1 and N B2 from
the point of set-theoretic view as:

ŝ(N B+1 ,N B+2 ) =

∑n
j=1〈min(TruN B+

1
(xj), TruN B+

2
(xj))

+min(IndN B+
1

(xj), IndN B+
2

(xj))

+min(|FalN B+
1

(xj)|, |FalN B+
2

(xj)|)

∑n
j=1〈max(TruN B+

1
(xj), TruN B+

2
(xj))

+max(IndN B+
1

(xj), IndN B+
2

(xj))

+max(|FalN B+
1

(xj)|, |FalN B+
2

(xj)|))

ŝ(N B−1 ,N B−2 ) =

∑n
j=1〈min(TruN B−

1
(xj), TruN B−

2
(xj))

+min(IndN B−
1

(xj), IndN B−
2

(xj))

+min(|FalN B−
1

(xj)|, |FalN B−
2

(xj))|))

∑n
j=1〈max(TruN B−

1
(xj), TruN B−

2
(xj))

+max(IndN B−
1

(xj), IndN B−
2

(xj))

+max(|FalN B−
1

(xj)|, |FalN B−
2

(xj)|))



. (18)

Now by considering the weight of every element we have

ŝ(N B+1 ,N B+2 ) =

∑n
j=1 k j(min(TruN B+

1
(xj), TruN B+

2
(xj)) + min(IndN B+

1
(xj),

IndN B+
2

(xj)) + min(|FalN B+
1

(xj)|, |FalN B+
2

(xj)|))

∑n
j=1 k j(max(TruN B+

1
(xj), TruN B+

2
(xj)) + max(IndN B+

1
(xj),

IndN B+
2

(xj) + max(|FalN B+
1

(xj)|, |FalN B+
2

(xj)|))

ŝ(N B−1 ,N B−2 ) =

∑n
j=1 k j(min(TruN B−

1
(xj), TruN B−

2
(xj)) + min(IndNN B−

1
(xj),

IndN B−
2

(xj)) + min(|FalN B−
1

(xj)|, |FalN B−
2

(xj)|))

∑n
j=1 k j(max(TruN B+

1
(xj), TruN B+

2
(xj)) + max(IndN B+

1
(xj),

IndN B+
2

(xj) + max(|FalN B−
1

(xj)|, |FalN B−
2

(xj)|))



. (19)

If we give equal importance to every member, then Equation (19) is reduced to Equation (18).

5.4. Similarity Measures Based on the Matching Functions

We cover the matching function to agreement through the similarity measure of N BFSs.

Definition 19. Let N B1 ∈ Ω(X) and N B2 ∈ Ω(X), formerly we explain the degree of similarity of N B1 and
N B2 based on the matching function as:

ŝ(N B+1 ,N B+2 ) =
∑n

j=1((Tru
NNB+1

(xj).TruNB+2
(xj))+(IndNB+1

(xj).IndNB+2
(xj))+|FalNB+1

(xj)|.|FalNB+2
(xj)|)

max〈∑n
j=1((TruN B+

1
)2(xj) + (IndN B+

1
)2(xj) + (FalN B+

1
)2(xj)),

∑n
j=1 k j((TruN B+

2
)2(xj) + (IndN B+

2
)2(xj) + (FalN B+

2
)2(xj)))

ŝ(N B−1 ,N B−2 ) =
∑n

j=1((TruNB−1
(xj).TruNB−2

(xj))+(IndNB−1
(xj).IndNB−2

(xj))+|FalNB−1
(xj)|.|FalNB−2

(xj)|)

max〈∑n
j=1((TruN B−

1
)2(xj) + (IndN B−

1
)2(xj) + (FalN B−

1
)2(xj)),

∑n
j=1 k j((TruN B−

2
)2(xj) + (IndN B−

2
)2(xj) + (FalN B−

2
)2(xj)))


. (20)
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Now by considering the weight of every element we have

ŝ(N B+1 ,N B+2 ) =
∑n

j=1 kj(TruNB+1
(xj).TruNB+2

(xj))+(IndNB+1
(xj).IndNB+2

(xj))+|FalNB+1
(xj)|.|FalNB+2

(xj)|)

max〈∑n
j=1 k j((TruN B+

1
)2(xj) + (IndN B+

1
)2(xj) + (FalN B+

1
)2(xj)),

∑n
j=1 k j((TruN B+

2
)2(xj) + (IndN B+

2
)2(xj) + (FalN B+

2
)2(xj)))

