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Abstract: 

We explore the possibility of intermodal entanglement between two optical modes and a mechanical 

mode for three-mode optomechanics. The Hamiltonian of the system is solved analytically, using Heisenberg-

Langevin equation and also Taylor’s series expansion of an operator. Temporal variation of entanglement 

parameter corresponds to different field modes are studied under different weight factor of initial state and 

dependence on interaction strength is also reported. Entangled state at macroscopic level is observed. 
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Introduction: 

The field of optomechanics has been emerged over last decade. Optomechanics is explored the 

nonlinear interaction between optical cavity field and mechanical resonator, via radiation pressure. It also lies in 

the interface of macroscopic and quantum level. Different interesting achievements have been realized such as 

weak classical force detection [1], optomechanically induced transparency [2], squeezed light generation [3], 

normal mode splitting [4], state conversion [5], optomechanical microwave sensor [6]. There are different types 

of optomechanical system (OMS) which have fundamental insights and these have also opened a new window 

to study different nonclassical effects. Different OMS are such as double-cavity optomechanical system [7], 

hybrid spin-optomechanical system [8], graphene based optomechanics [9], superconducting microwave cavity 

[10], cavity with micromechanical membrane [11]. Motivated by these, we are interested to study nonclassical 

dynamics of a three-mode optomechanics.  

Entanglement is a useful and key resource for quantum information processing and quantum 

computing. This nonclassical effect has potential application in quantum telecloning, quantum metrology, 

quantum dense coding [12-14]. Study of entangled properties in various aspects has already been reported in 

different optical and optomechanical systems [15-18]. Keeping these facts in mind we have investigated the 

possibility of intermodal entanglement in three-mode optomechanical system. 

The enhancement of nonlinearity may enhance the degree of nonclassicality, has been proposed in 

previous studies in context of quantum memory [19], mechanically induced photon antibunching [20]. The 

three-mode system with two optical modes may enhance nonlinearity, already discussed in references [21-22]. 

The previous three-mode studies were based on sub-Poissonian phonon lasing [23]. In this article we pay our 

attention to study intermodal entanglement in present system.  In next section of the article we present model 

Hamiltonian of the system and operator based analytical solutions with results. At last, we give conclusions. 

Theoretical Model:  

We consider an optomechanical system consists with two optical mode coupled via a mechanical 

mode. One of the cavities is driven by a laser field [23]. The system Hamiltonian (in a rotating frame) contains 

four parts. First part describe Hamiltonian of mechanical system with mechanical frequency 𝜔𝑚 . Second part 

corresponds to the cavity field mode 𝑎, which is detuned w.r.t. another cavity field mode 𝑏 by frequency ∆. 

Third one represents interaction between two cavity field modes and mechanical mode having interaction 

strength 𝑔. Last part corresponds to driving term with driving strength 𝛺.  

                                               𝐻 = 𝜔𝑚𝑐†𝑐 − ∆ 𝑎†𝑎 + 𝑔 𝑎 𝑏†𝑐 +  𝑎†  𝑏𝑐† + 𝑖𝛺  𝑏† − 𝑏                                   (1) 

𝑎(𝑎†), 𝑏( 𝑏†)  and 𝑐(𝑐†) are the lowering (raising) operators for two cavity field modes and mechanical modes,  

respectively. Such type of system and interaction has been discussed in previous studies [23-26]. 

Solutions:  

In this section we present operator based analytical solution of the model Hamiltonian. We include 

cavity decay rate (𝑘) and mechanical damping rate (𝛾) correspond to the respective cavity systems and 

mechanical system. In absence of driving strength and excluding noise term, the Heisenberg-Langevin equations 

for different field modes are 
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𝑎 = −𝑖  −  ∆ +
𝑖𝑘

2
 𝑎 + 𝑔𝑏𝑐†  

𝑏 = −𝑖  −
𝑖𝑘

2
𝑏 + 𝑔𝑎𝑐  

                                                              𝑐 = −𝑖  −  𝜔𝑚 −
𝑖𝛾

2
 𝑐 + 𝑔𝑎†𝑏                                                              (2) 

