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The Arch Truss Girder again.--~Iore upon the New System. 
By S. W. ROBINSON, C.E., Detroit, Michigan. 

M'~ article in the March Number of :your Journal, contained in its: 
latter portion the statement, without the proof--of a few principles and 
formulae as applied to my system of the "Arch  Truss Girder," where 
the curve of the arched chord is such,--the tics all being normal to 
it ,--that the stress is uniform throughout the cord for a uniform hori- 
zontal loading throughout. The stress of the diagonals in the case 
there considered was compression. 

That may be well where the girder is executed in wood ; but if iron 
be employed it may be desirable that the diagonals resist tension. The 
origin was also taken at the crown. 

I have found it more convenient to reckon the number of the panne], 
or bay from one end. 

In this article I propose to consider the case where the diagonals 
suffer tension ; and to give rigorous analytical proof of every principle 
there stated, or here employed: and also. to reckon the number of 
pannel from the end of the truss. 

Dimensions of the _Parts. 
The formulm given before would apply here; the only modification. 

VOL. X L V I I . - - T H I R D  S ~ E I E S . - - N O .  6 . - - J l r • E ,  1864.  81 



362 Civil E n g i n e e r i n g .  

necessary being that required for reckoning the number of bay from 
the end. 

Using the same notation as before, and taking the origin of co-ordi- 
nates at the point • in the Figure, we have 
x t ~ - r . - - x ,  a n d y ~ = a - - y ;  o r x - - - ~ - - x  p , a n d y = a - y  r; which 
substituted in the expressions given before for the co-ordinates of K, I, 
6, &e., in the Figure, and dropping the accents give 

y~ : - cos ,  i~ a ~ s i n )  i~ ! 

xn = B - -  sin. 4 2a + a - -4 -a  sin)  i,, j 

C 

)M F ~ ~ E  ~ D N 
When FIGE is the n th panne l  n ~ 3 ; the co-ord inates of  Q are x 3 and 

Ya ; QE = ls, (~F= L3, GI := Ca, I~IE -= b~, 

Mm = bta -= bs + b~ _ b, + b,,_~ br,~ and the angle at G=i  a the angle 
2 2 

of oI with ME ----- i~r 
The angle of i o at ~ is given by the formula. 

B 2 
b = ~ sin. i. (2) 

of the last article by making b - m  
2a 

... sin. io = - ~ ,  (3) 

Honce for any angle i. we have 

io=io ~io_ ~ (s--~,). (4) 
N bI 

Equation (2) gives the distance from the middle to any point. 
.'. b ~=  B - - b o r  

B a 
5 . = B -  2-a sin. i, (5) 

for the distances M)', ~E, &C. 
The expression for l as before is 

B'~ 
1, = a -  4 a  sinY in. (6) 

The length of the diagonal FG is 

'° =( ) 
sin. On (~.--b~-~) ' + ~  ½ (7) 

in which tang. On-- Y~ x.-- b~_i (8) 
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The length of any part of the arched chord is 

co = ( x n - -  x._~) see. i ' . ,  

in which ~*n --  i, + i,_~ 
2 

Stress of the -Parts. 

The various parts of a truss built for any purpose, should be so 
proportioned as to withstand the greatest strain ever liable to come 
upon them. It  is for this maximum stress that I have designed these 
formulae for the truss. 

I f  no other except a uniform loading throughout should ever come 
upon the arch truss, no diagonals would be necessary, nor would any 
compression ever occur upon the normals. This is the case theoretical- 
ly, with the roof, but practically it is not. Snow and ice are liable to 
gather upon one side• This case would be represented more approxi- 
mately by a load over part of it. And applied to railroad bridging 
the strength of each part is severely tested. Here the load may be 
regarded as uniform; and a long train moving over extends from the 
end upon which it enters, at different instances, to various parts along 
the roadway until we have the case of a uniform load throughout. 

The stress of the diagonals being zero before the load entOPs, and 
zero after it entirely overreaches the bridge, and not being zero for a 
partial load, it is plain that each diagonal has a maximum as this load 
~)asses along. 

I shall attempt ¢o prove that the diagonal has its maximum as the 
end of the load reaches the middle of the bay to which the diagonal 
considered belongs: and that the chords have their maximum when 
the load extends entirely over• 

Throughout this article in speaking of a loading, the uniform load 
as far as it extends is always referred to. 