ŝ(N B−1 ,N B−2 ) =
∑n

j=1 kj((TruNB−1
(xj).TruNB−2

(xj))+(IndNB−1
(xj).IndNB−2

(xj))+|FalNB−1
(xj)|.|FalNB−2

(xj)|)

max〈∑n
j=1((TruN B−

1
)2(xj) + (IndN B−

1
)2(xj) + (FalN B−

1
)2(xj)),

∑n
j=1 k j((TruN B−

2
)2(xj) + (IndN B−

2
)2(xj) + (FalN B−

2
)2(xj)))


. (21)

(1) If we give equal importance to every member, then Equation (21) is reduced to Equation (20).
(2) If the value of ŝ(N B1 ,N B2 ) is larger then its mean N B1 and N B2 are more closer to each other.

6. Application

In this Section 5 after defining some similarity measures we proceed towards the main section
namely application of the developed model. In this section we provide an algorithm for solving
a multiatribute decision making problem related with the HOPE foundation with the help of
neutrosophic bipolar fuzzy aggregation operators, neutrosophic bipolar similarity measures under the
neutrosophic bipolar fuzzy sets. For detail see [13,42].

Definition 20. Let L = {L1, L2, ..., Lm} consists of alternatives, and let P = {P1, P2, ..., Pn} containing the
attributes and k = (k1, k2, ..., kn)T be the weight vector that describe the importance of attributes such that
k j ∈ [0, 1] and ∑n

j=1 k j = 1. Let us use the neutrosophic bipolar fuzzy sets for Li as under:

L+
i = {〈Pj, (Tru)+Li(Pj), (Ind)+Li(Pj), (Fal)+Li

(
Pj
)
〉|Pj ∈ P}, i = 1, 2, 3, ..., m

L−i = {〈Pj, (Tru)−Li(Pj), (Ind)−LiPj), (Fal)−Li
(

Pj
)
〉|Pj ∈ P}, i = 1, 2, 3, ..., m

}
. (22)

such that

(Tru)+Li(Pj) ∈ [0, 3], (Ind)+Li(Pj) ∈ [0, 3], (Fal)+Li
(

Pj
)
∈ [0, 3],

0 ≤ (Tru)+Li(Pj), (Ind)+LiPj), (Fal)+Li
(

Pj
)
〉 ≤ 3.

(Tru)−Li(Pj) ∈ [−3, 0], (Ind)−Li(Pj) ∈ [−3, 0], (Fal)−Li
(

Pj
)
∈ [−3, 0],

−3 ≤ (Tru)−Li(Pj), (Ind)−LiPj), (Fal)−Li
(

Pj
)
〉 ≤ 0.

Now we define the positive and negative ideal solutions as under:

L+
i = {〈Pj, (Tru)+L+(Pj), (Ind)+L+(Pj), (Fal)+L+(Pj)〉|Pj ∈ P}}

L−i = {〈Pj, (Tru)−L+(Pj), (Ind)−L+(Pj), (Fal)−L+(Pj)〉|Pj ∈ P}}

}
, (23)

and
L+ = {〈Pj, (Tru)+L−(Pj), (Ind)+L−(Pj), (Fal)+L−(Pj)〉|Pj ∈ P}}
L− = {〈Pj, (Tru)−L−(Pj), (Ind)−L−(Pj), (Fal)−L−(Pj)〉|Pj ∈ P}}

}
, (24)

where

(Tru)+L+(Pj) = max
i
{(Tru)+Li(Pj), (Tru)−L+(Pj)} = min

i
{(Tru)+Li(Pj)}, (Tru)−Li(Pj)

= max
i
{(Tru)−Li(Pj), (Tru)+L+(Pj)} = min

i
{(Tru)−Li(Pj)}(Ind)+L+(Pj)

= max
i
{(Ind)+Li(Pj), (Ind)−L+(Pj)} = min

i
{(Ind)+Li(Pj)}(Ind)−L+(Pj)

= max
i
{(Ind)−Li(Pj), (Ind)+L+(Pj)} = min

i
{(Ind)+Li(Pj)}.
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(Fal)+Li
(

Pj
)

= min
i
{(Fal)+Li

(
Pj
)

, (Fal)−L+(Pj)} = max
i
{ (Fal)+Li

(
Pj
)
}.

