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ABSTRACT 

 
This paper presents the analytical solutions for the temperature distribution in cross-flow plate heat 

exchanger under uniform temperature boundary conditions. The heat transfer channel is in a form of an 

isosceles triangular geometry. The governing equations are based on the conservation of energy principle. 

The mathematical models, for both unmixed fluid, are solved by Laplace Transform leads to the developed 

analytical solution that is in the form of modified Bessel function of the first kind and zero order.  
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1. INTRODUCTION 
 

A plate heat exchanger is extensively used in many applications such as refrigeration, air 

conditioning, petrochemical industries, food storage, gas turbine system, and others. The 

utilization of heat exchanger leads to higher in thermal efficiency of the system. For instance, in 

microturbine application, the thermal efficiency of the system without heat exchanger (also 

known as recuperator) is about 20% or less [1].  
 

Nowadays, the heat exchangers have a variety of configurations. Among of them, plate heat 

exchanger with triangular cross-sectional ducts is found to be excellent in several reasons such as 

compactness, cost-effectiveness, high mechanical strength, automated high volume 

manufacturing process, and ease of installation [2-3]. There are many researches and studies 

about this type of plate heat exchanger. In 1978, Shah and London [4] conducted the fully 

developed forced convection and heat transfer in a triangular duct and documented the result of 

study in references [5-6]. Baliga and Azrak [7] investigated the forced convection and heat 

transfer in triangular plate-fin duct by numerical method. The heat conduction in the fin and 

forced convection in the fluid were considered as a conjugate problem and Nusselts numbers for 

ducts with fin conductance from 1 to infinity were obtained. Li-Zhi Zhang [8] investigated the 

laminar forced flows and heat transfer in plate-fin isosceles triangular ducts, with fin conductance 

from 0 to infinity large, under uniform temperature conditions by applying a boundary-fitted 

coordinate system method. The study also provided Nusselt numbers in the developing and fully 

developed regions for various apex angle and fin conductance parameters. Sekulic et al [9] 
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presented the methods of solution for determining effectiveness-NTU relationships for heat 

exchanger with complex flow arrangement. The solution methods were categorized into three 

groups as analytical and curve-fit to the analytical methods, approximate and numerical methods, 

and method based on exchanger configuration properties. Helio and Luben [10] developed the 

new numerical methodology for thermal performance calculation of cross-flow heat exchangers. 

The methodology is based on physical concepts and is developed for cross-flow heat exchangers 

with one fluid mixed and another unmixed. The numerical results and also a computational 

program HETE (Heat Exchanger Thermal Efficiency) are validated through comparison with 

those obtained from analytical solutions and approximate series solution. Su-Jong Yoon [11] 

presented the numerical study on cross-flow printed circuit heat exchanger for advanced small 

modular reactors. The research and study presented the general methods for thermal design of 

printed circuit heat exchanger based on both unmixed fluids cross-flow heat exchanger model. 

The research also developed the PCHE analysis code to evaluate the size and its cost. L. 

Malinowski [12-13] developed the analytical solution to presents the stationary temperature field 

in the parallel-flow four-channel heat exchangers and based on the assumption that the 

thermophysical parameters of the fluids are independent of temperature. The set of linear 

differential equations are in case of simple eigenvalues and double zero eigenvalue case. Sandip 

K. Saha and Martine Baelmans [14] present a design method for gas-to-gas rectangular 

microchannel counter-flow heat exchangers. The methodology is based on two models, which are 

a one-dimensional model and a CFD model. The study also provides a quantitative data for the 

optimal plate dimensions and resulting maximal power density of the heat exchanger with 

effectiveness varies between 0.6 and 1.     
 

The purpose of this research paper is to develop the analytical solutions for the temperature 

distribution in cross-flow plate heat exchanger channels of isosceles triangular geometry. The 

governing equations are based on the conservation of energy principle. Laplace Transform is 

applied to solve the mathematical models and the analytical solutions are in the form of Modified 

Bessel Function of the first kind [15-18]. 
 

2. MATHEMATICAL FORMULATION 
 

2.1. Governing equations and boundary conditions  
 

A schematic of a cross-flow plate heat exchanger is shown in Fig.1. The dimension of the plate 

heat exchanger is Lx(m), Ly(m), and Lz(m). The primary fluid and the secondary fluid are 

considered as cold and hot fluid, respectively. The fluids enter the channels that are in the form of 

isosceles triangular channels. The isosceles triangular channel cross section has an apex angle of 

2α° and the base of the channel is w(m).  

