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Abstract: Rapid increases in energy demand and international drive to reduce carbon emissions
from fossil fuels have led many oil-rich countries to diversify their energy portfolio and resources.
Libya is one of these countries, and it has recently become interested in utilizing its renewable-energy
resources in order to reduce financial and energy dependency on oil reserves. This paper introduces
an original multicriteria decision-making Pairwise-CODAS model in which the modification of the
CODAS method was made using Linguistic Neutrosophic Numbers (LNN). The paper also suggests a
new LNN Pairwise (LNN PW) model for determining the weight coefficients of the criteria developed
by the authors. By integrating these models with linguistic neutrosophic numbers, it was shown that
it is possible to a significant extent to eliminate subjective qualitative assessments and assumptions
by decision makers in complex decision-making conditions. The LNN PW-CODAS model was tested
and validated in a case study of the selection of optimal Power-Generation Technology (PGT) in Libya.
Testing of the model showed that the proposed model based on linguistic neutrosophic numbers
provides objective expert evaluation by eliminating subjective assessments when determining the
numerical values of criteria. A sensitivity analysis of the LNN PW-CODAS model, carried out
through 68 scenarios of changes in the weight coefficients, showed a high degree of stability of the
solutions obtained in the ranking of the alternatives. The results were validated by comparison with
LNN extensions of four multicriteria decision-making models.

Keywords: linguistic neutrosophic numbers; CODAS; multicriteria decision-making; power
generation technology

1. Introduction

Nowadays, the demands for new natural resources and energy are significantly increasing.
Consequently, the world has become increasingly aware about climate change and its impact.
Green solutions and environmental protection are becoming common issues of the twenty-first
century [1]. Fossil fuels are the main cause of environmental issues. Many challenges and problems
arise while making energy policy because of the concerns of a number of stakeholders [2]. In recent
years, many developed countries included environmental issues and reduced reliance on fossil fuels.
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The E.U. Energy and Climate package was adopted in 2008, which is intended to gradually adapt
Europe into a low-carbon economy [3]. For instance, the share of wind energy in Germany accounts for
8.7% of total energy [4]. On the other hand, even with their potential for solar and wind energy, steps are
still small in developing countries. Only about 5% of the rural population use electricity in Mozambique
and Tanzania, countries with plentiful renewable resources [5]. Implementation of renewable-energy
technologies often failed in African countries, or the technologies became unsustainable in the long
run [6]. There are several barriers, such as public resistance and lack of skilled manpower, to perform
required maintenance and operation [7]. The relationship between society and renewable-energy
technologies is one of the critical factors of success that needs to be satisfied if sustainable-energy
development is to be achieved [8]. Moreover, dust is a big problem in some countries for the wider
application of solar energy. In terms of installed capacity up until 2008, African countries had just
0.005% of the global estimation of 93,900 MW of installed wind-energy projects [9]. Around 90% of
Malaysian electricity generation depends on fossil fuels [10]. Since 2015, investments in developing
countries in renewable energy had started to surpass those in developed countries [11]. There is a
need for a balanced approach, and it is very crucial to evaluate alternative technologies to make the
right decisions.

A key challenge for integrating up to 100% renewable energy into the grid is electrical-energy
storage. Steps have been taken to support energy-storage technologies, with a focus on battery-
and hydrogen-storage technologies, through policy and regulatory change. This is mainly to
integrate increasing amounts of intermittent renewable energy that would be required to meet high
renewable-energy targets [12]. Yu et al. propose a general evaluation method for performance by
comparing six different approaches for promoting wind-power integration [13]. Complex metal
hydrides may be used to store hydrogen in a solid state, act as novel battery materials, or store solar
heat in a more efficient manner compared to traditional materials used for heat storage [14].

Libya is located in the middle of North Africa between Egypt and Tunisia, and has a coastline along
the Mediterranean Sea that extends for about 1900 km. The majority of the population (6.4 million)
live in the urban areas along the coast. The area of the desert is about 95% of the total area of the
country, which is approximately 1.76 million km2. The most prominent natural resources are petroleum
and natural gas, which are the main driving factor of the Libyan economy. Furthermore, Libya is
considered a country rich in renewable energy resources such as solar and wind energy. Consequently,
there is an urgent need for comprehensive energy strategies in renewable-energy technology [15].
Mohamed et al. [16,17] reported that by the end of the year 2020, the projected demand for electrical
power would be more than two and half. Renewable energy could be the effective solution for the
increased energy demand. Wind-energy plants could meet part of this demand, since wind potential is
reasonable in many remote and isolated areas around the country. Many studies have been conducted
in the field of renewable energy in Libya. However, these studies dealt only with a single alternative to
generating power [18]. According to Mardani et al. [19] there has been no research and no application
of decision-making approaches with regard to energy-management problems in Libya until now.

This paper has several objectives. The first objective is to improve the methodology for treating
uncertainties in the field of the Multicriteria Decision-Making (MCDM) group, and the methodology for
choosing the optimal Power-Generation Technology (PGT) through a new approach in the uncertainty
treatment based on Linguistic Neutrosophic Numbers (LNN). The second goal of the paper is to
prioritize the criteria and form a model that would enable an objective, scientifically based approach to
the selection of optimal PGT. The third objective of this paper is to bridge the gap that exists in the
methodology for the evaluation of PGT through a new approach to the treatment of uncertainty that is
based on LNN.

One of the contributions of this paper is an original MCDM model in which modifications
of the COmbinative Distance-based ASsessment (CODAS) method was carried out using LNN.
Another contribution of the paper is an original LNN Pairwise (LNN PW) model for determining the
weight coefficients of the criteria that have been developed by the authors, which contribute to the
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improvement of MCDM techniques. The third contribution of the paper is to improve the methodology
for selecting optimal PGT by means of a new approach to the treatment of uncertainty based on LNN.
This practical contribution is reflected in the possibility of applying the proposed criteria and models
in the preparation of documents for the selection of optimal PGT.

The rest of the paper is organized in the following way. The third section presents the algorithm
for the hybrid LNN PW-CODAS model, which is later tested in the fourth section through the real
case study of selecting optimal PGT in Libya. The fifth section includes a discussion of the results for
the LNN PW-CODAS model. This discussion is in the form of sensitivity analysis and comparison
of the results with LNN extensions of the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Multiattributive
Border Approximation Area Comparison (MABAC), and Multiattributive Ideal-Real Comparative
Analysis (MAIRCA) models. Finally, the sixth section presents concluding considerations with a
special emphasis on directions for future research.

2. Research Background

Electricity demand in Libya has risen dramatically in the past fifteen years due to a population
growth of about 1 million. Libya is one of the largest countries in North Africa relative electricity
consumption. Peak demand was more than 7000 MW over the past four years. The national electricity
grid consists of a high-, medium-, and low-voltage network of about 31,500 km [20]. The distribution
of citizens in small widely distributed villages makes the connection of these areas an impractical
solution. These areas rely on off-grid diesel generators to fulfill their power needs. In general, there are
200 scattered nearby villages with populations ranging between 25 and 500 inhabitancies, and far from
the grid by no less than 25 km. That makes electricity-network distribution relatively expensive [21].
According to statistics of the General Electricity Company of Libya (GECOL), energy demand had
significant growth between 2003 and 2012 recorded [22], and that increase in energy demand in the
household sector in Libya stresses decision makers to have a clear strategy to reduce carbon emissions
and energy use by improving occupants’ behavior as well as utilizing other sustainable measures [23].
As shown in Figure 1, the actual demand between January 2014 and April 2016 varied and reached
up to 7000 MW. The 2011 civil war led to the destruction of some transmission lines and substations.
This led to a decrease in power stations’ generation ability to 5050 MW, which caused a gap of more
than 1950 MW between supply and demand, resulting in many blackouts during 2015, 2016, and
2017. For instance, the western region was plunged into a total blackout in June 2017 for many days.
A blackout also hit western and southern Libya in January 2017.
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Figure 1. Electricity demand between 2014 and 2016.

The GECOL increased the dependence on natural gas in order to reduce CO2 emissions; however,
they still had difficulties in meeting their demand. Commercial and Public Services accounted for 40%
of electricity load in Libya, while the residential sector amounted to 27% and the industry sector to
20% [17].
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Libya has a variety of energy sources, but the country completely depends on fuel oil and natural
gas for generating its growing demands for electricity. Renewable-energy sources are not utilized
in significant amounts, and only 5 MW solar energy, separated into several small photovoltaic (PV)
projects, have been installed [22]. Crude-oil production during the last five years is shown in Figure 2.
Oil production was suspended because of the war and instability that has existed since February 2011.
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Libya has had total proven oil reserves of 47.1 billion barrels as reported in January 2012, the largest
endowment in Africa, and among the ten largest worldwide [25]. As a result of economic development,
demand on energy is expected to increase in the near future. Consequently, this will lead to more
consumption of oil and gas, which will cause a reduction in the national economic revenue and more
carbon dioxide emissions [26].

Libya has great potential for solar energy. In the coastal regions of the country, the daily average
of solar radiation on a horizontal plane is up to 7.1 kWh/m2/day, while radiation is 8.1 kWh/m2/day
in the southern region [27]. There is an average sunshine duration of about 3400 h per year. Covering
only 1% of Libyan land with 15% efficient solar cells would produce 20 million TJ per year [28]. This is
equivalent to a layer of 25 cm of crude oil per year on the land surface.

Libya’s potential for biomass is limited. Biomass-energy sources are small and can only be used
on an individual level as an energy source. In the current situation of the country, it is not suitable to
produce energy. By reviewing studies regarding municipal solid waste in Libya, it can be noticed that
the vast majority of them focused on the classification of solid-waste management rather than utilizing
the waste in power generation [29,30].

With regards to wind energy, the average wind speed at a 40 m height is in the range of 6–7.5 m/s.
One of several suitable locations along the Libyan coast is at the city of Dernah, where average wind
speed is around 7.5 m/s [31]. However, Libya is exposed to dry and hot winds that blow several times
during the year [15].

3. MCDM Approaches to Energy Policy

Energy planning is a field that is quite suitable for the use of MCDM [32]. Different multicriteria
decision-making methods and techniques have been used to improve the quality of decisions about
energy policy. Among these methods is the Analytical Network Process (ANP), Analytical Hierarchy
Process (AHP) [33–36], ELimination Et Choix Traduisant la REalité (ELECTRE) [37–40], PROMETHEE
for Sustainability Assessment (PROSA) method [41], and New Easy Approach To Fuzzy Preference
Ranking Organization METHod for Enrichment Evaluation (NEAT F-PROMETHEE) [42]. As decision
complexity increases, it becomes more difficult for decision makers to identify an alternative that
maximizes all decision criteria [43]. AHP is a common multicriteria decision-making method that
was developed by Saaty [44,45] to provide a flexible and easily understood way of analyzing complex
problems. The AHP method has been used more than any other MCDM method [46]. However,
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the drawback of this method is that it is still insufficient to explain uncertain conditions, particularly in
the pairwise comparison stage. Most human judgments could not be represented as exact numbers
because some of the evaluation criteria are subjective and qualitative in nature. Therefore, it is very
difficult for the decision maker to express preferences using exact numerical values and to provide
exact pairwise comparison judgments [47]. To tackle these problems, AHP has been integrated with
other methods, including ANN [48], fuzzy-set theory [49–54], Grey Relational Analysis [55,56], and a
combination of different methods [42,57]. Stein proposed MCDM using AHP to rank electric power
plants using different energy resources. The results indicate that wind, solar, hydro, and geothermal
power provide significantly more overall benefits than other technologies [58].

