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Abstract: In this paper, we combined entropy with linguisti neutrosophic cubic numbers and used it
in daily life problems related to a corporation that is going to choose an area supervisor, which is the
main target of our proposed model. For this, we first develop the theory of linguistic neutrosophic
cubic numbers, which explains the indeterminate and incomplete information by truth, indeterminacy
and falsity linguistic variables (LVs) for the past, present, as well as for the future time very effectively.
After giving the definitions, we initiate some basic operations and properties of linguistic neutrosophic
cubic numbers. We also define the linguistic neutrosophic cubic Hamy mean operator and weighted
linguistic neutrosophic cubic Hamy mean (WLNCHM) operator with some properties, which can
handle multi-input agents with respect to the different time frame. Finally, as an application, we give
a numerical example in order to test the applicability of our proposed model.

Keywords: neutrosophic set; neutrosophic cubic set; linguistic neutrosophic cubic numbers;
linguistic neutrosophic cubic weighted averaging operator; entropy of linguistic neutrosophic
cubic numbers; application; multiple attribute decision making problem

1. Introduction

In 1965, Zadeh [1] introduced the notion of fuzzy sets, which became a significant tool of studying
many vague and uncertain concepts. It has a large number of applications in social, medicine and
computer sciences. Atanassov [2] generalized the theme of a fuzzy set (FS) by initiating the idea of
intuitionistic fuzzy sets (IFS) by introducing the idea of non membership of an element in a certain set.
Jun et al. [3] initiated the idea of cubic sets, in which there are two representations: one is used for
the membership/certain value and the other one is used for the non membership/uncertain value.
The membership function is handled in the form of an interval, and the non membership is handled
by the ordinary fuzzy set. Cubic sets have been considered by many authors in other areas of
mathematics, for instance KU subalgebras [4,5], graph theory [6], left almost Γ-semihypergroups [7],
LA-semihypergroups [8–11], semigroups [12,13] and Hv-LA-semigroups [14,15]. Smarandache [16,17]
presented the new idea of the neutrosophic set (NS) and neutrosophic logic, which the generalized
fuzzy set and intuitionistic fuzzy set. The neutrosophic set (NS) is defined by truth, indeterminacy
and falsity membership degrees. For applications in physical, technical and different engineering
regions, Wang et al. [18] suggested the concept of a single-valued neutrosophic set (SVNS) in 2010.
After this, many researchers used neutrosophic sets in different research directions such as De and
Beg [19] and Gulistan et al. [20]. Jun et al. [21,22] extended the idea of cubic sets to neutrosophic
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cubic sets and defined different properties of external and internal neutrosophic cubic sets. Recently,
Gulistan et al. [23] combined neutrosophic cubic sets with graphs. In multi-criteria decision making
problems, the application of neutrosophic cubic sets was proposed by Zhan et al. [24]. In [25],
Hashim et al. used neutrosophic bipolar fuzzy sets in the HOPE foundation with different types
of similarity measures. For the aspects of real-life objectives, the human desire of judgment can be
used for linguistic expression rather than numerical expression to better suit the thinking of people.
Therefore, Zadeh [26] introduced the concept of linguistic variable and applied it to fuzzy reasoning.
The idea of aggregation operators was presented by many researchers in decision making problems; see
for example [27–29]. The concept of linguistic intuitionistic fuzzy numbers (LIFN) was introduced by
Chen et al. [30]. After that, some researchers also gave the idea of linguistic intuitionistic multi-criteria
group decision-making problems [31]. The theme of LNNS was initiated by Fang et al. [32]. Besides, a
multi-criteria decision making problem like the linguistic intuitionistic multi-criteria decision-making
problem was also introduced [33]. Ye in 2016 presented the concept of an LNNS and also gave the
idea of different aggregation operators in multiple attribute group decision making problems [34].
Then, the concept of a linguistic neutrosophic number was proposed to solve multiple attribute group
decision making problems by Li et al. in [35]. In [36], Hara et al. proposed some inequalities for certain
bivariate means. A useful tool known as entropy is used to determine the uncertainty in sets, like
the fuzzy set (FS) and intuitionistic fuzzy set (IFS), where LNCSis defined by managing uncertain
information about truth, indeterminacy and falsity membership functions. In 1965, Zadeh [37] first
defined the entropy of FS to determine the ambiguity in a quantitative manner. In the same way, the
non-probabilistic entropy was axiomatized by De Luca-Termini [38]. He also analyzed mathematical
properties of this functional and gave the considerations of and applicability to pattern analysis.
A distance entropy measure was proposed by Kaufmann [39]. A new non-probabilistic entropy
measure was introduced by Kosko [40]. In [41], Majumdar and Samanta introduced the notion of two
single-valued neutrosophic sets, their properties and also defined the distance between these two sets.
They also investigated the measure of entropy of a single-valued neutrosophic set. The entropy of
IFSs was introduced by Szmidt and Kacprzyk [42]. This entropy measure was consistent with the
considerations of fuzzy sets. Afterward, the measurement of fuzziness in terms of distance between
the fuzzy set and its compliment was put forward by Yager [43]; see also [37,45] for more details. The
idea of linguistic neutrosophic numbers (LNNs) and the linguistic neutrosophic Hamy mean (HM)
(LNHM) operator was investigated by Liu et al., in [46]. Ye discussed linguistic neutrosophic cubic
numbers and their multiple attribute decision making method in [47].

The present study proposes a new notion of linguistic neutrosophic cubic numbers (LNCNs),
where the undetermined LNNS agrees with the truth, indeterminacy and falsity membership. Besides
that, we define the different operations on LNCNs, the linguistic neutrosophic cubic Hamy mean
operator and the weighted linguistic neutrosophic cubic Hamy mean (WLNCHM) operator with some
properties that can handle multi-input agents with respect to the different time frames. We define
score, accuracy and certain functions of LNCNs. At the end, we use the developed approach in a
decision making problem related to a corporation choosing an area supervisor.

2. Preliminaries

In this section, we give some helpful material from the existing literature.