(Fal)−Li
(

Pj
)

= min
i
{(Fal)−Li

(
Pj
)

, (Fal)+L+(Pj)} = max
i
{ (Fal)−Li

(
Pj
)
}.

Now using Equation (15), we find the degree of similarity for L+, Li, and L−, Li, as under:

ŝ1(L+, L+
i ) = 1−


1
2 ∑n

j=1 k j(|(Tru)+L+(xj)− (Tru)+Li(xj)|α

+|(Ind)+L+(xj)− (Ind)+Li(xj)|α
+|(Fal)+L+(xj)− (Fal)+Li(xj)|α)


1
α

ŝ1(L+, L−i ) = 1−


1
2 ∑n

j=1 k j(|(Tru)−L+(xj)− (Tru)−Li(xj)|α

+|(Ind)−L+(xj)− (Ind)−Li(xj)|α
+|(Fal)−L+(xj)− (Fal)−Li(xj)|α)


1
α


, (25)

and

ŝ1(L−, L+
i ) = 1−


1
2 ∑n

j=1 k j(|(Tru)+L−(xj)− (Tru)+Li(xj)|α

+|(Ind)+L−(xj)− (Ind)+Li(xj)|α
+|(Fal)+L−(xj)− (Fal)+Li(xj)|α)


1
α

ŝ1(L−, L−i ) = 1−


1
2 ∑n

j=1 k j(|(Tru)−L−(xj)− (Tru)−Li(xj)|α

+|(Ind)−L−(xj)− (Ind)−Li(xj)|α
+|(Fal)−L−(xj)− (Fal)−Li(xj)|α)


1
α


. (26)

Using Equations (25) and (26), calculate di of Li as under:

d+i =
s1(L+ ,L+

i )

s1(L+ ,L+
i )+s1(L− ,L+

i )
, i = 1, 2, ..., n.

d−i =
s1(L+ ,L−i )

s1(L+ ,L−i )+s1(L− ,L−i )
, i = 1, 2, ..., n.

 . (27)

If the value of di is greater, then the alternative Li is better.
Also using Equations (17), (19) and (21), we find the degree of similarity for L+, Li, and L−, Li,

as under:

(1) Based on Equation (17), we define the following: We define the following:

ŝ1(L+, L+
i ) = 1−



∑n
j=1 k j(

∣∣∣(TruL+(xj)− TruL+
i
(xj))

∣∣∣α
+
∣∣∣(IndL+(xj)− IndL+

i
(xj))

∣∣∣L
+
∣∣∣(FalL+(xj)− FalL+

i
(xj))

∣∣∣L
∑n

j=1 k j(
∣∣∣(TruL+(xj)− TruL+

i
(xj))

∣∣∣α
+
∣∣∣(IndL+(xj)− IndL+

i
(xj))

∣∣∣L
+
∣∣∣(FalL+(xj)− FalL+

i
(xj))

∣∣∣L)



1
α

ŝ3(L+, L−i ) = 1−



∑n
j=1 k j(

∣∣∣(TruL−(xj)− TruL−i
(xj))

∣∣∣α
+
∣∣∣(IndL−(xj)− IndL−i

(xj))
∣∣∣L

+
∣∣∣(FalL−(xj)− FalL−i

(xj))
∣∣∣L

∑n
j=1 k j(

∣∣∣(TruL−(xj)− TruL−i
(xj))

∣∣∣α
+
∣∣∣(IndL−(xj)− IndL−i

(xj))
∣∣∣L

+
∣∣∣(FalL−(xj)− FalL−i

(xj))
∣∣∣L)



1
α



. (28)
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(2) Based on Equation (19), we define the following: We define the following:

ŝ2(L+, L+
i ) =

∑n
j=1 kj(min(TruL+ (xj),TruL+i

(xj))+min(IndL+ (xj),IndL+i
(xj))+min(|FalL+ (xj)|,|FalL+i

(xj)|))

∑n
j=1 kj(max(TruL+ (xj),TruL+i

(xj))+max(IndL+ (xj),IndL+i
(xj)+max(|FalL+ (xj)|,|FalL+i

(xj)|))

ŝ2(L−, L−i ) =

∑n
j=1 k j(min(TruL−(xj), TruL−i

(xj))