Now let the maximum stress of the upper or lower chord, at any 
points, as o or s, be required. Pass a plain through G, perpendicular 
to the straight chord. The two parts of the truss (~EN and GrM being 
perfectly ridged may be regarded as single pieces. Then, according 
to principles demonstrated in "mechanics,"  there will exist in the 
upper chord a horizontal force equal and opposite to that in the lower 
chord, (since all the external forces are vertical) which will be the sum 
of the moments of the external forces taken upon either side of this 
section. 

I f  the load extend, as represented in the Figure, a distance x be- 
yond this section the sum of moments will be. 

X 
(Bw + v) Ns - -  w x  ~ -  H Gs. 

Also by moments 

v 2 B ~ - W  (Ms+x) Ms+x • ~ ,  
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in which w = the weight per unit of the load, 
w ..... the weight per unit of the truss, 

and v =-that portion of the vertical force at N resulting from 
the partial load ; which substituted gives 

( w 2) 1 wx 2 
tX = B W +  ~ - ! M 8  - ~ X )  ( ~ , B - -  :~IS) Gs . . . . .  2 0 s  m a x .  (10) 

Placing the first differential co-efficient equal zero the first condition 
tbr a maximum gives x =: 2]]--Ms. 

The second differential co-efficient --  - -  Ms, which satisfies the second 
condition; that is, .for a maximum of either chord the load must extend 
entlre]y over the truss. Hence 

Por the maximum strain of the upper chord we will have the expres- 
]]2 

sion w 2 a  or, 

B 2 
~r=(w+w)  ~ (11) 

This is also equal the maximum of the straight chord at the middle, 
but the ties diminish it toward the ends as given in the last article. 

Hence since b I, - - - -B-  b t we will have for 

Maximum strain of the straight chord 

Tensile strain of tile normals. 
I t  is plain that the weight of the truss affects only the chords and 

normals, since from a uniform load there results no strain upon tho 
diagonals. 

The total tensile strain upon the normals from the middle to one end 
qJ)B $ 

w a s  found to be v=--2~ i o. 

Hence the strain upon each for this case will be 
p B 2 
- = ( w  + f w )  'X~  i° =P'  (13)  
lg 

in which f is a fraction expressing what part of the weight of the 
structure is contained in the roadway and straight chords. The value 
of p will be at its maximum when the load is entirely throughout, for 
the stress of the diagonals, being tension, tends toward diminishing 
tlmt of the normals. 

Stress of the diagonals. 
The stress of the diagonals each have their maximum as the load in 

passing over, arrives at the middle of the bay considered. This strain 
being a function of the horizontal and vertical forces will have its maxi- 
mum when the sum of the components of these forces in the diagonal 
have their maximum. 
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• Let t, and t~ represent these two components resulting from H and 
v respectively, ht, h 2 the components in the chord. 

Then, (referring to the figure,) the maximum of GF is for the load 
~1 m, upon the hypothesis assumed. I f  it be otherwise, let the load 
extend beyond m, ~ distance x. The expression for 1~ is given in (10) 
by making Ms = ~m-~b r, and neglecting w. This has its maximum 
for a-load throughout, as has been shown. But the vertical force at 
the point considered is equal the vertical force at ~, diminished by 
the opposite vertical force resulting from the load between m and M, 
or the transverse shearing at m. 

Hence we will have 

v----~-~w (b'+ x)* - -  wx---- :~B+ ~ -  x - - 2  (2B- -b )  . (14) 

which has its maximum for x = 0, v being at its maximum for a load 
onlyto  the point considered, the sum of the components from v and rt 
may have their maximum at this point. 

Resolving the forces in the diagonal GF, and the part  of the chord 
Ol which together resist a and v we get, 

h~ cos. i t n~ t t  COS. O~=rln,  fit sin. i ~ = t ,  sin. 0 , 
a n d - - h  2 sin. i~n+ t z sin. 0 . : v n ,  h 2 cos. irn: t2  cos. 0~, 

from which 

H tang. i' V (15) 
t, -=- sin. 0 - -  cos. ~/ tang. ¢' and t~ = sin. 0 ~ cos. 0 tang. ¢" 

For a maximum of t = t  a + t 2 we may omit the common denomina- 
tor, and the expression that will give the maximum, will be 
v + H tang. i ; or, substituting H and v as given above we will have 