The CODAS method developed by Ghorabaee et al. [59] in 2016 has a number of features that have
not been considered in other multicriteria decision-making methods. It has been compared with some
existing MCDM methods, and was efficient in dealing with MCDM problems. An integrated model by
combining fuzzy-logic theory and the CODAS method has been used to select the best suppliers [60].
An integrated MCDM framework based on AHP and a fuzzy CODAS approach have been applied
for solving a maintenance decision problem in a process industry [61]. The CODAS method was
used to select the best supplier, and sensitivity analysis was conducted, confirming the stability of the
method [62,63]. It was used to select the best location of a desalination plant, as well [64].

4. LNN PW-CODAS Model

The following section (Section 4.1) gives the basic framework of the linguistic neutrosophic
concept [65], as well as basic arithmetic operations with LNN. After this, the PW-CODAS multicriteria
model based on the concept of LNN is presented in Sections 4.2 and 4.3.

4.1. Linguistic Neutrosophic Numbers

Due to the ambiguity of human thinking, the judgment of experts and their preferences in
complex decision-making conditions are difficult to present in numerical values. A much more
convenient and reliable presentation of expert preferences is enabled by the use of linguistic terms,
especially when it comes to qualitative attributes that describe certain phenomena. Therefore, modeling
expert preferences in decision-making problems using linguistic terms represents an interesting field
of research.

Linguistic neutrosophic numbers imply the independent presentation of the degree of truthfulness,
uncertainty, and falsehood of an evaluated object using three independent linguistic variables.
The concept of an LNN is a combination of single-valued neutrosophic numbers [65,66] and linguistic
variables. LNN uses independent linguistic variables to represent the degree of truthfulness,
uncertainty, and falsehood, and not, as in the single-valued neutrosophic numbers (SVNN),
correct numerical values. LNN is a very interesting concept for study since it enables the presentation
of uncertain and inconsistent linguistic information that is present in human reasoning in complex
systems. This particularly refers to the reasoning in complex conditions when it is necessary to
evaluate individual qualitative attributes using linguistic information and make an appropriate
decision. LNNs are also very suitable for presenting linguistic information about the complex attributes
of the decision, since LNN simultaneously exploits the benefits of SVNN and linguistic variables.

Definition 1. Assume that S = {s0, s1, . . . , st} is a linguistic set with odd cardinality t + 1. If e =
〈
sp, sq, sr

〉
is defined for sp, sq, sr ∈ S and p, q, r ∈ [0, t], sp, sq and sr represent linguistic expressions representing
independently the degrees of truth, uncertainty, and falsehood, then e is called LNN [67–70].

Definition 2. If e =
〈
sp, sq, sr

〉
, e1 =

〈
sp1 , sq1 , sr1

〉
and e2 =

〈
sp2 , sq2 , sr2

〉
are three LNN in S and k > 0,

then we can define arithmetic operations on LNN [71]:
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(1) Combining LNN “+”

e1 + e2 =
〈
sp1 , sq1 , sr1

〉
+
〈
sp2 , sq2 , sr2

〉
=
〈

sp1+p2−
p1 p2

t
, s q1q2

t
, s r1r2

t

〉
, (1)

(2) Multiplication LNN “×”

k× e = k
〈
sp, sq, sr

〉
=

〈
s

t−t(1− p
t )

k , s
t( q

t )
k , st( r

t )
k

〉
, (2)

(3) Multiplication of LNN by scalar, where k > 0

k× e = k
〈
sp, sq, sr

〉
=

〈
s

t−t(1− p
t )

k , s
t( q

t )
k , st( r

t )
k

〉
, (3)

(4) LNN power, where k > 0

ek =
〈
sp, sq, sr

〉k
=

〈
s

t( p
t )

k , s
t−t(1− q

t )
k , st−t(1− r

t )
k

〉
, (4)

Definition 3. If e =
〈
sp, sq, sr

〉
is LNN in S, then we can define the score function and the accuracy function

according to the following [71]:

Q(e) = (2t + p− q− r)/(3t), ∀ Q(e) ∈ [0, 1], (5)

T(e) = (p− r)/t, ∀ T(e) ∈ [−1, 1], (6)

Definition 4. If e1 =
〈
sp1 , sq1 , sr1

〉
and e2 =

〈
sp2 , sq2 , sr2

〉
are two LNN in S, then their relations of

comparison can be defined as [72]:

(1) If Q(e1) < Q(e2), then e1 < e2;
(2) If Q(e1) > Q(e2), then e1 > e2;
(3) If Q(e1) = Q(e2) and T(e1) < T(e2), then e1 < e2;
(4) If Q(e1) = Q(e2) and T(e1) > T(e2), then e1 > e2;
(5) If Q(e1) = Q(e2) and T(e1) = T(e2), then e1 = e2.

4.2. PW-LNN Model for Determination of Criteria Weights

In this paper, a new approach for obtaining criteria weights was used when determining the
weight coefficients of the evaluation criteria, which includes pairwise comparisons of linguistic
neutrosophic numbers. The PW-LNN model is performed through four steps:

Step 1. Formation of expert correspondent matrices of comparison in pairs of criteria (N(l)).
This starts from the assumption that the comparison of evaluation criteria in pairs C = {c1, c2, . . . cn}
(where n represents the total number of criteria) is performed by m experts. Experts {e1, e2, . . . , em} are

assigned weight coefficients {δ1, δ2, . . . , δm}, 0 ≤ δl ≤ 1, (l = 1, 2, . . . , m) and
m
∑

l=1
δl = 1. Comparison of

criteria in pairs is based on a predefined set of linguistic variables S = {si|i ∈ [0, t]}.
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Each expert el (l = 1, 2, . . . , m) performs comparison of the criteria in pairs C = {c1, c2, . . . cn} and,
therefore, for each expert we construct the corresponding initial matrix of comparison in the pairs
of criteria:

N(l) =
[
ξ
(l)
ij

]
n×n

=


ξ
(l)
11 ξ

(l)
12 . . . ξ

(l)
1n

ξ
(l)
21 ξ

(l)
22 · · · ξ

(l)
2n

...
...

. . .
...

ξ
(l)
n1 ξ

(l)
n2 . . . ξ

(l)
nn

 =



〈
s(l)p11, s(l)r11, s(l)q11

〉 〈
s(l)p12, s(l)r12, s(l)q12

〉
· · ·

〈
s(l)p1n, s(l)r1n, s(l)q1n

〉〈
s(l)p21, s(l)r21, s(l)q21

〉 〈
s(l)p22, s(l)r22, s(l)q22

〉
· · ·

〈
s(l)p2n, s(l)r2n, s(l)q2n

〉
...

...
. . .

...〈
s(l)pn1, s(l)rn1, s(l)qn1

〉 〈
s(l)pn2, s(l)rn2, s(l)qn2

〉
· · ·

〈
s(l)pnn, s(l)rnn, s(l)qnn

〉

, (7)

where elements ξ
(l)
ij represent linguistic variables from a set S = {si|i ∈ [0, t]}, s(l)pij , s(l)qij , s(l)rij ∈ S and

pij, qij, rij ∈ [0, t]. The matrix elements (7) that are on the diagonal of the matrix (i = j) have the values

ξ
(l)
ij =

〈
s(l)pij , s(l)qij , s(l)rij

〉
in which it is pij = qij = rij = t/2. The elements of the matrix (7) above the

diagonal are denoted as ξ
(l)
ij =

〈
s(l)pij , s(l)qij , s(l)rij

〉
, while the elements that lie below the diagonal of the

matrix are determined by the expression (8)

ξ
(l)
ji =

〈 s(l)pji = s(l)t−pij

s(l)rji = s(l)t−rij

s(l)qji = s(l)t−qij

〉
, (8)

Linguistic expressions ξ
(l)
ij =

〈
s(l)pij , s(l)qij , s(l)rij

〉
, that is s(l)pij , s(l)qij i s(l)rij , independently, provide

information on the degree of truthfulness, uncertainty and falsehood of experts’ preferences when
comparing them in pairs of criteria C = {c1, c2, . . . cn}.

Step 2. Formation of the aggregated matrix of comparison in pairs of criteria (N). The final
aggregated matrix of comparison in the pairs N is obtained by applying Expressions (10) or (11)

N =
[
ξij
]

n×n =


ξ11 ξ12 · · · ξ1n
ξ21 ξ22 · · · ξ2n

...
...

. . .
...

ξn1 ξn2 · · · ξnn

 =


〈
sp11, sr11, sq11

〉 〈
sp12, sr12, sq12

〉
· · ·

〈
sp1n, sr1n, sq1n

〉〈
sp21, sr21, sq21

〉 〈
sp22, sr22, sq22

〉
· · ·

〈
sp2n, sr2n, sq2n

〉
...

...
. . .

...〈
spn1, srn1, sqn1

〉 〈
spn2, srn2, sqn2

〉
· · ·

〈
spnn, srnn, sqnn

〉

, (9)

where elements ξij =
〈

spij
, sqij

, srij

〉
are obtained by applying the LNN Weighted Arithmetic Averaging

(LNNWAA) operator:

ξij = LNNWAA(ξ
(1)
ij , ξ

(2)
ij , .., ξ

(m)
ij ) =

m

∑
l=1

ξ
(l)
ij δl =

〈
s

t−t
m
∏

l=1
(1−

pij l
t )

δl , s
t

m
∏

l=1
(

qij l
t )

δl , s
t

m
∏

l=1
(

rij l
t )

δl

〉
, (10)

or using an LNN Weighted Geometric Averaging (LNNWGA) operator

ξij = LNNWGA(ξ
(1)
ij , ξ

(2)
ij , .., ξ

(m)
ij ) =

m

∏
l=1

ξ
(l)
ij

δl =

〈
s

t
m
∏

l=1
(

pij l
t )

δl , s
t−t

m
∏

l=1
(1−

qij l
t )

δl , s
t−t

m
∏

l=1
(1−

rij l
t )

δl

〉
, (11)

where ξ
(l)
ij =

〈
s(l)pij , s(l)qij , s(l)rij

〉
represent the elements of expert correspondence matrix (7).