Definition 1. [35] LNNS (linguistic neutrosophic numbers): Let U be a universal set and p̊ = ( p̊0, p̊1, ..., p̊t)

be a linguistic term set (LTS). An LNSĂ in U is specified by the truth, indeterminacy and falsity membership
functions α̊Å, β̊Å and γ̊Å, where α̊Å, β̊Å, γ̊Å : U → [0, t], and ∀ u ∈ U, g̊ = ( p̊α̊A(u), p̊β̊A(u)

, p̊γ̊A(u)) ∈ Å is

called an LNN of Å.

Remark 1. [35] Let Å be the set of LNNS, then its complement is represented by ÅC, which is denoted as
α̊Å = γ̊Å; β̊Å = t− β̊Å; γ̊Å = α̊Å.
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Definition 2. [35] Let g̊ = ( p̊α̊, p̊β̊, p̊γ̊), g̊1 = ( p̊α̊1 , p̊β̊1
, p̊γ̊1), g̊2 = ( p̊α̊2 , p̊β̊2

, p̊γ̊2) be any LNNS and λ > 0.
Then (i):

g̊1 ⊕ g̊2 = ( p̊α̊1 , p̊β̊1
, p̊γ̊1)⊕ ( p̊α̊2 , p̊β̊2

, p̊γ̊2) =

(
p̊

α̊1+α̊2−
α̊1 α̊2

t
, p̊ β̊1 β̊2

t
, p̊ γ̊1 γ̊2

t

)
(1)

(ii):

g̊1 ⊗ g̊2 = ( p̊α̊1 , p̊β̊1
, p̊γ̊1)⊗ ( p̊α̊2 , p̊β̊2

, p̊γ̊2) =

(
p̊ α̊1 α̊2

t
, p̊

β̊1+β̊− β̊1 β̊2
t

, p̊
γ̊1+γ̊2−

γ̊1 γ̊2
t

)
(2)

(iii):

λg̊ = λ( p̊α̊, p̊β̊, p̊γ̊) =

(
p̊t−t(1− α̊

t )
λ , p̊

t( β̊
t )

λ
, p̊t( γ̊

t )
λ

)
; (3)

(iv)

g̊λ = ( p̊α̊, p̊β̊, p̊γ̊)
λ =

(
p̊t( α̊

t )
λ , p̊

t−t(1− β̊
t )

λ
, p̊t−t(1− γ̊

t )
λ

)
. (4)

Definition 3. [35] Let g̊ = ( p̊α̊, p̊β̊, p̊γ̊) be an LNN. The following are the score and accuracy function of LNN,

Ŝ(g̊) =
2t + α̊− β̊− γ̊

3t
, (5)

Ĥ(g̊) =
α̊− γ̊

t
. (6)

Definition 4. [35] Let g̊1 = ( p̊α̊1 , p̊β̊1
, p̊γ̊1), g̊2 = ( p̊α̊2 , p̊β̊2

, p̊γ̊2) be LNNs. Then: (1) If Ŝ(g̊1) < Ŝ(g̊2),

then g̊1 ≺ g̊2. (2) If Ŝ(g̊1) = Ŝ(g̊2), (a) and Ĥ(g̊1) < Ĥ(g̊2), then g̊1 ≺ g̊2, (b) and Ĥ(g̊1) = Ĥ(g̊2),
then g̊1 ≈ g̊2.

Definition 5. [36] Suppose uı̂(ı̂ = 1, 2, ..., n) is an assortment of non-negative real numbers and parameter
k̊ = 1, 2, ..., n. The Hamy mean (HM) is defined as:

HMk̊(x1, x2, ..., xn) =

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

uı̂j

) 1
k̊

(n
k̊)

(7)

where
(
ı̂1, ı̂2, ..., ı̂k̊

)
navigate all the k-tuple arrangements of (1, 2, ..., n), (n

k̊) is the binomial coefficient and (n
k̊) =

n!
k̊!(n−k̊)!

. The following are some properties of HM: (1) HM(k̊)(0, 0, ..., 0) = 0, HM(k̊)(u, u, ..., u) = u, (2)

HM(k̊)(u1, u2, ..., un) ≤ HM(k̊)(v1, v2, ..., vn), if uı̂ ≤ vı̂ for all ı̂, (3) min{uı̂} ≤ HM(k̊)(u1, u2, ..., un) ≤
max{uı̂}.

Definition 6. [17] (Neutrosophic set) Let U be a non-empty set. A neutrosophic set in U is a structure of the
form A := {u; ATru(u), Aı̂nd(u), AFal(u)|u ∈ U}, is characterized by a truth membership Tru, indeterminacy
membership ı̂nd and falsity membership Fal, where ATru, Aı̂nd, AFal : U → [0, 1].

Definition 7. [21] (Neutrosophic cubic set) Let Xbe a non-empty set; an NCSin U is defined in the form of
a pair Ω = (Å, Λ) where Å = {(x; ÅT̃ru(u), Å Ĩnd(u), ÅF̃al(u)) | u ∈ U} is an interval neutrosophic set in U
and Λ = {(u; ΛTru(u), Λı̂nd(u), ΛFal(u)) | u ∈ U)} is a neutrosophic set in U.

3. Linguistic Neutrosophic Cubic Numbers and Operators

In this section, we define the linguistic neutrosophic cubic numbers and also discuss different
operations and properties related to linguistic neutrosophic cubic numbers. We define the cubic Hamy
mean operator, LNCHM operator and WLNCHM operator and discuss their properties.



Symmetry 2018, 10, 428 4 of 30

Definition 8. LNCNs (linguistic neutrosophic cubic numbers): Let U be a universal set and p̊ = ( p̊0, p̊1, ..., p̊t)

be a LTS. An LNCN Å in U is determined by truth membership function (α̃Å, α̊Å), an indeterminacy membership
function (β̃Å, β̊Å) and a falsity membership function (γ̃Å, γ̊Å), where α̃Å, β̃Å, γ̃Å : U → D[0, t] and α̊Å, β̊Å,
γ̊A : U → [0, t], ∀ u ∈ U, and it is denoted by g̊ = ( p̊(α̃Å ,α̊A)(u), p̊(β̃Å ,β̊A)(u)

, p̊(γ̃Å ,γ̊A)(u)) ∈ Å.