+min(IndL−(xj), IndL−i
(xj))

+min(|FalL−(xj)|, |FalL−i
(xj)|))

∑n
j=1 k j(max(TruL−(xj), TruL−i

(xj))

+max(IndL−(xj), IndL−i
(xj)

+max(|FalL−(xj)|, |FalL−i
(xj)|))



. (29)

(3) Based on Equation (21), we define the following: We define the following:

ŝ3(L+, L+
i ) =

∑n
j=1 k j(min((Tru)+L+(xj), (Tru)+Li(xj))

+min((Ind)+L+(xj), (Ind)+Li(xj))

+min(|(Fal)+L+(xj)|, |(Fal)+Li(xj)|))
∑n

j=1 k j(max((Tru)+L+(xj), (Tru)+Li(xj))

+(max((Ind)+L+(xj), (Ind)+Li(xj))

+max(|(Fal)+L+(xj)|, |(Fal)+Li(xj)|)

ŝ3(L+, L−i ) =

∑n
j=1 k j(min((Tru)−L+(xj), (Tru)−Li(xj))

+min((Ind)−L+(xj), (Ind)−Li(xj))

+min(|(Fal)−L+(xj)|, |(Fal)−Li(xj)|))
∑n

j=1 k j(max((Tru)−L+(xj), (Tru)−Li(xj))

+(max((Ind)−L+(xj), (Ind)−Li(xj))

+max(|(Fal)−L+(xj)|, |(Fal)−Li(xj)|)



. (30)

Then use (27).

7. Numerical Example

Now we provide a daily life example which shows the applicability of the algorithm provided in
Section 6.

Example 1. The HOPE foundation is an international organization which provides the financial support to
the health sector of children of many families in round about 22 different countries in southwest Missouri.
This organization provides the support when other organization does not play their role. Every day a child is
diagnosed with a severe illness, sustains a debilitating injury, and a family loses the battle with an illness. With
these emergencies come unexpected expenses. Here we discuss a problem related with HOPE foundation as:

HOPE foundation is planning to build a children hospital and they are planning to fit a suitable air
conditioning system in the hospital. Different companies offers them different systems. Companies offer three
feasible alternatives Li = (i = 1, 2, 3), by observing the hospital’ physical structures. Assume that P1 and
P2, are the two attributes which are helpful in the installation of air conditioning system with the weight
vector as k = (0.4, 0.6)T for the attributes. Now using neutrosophic bipolar fuzzy sets for the alternatives
Li = (i = 1, 2, 3) by examining the different characteristics as under:

L+
1 = {〈P1, 0.3, 0.4, 0.7〉, 〈P2, 0.8, 0.8, 0.6〉},

L−1 = {〈P1,−0.3,−0.2,−0.1〉, 〈P2,−0.4,−0.6,−0.8〉}.

L+
2 = {〈P1, 0.4, 0.6, 0.2〉, 〈P2, 0.3, 0.9, 0.2〉},

L−2 = {〈P1,−0.1,−0.3,−0.4〉, 〈P2,−0.8,−0.7,−0.1〉}.
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L+
3 = {〈P1, 0.3, 0.5, 0.7〉, 〈P2, 0.2, 0.30.6〉},

L−3 = {〈P1,−0.5,−0.1,−0.4〉, 〈P2,−0.3,−0.2,−0.8〉}.

where L+
1 = {〈P1, 0.3, 0.4, 0.7〉, 〈P2, 0.8, 0.8, 0.6〉} means that the alternative L1 has the positive preferences

which is desirable: 0.3, 0.8 as a truth function for past, 0.4, 0.8 as a indeterminacy function for future and 0.7, 0.6
as a falsity function for present time with respect to the attributes P1 and P2 respectively.

Similarly L−1 = {〈P1,−0.3,−0.2,−0.1〉, 〈P2,−0.4,−0.6,−0.8〉}means that the alternative L1 has
the negative preferences which is unacceptable: −0.3,−0.4 as a truth function for past, −0.2,−0.6 as a
indeterminacy function for future and −0.1,−0.8 as a falsity function for present time with respect to
the attributes P1 and P2 respectively.