Step 3. Determination of the deviation between elements of the aggregated matrix N. If there
are small differences between values ξik (1 ≤ k ≤ n) and other values ξij within the criterion cj
(j = 1, 2, . . . , n) then the criterion does not have much impact on the ranking of the alternatives and the
low value of weight coefficient wj. Conversely, if there are significant deviations between the values
ξik (1 ≤ k ≤ n) and other values of ξij within the criterion cj (j = 1, 2, . . . , n) then the criterion has a
major impact on the ranking of the alternatives and the high value of the weight coefficient. Finally,
if all the values of ξij are identical within the criterion cj (j = 1, 2, . . . , n), then the criterion has no
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effect on the ranking of the alternatives and has the value of the weight coefficient wj = 0.In order to
define the above deviations in the matrix N, the degree of deviation of the element of the matrix N, ξik
(1 ≤ k ≤ n), is calculated within the criterion cj(j = 1, 2, . . . , n).

γij(cij) =
n
∑

k=1
d(ξij, ξik) =

n
∑

k=1

{
1
3

[∣∣ f (spij)− f (spik )
∣∣ϕ +

∣∣∣ f (st−qij)− f (st−qik )
∣∣∣ϕ +

∣∣∣ f (st−rij)− f (st−rik )
∣∣∣ϕ]} 1

ϕ
, (12)

where d(ξij, ξik) represents the distance between ξik (1 ≤ k ≤ n) and ξij (j = 1, 2, . . . , n).
After that, the degree of deviation between all elements within the framework of the observed

criterion cj (j = 1, 2, . . . , n) is calculated:

γj(cj) =
n
∑

j=1
γij(cj) =

n
∑

j=1

n
∑

k=1
d(ξij, ξik)

=
n
∑

j=1

n
∑

k=1

{
1
3

[∣∣ f (spij)− f (spik )
∣∣ϕ +

∣∣∣ f (st−qij)− f (st−qik )
∣∣∣ϕ +

∣∣∣ f (st−rij)− f (st−rik )
∣∣∣ϕ]} 1

ϕ
,

(13)

Total deviations of all criteria in matrix N are obtained:

γ(c) =
n
∑

i=1
γj(cj) =

n
∑

i=1

n
∑

j=1

n
∑

k=1
γij(cij) =

n
∑

i=1

n
∑

j=1

n
∑

k=1
d(ξij, ξik)

=
n
∑

i=1

n
∑

j=1

n
∑

k=1

{
1
3

[∣∣ f (spij)− f (spik )
∣∣ϕ +

∣∣∣ f (st−qij)− f (st−qik )
∣∣∣ϕ +

∣∣∣ f (st−rij)− f (st−rik )
∣∣∣ϕ]} 1

ϕ
,

(14)

Step 4. Calculation of optimal values of weight coefficients of criteria (wj). Optimal values of
weight coefficients are obtained by applying Expression (15):

wj =

n
∑

j=1

n
∑

k=1

{
1
3

[
| f (spij)− f (spik )|

ϕ
+
∣∣∣ f (st−qij )− f (st−qik )

∣∣∣ϕ+∣∣∣ f (st−rij )− f (st−rik )
∣∣∣ϕ]} 1

ϕ

n
∑

i=1

n
∑

j=1

n
∑

k=1

{
1
3

[
| f (spij)− f (spik )|

ϕ
+
∣∣∣ f (st−qij )− f (st−qik )

∣∣∣ϕ+∣∣∣ f (st−rij )− f (st−rik )
∣∣∣ϕ]} 1

ϕ
, (15)

where wj (j = 1, 2, . . . , n) are the optimal values of the weight coefficients of the criteria and
n
∑

j=1
wj = 1.

4.3. LNN CODAS Method

In this section, we propose an LNN extension of the CODAS methodology to deal with
an uncertain domain-based MCDM problem. The CODAS method is an efficient and updated
decision-making methodology introduced by Keshavarz Ghorabaee et al. [59,60]. The algorithmic
steps of the modified LNN CODAS method are presented as follows:

Step 1: Formulation of the initial decision matrix (N). It starts with the assumption that m experts
performing an evaluation of a set of alternatives A = {a1, a2, . . . , ab} (where b denotes the final number
of alternatives) are involved in the decision-making process in relation to the defined set of evaluation
criteria C = {c1, c2, . . . cn} (where n represents the total number criteria). Experts {e1, e2, . . . , em} are

assigned weight coefficients {δ1, δ2, . . . , δm}, 0 ≤ δl ≤ 1, (l = 1, 2, . . . , m) and
m
∑

l=1
δl = 1. Evaluation of

alternatives is based on a predefined set of linguistic variables S = {si|i ∈ [0, t]}.
In order to perform the final ranking of the alternative ai (i = 1, 2, .., b) from the set of

alternatives A, each expert el (l = 1, 2, . . . , m) evaluates the alternatives according to the set of
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criteria C = {c1, c2, . . . cn}. Therefore, for each expert, we construct a correspondent initial matrix
of decision-making:

N(l) =
[
ξ
(l)
ij

]
b×n

=


ξ
(l)
11 ξ

(l)
12 . . . ξ

(l)
1n

ξ
(l)
21 ξ

(l)
22 · · · ξ

(l)
2n

...
...

. . .
...

ξ
(l)
b1 ξ

(l)
b2 . . . ξ

(l)
bn

 =



〈
s(l)p11, s(l)r11, s(l)q11

〉 〈
s(l)p12, s(l)r12, s(l)q12

〉
· · ·

〈
s(l)p1n, s(l)r1n, s(l)q1n

〉〈
s(l)p21, s(l)r21, s(l)q21

〉 〈
s(l)p22, s(l)r22, s(l)q22

〉
· · ·

〈
s(l)p2n, s(l)r2n, s(l)q2n

〉
...

...
. . .

...〈
s(l)pb1, s(l)rb1, s(l)qb1

〉 〈
s(l)pb2, s(l)rb2, s(l)qb2

〉
· · ·

〈
s(l)pbn, s(l)rbn, s(l)qbn

〉

, (16)

where the basic elements of the matrix N(l) (ξ(l)ij ) represent linguistic variables from the set

S = {si|i ∈ [0, t]}, s(l)pij , s(l)qij , s(l)rij ∈ S and pij, qij, rij ∈ [0, t]. Linguistic expressions ξ
(l)
ij =

〈
s(l)pij , s(l)qij , s(l)rij

〉
,

that is s(l)pij , s(l)qij and s(l)rij independently present the information about the degree of truthfulness,
uncertainty and falsehood in the evaluation of the alternative ai (i = 1, 2, .., b) according to the defined
set of criteria C = {c1, c2, . . . cn}.

Final aggregated decision matrix N is obtained by averaging elements ξ
(l)
ij =

〈
s(l)pij , s(l)qij , s(l)rij

〉
of

Matrix (16) using Expression (18).

N =
[
ξij
]

b×n =


ξ11 ξ12 . . . ξ1n
ξ21 ξ22 . . . ξ2n

...
...

. . .
...

ξb1 ξb2 · · · ξbn

 =


〈
sp11, sr11, sq11

〉 〈
sp12, sr12, sq12

〉
· · ·

〈
sp1n, sr1n, sq1n

〉〈
sp21, sr21, sq21

〉 〈
sp22, sr22, sq22

〉
· · ·

〈
sp2n, sr2n, sq2n

〉
...

...
. . .

...〈
spb1, srb1, sqb1

〉 〈
spb2, srb2, sqb2

〉
· · ·

〈
spbn, srbn, sqbn

〉
, (17)

where elements ξij =
〈

spij
, sqij

, srij

〉
are obtained using the LNNWGA operator:

ξij = LNNWGA(ξ
(1)
ij , ξ

(2)
ij , .., ξ

(m)
ij ) =

m

∏
l=1

ξ
(l)
ij

δl =

〈
s

t
m
∏

l=1
(

pij l
t )

δl , s
t−t

m
∏

l=1
(1−

qij l
t )

δl , s
t−t

m
∏

l=1
(1−

rij l
t )

δl

〉
, (18)

where elements ξ
(l)
ij =

〈
s(l)pij , s(l)qij , s(l)rij

〉
represent the elements of expert correspondence matrix (29).

Step 2. Calculation of the elements of the normalized matrix (Ŷ). Calculation of the elements of a
normalized matrix Ŷ =

[
ŷij
]

b×n is carried out using Expression (19).

ŷij =
〈

ŝpij , ŝqij , ŝrij

〉
=

{
ŝpij = st−pij ; ŝqij = st−qij ; ŝrij = st−rij i f ŷij ∈ C;
ŝpij = spij ; ŝqij = sqij ; ŝrij = srij i f ŷij ∈ B.

, (19)

where B and C are sets of benefit and cost type, respectively, and ŷij =
〈

ŝpij , ŝqij , ŝrij

〉
represents the

elements of a normalized matrix Ŷ.
Step 3. Calculation of elements of weighted matrix (G). Weighted matrix elements G =

[
gij
]

b×n =[〈∗
spij ,

∗
sqij ,

∗
srij

〉]
b×n

are obtained by using Expression (20)

gij =
〈

s∗pij
, s∗qij

, s∗rij

〉
= wj ·

〈
ŝpij , ŝqij , ŝrij

〉
=

〈
s∗

t−t(1−
pij
t )

wj , s∗
t( q

t )
wj , s∗

t( r
t )

wj

〉
, (20)

Step 4. Determine FR negative-ideal solution. We obtain the LNN negative-ideal solution matrix
NS = [nsj]1×n as follows

nsj = min
i
(gij), (21)

where nsj is LNN described as nsj =
〈

s−pj
, s−qj

, s−rj

〉
.

Step 5. Calculate the LNN weighted Euclidean (EDi) and LNN weighted Hamming (HDi)
distances of alternatives from the LNN negative-ideal solution. We obtain EDi and HDi as follows.
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LNN weighted Euclidean (EDi) distances:

EDi =
n

∑
j=1

dE
(

gij; nsj
)
, (22)

where dE
(

gij; nsj
)
, which we obtain as follows:

dE
(

gij, nsj
)
=

{
1
3

[∣∣∣ f(s∗pij

)
− f

(
s−pj

)∣∣∣2 + ∣∣∣ f(s∗t−qij

)
− f

(
s∗t−qj

)∣∣∣2 + ∣∣∣ f(s∗t−rij

)
− f

(
s∗t−rj

)∣∣∣2]} 1
2
, (23)

LNN weighted Hamming (HDi) distances

HDi =
n

∑
j=1

dH
(

gij; nsj
)
, (24)

where dH
(
rij; nsj

)
we obtain as follows:

dH
(

gij, nsj
)
=

1
3

[∣∣∣ f(s∗pij

)
− f

(
s−pj

)∣∣∣+ ∣∣∣ f(s∗t−qij

)
− f

(
s∗t−qj

)∣∣∣+ ∣∣∣ f(s∗t−rij

)
− f

(
s∗t−rj

)∣∣∣], (25)

where f (s∗i ) is a linguistic function obtained as f (s∗i ) =
i
t .