 
The number of flow channel in x-direction, y-direction, and z-direction is N1, N2, and Nz, 

respectively and is determined as  

 

      

                                                                                           
   

               
  
               

 

 

 

(1) 

(2) 

(3) 
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where δ1 is fin thickness (m). The primary fluid and the secondary fluid are considered as cold 

and hot fluid, respectively. The fluids are considered as Newtonian fluid with constant thermal 

properties. The both unmixed fluid enter the channel with uniform temperature boundary 

conditions. The governing equations for each side of fluid are developed based on the 

conservation of energy principle [11].  

 

The energy balance equations for the control volume in Fig.2 are  

 

Primary Fluid:  
 

 
 

Figure 1.  Schematic of the cross-flow plate heat exchanger  
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Figure 2.  Energy balance control volume for cross-flow heat exchanger 

 

      

  
                                                                

 

Secondary fluid:  
 

 

 

 

 

 

where U is the overall heat transfer coefficient (W/m2K), and neglecting the fouling thermal 

resistance, the heat transfer rate is 

 

 
 

Define the dimensionless parameter,  

, 

,                                         ,                                                             , 

 

       

Substitution Eq.(7) into Eq.(4) and Eq.(5), the differential equations for the cross-flow heat 

exchanger in dimensionless form are obtained as follows. 

 

Primary Fluid: 
 

 

 , 

 

 

 

(4) 

(5) 

(6) 

(7) 

(8) 
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Secondary Fluid 
 

,        

 

with the boundary conditions 

 

 

 

 

2.2. Cross-flow isosceles triangular channel analysis 

 
The Nusselt number correlation, which is applied in this paper based on the study of Li-Zhi 

Zhang [8], is 

 

              (10) 

 

Dh is the hydraulic diameter of the triangular ducts (m) and is calculated by  

 

                       (11) 

 

Reynolds number, for each fluid side, is given by 

Primary Fluid:        

                                                            

                   (12) 

 

Secondary Fluid: 

 

                 (13) 

 

where µ is the dynamic viscosity of the fluid (Pa s). Pr is Prandtl Number, and is defined as 

 

                  (14) 

 

 L is the length of the triangular duct (m). According to [8], The coefficient c1 and c2, in Eq.(10), 

are depends on the fin conductance parameter, Ω, which are defined as follows 

 

                                                                                                                    (15) 

  

where kf is thermal diffusivity (kWm
-1

K
-1

).  

 

The cross sectional area for one pass is determined as  

 

Primary Fluid: 

 

                                                                                                     (16) 

 

Secondary Fluid: 
 

                                                                                                   (17) 

 

(9) 
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The velocity of each fluid is calculated as follows 

 

 

Primary Fluid: 
 

                   (18) 

 

Secondary Fluid: 

 

                  (19) 

 

The heat transfer coefficients and the number of transfer unit, for each fluid side, are calculated as 

follows 

 

                                                                                                                (20) 

 

 

                          (21) 

      

 
                 (22) 

 

 

3. ANALYTICAL METHODS  

 
The Laplace transforms for each variable can be defined as        

 

 

 

                    (23) 

                                                                           
    

                                                                       (24) 

 

From the governing equation of each fluid side, Eq.(8) and Eq.(9), with boundary conditions the 

differential equation for both unmixed-fluid becomes 

 

Primary Fluid: 

 

 
                
 

 

 
                                                     (25) 

 

Secondary Fluid: 
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                                             (26) 

 

 

The algebraic equation Eq.(25) and Eq.(26) can be solved simultaneously, and the solutions are 

obtained as follows. 