(1) By Equations (23) and (24) we first calculate L+ and L− of the alternatives Li = (i = 1, 2, 3), as

L+ = {〈P1, 0.4, 0.6, 0.7〉, 〈P2, 0.5, 0.9, 0.6〉},
L− = {〈P1, 0.3, 0.4, 0.2〉, 〈P2, 0.2, 0.3, 0.2〉},

and

L+ = {〈P1,−0.1,−0.1,−0.1〉, 〈P2,−0.3,−0.2,−0.1〉},
L− = {〈P1,−0.5,−0.3,−0.4〉, 〈P2,−0.8,−0.7,−0.8〉}.

Then by using Equations (25)–(27), (suppose that α = 2 and k = 1), we have

ŝ1(L+, L+
1 ) = 0.8267, ŝ1(L+, L+

2 ) = 0.775, ŝ1(L+, L+
3 ) = 0.5152,

ŝ1(L+, L−1 ) = −0.5732, ŝ1(L+, L−2 ) = −0.8721, ŝ1(L+, L−3 ) = −0.7776.

ŝ1(L−, L+
1 ) = 0.3876, ŝ1(L−, L+

2 ) = 0.5, ŝ1(L−, L+
3 ) = 0.5417,

ŝ1(L−, L−1 ) = −0.1038, ŝ1(L−, L−2 ) = −0.2449, ŝ1(L−, L−3 ) = −0.1119,

and

ŝ1(L+, L+
1 ) = −0.2609, ŝ1(L+, L+

2 ) = −0.1157, ŝ1(L+, L+
3 ) = −0.2439,

ŝ1(L+, L−1 ) = −0.1485, ŝ1(L+, L−2 ) = −0.075, ŝ1(L+, L−3 ) = −0.0243.

ŝ1(L−, L+
1 ) = −0.6229, ŝ1(L−, L+

2 ) = −0.7146, ŝ1(L−, L+
3 ) = −0.7958,

ŝ1(L−, L−1 ) = 0.6062, ŝ1(L−, L−2 ) = 0.3636, ŝ1(L−, L−3 ) = 0.4803.

Now by Equation (27), we have

d+1 = 0.7207, d+2 = 0.1393, d+3 = 0.9093,
L1 > L2 > L3

}
, (31)

d−1 = −0.3244, d−2 = −0.2598, d−3 = −0.0532,
L3 > L1 > L2

}
, (32)

and
d+1 = 0.2813, d+2 = 0.4031, d+3 = 0.4728,

L3 > L2 > L1

}
, (33)
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d−1 = 0.06184, d−2 = 0.1190, d−3 = 0.1942,
L3 > L2 > L1

}
. (34)

(2) Now by Equations (28) and (29) (suppose that α = 3), we have

ŝ2(L+, L+
1 ) = 0.9051, ŝ2(L+, L+

2 ) = 0.7283, ŝ2(L+, L+
3 ) = 0.6873,

ŝ2(L+, L−1 ) = −1.9845, ŝ2(L+, L−2 ) = −2.338, ŝ2(L+, L−3 ) = −1.3894.

ŝ2(L−, L+
1 ) = 0.6940, ŝ2(L−, L+

2 ) = 0.4952, ŝ2(L−, L+
3 ) = 0.577,

ŝ2(L−, L−1 ) = −1.0988, ŝ2(L−, L−2 ) = −1.0717, ŝ2(L−, L−3 ) = −1.004,

and

ŝ2(L+, L+
1 ) = −0.6210, ŝ2(L+, L+

2 ) = −0.6086, ŝ2(L+, L+
3 ) = −0.4944,

ŝ2(L+, L−1 ) = 0.3714, ŝ2(L+, L−2 ) = 0.5139, ŝ2(L+, L−3 ) = 0.3358.

ŝ2(L−, L+
1 ) = −2.3840, ŝ2(L−, L+

2 ) = −1.968, ŝ2(L−, L+
3 ) = −2.2632,

ŝ2(L−, L−1 ) = 0.6972, ŝ2(L−, L−2 ) = 0.5752, ŝ2(L−, L−3 ) = 0.6691.