Step 6. Determine relative assessment matrix (RA). By applying Equation (26) we obtain elements
of the relative assessment matrix RA = [pie]b×b

pie = (EDi − EDe) + (z(EDi − EDe)× (HDi − HDe)), (26)

e e ∈ {1, 2, . . . , b} and z is a threshold function that is defined as follows [60]:

z(x) =

{
1 i f |x| ≥ θ

0 i f |x| < θ
, (27)

Threshold parameter (θ) of this function can be set by a decision maker. In this study, we used
θ = 0.02 for the calculations.

Step 7. Calculate assessment score (ASi) of each alternative. By applying Equation (28), we obtain
the assessment score

ASi =
b

∑
e=1

pie, (28)

The alternative with the highest assessment score is the most desirable alternative.

5. Application of the LNN PW-CODAS Model for the Selection of PGT in Libya

A questionnaire was distributed to a group of relevant experts at universities and power stations
in Libya. There are four criteria considered in this research: economic, environmental, social, and
technical criteria, as shown in Table 1.

Table 1. Criteria for the pairwise (PW) method.

Ci Criteria Subcriteria

C1 Economic

Investment cost
Operation and maintenance cost

Fuel cost
Plant life

Development
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Table 1. Cont.

Ci Criteria Subcriteria

C2 Environmental

Emissions
Land use

Noise
River and floodways

Archaeological and historical sites

C3 Technological

Efficiency
Safety

Reliability
Power transmission

Size and amount of power demand

C4 Social
Job creation

Public acceptance
Social benefits

The research involved four experts (ei, i = 1, 2, . . . , 4) with weight coefficients δ1 = 0.256,
δ2 = 0.265, δ3 = 0.192 and δ4 = 0.288. It should be noted that, in developing
countries, some technologies are more appropriate than others. In this research, the following
PGTs were considered: Gas-fired-power generation (A1), Geothermal-power generation (A2),
Solar-photovoltaic-power generation (A3), Solar-thermal-power generation (A4), Wind-power
generation (A5), and oil-fired power generation (A6). The evaluation of the alternatives by criteria
was carried out using a set of linguistic variables S = {si|i ∈ [0, 8]}, where s = {s0—exceedingly low,
s1—pretty low, s2—low, s3—slightly low, s4—medium, s5—slightly high, s6—high, s7—pretty high,
s8—exceedingly high}.

5.1. Determination of Weight Coefficients of Criteria Using the PW-LNN Model

As previously mentioned, four experts (δ1 = 0.256, δ2 = 0.265, δ3 = 0.192 and δ4 = 0.288) who
performed a comparison in pairs of evaluation criteria participated in the research.

Step 1:

In the first step, each expert performed a comparison in pairs of four criteria (C1–C4) and eighteen
subcriteria. Thus, for each expert, five correspondence matrices (one for the criteria and four for each
subcriterion group) were formed (Table 2). Comparison in pairs of criteria/subcriteria was performed
using a predefined set of linguistic variables S = {si|i ∈ [0, 8]}.
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Table 2. Expert comparison in the pairs of criteria/subcriteria.

Expert 1

...

Expert 4

C1 C2 C3 C4 C1 C2 C3 C4

C1 <s4,s4,s4> <s6,s6,s5> <s5,s3,s2> <s6,s5,s7> C1 <s4,s4,s4> <s3,s5,s3> <s7,s3,s2> <s2,s6,s1>
C2 <s2,s2,s3> <s4,s4,s4> <s4,s4,s4> <s6,s2,s2> C2 <s5,s3,s5> <s4,s4,s4> <s3,s5,s2> <s3,s7,s3>
C3 <s3,s5,s6> <s4,s4,s4> <s4,s4,s4> <s3,s3,s3> C3 <s1,s5,s6> <s5,s3,s6> <s4,s4,s4> <s1,s5,s3>
C4 <s2,s3,s1> <s2,s6,s6> <s5,s5,s5> <s4,s4,s4> C4 <s6,s2,s7> <s5,s1,s5> <s7,s3,s5> <s4,s4,s4>

C11 C12 C13 C14

...

C11 C12 C13 C14

C11 <s4,s4,s4> <s3,s6,s5> <s2,s1,s4> <s3,s5,s7> C11 <s4,s4,s4> <s3,s5,s3> <s3,s4,s3> <s2,s6,s1>
C12 <s5,s2,s3> <s4,s4,s4> <s3,s5,s3> <s3,s2,s2> C12 <s5,s3,s5> <s4,s4,s4> <s4,s5,s1> <s3,s7,s3>
C13 <s6,s7,s4> <s5,s3,s5> <s4,s4,s4> <s6,s3,s4> C13 <s5,s4,s5> <s4,s3,s7> <s4,s4,s4> <s6,s3,s1>
C14 <s5,s3,s1> <s5,s6,s6> <s2,s5,s4> <s4,s4,s4> C14 <s6,s2,s7> <s5,s1,s5> <s2,s5,s7> <s4,s4,s4>

C21 C22 C23 C24 C25

...

C21 C22 C23 C24 C25

C21 <s4,s4,s4> <s6,s5,s6> <s6,s4,s4> <s8,s0,s2> <s6,s6,s6> C21 <s4,s4,s4> <s5,s6,s3> <s7,s3,s3> <s6,s3,s3> <s5,s4,s1>
C22 <s2,s3,s2> <s4,s4,s4> <s8,s5,s1> <s7,s5,s2> <s7,s3,s4> C22 <s3,s2,s5> <s4,s4,s4> <s6,s4,s2> <s7,s5,s1> <s6,s4,s3>
C23 <s2,s4,s4> <s0,s3,s7> <s4,s4,s4> <s6,s5,s5> <s7,s1,s3> C23 <s1,s5,s5> <s2,s4,s6> <s4,s4,s4> <s4,s4,s4> <s5,s3,s3>
C24 <s0,s8,s6> <s1,s3,s6> <s2,s3,s3> <s4,s4,s4> <s5,s4,s2> C24 <s2,s5,s5> <s1,s3,s7> <s4,s4,s4> <s4,s4,s4> <s7,s1,s1>
C25 <s2,s2,s2> <s1,s5,s4> <s1,s7,s5> <s3,s4,s6> <s4,s4,s4> C25 <s3,s4,s7> <s2,s4,s5> <s3,s5,s5> <s1,s7,s7> <s4,s4,s4>

C31 C32 C33 C34 C35

...

C31 C32 C33 C34 C35

C31 <s4,s4,s4> <s6,s5,s6> <s6,s4,s4> <s8,s0,s2> <s6,s6,s6> C31 <s4,s4,s4> <s5,s6,s3> <s7,s3,s3> <s6,s3,s3> <s5,s4,s1>
C32 <s2,s3,s2> <s4,s4,s4> <s8,s5,s1> <s7,s5,s2> <s7,s3,s4> C32 <s3,s2,s5> <s4,s4,s4> <s6,s4,s2> <s7,s5,s1> <s6,s4,s3>
C33 <s2,s4,s4> <s0,s3,s7> <s4,s4,s4> <s6,s5,s5> <s7,s1,s3> C33 <s1,s5,s5> <s2,s4,s6> <s4,s4,s4> <s4,s4,s4> <s5,s3,s3>
C34 <s0,s8,s6> <s1,s3,s6> <s2,s3,s3> <s4,s4,s4> <s5,s4,s2> C34 <s2,s5,s5> <s1,s3,s7> <s4,s4,s4> <s4,s4,s4> <s7,s1,s1>
C35 <s2,s2,s2> <s1,s5,s4> <s1,s7,s5> <s3,s4,s6> <s4,s4,s4> C35 <s3,s4,s7> <s2,s4,s5> <s3,s5,s5> <s1,s7,s7> <s4,s4,s4>

C41 C42 C43

...

C41 C42 C43

C41 <s4,s4,s4> <s8,s5,s4> <s7,s5,s2> C41 <s4,s4,s4> <s6,s4,s2> <s7,s5,s1>
C42 <s0,s3,s4> <s4,s4,s4> <s6,s5,s5> C42 <s2,s4,s6> <s4,s4,s4> <s4,s4,s4>
C43 <s1,s3,s6> <s2,s3,s3> <s4,s4,s4> C43 <s1,s3,s7> <s4,s4,s4> <s4,s4,s4>
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Step 2:

In this step, the aggregation of the expert correspondence matrices (Table 2) was performed in the
final aggregated matrix of the comparison in the pairs.

NC1−C4 =


< s4, s4, s4 > < s3.58, s5.3, s4.88 > < s5.99, s2.57, s2.21 > < s3.99, s4.77, s5.4 >

< s3.96, s2.76, s3.47 > < s4, s4, s4 > < s3.23, s4.58, s3.31 > < s4.74, s5.65, s2.76 >

< s2.34, s4.8, s4.92 > < s5.64, s2.9, s4.3 > < s7.56, s3.22, s3.22 > < s2.97, s3.13, s2.6 >

< s2.72, s3.59, s4.4 > < s2.47, s3.43, s5.3 > < s5.28, s4.53, s4.83 > < s4, s4, s4 >


4×4

NC11−C14 =


< s4, s4, s4 > < s3, s5.3, s4.88 > < s2.57, s2.64, s3.87 > < s2.67, s4.77, s5.4 >

< s5, s2.76, s3.47 > < s4, s4, s4 > < s3.52, s4.82, s2.22 > < s3.42, s5.65, s2.76 >

< s5.27, s5.79, s4.3 > < s4.42, s3.48, s6.04 > < s4, s4, s4 > < s5.79, s4.87, s2.18 >

< s5.27, s3.59, s4.4 > < s4.52, s3.43, s5.3 > < s2.16, s4.03, s6.29 > < s4, s4, s4 >


4×4

NC21−C25 =


< s4, s4, s4 > < s5.59, s5.33, s4.87 > < s6.73, s3.96, s3.87 > < s7.11, s1.43, s3.06 > < s5.86, s5.06, s4.55 >

< s2.19, s2.86, s3.48 > < s4, s4, s4 > < s6.73, s4.91, s1.97 > < s6.52, s5.15, s1.69 > < s6.6, s3.77, s3.28 >

< s1.19, s4.16, s4.3 > < s0, s3.29, s6.19 > < s4, s4, s4 > < s5.73, s4.98, s4.75 > < s6.26, s2.08, s3.21 >

< s0, s8, s5.08 > < s1.37, s2.97, s6.53 > < s1.78, s3.14, s3.42 > < s4, s4, s4 > < s5.99, s3.46, s1.84 >

< s1.97, s3.09, s4.7 > < s0, s4.28, s4.77 > < s0, s6.12, s4.83 > < s1.82, s5.3, s6.4 > < s4, s4, s4 >


5×5

NC31−C35 =


< s4, s4, s4 > < s3, s5.3, s4.88 > < s2.88, s4.29, s4.17 > < s2.57, s2.64, s3.87 > < s2.67, s4.77, s5.4 >