{ 4- w  __ e2y } tang. 
This may be transformed to 

4Byl,b~ f (2B - -  b') tang. i + y  } ~ 4~yX (b' tang./---y)  (x-2(2~-Y))  (16) 

This will have its maximum when x ~ 0. :For x being the only vari- 
able in the case, the first term is constant, and in the second term b ~ 
tang. i<y ,  andx  < 2 B - - b  ~ which makes the second term negative for 
any applicable positive values of x. I think no formula is necessary to 
show that t is no greater for a shorter load than b r, since both H and v 
increase to the section considered; 

That is, for a maximum stress of the diagonal, the loading must ex- 
ten~. to the middle of the bay considered, and no farther. 

The expression (16) does not hold for x negative, which corresponds 
to a shorter load than b p. For this case the moments must be taken upon 
the other side of the section. The conditions for a maximum from the 
differential calculus fail here. 

The condition ~ = 0 ~ tangent, is satisfied only where an infini- 

31 ~ 
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tessimal element of the arc constructed from y~-f(x) is horizontal: In 
the ease above considered where t ~ f (x) the ordinate t continues to 
increase from ~ to the section considered, and beyond. Consequently 
the tangent does not equ'.ll zero at this point. But there are points where 

it equals zero which would be indicated by the condition --0.  cgx 

I f  the curve of the arched chord have any form whatever, concave 
toward the straight one ; or if both are straight and parallel or not, the 
expression (16) hohls equally true. For the extraordinary case in 
which the curve is convex toward the straight chord, b' tangent i > y ,  
and the load must extend beyond the bay considered. 

I f  the diagonal resist compression, the expression b t tangent i <y ,  
is still true : or, the conditions for a maximum of t remain unchanged. 

Therefore, the maximum stress of the diagonals for every practical 
case above mentioned, will be 

Vn-kn~ tang. itn (17) 
tL~-t'~=-=$ -----sin. 0u--cos. entang, i'n 

The weight of the truss having no effect upon the diagonals, the ex- 
pression for H and v, to be used in this formula are those resulting from 
(10) and (14) by neglecting w and making x =  0. Or 

w b ~ 2 .  2 B - -  x .  
V=-- 4z and H . - -  Y~ V. (18) 

Compression of the 5formals. 
The maximum compression of a normal occurs when the load arrives 

to the centre of the bay considered. Thus for the normal GE, the load 
extends to m: for roJ~ may be regarded as a pannel, and the case comes 
under one already discussed above. Hence calling c the required com- 
pression and noticing that (~ and OF resist H and v, the resolved forces 
become 

c, cos. i ' ,  - -  h sin. i'~+~= v ,  
c~ sin. i'n ~- h COS. ~'n+l= IIn 

from which 
vn q- i~ tang. ~'n+l 

c ~= cos. in q- sin. i~ tang. i'~+l" . (19) 

In all these formulae the algebraic sign of the trigonometrical func- 
tion of i must be observed. 

These principles, for all kinds of truss bridges have been fully de- 
veloped, and will probably soon appear before the public in a thorough 
and excellent work upon "Engineer ing"  about to be issued by De 
Volson Wood,--Professor of Civil Engineering, University of Miehi- 
gan.--Reference need only be had to his numerous articles published 
in our journals to insure all of the original, and genuine character of 
the work. 

By means of a model constructed expressly for the purpose, he has 
been able to prove the results of his investigation of the truss by 
actual experiment, and to bring into the clearest light many errors 
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ex.isting in works now constantly referred to by the "practical en- 
gineer. 

Comparison of the new, and t]~e ordinary parabolic systems in 
numerical results. 

In order to show more clearly what I have obtained by these inves- 
tigations upon the truss, I have computed by the preceding formulae 
the value of the stresses of some of the principle parks for the two 
systems, which are tabulated below. 

The quantities computed for the ~Lrch truss with parabc, lic arc, are the 
maximum values according to the same principles by which the :~ew 
system has been treated. 

The stresses of the diagonals acting as either ties or braces have been 
calculated for both systems. The example I have taken is for 2~---- 
160, ~--- span ; a ~ 20 --~ depth of truss ; 2N ~ 12 ~ whole number of bays ; 
w : 0 ;  w - - l ;  the same for both systems. 