Remark 2. Suppose A is a set of LNCNs, then its complement is represented by Ac and defined as {(α̃Å, α̊Å)
c =

(γ̃Å, γ̊Å), (β̃Å, β̊Å)
c = (t− β̃Å, t− β̊Å), (γ̃Å, γ̊Å)

c = (α̃Å, α̊Å)}.

Definition 9. Let g̊ =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
, g̊1 =

(
p̊(α̃1,α̊1)

, p̊(β̃1,β̊1)
, p̊(γ̃1,γ̊1)

)
,

g̊2 =
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

)
be any LNCNs and λ > 0. Then, we define:

(i):

g̊1 ⊕ g̊2 =
(

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
⊕
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

)
(8)

=

 p̊
(α̃1+α̃2,α̊1+α̊2)−

(
α̃1.α̃2

t , α̊1.α̊2
t

), p̊(
β̃1.β̃2

t , β̊1.β̊2
t

), p̊( γ̃1.γ̃2
t , γ̊1.γ̊2

t

)
 ;

(ii):

g̊1 ⊗ g̊2 =
(

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
⊗
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

)
(9)

=

 p̊( α̃1.α̃2
t , α̊1.α̊2

t

), p̊
(β̃1+β̃2,β̊1+β̊2)−

(
β̃1.β̃2

t , β̊1.β̊2
t

), p̊
(γ̃1+γ̃2,γ̊1+γ̊2)−

(
γ̃1.γ̃2

t , γ̊1.γ̊2
t

)
 ;

(iii):

λg̊ = λ
((

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
⊕
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

))
(10)

=

 p̊
t−t(1− α̃

t ,1− α̊
t )

λ , p̊
t
(

β̃
t , β̊

t

)λ , p̊
t
(

γ̃
t , γ̊

t

)λ


(iv):

g̊λ =
((

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
⊕
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

))λ
(11)

=

 p̊
t( α̃

t , α̊
t )

λ , p̊
t−t
(

1− β̃
t ,1− β̊

t

)λ , p̊
t−t
(

1− γ̃
t ,1− γ̊

t

)λ


It is clear that these operational result are still LNCNs.

Definition 10. Let g̊ =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
, be an LNCN that depends on LTS, p̊. Then, the score function,

accuracy function and certain function of the LNCN, g̊, are defined as follows:
(i):

ϕ(g̊) = ϕ
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
=

1
9t
[
(

4t + p̊α̃ − p̊β̃ − p̊γ̃

)
+
(

2t + p̊α̊ − p̊β̊ − p̊γ̊

)
], for ϕ(g̊) ∈ [0, 1] (12)

(ii):

Φ(g̊) =
1
3t
[( p̊α̃ − p̊γ̃) +

(
p̊α̊ − p̊γ̊

)
], for Φ(g̊) ∈ [−1, 1] (13)



Symmetry 2018, 10, 428 5 of 30

(iii):

Ψ(g̊) =
p̊α̃ + p̊α̊

3t
for Ψ(g̊) ∈ [0, 1]. (14)

Now, with the help of the above-defined function, we introduce a ranking method for these
function.

Definition 11. Let two LNCNs be g̊1 =
(

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
and

g̊2 =
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

)
. Then, their ranking method is defined as:

1. If ϕ(g̊1) > ϕ(g̊2), then g̊1 � g̊2,
2. If ϕ(g̊1) = ϕ(g̊2) and Φ(g̊1) > Φ(g̊2), then g̊1 � g̊2,
3. If ϕ(g̊1) = ϕ(g̊2), Φ(g̊1) = Φ(g̊2) and Ψ(g̊1) > Ψ(g̊2), then g̊1 � g̊2,
4. If ϕ(g̊1) = ϕ(g̊2), Φ(g̊1) = Φ(g̊2) and Ψ(g̊1) = Ψ(g̊2), then g̊1 ∼ g̊2.

Example 1. Let g̊1 =
(

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
, g̊2 =

(
p̊(α̊2,α̊2), p̊(β̊2,β̊2), p̊(γ̊2,γ̊2)

)
and g̊3 =(

p̊(α̃3,α̊3), p̊(β̃3,β̊3), p̊(γ̃3,γ̊3)

)
be three LNCNs in the linguistic term set ϕ = {ϕg̊ | g̊ ∈ [0, 8]} where

g̊1 = ([0.2, 0.3] , [0.4, 0.5] , [0.3, 0.5] , (0.1, 0.2, 0.3)) , g̊2 = ([0.3, 0.4] , [0.4, 0.5] , [0.5, 0.6] , (0.2, 0.4, 0.6)) ,
g̊3 = ([0.4, 0.5] , [0.4, 0.6] , [0.5, 0.7] , (0.2, 0.3, 0.5)) , then we will find the values of their score, accuracy
and certain function as follows:

(i) Score functions:

ϕ(g̊) =
1
9t
[
(

4t + p̊α̃ − p̊β̃ − p̊γ̃

)
+
(

2t + p̊α̊ − p̊β̊ − p̊γ̊

)
], for ϕ(g̊) ∈ [0, 1]

ϕ(g̊1) =
[32 + 0.2 + 0.3− (0.4 + 0.5 + 0.3 + 0.5) + 16 + 0.1− (0.2 + 0.3)]

72
= 0.644

ϕ(g̊2) =
[32 + 0.3 + 0.4− (0.4 + 0.5 + 0.5 + 0.6) + 16 + 0.2− (0.4 + 0.6)]

72
= 0.6375

ϕ(g̊3) =
[32 + 0.4 + 0.5− (0.4 + 0.6 + 0.5 + 0.7) + 16 + 0.2− (0.3 + 0.5)]

72
= 0.638

(ii) Accuracy functions:

Φ(g̊) =
1
3t
[( p̊α̃ − p̊γ̃) +

(
p̊α̊ − p̊γ̊

)
], for Φ(g̊) ∈ [−1, 1]