< s5, s2.76, s3.47 > < s4, s4, s4 > < s3.23, s4.58, s3.31 > < s3.52, s4.82, s2.22 > < s3.42, s5.65, s2.76 >

< s4.97, s3.76, s4.09 > < s4.72, s3.73, s4.9 > < s4, s4, s4 > < s3.1, s5.1, s3.99 > < s2.31, s3.48, s2.98 >

< s5.27, s5.79, s4.3 > < s4.42, s3.48, s6.04 > < s4.69, s3.04, s4.12 > < s4, s4, s4 > < s5.79, s4.87, s2.18 >

< s5.27, s3.59, s4.4 > < s4.52, s3.43, s5.3 > < s5.28, s4.87, s5.14 > < s2.16, s4.03, s6.29 > < s4, s4, s4 >


5×5

NC41−C43 =

 < s4, s4, s4 > < s6.73, s4.91, s2.78 > < s6.52, s5.15, s1.69 >

< s0, s3.29, s5.42 > < s4, s4, s4 > < s5.73, s4.98, s4.75 >

< s1.37, s2.97, s6.53 > < s1.78, s3.14, s3.42 > < s4, s4, s4 >


3×3

Aggregation of expert matrices of comparison of criteria/subcriteria in the pairs was accomplished
by using LNNWGA (Expression (11)). Aggregation of element ξ12 =

〈
sp12 , sq12 , sr12

〉
of criterion matrix

(NC1−C4) is obtained

ξ12 = LNNWGA(< s6, s6, s5 >,< s3, s5, s6 >,< s3, s5, s5 >,< s3, s5, s3 >)

=

〈 s8{(6/8)0.256·(3/8)0.265·(3/8)0.192·(3/8)0.288},

s8−8{(1−6/8)0.256·(1−5/8)0.265·(1−5/8)0.192·(1−5/8)0.288},

s8−8{(1−5/8)0.256·(1−6/8)0.265·(1−5/8)0.192·(1−3/8)0.288}

〉
= 〈s3.58, s5.30, s4.88〉

Step 3:

After determining the aggregated matrices of the criteria/subcriteria, by applying
Expressions (12)–(14) the deviations between the elements within the observed aggregated matrix are
calculated. Thus, for criteria (C1–C4), the deviations given in Table 3 were obtained.

Using Expression (15), we obtain the weight coefficients of criteria C1–C4.

w1 = 6.649/(6.649 + 5.623 + 7.408 + 5.817) = 0.261,
w2 = 5.623/(6.649 + 5.623 + 7.408 + 5.817) = 0.221,
w3 = 7.408/(6.649 + 5.623 + 7.408 + 5.817) = 0.291,
w4 = 5.817/(6.649 + 5.623 + 7.408 + 5.817) = 0.228.

In a similar way, the weight coefficients of the subcriterion are obtained. Global and local values
of the weight coefficients of the criteria/subcriteria are shown in Table 4.
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Table 3. Deviations between the criteria in matrix NC1−C4.

No. C1 C2 C3 C4

1 0.1169 0.0973 0.2785 0.0680
2 0.2191 0.1418 0.4126 0.1988
3 0.5000 0.4289 0.5237 0.4545
4 0.1156 0.2222 0.2111 0.1011
5 0.1169 0.0973 0.2785 0.0680
6 0.3258 0.0857 0.1608 0.2198
7 0.5804 0.5000 0.5528 0.4890
8 0.0611 0.1584 0.2290 0.1502
9 0.2191 0.1418 0.4126 0.1988
10 0.3258 0.0857 0.1608 0.2198
11 0.4963 0.4696 0.6374 0.6109
12 0.3152 0.1394 0.3347 0.1163
13 0.5000 0.4289 0.5237 0.4545
14 0.5804 0.5000 0.5528 0.4890
15 0.4963 0.4696 0.6374 0.6109
16 0.5945 0.5684 0.3636 0.5000
17 0.1156 0.2222 0.2111 0.1011
18 0.0611 0.1584 0.2290 0.1502
19 0.3152 0.1394 0.3347 0.1163
20 0.5945 0.5684 0.3636 0.5000

Suma 6.6498 5.6233 7.4082 5.8174

Table 4. Weight coefficients of criteria/subcriteria.

Criteria Local Weights Global Weights Rank

C1 0.261 - 2
C11 0.181 0.047 14
C12 0.211 0.055 9
C13 0.326 0.085 1
C14 0.282 0.074 4
C2 0.221 - 4

C21 0.150 0.033 17
C22 0.175 0.039 15
C23 0.234 0.052 12
C24 0.271 0.060 8
C25 0.170 0.037 16
C3 0.291 - 1

C31 0.171 0.050 13
C32 0.185 0.054 11
C33 0.185 0.054 10
C34 0.248 0.072 5
C35 0.210 0.061 7
C4 0.228 - 3

C41 0.350 0.080 3
C42 0.354 0.081 2
C43 0.297 0.068 6

Global values of the weight coefficients of the subcriterion were obtained by multiplying the
local values of the weight coefficient of the criteria with the values of the weight coefficients of the
correspondent subcriterion. So, for example, the values of the weight coefficients of the C11–C14
subcriterion group are obtained by multiplying the local value of the weight coefficient of the C1
criteria with each of the local values of the C11–C14 weight coefficients.
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5.2. Evaluation of PGT—Application of LNN CODAS Model

After determining the global values of the weight coefficients of the criteria, the evaluation of
the alternatives using the LNN CODAS model was carried out. The four experts carried out the
evaluation of PGTs marked A1 to A6. As with the PW model, the experts evaluated alternatives by
assigning a certain value from a set of linguistic variables S = {si|i ∈ [0, 8]}, where {s0—exceedingly
low, s1—pretty low, s2—low, s3—slightly low, s4—medium, s5—slightly high, s6—high, s7—pretty
high, s8—exceedingly high}.

Steps 1 and 2: In order to form an initial decision matrix, the first step included the formation
of expert correspondent matrices in which the expert evaluations of alternatives were shown in
accordance with the criteria. Thus, a corresponding initial-decision matrix was constructed for each
expert (Table 5).

Table 5. Expert correspondence matrix.

Expert 1

Crit. A1 A2 A3 A4 A5 A6

C11 (min) <s3,s7,s5> <s7,s1,s0> <s4,s6,s4> <s3,s2,s2> <s5,s3,s6> <s3,s7,s4>
C12 (min) <s3,s7,s6> <s4,s4,s4> <s7,s7,s5> <s5,s4,s0> <s7,s7,s7> <s7,s5,s1>
C13 (min) <s3,s5,s2> <s7,s7,s7> <s4,s6,s5> <s4,s0,s6> <s4,s7,s0> <s4,s6,s6>
C14 (max) <s4,s7,s4> <s4,s7,s4> <s4,s4,s2> <s2,s4,s2> <s6,s6,s1> <s7,s3,s2>
C21 (min) <s3,s3,s4> <s8,s5,s7> <s6,s7,s2> <s3,s4,s4> <s5,s7,s3> <s1,s6,s3>
C22 (min) <s4,s5,s2> <s2,s4,s4> <s8,s2,s1> <s6,s7,s6> <s5,s8,s6> <s5,s3,s5>
C23 (min) <s1,s2,s5> <s8,s3,s8> <s7,s2,s4> <s2,s7,s8> <s5,s3,s2> <s6,s7,s3>
C24 (min) <s6,s6,s6> <s7,s8,s4> <s5,s1,s3> <s2,s8,s5> <s2,s2,s5> <s6,s1,s6>
C25 (min) <s3,s6,s1> <s5,s6,s4> <s4,s3,s8> <s6,s1,s4> <s1,s1,s1> <s4,s5,s4>
C31 (max) <s5,s4,s2> <s2,s2,s5> <s5,s2,s3> <s4,s5,s5> <s8,s3,s3> <s2,s8,s3>
C32 (max) <s5,s7,s7> <s4,s4,s7> <s4,s3,s6> <s7,s4,s4> <s3,s7,s2> <s5,s1,s6>
C33 (max) <s2,s1,s6> <s4,s2,s4> <s6,s6,s3> <s6,s1,s2> <s1,s8,s1> <s3,s5,s2>
C34 (max) <s4,s5,s5> <s3,s1,s6> <s4,s3,s2> <s4,s6,s3> <s6,s1,s1> <s8,s2,s6>
C35 (max) <s6,s6,s3> <s6,s5,s2> <s4,s6,s7> <s5,s2,s6> <s4,s4,s2> <s6,s5,s1>
C41 (max) <s1,s6,s4> <s1,s1,s7> <s8,s2,s2> <s5,s7,s4> <s8,s2,s8> <s4,s5,s8>
C42 (max) <s4,s2,s7> <s2,s2,s2> <s7,s8,s1> <s5,s7,s1> <s2,s3,s8> <s7,s7,s8>
C43 (max) <s3,s2,s2> <s3,s1,s3> <s6,s5,s7> <s5,s4,s2> <s4,s8,s3> <s1,s1,s6>

...

Expert 4

Crit. A1 A2 A3 A4 A5 A6

C11 (min) <s4,s5,s5> <s6,s4,s0> <s5,s3,s5> <s4,s4,s0> <s5,s6,s5> <s3,s6,s4>
C12 (min) <s4,s5,s6> <s3,s6,s2> <s7,s7,s4> <s4,s5,s1> <s5,s3,s7> <s7,s7,s2>
C13 (min) <s3,s5,s3> <s7,s5,s7> <s3,s7,s4> <s3,s0,s5> <s4,s7,s1> <s4,s7,s6>
C14 (max) <s4,s7,s5> <s4,s7,s3> <s5,s4,s0> <s5,s5,s1> <s6,s5,s2> <s6,s5,s3>
C21 (min) <s2,s5,s3> <s7,s5,s6> <s6,s7,s2> <s5,s1,s3> <s5,s7,s3> <s2,s7,s3>
C22 (min) <s5,s6,s1> <s2,s5,s6> <s8,s2,s2> <s4,s5,s6> <s4,s6,s7> <s3,s3,s5>
C23 (min) <s1,s2,s5> <s7,s4,s6> <s5,s1,s4> <s2,s6,s7> <s6,s6,s3> <s5,s8,s4>
C24 (min) <s5,s5,s6> <s6,s8,s5> <s6,s1,s4> <s4,s7,s6> <s2,s3,s5> <s5,s2,s7>
C25 (min) <s3,s6,s2> <s5,s8,s4> <s6,s2,s7> <s4,s4,s3> <s7,s2,s2> <s3,s7,s4>
C31 (max) <s5,s4,s1> <s2,s2,s5> <s6,s3,s3> <s4,s7,s5> <s8,s4,s2> <s3,s7,s3>
C32 (max) <s2,s2,s7> <s4,s5,s5> <s5,s5,s5> <s7,s1,s5> <s4,s8,s2> <s4,s4,s6>
C33 (max) <s2,s3,s6> <s3,s2,s4> <s6,s6,s3> <s4,s1,s2> <s4,s6,s1> <s4,s3,s1>
C34 (max) <s1,s4,s5> <s2,s4,s8> <s4,s2,s2> <s3,s3,s4> <s4,s2,s1> <s6,s2,s6>
C35 (max) <s6,s7,s3> <s4,s5,s1> <s7,s5,s6> <s2,s2,s6> <s5,s4,s2> <s6,s6,s1>
C41 (max) <s1,s5,s4> <s2,s3,s7> <s8,s1,s2> <s3,s1,s4> <s8,s2,s7> <s3,s5,s7>
C42 (max) <s3,s1,s5> <s1,s3,s1> <s6,s7,s2> <s3,s2,s2> <s1,s2,s7> <s8,s6,s8>
C43 (max) <s2,s4,s2> <s2,s2,s2> <s6,s4,s6> <s4,s4,s2> <s4,s7,s2> <s2,s1,s7>
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In order to evaluate the alternatives, the expert correspondence matrices (Table 5) were aggregated
into a unique initial-decision matrix (Table 6). Aggregation of expert matrices N(l) (l = 1, 2, 3, 4) was
performed using LNNWGA (Expression (18)). Before aggregation using the LNNWGA operator,
normalization of the expert correspondence matrices was performed (Expression (19)). Thus, in the
C11-A1 position in expert correspondence matrix N(1), normalization of the element ŷ11 was performed
as follows:

ŷ11 = 〈ŝ5, ŝ1, ŝ3〉 =


ŝ5 = st−3

ŝ1 = st−7

ŝ3 = st−5

In a similar way, normalization of the remaining criteria in the expert correspondence matrices
was performed. Finally, using the LNNWGA operator (Expression (18)) we obtain an aggregated
normalized initial decision matrix (Table 6).

Table 6. Aggregated normalized initial matrix of decision-making.

Criteria
Alternatives

A1 A2 A3 A4 A5 A6

C11 (min) <s4.49,s5.91,s5> <s1.46,s2.86,s0.2> <s4.43,s4.87,s4.32> <s4.71,s3.3,s1.01> <s3,s4.38,s5.3> <s6.04,s6.78,s4>
C12 (min) <s4,s5.74,s6.55> <s4.03,s4.83,s2.85> <s1.2,s6.63,s4.49> <s3.26,s4.32,s0.3> <s1.65,s5.38,s6.86> <s1.34,s5.93,s1.97>
C13 (min) <s5.03,s4.58,s2.5> <s1,s5.97,s7> <s4.45,s6.81,s4.49> <s4.52,s0.43,s5.5> <s4.21,s6.8,s0.3> <s4.45,s6.81,s5.78>
C14 (max) <s4.32,s1.7,s3.28> <s4,s1,s4.59> <s3.95,s3.76,s8> <s2.16,s4.27,s8> <s6.03,s2.31,s6.61> <s6.7,s3.8,s5.15>
C21 (min) <s2.82,s3.87,s4.59> <s7.24,s2.17,s1.3> <s5,s1,s6> <s3.47,s5.41,s4.59> <s4.79,s1,s5> <s0,s1.95,s5>
C22 (min) <s2.82,s5.33,s1.27> <s5.79,s4.77,s5.34> <s0,s1.56,s1.5> <s3.17,s5.85,s6.55> <s3.73,s8,s6.64> <s3.68,s2.82,s5>
C23 (min) <s7,s2.45,s5.51> <s0,s4.57,s8> <s3.11,s2.23,s4> <s5.39,s6.54,s8> <s2.67,s4.96,s2.5> <s1.87,s8,s3.31>
C24 (min) <s2.98,s6.36,s6.25> <s0,s8,s4.59> <s2.67,s1.28,s3.31> <s5.15,s8,s6.06> <s6.25,s2.89,s5.51> <s2.43,s1.3,s6.81>
C25 (min) <s5.66,s5.46,s1.3> <s3.23,s8,s3.83> <s3.42,s2.1,s8> <s2.93,s2.71,s3.28> <s3.72,s1.72,s1.3> <s4.26,s5.93,s3.83>
C31 (max) <s2.49,s3.57,s1.73> <s6.18,s1.82,s4.77> <s2.67,s2.58,s3.49> <s4.24,s5.98,s5.51> <s0,s3.08,s2.28> <s5.42,s8,s2.82>
C32 (max) <s2.1,s5.59,s0.82> <s3.33,s3.11,s2.28> <s4.45,s4.25,s2.14> <s6.72,s5.89,s3.74> <s3.01,s1.02,s5.84> <s4.92,s5.4,s2.28>
C33 (max) <s1.8,s5.97,s2.28> <s3.48,s6.55,s3.83> <s3.63,s2.11,s5.51> <s4.91,s6.35,s6.34> <s1.49,s1.27,s7> <s2.57,s4.58,s6.23>
C34 (max) <s1.63,s2.75,s3> <s2.4,s5.96,s0.83> <s4.43,s6.16,s6.55> <s3.23,s4.43,s4.12> <s4.91,s6.19,s6.86> <s7.41,s6,s2>
C35 (max) <s5.79,s0.85,s5> <s4.63,s2.4,s6.81> <s3.42,s2.14,s1.76> <s2.1,s6.25,s1.4> <s4.52,s3.42,s6> <s6,s1.86,s6.86>
C41 (max) <s1.14,s2.41,s4.22> <s1.46,s6.12,s1.7> <s8,s6.57,s6.55> <s2.84,s6.03,s3.83> <s7.23,s6,s0.76> <s3.23,s3.64,s0.76>
C42 (max) <s3.23,s6.23,s2.08> <s1.59,s5.5,s6.64> <s6.94,s1.05,s6.33> <s2.48,s5.71,s6.33> <s1.64,s5.78,s0.57> <s7.73,s1.06,s0>
C43 (max) <s2.16,s5.56,s6> <s2.4,s6.33,s5.6> <s5.55,s2.75,s1.57> <s2.57,s3.35,s8> <s3.7,s0.3,s5.53> <s1.67,s6.63,s1.47>

The element at position C11-A1 is aggregated using Expression (18)

ŷ11 =
4

∏
l=1

ŷ(l)11
δl =

〈 ŝ8·{(3/8)0.256·(3/8)0.265·(4/8)0.192·(4/8)0.288},

ŝ8−8{(1−7/8)0.256·(1−5/8)0.265·(1−6/8)0.192·(1−5/8)0.288},

ŝ8−8{(1−5/8)0.256·(1−5/8)0.265·(1−5/8)0.192·(1−5/8)0.288}

〉
= 〈ŝ4.49, ŝ5.907, ŝ5.003〉

where δl (δ1 = 0.256, δ2 = 0.265, δ3 = 0.192 and δ3 = 0.288) represent the weight coefficients of the
experts. In the same way, the aggregation of the remaining elements of the aggregated normalized
matrix in Table 6 is carried out.

Step 3: Calculation of the elements of the weighted matrix. Elements of the weighted matrix
(Table 7) are obtained by multiplying the weight coefficients (Table 4) with the elements of the
aggregated normalized matrix (Table 6). Using Expression (20), we obtain the elements of the weighted
matrix (Table 7).
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Table 7. Weighted initial matrix of decision-making.

Criteria
Alternatives

A1 A2 A3 A4 A5 A6

C11 (min) <s0.31,s7.89,s7.82> <s0.08,s7.62,s6.72> <s0.3,s7.81,s7.77> <s0.33,s7.67,s7.25> <s0.18,s7.78,s7.85> <s0.51,s7.94,s7.74>
C12 (min) <s0.3,s7.85,s7.91> <s0.3,s7.78,s7.56> <s0.07,s7.92,s7.75> <s0.23,s7.73,s6.68> <s0.1,s7.83,s7.93> <s0.08,s7.87,s7.41>
C13 (min) <s0.64,s7.63,s7.25> <s0.09,s7.8,s7.91> <s0.53,s7.89,s7.62> <s0.55,s6.24,s7.75> <s0.49,s7.89,s6.06> <s0.53,s7.89,s7.78>
C14 (max) <s0.44,s7.14,s7.49> <s0.4,s6.87,s7.68> <s0.39,s7.57,s8> <s0.18,s7.64,s8> <s0.78,s7.3,s7.89> <s1,s7.57,s7.74>
C21 (min) <s0.11,s7.81,s7.85> <s0.6,s7.66,s7.53> <s0.26,s7.47,s7.92> <s0.15,s7.9,s7.85> <s0.24,s7.47,s7.88> <s0,s7.63,s7.88>
C22 (min) <s0.13,s7.88,s7.45> <s0.39,s7.84,s7.88> <s0,s7.51,s7.5> <s0.15,s7.9,s7.94> <s0.19,s8,s7.94> <s0.19,s7.68,s7.86>
C23 (min) <s0.81,s7.53,s7.85> <s0,s7.77,s8> <s0.2,s7.49,s7.72> <s0.45,s7.92,s8> <s0.17,s7.8,s7.53> <s0.11,s8,s7.64>
C24 (min) <s0.22,s7.89,s7.88> <s0,s8,s7.74> <s0.19,s7.17,s7.59> <s0.48,s8,s7.87> <s0.69,s7.53,s7.82> <s0.17,s7.18,s7.92>
C25 (min) <s0.36,s7.89,s7.48> <s0.15,s8,s7.78> <s0.17,s7.61,s8> <s0.14,s7.68,s7.74> <s0.19,s7.55,s7.48> <s0.22,s7.91,s7.78>
C31 (max) <s0.15,s7.69,s7.41> <s0.57,s7.43,s7.8> <s0.16,s7.56,s7.68> <s0.29,s7.89,s7.85> <s0,s7.63,s7.52> <s0.44,s8,s7.6>
C32 (max) <s0.13,s7.85,s7.08> <s0.23,s7.6,s7.48> <s0.34,s7.73,s7.45> <s0.75,s7.87,s7.68> <s0.2,s7.16,s7.87> <s0.4,s7.83,s7.48>
C33 (max) <s0.11,s7.87,s7.48> <s0.24,s7.91,s7.69> <s0.26,s7.45,s7.84> <s0.4,s7.9,s7.9> <s0.09,s7.25,s7.94> <s0.17,s7.76,s7.89>
C34 (max) <s0.13,s7.41,s7.45> <s0.2,s7.83,s6.79> <s0.45,s7.85,s7.89> <s0.29,s7.67,s7.63> <s0.53,s7.85,s7.91> <s1.37,s7.84,s7.24>
C35 (max) <s0.61,s6.97,s7.77> <s0.41,s7.43,s7.92> <s0.27,s7.38,s7.29> <s0.15,s7.88,s7.19> <s0.4,s7.59,s7.86> <s0.65,s7.32,s7.93>
C41 (max) <s0.1,s7.27,s7.6> <s0.13,s7.83,s7.07> <s8,s7.88,s7.87> <s0.27,s7.82,s7.54> <s1.36,s7.82,s6.63> <s0.32,s7.51,s6.63>
C42 (max) <s0.33,s7.84,s7.18> <s0.14,s7.76,s7.88> <s1.2,s6.79,s7.85> <s0.24,s7.79,s7.85> <s0.15,s7.79,s6.46> <s1.92,s6.8,s0>
C43 (max) <s0.17,s7.81,s7.85> <s0.19,s7.87,s7.81> <s0.62,s7.44,s7.17> <s0.21,s7.54,s8> <s0.33,s6.41,s7.8> <s0.13,s7.9,s7.13>