From this data I get for the compression of the arched 
chord throughout for this system, 160 

The same at the middle of lower chord. 
At the end bay of lower chord, . 
For parabolic system, arched chord at the crown, 
At last bay, 
Lower chord throughout, 

THE DIAGOlqALS, AS TIES OR ~RACES. 
NEW SYSTEM. 

Bay. 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

141"965 
160 

178"886 
160 

PARABOLIC SYSTI~M. 

as ties. as braces, as ties. as braces. 
16,480 20,220 19,524 16 500 
20,222 21,919 20,905 18,078 
21.111 23,786 22,686 20,488 
23,247 24,926 23,864 22,502 
24,615 25,183 23,811 23,766 
25,098 24,532 23, 710 24,185 
24,650 22,986 22,322 23,673 
23,245 20,617 20,140 22,302 
20,898 19, 227 17,402 20,125 
17,686 14,286 14,700 17,395 

It  appears from these that the greatest stresses upon the diagonals 
4~e for those of the new system. The difference of the sums total of 

e two systems as ties is 8"183, and as braces 8"668. But this dis- 
tributed among the ten diagonals are tile hypothesis that an equal 
amount belongs to each, gives about 0"8. Or, the mean of the stresses 
being about 20, the increase of stress is about T~,4 some more and 
some less. :But at the same time there is a diminution in the total 
lengths of all the diagonals of about z ~ .  

:But there is also an increase of stress in the normals, over the ver- 
tical ties of the parabolic form, of about ~ :  but at the same time 
there is a gain in the length of about al~ in t'~vor of the new system. 

Although the arguments founded upon the diagonals and normals 
against the new system slightly outweigh those in favor of it, still the 
great decrease of stress in the arched and straight chords must greatly 
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overbalance them all. Thediminution of stress for the arched chords 
near the abutments as may be seen above is 18-886, and in the straight 
chords 18"035, or a saving of about ~ of the stress, or of area of section 
near the ends of the truss. These quantities vary with a or B. 

I f  we consider the weight of the truss and make w nearly equal 
w, the amount of stress for the diagonals remains unchanged, while the 
saving of stress to the chords is nearly doubled. 

In the "Howe's  Truss" the stress of the chords diminish toward 
the ends. At the same time that of the diagonals is greatly augmented 
while the length remains the same. Probably this alone is sufficient to 
condemn the system for iron bridging. I have observed that iron 
bridges, under the arch truss system with parabolic arc, are quite com- 
mon. But as iron gains the ascendency over wood as a building ma- 
terial for bridges,--why is not this system with normal ties destined 
to become adopted as one of the most common forms.~ 

In the preceding part of my last article I stated, where integrating 
for expressions for c6-ordinates to the curve, that I had not attempted 
the complete integration of the expression as a function of x and y 
only. I have since received a communication containing an algebraic 
solution of my final equations of y ~ f ( i )  and x ~ f ( i )  from Mr. E. P. 
Austin, Astronomer, formerly Assistant Astronomer to U.S. Lake Sur- 
vey; he proceeded by transferring the origin of co-ordinates to the centre 
of the curve, transforming the trigonometrical functions into those of 
the cosine, placing the expressions ~ 0 ,  and eliminating by dividing 
one by the other repeatedly, until i disappeared. He gave the following 
for the form of the function, 
a (x'+u') 3 + (b +cU') +y') '  + ( a + e u '  +U') + f f  + 
hp + i =  O, 
in which the quantities a,b,c, &c., are functions of a and Po 

This, he adds, is an equation of a curve which has a c~htre, because 
all the powers of the variables are of an even degree. 

]~RRATA TO LAST ARTICLE. 

For third equation after (17) on p. 155, read T = ~ - a  ( (1 + 

Equation (18) on p. 156, for sin. - -12aread,  sin.--1 2a .  
B B 

Result of Experiments on the Breaking Weight of Rolled Iron. 
From the London Builder~ No. 1110. 

[:From the paper by Mr. F. A. Paget, C. E. ]  

When we remember that the very best wrought iron of commerce 
is, to use the words of the well-known metallurgist, Saint-Claire De- 
ville, but a metallic sponge, like platinum, the pores of which have 
been simply closed up by pressure or percussion; that, in one word, 
ordinary wrought iron has never as wrought iron, been fused, it will 
be seen that the uncertainties qualifying the material itself are still 
greater. Mr. Mallet thus found that, while the original hammered 