Φ(g̊1) =
[0.2 + 0.3− (0.3 + 0.5) + 0.1− 0.3]

24
= −0.0208

Φ(g̊2) =
[0.3 + 0.4− (0.5 + 0.6) + 0.2− 0.6]

24
= −0.0333

Φ(g̊3) =
[0.4 + 0.5− (0.6 + 0.7) + 0.3− 0.5]

24
= −0.0292
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(iii) Certain functions:

Ψ(g̊) =
p̊α̃ + p̊α̊

3t
for Ψ(g̊) ∈ [0, 1]

Ψ(g̊1) =
[0.2 + 0.3 + 0.1]

24
= 0.025

Ψ(g̊2) =
[0.3 + 0.4 + 0.2]

24
= 0.0375

Ψ(g̊3) =
[0.4 + 0.5 + 0.2]

24
= 0.0416

Definition 12. Suppose (ũı̂, uı̂) where ı̂ = 1, 2, ..., n is an assortment of non-negative real numbers and
parameter k̊ = 1, 2, ..., n. Then, the cubic Hamy mean (CHM) is defined as follows:

CHMk̊(ũı̂, uı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

ũı̂j ,
k̊

∏
j=1

uı̂j

) 1
k̊

(n
k̊)

(15)

where
(
ı̂1, ı̂2, ..., ı̂k̊

)
navigate all the k-tuple arrangements of (1, 2, ..., n.), (n

k̊) is the binomial coefficient and
(n

k̊) =
n!

k̊!(n−k̊)!
.

Example 2. Let (ũı̂, uı̂) = ((ũ1, u1), (ũ2, u2)) i = 1, 2 and k = 1, where u1 = ([0.2, 0.4] , (0.6)) , u2 =

([0.3, 0.5] , (0.7)) .
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CHM1 ((ũ1, u1), (ũ2, u2))

=
∑ (((ũ11, u11)(ũ22, u22)))

1

(2
1)

=
(((ũ11, u11)(ũ22, u22)))

1 + (((ũ11, u11)(ũ22, u22)))
1

(2
1)

=

∑
(

(([0.2, 0.4] , (0.6)) ([0.2, 0.4] , (0.6)))
(([0.3, 0.5] , (0.7)) ([0.3, 0.5] , (0.7)))

)1

(2
1)

=

(
(([0.2, 0.4] , (0.6)) ([0.2, 0.4] , (0.6)))
(([0.3, 0.5] , (0.7)) ([0.3, 0.5] , (0.7)))

)1

+

(
(([0.2, 0.4] , (0.6)) ([0.2, 0.4] , (0.6)))
(([0.3, 0.5] , (0.7)) ([0.3, 0.5] , (0.7)))

)1

(2
1)

=

(([0.04, 0.16] , (0.84)) ([0.09, 0.25] , (0.91)))
+ (([0.04, 0.16] , (0.84)) ([0.09, 0.25] , (0.91)))

(2
1)

=

(
([0.004, 0.04] , (0.98))
+ ([0.004, 0.04] , (0.98))

)
(2

1)

=
([0.008, 0.08] , (0.96))

(2
1)

= ([0.004, 0.04] , (0.48))

Definition 13. Suppose (g̃ı̂, g̊ı̂) where ı̂ = 1, 2, ..., n. is an assortment of linguistic neutrosophic cubic numbers
and parameter k̊ = 1, 2, ..., n. Then, the LNCHM operator is defined as follows:

LNCHMk̊(g̃ı̂, g̊ı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̊ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

(n
k̊)

(16)

where
(
ı̂1, ı̂2, ..., ı̂k̊

)
navigate all the k-tuple arrangements of (1, 2, ..., n.), (n

k̊) is the binomial coefficient and
(n

k̊) =
n!

k̊!(n−k̊)!
.

Example 3. Let (g̃ı̂, g̊ı̂) = ((g̃1, g̊2), (g̃2, g̊2)) i = 1, 2 and k = 1, where g̃1 =

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8)) , g̃2 = ([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6)) ,



Symmetry 2018, 10, 428 8 of 30

LNCHM1 ((g̃1, g̊2), (g̃2, g̊2))

=
∑ (((g̃11, g̊11), (g̃22, g̊22)))

1

(2
1)

=
(((g̃11, g̊11)(g̃22, g̊22)))

1 + (((g̃11, g̊11)(g̃22, g̊22)))
1

(2
1)

=

∑


(

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)
(

([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

(2
1)

=


(

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)
(

([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

+


(

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)
(

([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

(2
1)

=

(
([0.04, 0.16] , [0.09, 0.16] , [0.16, 0.36] , (0.84, 0.75, 0.96))
([0.09, 0.25] , [0.16, 0.49] , [0.04, 0.16] , (0.91, 0.96, 0.84))

)

+

(
([0.04, 0.16] , [0.09, 0.16] , [0.16, 0.36] , (0.84, 0.75, 0.96))
([0.09, 0.25] , [0.16, 0.49] , [0.04, 0.16] , (0.91, 0.96, 0.84))

)
(2

1)

=

(
([0.004, 0.04] , [0.014, 0.08] , [0.006, 0.06] , (0.98, 0.99, 0.99))
+ ([0.004, 0.04] , [0.014, 0.08] , [0.006, 0.06] , (0.98, 0.99, 0.99))

)
(2

1)

=
([0.008, 0.08] , [0.03, 0.2] , [0.012, 0.12] , (0.96, 0.98, 0.98))

(2
1)

= ([0.004, 0.04] , [0.02, 0.1] , [0.006, 0.06] , (0.48, 0.49, 0.49))

Theorem 1. Let (g̃ı̂, g̊ı̂) =
(

p̊(α̃ı̂ ,α̊ı̂), p̊(β̃ ı̂ ,β̊ ı̂), p̊(γ̃ı̂ ,γ̊ı̂)

)
(ı̂ = 1, 2, ..., n) be an arrangement of LNCNs, then the

accumulated value from Definition 13 is obviously an LNCN, and:

LNCHMk̊(g̃ı̂, g̊ı̂) (17)