To solve above equations we use Taylor’s series expansion of an operator. We assume solutions for different 

field modes are 

𝑎 𝑡 = 𝑎 0 𝑓1 + 𝑏 0 𝑐† 0 𝑓2 + 𝑎 0 𝑐† 0 𝑐 0 𝑓3 + 𝑎 0 𝑏† 0 𝑏 0 𝑓4 

𝑏 𝑡 = 𝑏 0 𝑕1 + 𝑎 0 𝑐 0 𝑕2 + 𝑏 0 𝑐† 0 𝑐 0 𝑕3 + 𝑎† 0 𝑎 0 𝑏 0 𝑕4 

                                𝑐 𝑡 = 𝑐 0 𝑙1 + 𝑎† 0 𝑏 0 𝑙2 + 𝑎† 0 𝑎 0 𝑐 0 𝑙3 + 𝑏† 0 𝑏 0 𝑐 0 𝑙4                              (3) 

Where 𝑓𝑖  , 𝑕𝑖  and 𝑙𝑖  (𝑖 = 1, … ,4)  are time dependent coefficient and also depend on detuning, coupling strength, 

cavity decay rate, mechanical frequency, and mechanical damping rate. These are found out from initial 

boundary condition 𝑓1 = 𝑕1 = 𝑙1 = 1 and  𝑓𝑖 = 𝑕𝑖 = 𝑙𝑖 = 0 for 𝑖 = 2,3,4.  These are as follows: 

𝑓1 = exp  𝑖∆ −
𝑘

2
 𝑡 

𝑓2 =
𝑖𝑔𝑓1
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𝑔2𝑓1

 𝑖𝜔𝑚 +
𝛾
2
 
 
exp  𝑖𝜔𝑚 − 𝑖∆ −

𝛾
2
 𝑡

 𝑖𝜔𝑚 − 𝑖∆ −
𝛾
2
 

+
exp⁡(−𝑖∆ − 𝛾)𝑡

(𝑖∆ + 𝛾)
 +
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                             (4) 

In order to calculate entanglement parameters, we assume that both cavity modes and mechanical modes are 

initially at coherent state. So, initial state is the tensor products of three states |𝛼⟩⨂|𝛽⟩⨂|𝛿⟩ where  |𝛼⟩ , |𝛽⟩ and 

|𝛿⟩ are the eigenket of field operators 𝑎, 𝑏 and 𝑐 respectively. The operator 𝑎(𝑡) operates on the product state, 

giving complex eigenvalue 𝛼. We used this method in our previous studies [15-16, 27-28]. 

Entanglement Dynamics: 

To find out possibility of existence of intermodal entanglement in three-mode optomechanical system 

we use Hillery-Zubairy criteria [29], which is sufficient for characterization of inseparable state. The criteria 

expressed in-terms of expectation values of moment of field operators as   𝑎𝑏  2 > [ 𝑁𝑎  𝑁𝑏 ]. We define this 

criterion as  

                                                               𝜀𝑎𝑏 =  𝑁𝑎  𝑁𝑏 −   𝑎𝑏  2                                                                      (5) 

For entangled state 𝜀𝑎𝑏 < 0. 

Using above criterion and solutions in equation (3) we obtain 𝜀𝑎𝑏 , 𝜀𝑎𝑐  and 𝜀𝑏𝑐  for different inter-modes.  

𝜀𝑎𝑏 =  𝛽2 2 𝑓2 
2 −   𝛼 2 𝛽 2𝑕4𝑕1

∗ + 𝑐. 𝑐.   
𝜀𝑏𝑐 =  𝛽2 2 𝑙2 

2 −   𝛽 2 𝛿 2𝑙4𝑙1
∗ +  𝛽 2 𝛿 2𝑕2

∗𝑕1𝑙2𝑙1
∗ + 𝑐. 𝑐.   