The element at the position C11-A1 was obtained using Expression (20)

g11 =
〈

s∗p11
, s∗q11

, s∗r11

〉
= wC11 ·

〈
ŝp11 , ŝq11 , ŝr11

〉
=

〈
s∗

8−8(1− 4.49
8 )

0.047 , s∗
8( 5.907

8 )
0.047 , s∗

8( 5.003
8 )

0.047

〉
=
〈
s∗0.305, s∗7.89, s∗7.82

〉
where wC11 = 0.047 represents the weight coefficient of criterion C11, and

〈
ŝp11 , ŝq11 , ŝr11

〉
represents

the element at the position of the C11-A1 aggregated normalized matrix (Table 6).
Step 4: Using Expression (21), we obtain the elements of LNN negative-ideal solution matrix

NS = [nsj]1×17 as follows

ns1 =< s0.08, s7.62, s6.72 >, ns2 =< s0.07, s7.92, s7.75 >, ns3 =< s0.09, s7.80, s7.91 >,
ns4 =< s0.18, s7.57, s7.74 >, ns5 =< s0.00, s7.66, s7.53 >, ns6 =< s0.00, s7.84, s7.88 >,
ns7 =< s0.00, s7.53, s7.85 >, ns8 =< s0.00, s7.53, s7.82 >, ns9 =< s0.14, s7.55, s7.48 >,
ns10 =< s0.00, s7.43, s7.80 >, ns11 =< s0.13, s7.85, s7.08 >, ns12 =< s0.09, s7.25, s7.94 >,
ns13 =< s0.13, s7.41, s7.45 >, ns14 =< s0.15, s7.88, s7.19 >, ns15 =< s0.10, s7.27, s7.60 >,
ns16 =< s0.14, s7.79, s7.85 >, ns17 =< s0.13, s7.54, s8.00 > .

Step 5: Applying Expressions (23) and (25), LNN-weighted Euclidean (EDi) and Hamming (HDi)
distances of alternatives from the LNN negative-ideal solution, are calculated (Table 8).

The Euclidean and Hamming distances shown in Table 8 are determined on the basis of the
distance of the elements of the weighted initial-decision matrix (Table 7) from the negative-ideal
values defined in Step 4. Thus, for the element at position C11-A1 (Equations (23) and (25)) we get the
following values

dE11(g11, ns1) =

{
1
3

[∣∣∣ 0.31
8 −

0.08
8

∣∣∣2 + ∣∣ 7.63
8 −

7.62
8

∣∣2 + ∣∣ 7.25
8 −

6.72
8

∣∣2]} 1
2
= 0.719

dH11(g11, ns1) =
1
3

[∣∣∣ 0.31
8 −

0.08
8

∣∣∣+ ∣∣ 7.63
8 −

7.62
8

∣∣+ ∣∣ 7.25
8 −

6.72
8

∣∣] = 0.595
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Table 8. LNN-weighted Euclidean and Hamming distances.

Euclidean Distances Hamming Distances

Crit. A1 A2 A3 A4 A5 A6 Crit. A1 A2 A3 A4 A5 A6

C11 0.719 0.654 0.713 0.681 0.714 0.719 C11 0.595 0.529 0.590 0.564 0.586 0.603
C12 0.788 0.766 0.783 0.721 0.787 0.763 C12 0.653 0.635 0.639 0.593 0.644 0.623
C13 0.746 0.787 0.777 0.705 0.703 0.786 C13 0.631 0.643 0.653 0.590 0.586 0.660
C14 0.713 0.709 0.760 0.764 0.743 0.749 C14 0.592 0.587 0.629 0.623 0.630 0.644
C15 0.758 0.736 0.745 0.763 0.742 0.750 C15 0.624 0.625 0.618 0.629 0.616 0.613
C21 0.768 0.788 0.752 0.794 0.799 0.779 C21 0.632 0.659 0.614 0.655 0.661 0.644
C22 0.756 0.773 0.745 0.781 0.751 0.766 C22 0.648 0.631 0.616 0.656 0.620 0.630
C23 0.772 0.770 0.721 0.778 0.753 0.740 C23 0.639 0.629 0.596 0.654 0.642 0.609
C24 0.735 0.756 0.747 0.737 0.717 0.751 C24 0.609 0.618 0.611 0.602 0.588 0.617
C31 0.731 0.740 0.739 0.764 0.734 0.757 C31 0.603 0.626 0.609 0.636 0.599 0.636
C32 0.711 0.716 0.722 0.742 0.712 0.729 C32 0.577 0.588 0.597 0.629 0.584 0.604
C33 0.742 0.755 0.741 0.766 0.737 0.759 C33 0.607 0.623 0.610 0.638 0.599 0.622
C41 0.700 0.690 0.745 0.722 0.747 0.717 C41 0.572 0.565 0.622 0.597 0.626 0.632
C42 0.706 0.736 0.702 0.725 0.742 0.731 C42 0.595 0.612 0.578 0.589 0.616 0.617
C43 0.702 0.703 0.939 0.727 0.687 0.665 C43 0.573 0.575 0.938 0.601 0.608 0.552
C44 0.748 0.780 0.735 0.779 0.712 0.492 C44 0.618 0.637 0.639 0.640 0.579 0.354
C51 0.776 0.777 0.723 0.771 0.708 0.744 C51 0.635 0.637 0.610 0.632 0.582 0.607

Step 6: The values obtained in Table 8 are used to determine the elements of the relative assessment
matrix (Table 9).

Table 9. Relative assessment matrix.

Alter. A1 A2 A3 A4 A5 A6 ASi Rank

A1 0.000 −0.080 −0.583 −0.272 0.124 0.310 −0.501 4
A2 0.080 0.000 −0.502 −0.191 0.204 0.390 −0.019 3
A3 0.583 0.502 0.000 0.311 0.706 0.893 2.995 1
A4 0.272 0.191 −0.311 0.000 0.395 0.581 1.128 2
A5 −0.124 −0.204 −0.706 −0.395 0.000 0.186 −1.243 5
A6 −0.310 −0.390 −0.893 −0.581 −0.186 0.000 −2.360 6

Step 7: By summing the obtained values in the relative assessment matrix (Table 9), we get
the assessment score (ASi) for each alternative. An alternative that has the highest ASi value is the
most preferred alternative. The value of ASi tells us about the distance of the alternative from the
negative-ideal solution. It is desirable that the alternative has as much ASi value as possible, that is,
to be as far removed from the negative-ideal solution. ASi values and rank of alternatives are shown in
Table 9.

6. Results and Discussion

The results are discussed in two parts. In the first part, a sensitivity analysis of the LNN
PW-CODAS model was performed through 68 scenarios. In the second part, a comparison of the
obtained results was made with other multicriteria decision-making methods (VKO) for evaluation
of the PGT. Since LNN is a new concept applied in the field of VKO, so far from all traditional VKO
models, only the LNN-based TOPSIS model is known [73]. Therefore, in order to discuss the results in
this paper, extension of MABAC [74], VIKOR [75], and MAIRCA [76] was carried out. A more detailed
analysis of the first and second part of the discussion of the results is presented in the following part.

Changes in weight coefficients can significantly affect the ranking of alternatives, and hence
analysis of weight-coefficient changes is one of the important steps for validating the results of the
decision-making model. In this paper, the sensitivity analysis of ranking alternatives in relation to
changes in the weight coefficients of criteria through 68 scenarios was made, divided into four groups.
The first group of scenarios consisted of the first 17 scenarios, marked with S1–S17. In each scenario,
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one criterion was favored, and its value was increased by 1.45, while the values of the remaining criteria
were reduced by 0.35. In the second group of scenarios, labeled S18–S34, the same procedure was
repeated, where in each scenario, the value of the favorable criterion was increased by 1.65, while the
remaining values were reduced by 0.35. In the third and fourth group of scenarios (scenarios S35–S51
and S52–S68), the value of the favorable criterion was increased by 1.85 and 2.05, respectively, while the
remaining values, as in the previous two groups of scenarios, were reduced by 0.35. Changes in the
ranking of alternatives in 68 scenarios are shown in Figure 3.
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Changes in weight coefficients through 68 scenarios show that assigning different weight to the
criteria leads to a change in the ranks of individual alternatives, which confirms that the model is
sensitive to changes in weight coefficients. By comparing the first-ranked alternatives (A3 and A4)
through scenarios with initial ranks from Table 9, we can notice that the starting rank is confirmed.
Alternative A3 remained first-ranked through all scenarios, while the A4 alternative is second-ranked
in 54 scenarios, in 14 scenarios it is third-ranked, and in two scenarios it is fourth. It is similar with other
alternatives, so alternatives A5 and A6 through 67 scenarios (98.53%) kept their rankings, while the A1
alternative in 92.64% of the scenarios remained fourth in the ranking. Minor variations in the rankings
occurred with alternative A2, which was initially the third-ranked alternative. Alternative A1 kept
its initial rank in 72.06%, while in the remaining scenarios it was second-ranked (16 scenarios) and
fourth-ranked (three scenarios).

Based on the presented analysis, we can conclude that changes in rankings through the scenarios
were not dramatic, which is also confirmed by the values of Spearman’s coefficient (SK), as one of the
reliable criteria for the correlation of ranking [77] (Figure 4).

Values of SK correlation of ranges through scenarios were obtained by comparing the initial rank
of the LNN PW-CODAS model (Table 9) with ranks obtained through the scenarios. From Figure 4,
we can see that there are no significant deviations in ranking through the 68 scenarios. In all scenarios,
the values of SK did not fall below 0.829. The average SK value for all scenarios was 0.980, which shows
that rank correlation was very high through the scenarios. Since all SK values were significantly higher
than 0.8, we can conclude that there was very high correlation (closeness) of rankings, and that the
proposed rank is confirmed and credible [77].

In the following part, the validation of the LNN PW-CODAS model was performed by comparing
the results with LNN TOPSIS [73], LNN MABAC (proposed), LNN VIKOR (proposed), and LNN
MAIRCA (proposed) models. A comparison of the ranking of alternatives according to LNN VKO
models is shown in Figure 5.
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Figure 5. Comparison of ranking of alternatives according to methods.

Spearman’s coefficient of rank correlation was used to determine the relation between results
obtained by different approaches. The results of the ranking comparison show extremely high
correlation between the applied models. Correlation between the LNN PW-CODAS and LNN TOPSIS
model is 1.00, while the correlation between LNN PW-CODAS and the remaining models is 0.943
(Figure 6).