=



p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊




1
(
n
k̊)

, p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
k̊





1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1− γ̊ı̂j

t

)
1
k̊




1
(
n
k̊)





Symmetry 2018, 10, 428 9 of 30

Proof. According to Equations (1)–(4), we have:

(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

)
=


p̊

k̊

∏
j=1

α̊ı̂j

tk̊−1
,

k̊

∏
j=1

α̊ı̂j

tk̊−1

, p̊
t−t

k̊

∏
j=1

(
1−

β̊ı̂j
t ,1−

β̊ı̂j
t

), p̊
t−t

k̊

∏
j=1

(
1−

γ̊j
t ,1−

γ̊ı̂j
t

)



(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=


p̊

 k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊

, p̊

t−t

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
k̊

, p̊

t−t

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
k̊



∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=



p̊

t−t ∏
1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊



, p̊

t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
k̊


,

p̊

t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
k̊




Then, we obtain:

1
(n

k̊)
∑

1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=



p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

, p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1− γ̊ı̂j

t

)
1
k̊




1
(
n
k̊)
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Therefore,

LNCHMk̊(g̊ı̂, g̊ı̂)

=



p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

, p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
k̊




1
(
n
k̊)


In addition, since:

0 ≤ t− t

 ∏
1≤ı̂1<...ı̂k̊≤n


1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

≤ t,

0 ≤ t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

β̃ ı̂j

t
, 1−

β̊ ı̂j

t

)) 1
k̊




1
(
n
k̊)

≤ t,

0 ≤ t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j

t
, 1−

γ̊ı̂j

t

)) 1
k̊




1
(
n
k̊)

≤ t,

Therefore, 

p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
k̊




1
(
n
k̊)


is also an LNCN.

Example 4. Let p̊ = { p̊0, p̊1, p̊2, p̊3, p̊4} be an LTS with odd cardinality t + 1 and g̊1 = ( p̊3, p̊2, p̊1), g̊2 =

( p̊4, p̊3, p̊1, ), be two LNCNsbased on p̊. Then, we can use the suggested LNCHM operator to aggregate these
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two LNCNs (suppose k̊ = 2) and to produce an inclusive value LNCHM(k̊)(g̊1, g̊2) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
described as follows; where:

(g̊1, g̊2) =

(
([0.2, 0.3], [0.2, 0.5], [0.2, 0.5], (0.9, 0.7, 0.9)) ,
([0.4, 0.5], [0.3, 0.5], [0.3, 0.5], (0.8, 0.8, 0.6))

)

(i):
1
(n

k̊)
=

k̊!(n− k̊)!
n!

=
2!(2− 2)!

2!
= 1

(ii):

t− t

 ∏
1≤ı̂1<...ı̂k̊≤n


1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

= ([0.28, 0.39], 0.17)

(iii):

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

β̃ ı̂j

t
, 1−

β̊ ı̂j

t

)) 1
k̊



1
(
n
k̊)

= ([0.3, 0.5] , 0.75)

(iv):

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j

t
, 1−

γ̊ı̂j

t

)) 1
k̊




1(
n
k̊

)

= ([0.3, 0.5] , 0.74)

Therefore, we get:

LNCM2(g̃1, g̊2) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
= ([0.28, 0.39], [0.3, 0.5] , [0.3, 0.5] , (0.17, 0.75, 0.74)).

Now, we will study some of the ideal properties of LNCNs.

Property 1. (Idempotency) If (g̃ı̂, g̊ı̂) = (g̃, g̊) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
∀ (ı̂ = 1, 2, ..., n), then:

LNCHMk̊(g̃, g̊) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
(18)
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Proof. Since (g̃, g̊) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
, based on Theorem 1, we have:

LNCHMk̊(g̃, g̊)

=



p̊

t−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

α̃k̊

tk̊
, α̊k̊

tk̊

) 1
k̊




1
(
n
k̊)

, p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
((

1− β̃
t ,1− β̊

t

)k̊
) 1

k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
((

1− γ̃
t ,1− γ̊

t

)k̊
) 1

k̊




1
(
n
k̊)



=

 p̊
t−t
(
(1−( α̃

t , α̊
t ))

(
n
k̊)
) 1

(
n
k̊)

, p̊

t

(1−
(

1− β̃
t ,1− β̊

t

))(
n
k̊)
 1

(
n
k̊)

, p̊
t

((
1−
(

1− γ̃
t ,1− γ̊

t

))(nk̊)) 1
(
n
k̊)


=

 p̊t−t(1−( α̃
t , α̊

t ))
, p̊

t
(

1−
(

1− β̃
t ,1− β̊

t

)), p̊
t
(

1−
(

1− γ̃
t ,1− γ̊

t

))


=
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
= (g̃, g̊)

Property 2. (Commutativity) Let (g̃ı̂, g̊ı̂) for all (ı̂ = 1, 2, ..., n) be an assortment of LNCNs and (g̃′ı̂ , g̊′ı̂) be
any permutation of (g̃ı̂, g̊ı̂), then:

LNCHMk̊(g̃′ı̂ , g̊′ı̂) = LNCHMk̊(g̃ı̂, g̊ı̂) (19)

Proof. The conclusion is obvious, because Property 2 depends on

Definition 14. 13.