𝜀𝑎𝑐 =  𝛽 2 𝛿 2 𝑓2 
2 −  𝛽 2 𝑕2 

2 −  𝛼 2 𝛽 2 𝑕2 
2 −   𝛼 2 𝛿 2𝑙3𝑙1

∗ + 𝛼∗𝛽𝛿∗𝑙2𝑙1
∗ +  𝛽 2 𝛿 2𝑓2

∗𝑓1𝑙2𝑙1
∗ + 𝑐. 𝑐.     (6) 

As the expressions of equation (6) are not so simple, we plot these in figure 2(a-c), respectively. The 

negative portion of the graph gives the signature of entangled state between two cavity field modes or any cavity 

field mode and mechanical mode. Figure (a) represents variation of 𝜀𝑎𝑏  with normalised time for different 

weight factor of the initial state and it is observed that 𝜀𝑎𝑏  oscillates between classical and non-classical regions. 

But the envelope of the graph gradually decreases due to truncation of the higher order terms in calculation. 

Figure (b) represents variation of 𝜀𝑏𝑐 , it is clearly evident from the study that the negativity of the entangled 

parameter depends on weight factor of mechanical mode i.e. 𝛿. Variation 𝜀𝑎𝑐  is shown in figure (c) and it is 

observed that its negativity arises at larger value of normalised time. It is clear from the variation that degree of 

entanglement for 𝑎𝑐 inter-mode is more pronounced as compared to other two inter-modes.  It is also observed 

that degree of entanglement is also increases with coupling strength. 

                       
(a)                                                                (b)                                                        (c) 

Figure 2: (Color online) Variation of entanglement parameter with rescaled time 𝑘𝑡 for  ∆ 𝑘 = 0.1 , 𝜔𝑚 𝑘 =
7.36,  𝑔 𝑘 = 0.25 with  𝛼 = 2,  𝛽 = 0.5,  𝛿 = 0.2 (Blue line) ;  𝛼 = 2,  𝛽 = 1,  𝛿 = 0.2 (Red line) ; 

 𝛼 = 1,  𝛽 = 1,  𝛿 = 1 (Green line) (a) ab mode (b) bc mode and (c) ac mode.  

Here we use a set of experimental parameters with 𝑘 = 2𝜋 × (20 − 500) MHz and 𝜔𝑚 = 2𝜋 × 3.68 GHz [30, 

31]. 

Conclusions: 

We have discussed about the possibility of intermodal entanglement between two cavity field mode 

and mechanical mode. The degree of entanglement depends on weight factor of the coherent states and also 

increases with optomechanical interaction strength between the cavity field and mechanical resonator. Degree of 

entanglement between un-driven cavity field mode and mechanical mode is more pronounced as compared to 

driven cavity field and mechanical mode. This study can be used for generation of entangled state at 

macroscopic scale. 

References: 

1. C. M. Caves et. al., On the measurement of a weak classical force coupled to quantum mechanical 

oscillator:issue of principle, Rev. Mod. Phys. 52, 341 (1980) 

2. A.H. Safavi-Naeini et. al., Electromagnetically induced transparency and slow light with 

optomechanics, Nature(London) 472, 69 (2011) 

3. T.P. Purdy et. al., Strong optomechanical squeezing of light, Phys. Rev. X 3, 031012 (2013) 

4. S. Groblacher et. al., Observation of strong coupling between a micromechanical resonator and an 

optical cavity field, Nature(London) 460, 724 (2009) 



International Journal of Current Research and Modern Education (IJCRME) 

Impact Factor: 6.925, ISSN (Online): 2455 - 5428 

(www.rdmodernresearch.com) Volume 4, Issue 1, 2019     

58 
 

5. V. Flore et. al., Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical 

Resonator, Phys. Rev. Lett. 107, 133601 (2011) 

6. K. Zhang et. al., Proposal for an optomechanical microwave sensor at the sub photon level,  arxiv: 

quant-ph 1401, 0070 (2014) 

7. D.Y.Wang et. al., Steady-state mechanical squeezing in a double-cavity optomechanical system,  

Science Report 6, 38559, (2016) 