                                                                                                

 

 

                                                                                              (27)                                      

(28) 

 

 

                                                                                                        (28) 

 

 

4. ANALYTICAL SOLUTIONS AND DISCUSSIONS  

 
To obtain the inverse Laplace Transform, the relation with the modified Bessel function is needed 

which is 

 

 

        (29) 

 

 

 

 

                  (30) 

 

 

 

The solutions to the Eq.(27) and Eq.(28) are solved and shown as follows  

 

Primary Fluid: 
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The temperature distribution in cross-flow plate heat exchanger channels of isosceles triangular 

geometry, on the primary fluid side, is 

 

                                  (31) 

 

 

Secondary Fluid: 
 

  

 

 

 

 

 

The temperature distribution in cross-flow plate heat exchanger channels of isosceles triangular 

geometry, on the secondary fluid side, is 

 

 

                                                           (32) 

 

where  

 

 

 

 

 

 

 

The above analytical solutions in Eq.(31) and Eq.(32) are validated by applying the recuperator 

operating condition as:  

 

For primary fluid and channel geometry: inlet temperature = 460 K, inlet Pressure = 3 bars, mass 

flow rate = 0.23 kg/s, apex angle: 30°, base width: 0.0098 m, Lx= 0.4 m, Ly= 0.4 m, Lz= 0.4 m, 

material: SUS 304, fin thickness: 0.001 m. For secondary fluid and channel geometry: inlet 

temperature = 800 K, inlet Pressure = 1 bars, mass flow rate = 0.23 kg/s, apex angle: 60°, base 

width: 0.029 m, Lx= 0.4 m, Ly= 0.4 m, Lz= 0.4 m, material: SUS 304, fin thickness: 0.001 m. 

 
Table 1. Temperature distribution in cross-flow plate heat exchanger  channels of isosceles triangular 

geometry (Apex angle = 30º) 

 

Apex angle Lx Ly x y T1 T2 

30 0.2 0.2 0.01 0.01 529.67 726.26 

   0.02 0.02 558.66 694.55 

   0.03 0.03 572.52 678.18 

   0.04 0.04 580.16 669.69 

 0.3 0.3 0.01 0.01 564.13 688.45 

   0.02 0.02 583.44 665.64 

   0.03 0.03 590.47 656.15 

   0.04 0.04 594.09 650.44 
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Table 2. Temperature distribution in cross-flow plate heat exchanger  channels of isosceles triangular 

geometry (Apex angle = 60º) 

 

Apex angle Lx Ly x y T1 T2 

60 0.2 0.2 0.01 0.01 478.48 780.55 

   0.02 0.02 493.91 764.27 

   0.03 0.03 506.83 750.58 

   0.04 0.04 517.69 739.01 

 0.3 0.3 0.01 0.01 505.79 751.69 

   0.02 0.02 533.41 722.21 

   0.03 0.03 550.69 703.46 

 
Table 3. Temperature distribution in cross-flow plate heat exchanger channels of isosceles triangular 

geometry (Apex angle = 90º) 

 

Apex angle Lx Ly x y T1 T2 

90 0.2 0.2 0.01 0.01 470.12 789.36 

   0.02 0.02 479.32 779.67 

   0.03 0.03 487.68 770.85 

   0.04 0.04 495.30 762.80 

 0.3 0.3 0.01 0.01 480.94 777.88 

   0.02 0.02 497.96 759.84 

   0.03 0.03 511.86 745.03 

   0.04 0.04 732.80 523.28 

 
Table 4. Temperature distribution in cross-flow plate heat exchanger channels of isosceles triangular 

geometry (Apex angle = 120º) 

 

Apex angle Lx Ly x y T1 T2 

120 0.2 0.2 0.01 0.01 464.26 795.51 

   0.02 0.02 468.36 791.20 

   0.03 0.03 472.30 787.05 

   0.04 0.04 476.09 783.06 

 0.3 0.3 0.01 0.01 469.22 790.33 

   0.02 0.02 477.68 781.46 

   0.03 0.03 485.44 773.31 

   0.04 0.04 492.56 765.81 

 

Based on the above conditions, thermodynamics properties and the analytical solution shown in 

Eq.(31) and Eq.(32), the temperature of the primary and the secondary fluid are carried out with 

apex angles varied between 30° to 120°. It is found that the results from the developed analytical 

solutions are similar to the results from the numerical and experimental study.  

 

5. CONCLUSION 

 
This paper presents the analytical solution for the two-dimensional temperature distribution for 

unmixed-unmixed fluids cross-flow plate heat exchanger with the channels of isosceles triangular 

geometry at any value of fin conductance. Based on the conservation of energy principle, the 

mathematical models for the cross-flow plate heat exchanger with the channels of isosceles 

triangular geometry are developed. The Nusselt number correlation used in this paper is the 
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function of apex angle and fin conductance parameter. The mathematical model is solved by 

Laplace transform and the analytical solutions are in the form of modified Bessel function of the 

first kind and zero order.  
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