Mean value of SK through all scenarios was 0.956, which shows extremely high correlation.
Since all values of SK were significantly higher than 0.8, we can conclude that there is a very high
correlation (closeness) of ranks, and that the proposed rank is confirmed and credible.
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Based on the presented analysis, in addition to the confirmation of ranking credibility, we can
conclude that the LNN-based approach successfully exploits the uncertainties that arise in the group
decision-making process. By examining the four main criteria and 17 subcriteria, this study helps firm
managers in understanding the PGT and offers the following benefits: The first benefit of this study is
developing criteria and subcriteria selection based on a comprehensive literature review. The second
benefit is not only in selecting the best PGT, but also analysis of technology that did not meet the
defined criteria. The methodology’s flexibility in selection and weighing of performance measures to
be used is also valuable. This flexibility would allow management to perform sensitivity analysis at
multiple levels and thus obtain more robust and relevant solutions.

The result of this study helps managers establish the systematic approach to select the best PGT
within the set of criteria and analyze the most appropriate alternate PGT. This tool would be acceptable
to managers who have to deal with greater magnitudes of uncertainties and imprecision in evaluation
of the best PGT.

7. Conclusions

Taking into account the uncertainties present in the decision-making process is a precondition
for objective decision making. This paper presents a novel approach for treating uncertainty based
on the application of LNN. An LNN-based approach is the integration of linguistic variables in
neutrosophic decision theory. The LNN approach takes into account the uncertainties in evaluations
made by decision makers since, for each rating of a decision maker, only the linguistic variables from
a predefined set of variables are used. This eliminates subjective estimates when determining the
numerical values of the attributes.

The LNN approach was applied in a case study to select optimal PGT in Libya. In the PW-CODAS
multicriteria model, the original modification of the CODAS method was performed using LNN.
In addition to the above modification, the paper presents the original PW model for determining
the weight coefficients of the criteria. Finally, model validation was performed by comparing results
with existing LNN-based MCDM models. Discussion of the results and validation showed significant
stability of the results and pointed to the significant possibilities of applying the presented LNN
PW-CODAS model.

Since this is a new model that has not been considered in the literature so far, the direction
of future research should focus on the application of LNN in other traditional MCDM models for
determining the weight coefficients of the criteria (e.g., Best–Worst method, DEMATEL method, etc.).
Further integration of LNN approaches into traditional VKO models would allow taking into account
the subjectivity present in the decision-making process.

The research provides guidance for energy-policy makers to reach their decision in a more
structured and strategic way. The results support GECOL plans to develop Libya’s renewable-energy
capacity. The model could be applied in other countries and could be generalized for other applications.
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However, the importance weights may vary among different countries. For instance, public acceptance
or investment costs are expected to vary among different regions according to the culture and costs
related to the technology. Through this paper, detailed presentation, development, and validation of
the LNN PW-CODAS model was carried out. Given the promising results, future work could include
developing a software solution for real-world applications. Authors believe that further research
in the future should be directed towards the development of a software model based on the LNN
PW-CODAS model. A software application would be very useful for managerial uses.
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1. Kravanja, Z.; Čuček, L. Multi-objective optimisation for generating sustainable solutions considering total
effects on the environment. Appl. Energy 2013, 101, 67–80. [CrossRef]

2. Rahman, M.M.; Paatero, J.V.; Lahdelma, R.; Wahid, M.A. Multicriteria-based decision aiding technique for
assessing energy policy elements-demonstration to a case in Bangladesh. Appl. Energy 2016, 164, 237–244.
[CrossRef]

3. Baležentis, T.; Streimikiene, D. Multi-criteria ranking of energy generation scenarios with Monte Carlo
simulation. Appl. Energy 2017, 185, 862–871. [CrossRef]

4. Höfer, T.; Sunak, Y.; Siddique, H.; Madlener, R. Wind farm siting using a spatial Analytic Hierarchy Process
approach: A case study of the Städteregion Aachen. Appl. Energy 2016, 163, 222–243. [CrossRef]

5. Ahlborg, H.; Hammar, L. Drivers and barriers to rural electrification in Tanzania and
Mozambique–Grid-extension, off-grid, and renewable energy technologies. Renew. Energy 2014, 61,
117–124. [CrossRef]

6. Barry, M.-L.; Steyn, H.; Brent, A. Selection of renewable energy technologies for Africa: Eight case studies in
Rwanda, Tanzania and Malawi. Renew. Energy 2011, 36, 2845–2852. [CrossRef]

7. Chiciudean, G.; Harun, R.; Arion, F.; Chiciudean, D.; Oroian, C.; Muresan, I. A Critical Approach on
Sustainable Renewable Energy Sources in Rural Area: Evidence from North-West Region of Romania.
Energies 2018, 11, 2225. [CrossRef]

8. Brent, A.C.; Kruger, W.J. Systems analyses and the sustainable transfer of renewable energy technologies:
A focus on remote areas of Africa. Renew. Energy 2009, 34, 1774–1781. [CrossRef]

9. Aïssa, M.S.B.; Jebli, M.B.; Youssef, S.B. Output, renewable energy consumption and trade in Africa.
Energy Policy 2014, 66, 11–18. [CrossRef]

10. Ahmad, S.; Tahar, R.M. Selection of renewable energy sources for sustainable development of electricity
generation system using analytic hierarchy process: A case of Malaysia. Renew. Energy 2014, 63, 458–466.
[CrossRef]

11. Hu, H.; Xie, N.; Fang, D.; Zhang, X. The role of renewable energy consumption and commercial services
trade in carbon dioxide reduction: Evidence from 25 developing countries. Appl. Energy 2018, 211, 1229–1244.
[CrossRef]

12. Moore, J.; Shabani, B. A Critical Study of Stationary Energy Storage Policies in Australia in an International
Context: The Role of Hydrogen and Battery Technologies. Energies 2016, 9, 674. [CrossRef]

13. Yu, Y.; Chen, H.; Chen, L. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries
for Improving Wind Power Integration in the Cogeneration System. Energies 2018, 11, 263. [CrossRef]

14. Møller, K.T.; Sheppard, D.; Ravnsbæk, D.B.; Buckley, C.E.; Akiba, E.; Li, H.-W.; Jensen, T.R. Complex metal
hydrides for hydrogen, thermal and electrochemical energy storage. Energies 2017, 10, 1645. [CrossRef]

15. Abohedma, M.B.; Alshebani, M.M. Wind load characteristics in Libya. World Acad. Sci. Eng. Technol. 2010, 4,
88–91.

http://dx.doi.org/10.1016/j.apenergy.2012.04.025
http://dx.doi.org/10.1016/j.apenergy.2015.11.091
http://dx.doi.org/10.1016/j.apenergy.2016.10.085
http://dx.doi.org/10.1016/j.apenergy.2015.10.138
http://dx.doi.org/10.1016/j.renene.2012.09.057
http://dx.doi.org/10.1016/j.renene.2011.04.016
http://dx.doi.org/10.3390/en11092225
http://dx.doi.org/10.1016/j.renene.2008.10.012
http://dx.doi.org/10.1016/j.enpol.2013.11.023
http://dx.doi.org/10.1016/j.renene.2013.10.001
http://dx.doi.org/10.1016/j.apenergy.2017.12.019
http://dx.doi.org/10.3390/en9090674
http://dx.doi.org/10.3390/en11020263
http://dx.doi.org/10.3390/en10101645


Energies 2018, 11, 2489 23 of 25

16. Mohamed, A.M.; Al-Habaibeh, A.; Abdo, H.; Abdunnabi, M.J.R. The significance of utilizing renewable
energy options into the Libyan Energy Mix. Energy Res. J. 2013, 4, 15–23. [CrossRef]

17. Mohamed, A.M.; Al-Habaibeh, A.; Abdo, H. An investigation into the current utilisation and prospective of
renewable energy resources and technologies in Libya. Renew. Energy 2013, 50, 732–740. [CrossRef]

18. Aljamel, S.A.; Badi, I.A.; Shetwan, A.G. Using Analytical Hierarchy Process to Select the Best Power
Generation Technology in Libya. Int. J. Eng. Inf. Technol. 2017, 3, 159–163.

19. Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K.M.; Khoshnoudi, M. A review of
multi-criteria decision-making applications to solve energy management problems: Two decades from 1995
to 2015. Renew. Sustain. Energy Rev. 2017, 71, 216–256. [CrossRef]

20. Ibrahim, I.S.; Kreama, N.; Khalat, M.; Matouq, M. Three years performance of thirty stand alone PV systems
used to electrify an isolated village in Libya. In Proceedings of the 22th European Photovoltaic Solar Energy
Conference, Milan, Italy, 3–7 September 2007.

21. Saleh, I.M. Prospects of renewable energy in Libya. In Proceedings of the Solar Physics and Solar Eclipses
(SPSE 2006), Waw an Namos, Libya, 27–29 March 2006; pp. 153–161.

22. GECOL. Current Status of the Libyan Power System and Its Future Plans; GECOL: Tripoli, Libya, 2013.
23. Mohamed, A.M.; Al-Habaibeh, A.; Abdo, H.; Elabar, S. Towards exporting renewable energy from MENA

region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya.
Appl. Energy 2015, 146, 247–262. [CrossRef]

24. Economics, T.; Libya Crude Oil Production. Trading Economics: 2018. Available online: https://
tradingeconomics.com/libya/crude-oil-production (accessed on 20 March 2018).

25. World Energy Council. World Energy Resources; World Energy Council: London, UK, 2013.
26. Khalil, A.; Asheibe, A. The chances and challenges for renewable energy in Libya. In Proceedings of the 4th

Renewable Energy Conference, Palermo, Italy, 22–25 November 2015; pp. 1–6.
27. Rajab, Z.; Zuhier, M.; Khalil, A.; El-Faitouri, A.S. Techno-economic feasibility study of Solar Water Heating

system in Libya. In Proceedings of the 2017 8th International Renewable Energy Congress (IREC), Amman,
Jordan, 21–23 March 2017; pp. 1–6.

28. Eljrushi, G.S.; Zubia, J. Photovoltaic power plant for the southern region of Libya. Appl. Energy 1995, 52,
219–227. [CrossRef]

29. Abdelnaser, O.; Alsadey, S.; Gavrilescu, M. Municipal solid waste management in Bani Walid City, Libya:
Practices and challenges. J. Environ. Manag. Tour. 2011, 2, 228–237.

30. Hamad, T.A.; Agll, A.A.; Hamad, Y.M.; Sheffield, J.W. Solid waste as renewable source of energy: Current
and future possibility in Libya. Case Stud. Therm. Eng. 2014, 4, 144–152. [CrossRef]

31. Ahwide, F.; Spena, A.; El-Kafrawy, A. Estimation of electricity generation in libya using processing technology
of wind available data: The case study in derna. APCBEE Procedia 2013, 5, 451–467. [CrossRef]

32. Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain.
Energy Rev. 2007, 11, 1584–1595. [CrossRef]
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