LNCHMk̊(g̃′ı̂ , g̊′ı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

 k̊

∏
j=1ı̂j

g̃ı̂j ,
k̊

∏
j=1

g̊′ı̂j

 1
k̊

(n
k̊)

=

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

(n
k̊)

= LNCHMk̊(g̃ı̂, g̊ı̂)

Property 3. (Monotonicity) Let
(g̃ı̂, g̊ı̂) =

(
p̊(α̊ı̂ ,α̊ı̂), p̊(β̊ ı̂ ,β̊ ı̂), p̊(γ̊ı̂ ,γ̊ı̂)

)
,
(

f̃ ı̂, f ı̂
)

=
(

p̊(q̃ı̂ ,qı̂), p̊(r̃ı̂ ,rı̂), p̊(s̃ı̂ ,sı̂)

)
(ı̂ = 1, 2, ..., n) be two

collections of LNCNs; if (α̃ı̂, α̊ı̂) ≤ (q̃ı̂, qı̂), (β̃ ı̂, β̊ ı̂) ≤ (r̃ı̂, rı̂), (γ̃ı̂, γ̊ı̂) ≤ (s̃ı̂, sı̂) for all ı̂, then:

LNCHMk̊(g̊ı̂, g̊ı̂) ≤ LNCHMk̊ ( f̃ ı̂, f ı̂
)

(20)
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Proof. Since 0 ≤ (α̃ı̂, α̊ı̂) ≤ (q̃ı̂, qı̂), (β̃ ı̂, β̊ ı̂) ≥ (r̃ı̂, rı̂) ≥ 0, (γ̃ı̂, γ̊ı̂) ≥ (s̃ı̂, sı̂) ≥ 0, t ≥ 0 and according to
Theorem 1, we get:

t− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊




1
(
n
k̊)

≤ t− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

q̃ı̂j

tk̊
,

k̊

∏
j=1

qı̂j

tk̊



1
k̊




1
(
n
k̊)

,

− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

1−
β̃ ı̂j

t
, 1−

β̊ ı̂j

t

 1
k̊



1
(
n
k̊)

≤ −t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

r̃ı̂j

t
, 1−

rı̂j

t

)) 1
k̊




1
(
n
k̊)

,

− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j

t
, 1−

γ̊ı̂j

t

)) 1
k̊




1
(
n
k̊)

≤ −t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

s̃ı̂j

t
, 1−

sı̂j

t

)) 1
k̊




1
(
n
k̊)

.

Let (g̃, g̊) = LNCHMk̊(g̃ı̂, g̊ı̂),
(

f̃, f
)
= LNCHMk̊ ( f̃ ı̂, f ı̂

)
and ψ(g̊) and Ψ( f ) be the score functions

of g̊ and f . According to the score value in Definition (11) and the above inequality, we can simply
have ψ(g̊) ≤ Ψ( f ). Then, in the following, we argue some cases:

1. If ψ(g̊) ≤ Ψ( f ), we can obtain LNCHMk̊(g̃ı̂, g̊ı̂) ≤ LNCHMk̊ ( f̃ ı̂, f ı̂
)

;



Symmetry 2018, 10, 428 14 of 30

2. if ψ(g̊) = Ψ( f ), then:

2t + t− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊




1
(
n
k̊)

−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

β̃ ı̂j
t , 1−

β̊ ı̂j
t

)) 1
k̊




1
(
n
k̊)

−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j
t , 1−

γ̊ı̂j
t

)) 1
k̊




1
(
n
k̊)

3t

=

2t + t− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

q̃ı̂j

tk̊
,

k̊

∏
j=1

qı̂j

tk̊



1
k̊




1
(
n
k̊)

−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

r̃ı̂j
t , 1−

rı̂j
t

)) 1
k̊




1
(
n
k̊)

−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

s̃ı̂j
t , 1−

sı̂j
t

)) 1
k̊




1
(
n
k̊)

3t

Since 0 ≤ (α̊ı̂, α̊ı̂) ≤ (q̃ı̂, qı̂), (β̊ ı̂, β̊ ı̂) ≥ (r̃ı̂, rı̂) ≥ 0, (γ̊ı̂, γ̊ı̂) ≥ (s̃ı̂, sı̂) ≥ 0, t ≥ 0, we can assume that:

t− t

 ∏
1≤ı̂1<...ı̂k̊≤n


1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

= t− t

 ∏
1≤ı̂1<...ı̂k̊≤n


1−


k̊

∏
j=1

q̃ı̂j

tk̊
,

k̊

∏
j=1

qı̂j

tk̊



1
k̊





1
(
n
k̊)
′

− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j

t
, 1−

γ̊ı̂j

t

)) 1
k̊




1
(
n
k̊)

= −t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

s̃ı̂j

t
, 1−

sı̂j

t

)) 1
k̊




1
(
n
k̊)

,

and based on the accuracy value in Definition (11), then Φ(g̊) = Φ( f ). Finally, we get:

LNCHMk̊(g̃ı̂, g̊ı̂) ≤ LNCHMk̊ ( f̃ ı̂, f ı̂
)
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Property 4. (Boundedness) Let (g̃ı̂, g̊ı̂) = ( p̊α̃′ı̂
, p̊β̃′ı̂

, p̊γ̃′ı̂
, p̊α̊ı̂ , p̊β̊ ı̂

, p̊γ̊ı̂)(ı̂ = 1, 2, ..., n) be the collection of
LNCNs and:

g̊+ = max( p̊max(α̃ı̂)
, p̊min(β̃ ı̂)

, p̊min(γ̃ı̂)
, p̊max(α̊ı̂)

, p̊min(β̊ ı̂)
, p̊min(γ̊ı̂)

),

g̊− = min(g̃ı̂, g̊ı̂) = ( p̊min(α̃ı̂)
, p̊max(β̃ ı̂)

, p̊max(γ̃ı̂)
,

p̊min(α̊ı̂)
, p̊max(β̊ ı̂)

, p̊max(γ̊ı̂)
),

then
g̊− ≤ LNCHMk̊(g̃ı̂, g̊ı̂) ≤ g̊+ (21)

Proof. Based on Properties 1 and 3, we have:

LNCHMk̊(g̃ı̂, g̊ı̂) ≥ LNCHMk̊(g̃−ı̂ , g̊−ı̂ ) = g̊−

LNCHMk̊(g̃ı̂, g̊ı̂) ≤ LNCHMk̊(g̃+ı̂ , g̊+ı̂ ) = g̊+.

The proof is completed.

In addition, we will deliberate about some desirable cases of the LNCHM operator for the
parameter k̊.