8. L.L. Zheng et. al., Single-photon-induced photon blockade in a hybrid spin-optomechanical system, 

Phys. Rev. A 99, 013804 (2019) 

9. X. Song et. al., Graphene optomechanics realized at microwave frequencies, Phys. Rev. Lett. 113, 

027404 (2014) 

10. V. Singh et. al., Optomechanical coupling between a multilayer graphene mechanical resonator and a 

superconducting microwave cavity, Nature nanotechnology 168, 1038 (2014) 

11. J.D. Thompson et. al., Strong dispersive coupling of a high-finesse cavity to a micromechanical 

membrane, Nature 6, 452 (2008) 

12. P.A.Knott et al., Multimode Entanglement is Detrimental to Lossy Optical Quantum Metrology, Phys. 

Rev. A. 90, 033846 (2014) 

13. S.L.Braunstein and H.J.Kimble, Dense coding for continuous variables, Phys.Rev.A 61, 042302(2000) 

14. S. Mancini, D. Vitali, and P. Tombesi, Scheme for teleportation of Quantum states onto a mechanical 

resonator, Phys. Rev. Lett. 90,137901 (2003) 

15. K. Mukherjee, and P.C. Jana, Higher order quantum dynamics of a generic quadratically coupled 

optomechanical system: entanglement, antibunching and spin squeezing , Optica Applicata 4, 651-663 

( 2017) 

16. K. Mukherjee and P. C. Jana, Quantum dynamics of a couple cavity opto-mechanical system: Three 

mode & Four mode entanglement, Optik 180, 226 (2018)  

17. C. Genes et. al., Robust entanglement of a micromechanical resonator with output optical fields, Phys. 

Rev. A 78, 032316 (2008) 

18. Y. D. Wang et. al., Bipartite and tripartite output entanglement in three-mode optomechanical systems, 

Phys. Rev. A 78, 032316 (2008) 

19. P. Komar et. al., Single-photon nonlinearities in two-mode optomechanics, Phys. Rev. A 87, 013839 

(2013) 

20. P. Rabl, Photon blockade effect in optomechanical systems, Phys. Rev. Lett. 107, 063601 (2011) 

21. M. Ludwig et. al., Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical System,  Phys. 

Rev. Lett. 109, 063601 (2012) 

22. X. Xu et. al., Quantum nonlinear optics near optomechanical instabilities, Phys. Rev. A 91, 013818 

(2015) 

23. N. Lorch and K. Hammerer, Sub-Poissonian phonon lasing in three-mode optomechanics, Phys. Rev. A 

91, 061803(R), (2015) 

24. I. S. Grudinin, A. B. Matsko, and L. Maleki, Brillouin Lasing with a CaF2 Whispering Gallery Mode 

Resonator, Phys. Rev. Lett. 102, 043902, (2009) 

25. G. Anetsberger et. al., Cavity optomechanics and cooling nanomechanical oscillators using 

microresonator enhanced evanescent near-field coupling, C.R.Phys. 12, 800 (2011)  

26. X. Chen et. al. , Observation of three-mode parametric instability,  Phys. Rev. A 91, 033832, (2015) 

27. K.Mukherjee and P.C.Jana,  Nonclassical properties (squeezing, antibunching, entanglement) for 

couple-cavity optomechanical system, Journal of optics, 0339, 016(2016) 

28. K. Mukherjee and P. C. Jana,  Higher-order intermodal antibunching for couple-cavity optomechanical 

system, Journal of optics, 0494, 018(2018) 

29. M. Hillery and M. S. Zubairy, Entanglement conditions for two-mode states, Phys. Rev. Lett. 96, 

050503 (2006) 

30. J. Chan et. al., Laser cooling of a nanomechanical oscillator into its quantum ground state,  Nature 

(London) 478, 89 (2011) 

31. H. Sekoguchi et. al., Photonic crystal nanocavity with a Q-factor of ~9 million, Opt. Express 22, 916 

(2014) 

 

 

 