Now again using Equation (27), we have

d+1 = 0.5660, d+2 = 0.5952, d+3 = 0.5436,
L2 > L1 > L3

}
, (35)

d−1 = 0.6436, d−2 = 0.6856, d−3 = 0.5805,
L2 > L1 > L3

}
, (36)

and
d+1 = 0.2066, d+2 = 0.2362, d+3 = 0.179,

L2 > L1 > L3

}
, (37)

d−1 = 0.3475, d−2 = 0.4719, d−3 = 0.3341,
L2 > L1 > L3

}
. (38)

(3) Thus, by Equations (27), (30) and (31), we have

ŝ3(L+, L+
1 ) = 0.4285, ŝ3(L+, L+

2 ) = 0.5675, ŝ3(L+, L+
3 ) = 0.7027,

ŝ3(L+, L−1 ) = −0.6468, ŝ3(L+, L−2 ) = −0.6486, ŝ3(L+, L−3 ) = −0.6316,

and

ŝ3(L−, L+
1 ) = 0.4848, ŝ3(L−, L+

2 ) = 0.1538, ŝ3(L−, L+
3 ) = 0.6153,

ŝ3(L−, L−1 ) = −1.375, ŝ3(L−, L−2 ) = −1.0625, ŝ2(L−, L−3 ) = −1.4375.

By Equations (30)–(32) we have

ŝ3(L+, L+
1 ) = −0.2727, ŝ3(L+, L+

2 ) = −0.3913, ŝ3(L+, L+
3 ) = −0.3461,

ŝ3(L+, L−1 ) = 2.6666, ŝ3(L+, L−2 ) = 2.6666, ŝ3(L+, L−3 ) = 2.5555.
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ŝ3(L−, L+
1 ) = −1.060, ŝ3(L−, L+

2 ) = −1.3461, ŝ3(L−, L+
3 ) = −1.4000,

ŝ3(L−, L−1 ) = 1.4585, ŝ3(L−, L−2 ) = 1.7500, ŝ3(L−, L−3 ) = 5217.

By Equations (30)–(32), we have

d+1 = 0.4691, d+2 = 0.7868, d+3 = 0.5331,
L2 > L3 > L1

}
, (39)

d−1 = 0.3199, d−2 = 0.3790, d−3 = 0.3018,
L2 > L1 > L3

}
, (40)

and
d+1 = 0.2046, d+2 = 0.2252, d+3 = 0.1982,

L2 > L1 > L3

}
, (41)

d−1 = 0.3475, d−2 = 0.6037, d−3 = 0.6267,
L2 > L3 > L1

}
. (42)

From the Equations (35)–(42), we have that the alternative L2 (feasible alternative) is the best one
obtained by all the similarity measures. Thus we conclude that air-conditioning system L2 is better to
installed in the hospital after considering its negative and the positive preferences for past, future and
present time.

8. Comparison Analysis

There are a lot of different techniques used so for in decision making problems. For example
Chen et al. [23] used fuzzy sets, Atanassov [26] used intutionistic fuzzy sets, Dubios et al. [9], used
bipolar fuzzy sets, Zavadskas et al. [37] used neutrosophic sets, Zhan et al. [25], used neutrosophic
cubic sets, Ali et al. [33] used bipolar neutrosophic soft sets and so many others discuss decision
making problems with respect to the different versions of fuzzy sets. Beg et al., and Xu [38,39,41]
discussed similarity measures for fuzzy sets, intutionistic fuzzy sets respectively. In this paper by
applying bipolarity to neutrosophic sets allow us to distinguish between the negative and the positive
preferences with respect to the past, future and present time which is the unique future of our model.
Negative preferences denote what is unacceptable while positive preferences are less restrictive and
express what is desirable with respect to the past, future and present time. If we consider only one
time frame from the set {past, future and present} one can see our model coincide with bipolar fuzzy
sets in decision making as Dubios et al. [9] and Xu [41].

9. Conclusions

We define neutrosophic bipolar fuzzy sets, aggregation operators for neutrosophic bipolar fuzzy
sets, similarity measures for neutrosophic bipolar fuzzy sets and produce a real life application in
decision making problems. This model can easily used in many directions such as,

(1) Try to solve traffic optimization in transport networks based on local routing using neutrosophic
bipolar fuzzy sets.

(2) A hybrid clustering method based on improved artificial bee colony and fuzzy C-Means algorithm
using neutrosophic bipolar fuzzy sets.

(3) Hybrid multiattribute group decision making based on neutrosophic bipolar fuzzy sets
information and GRA method.

(4) Signatures theory by using neutrosophic bipolar fuzzy sets.
(5) Risk analysis using neutrosophic bipolar fuzzy sets.
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