1. When k̊ = 1, the LNCHM operator in (16) will be reduced to the LNCHA (linguistic neutrosophic
cubic Hamy averaging) operator:

LNCHM1(g̃ı̂, g̊ı̂) =

∑
1≤ı̂1≤n

(
1

∏
j=1

g̃ı̂j ,
1

∏
j=1

g̊ı̂j

) 1
1

(n
1)

=



p̊

t−t

 ∏
1≤ı̂1≤n

1−

 1

∏
j=1

α̃ı̂j ,
1

∏
j=1

α̊ı̂j


1
1



1
(n1)

, p̊

t

 ∏
1≤ı̂1≤n

1−

 1

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
1



1
(n1)

,

p̊

t

 ∏
1≤ı̂1≤n

1−

 1

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
1



1
(n1)


(22)

=

 p̊

t−t

 1

∏
j=1

(1−α̃ı̂ ,1−α̊ı̂)


1
n

, p̊

t

 1

∏
j=1

(
β̃ı̂
t , β̊ı̂

t

)
1
n

, p̊

t

 1

∏
j=1

(
γ̃ı̂
t , γ̊ı̂

t

)
1
n


(let ı̂1 = ı̂) =

1
n

n

∑̂
ı=1

g̊ı̂ = LNCA(g̃ı̂, g̊ı̂)

2. When k̊ = n, the LNCHM operator in (16) will reduce to the LNCHA (linguistic neutrosophic
cubic Hamy averaging) operator:

LNCMn(g̃ı̂, g̊ı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

(
n

∏
j=1

g̃ı̂j,
n

∏
j=1

g̊ı̂j

) 1
n

(n
n)
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=



p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



n

∏
j=1

α̃ı̂j

tn ,

n

∏
j=1

α̊ı̂j

tn



1
n




1
(nn)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 n

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
n



1
(nn)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 n

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
n



1
(nn)



(23)

=



p̊

t−t


1−



n

∏
j=1

α̃ı̂j

tn ,

n

∏
j=1

α̊ı̂j

tn



1
n


, p̊

t

1−

 n

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
n


,

p̊

t

1−

 n

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
n




=


p̊

t



n

∏
j=1

α̃ı̂j

tn ,

n

∏
j=1

α̊ı̂j

tn



1
n

, p̊

t−t

 n

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
n

, p̊

t−t

 n

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
n


let
(
ı̂j = ı̂

)
=

n

∏̂
ı=1

g̊
1
n
ı̂ = LNG(g̃ı̂, g̊ı̂)

Definition 15. Suppose (g̊ı̂, g̊ı̂) where ı̂ = 1, 2, ..., n. is an assortment of linguistic neutrosophic cubic numbers

and parameter k̊ = 1, 2, ..., n. and ẘ = (ẘ1, ẘ2..., ẘn)T the weight vector of ı̂ı̂ with ẘı̂ ∈ [0, 1] and
n

∑̂
ı=1

ẘı̂ = 1,

then the WLNCHM operator is defined as:

WLNCHMk̊(g̃ı̂, g̊ı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

ẘı̂j g̃ı̂j,
k̊

∏
j=1

ẘı̂j g̊ı̂j

) 1
k̊

(n
k̊)

(24)

where
(
ı̂1, ı̂2, ..., ı̂k̊

)
navigate all the k-tuple arrangements of (1, 2, ..., n̊), (n

k̊) is the binomial coefficient and
(n

k̊) =
n!

k̊!(n−k̊)!
.
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Example 5. Let (g̃ı̂, g̊ı̂) = ((g̃1, g̊1), (g̃2, g̊2)) i = 1, 2 and k = 1, where g̃1 =

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8)) , g̃2 = ([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6)) and ẘ =

(0.5, 0.5):

WLNCHM1 ((g̃1, g̊2), (g̃2, g̊2))

=
∑ (((ẘ11 g̃11, ẘ11 g̊11)(ẘ22 g̃22, ẘ22 g̊22)))

1

(2
1)

=
(((ẘ11 g̃11, ẘ11 g̊11), (ẘ22 g̃22, ẘ22 g̊22)))

1 + (((ẘ11 g̃11, ẘ11 g̊11), (ẘ22 g̃22, ẘ22 g̊22)))
1

(2
1)

=

∑


(0.5) (0.5)

(
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)

(0.5) (0.5)

(
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

(2
1)

=


(0.5) (0.5)

(
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)

(0.5) (0.5)

(
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

+


(0.5) (0.5)

(
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)

(0.5) (0.5)

(
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

(2
1)

=

(
([0.003, 0.01] , [0.006, 0.01] , [0.01, 0.023] , (0.3, 0.23, 0.2))
([0.006, 0.02] , [0.01, 0.034] , [0.03, 0.01] , (0.32, 0.2, 0.3))

)

+

(
([0.003, 0.01] , [0.006, 0.01] , [0.01, 0.023] , (0.3, 0.23, 0.2))
([0.006, 0.02] , [0.01, 0.034] , [0.03, 0.01] , (0.32, 0.2, 0.3))

)
(2

1)

=

(
([0.00002, 0.0002] , [0.00006, 0.00034] , [0.0003, 0.0023] , (0.52, 0.4, 0.44))
+ ([0.00002, 0.0002] , [0.00006, 0.00034] , [0.0003, 0.0023] , (0.52, 0.4, 0.44))

)
(2

1)

=
([0.00004, 0.0004] , [0.00012, 0.0007] , [0.0006, 0.005] , (0.3, 0.2, 0.23))

(2
1)

= ([0.00002, 0.0002] , [0.00006, 0.0004] , [0.0003, 0.003] , (0.2, 0.1, 0.12))

Depending on the operations of LNCNs that were given in the above Equations (1)–(4), with the help of
Equation (24), we can formulate the following theorem.

Theorem 2. Let (g̃ı̂, g̊ı̂) = ( p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊))(ı̂ = 1, 2, ..., n) be the collection of LNCNs, ẘ =

(ẘ1, ẘ2..., ẘn)T be the weight vector of ı̂ı̂ with ẘı̂ ∈ [0, 1], ı̂ = 1, 2, ..., n and
n

∑̂
ı=1

ẘı̂ = 1. Then, the accumulated

value acquired from the WLNCM operator in (24) is obviously an LNCN, and:
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WLNCM(g̃ı̂, g̊ı̂) (25)

=



p̊

t−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)


Proof. According to the operational law of LNCNs, we have:

ẘı̂j g̊ı̂j =

 p̊
t−t
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j , p̊
t
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j , p̊
t
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j

 ,

k̊

∏
j=1

ẘı̂j g̊ı̂j

=

 p̊
t

k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
), p̊

t−t
k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
), p̊

t−t
k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)


and: (
k̊

∏
j=1

ẘı̂j g̊ı̂j

) 1
k̊

=

 p̊

t

 k̊

∏
j=1

(
1−
(

1−
α̊ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊

, p̊

t−t

 k̊

∏
j=1

(
1−
(

β̊ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊

, p̊

t−t

 k̊

∏
j=1

(
1−
(

γ̊ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊


then:

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=



p̊

t−t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊


, p̊

t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊


,

p̊

t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊
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1
(n

k̊)
∑

1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=



p̊

t−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)


Therefore,

WLNCHM(g̃ı̂, g̊ı̂)

=



p̊

t−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)


which proves Theorem.

According to the operating rules of the LNCNs, the WLNCHM operators also have the same
properties in the following:

Property 5. (Commutativity) Let (g̊ı̂, g̊ı̂) for all (ı̂ = 1, 2, ..., n) , be an assortment of LNCNs and (g̃′ı̂ , g̊′ı̂) be
any permutation of (g̃ı̂, g̊ı̂), then:

WLNCHMk̊(g̃′ı̂ , g̊′ı̂) = LNCHMk̊(g̃ı̂, g̊ı̂) (26)

Based on Definition (13), the conclusion is obvious,

WLNCHMk̊(ẘı̂j g̃′ı̂ , ẘı̂j g̊′ı̂)

=

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

ẘı̂j g̃′ı̂j,
k̊

∏
j=1

ẘı̂j g̊′ı̂j

) 1
k̊

(n
k̊)

=

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

ẘı̂j g̃ı̂j,
k̊

∏
j=1

ẘı̂j g̊ı̂j

) 1
k̊

(n
k̊)

= WLNCHMk̊(g̃ı̂, g̊ı̂)
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Property 6. (Monotonicity) Let (g̃ı̂, g̊ı̂) = ( p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)),
(

f̃ ı̂, f ı̂
)

=
(

p̊( p̃ı̂ ,pı̂), p̊(q̃ı̂ ,qı̂), p̊(r̃ı̂ ,rı̂)

)
(ı̂ = 1, 2, ..., n) be two collections of LNCNs; if α̃ı̂ ≤ p̃ı̂, β̃ ı̂ ≤ q̃ı̂, γ̃ı̂ ≤ r̃ı̂, and α̊ı̂ ≤ p̊ı̂, β̊ ı̂ ≤ qı̂, γ̊ı̂ ≤ rı̂
for all ı̂, then:

WLNCHMk̊(g̃ı̂, g̊ı̂) ≤WLNCHMk̊ ( f̃ ı̂, f ı̂
)

(27)

Property 7. (Idempotency) If (g̃ı̂, g̊ı̂) = (g̃, g̊) = ( p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)) for all (ı̂ = 1, 2, ..., n), then:

WLNCHMk̊(g̊, g̊) = ( p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)) (28)

Property 8. (Boundedness) Let (g̃ı̂, g̊ı̂)(ı̂ = 1, 2, ..., n) be an assortment of LNCNs and g̊+ =

max(g̃ı̂, g̊ı̂), g̊− = min(g̃ı̂, g̊ı̂), then:

g̊− ≤WLNCHMk̊(g̃ı̂, g̊ı̂) ≤ g̊+ (29)

Based on Properties 5 and 6, we have,

WLNCHMk̊(g̃ı̂, g̊ı̂) ≥WLNCHMk̊(g̃−ı̂ , g̊−ı̂ ) = g̊−

WLNCHMk̊(g̃ı̂, g̊ı̂) ≤WLNCHMk̊(g̃+ı̂ , g̊+ı̂ ) = g̊+.

4. Entropy of LNCSs

Entropy is used to control the unpredictability in different sets like the fuzzy set (FS), intuitionistic
fuzzy set (IFS), etc. In 1965, Zadeh [37] first defined the entropy of FS to determine the ambiguity in a
quantitative manner. This notion of fuzziness plays a significant role in system optimization, pattern
classification, control and some other areas. He also gave some points of its effects in system theory.
Recently, the non-probabilistic entropy was axiomatized by Luca et al. [38]. The intuitionistic fuzzy
sets are intuitive and have been widely used in the fuzzy literature. The entropy G of a fuzzy set H
satisfies the following conditions,

1. G(H) = 0 if and only if H ∈ 2x;
2. G(H) = 1 if and only if µA(x) = 0.5, ∀x ∈ X;
3. G(H) ≤ G(ı̂) if and only if H is less fuzzy than ı̂, i.e., if µH(x) ≤ µı̂(x) ≤ 0.5, ∀x ∈ X or if

µH(x) ≥ µı̂(x) ≥ 0.5, ∀x ∈ X;
4. G(HC) = G(H).

Axioms 1–4 were expressed for fuzzy sets (known only by their membership functions), and
they are stated for the intuitionistic fuzzy sets as follows:

1. G(H) = 0 if and only if H ∈ 2x; (H non-fuzzy)
2. G(H) = 1 if and only if µH(x) = νH(x), ∀x ∈ X;
3. G(H) ≤ G(ı̂) if and only if H is less than ı̂, i.e., if µH(x) ≤ µı̂(x) and νH(x) ≥ νi(x) for µı̂(x) ≤

νi(x) or if µH(x) ≥ µı̂(x) and νH(x) ≤ νi(x) for µı̂(x) ≥ νi(x),
4. G(HC) = G(H).

Differences occur in Axiom 2 and 3.
Kaufmann [39] suggested a distance measure of soft entropy. A new non-probabilistic entropy

measure was introduced by Kosko [40]. In [41] Majumdar and Samanta introduced the notion of two
single-valued neutrosophic sets, their properties and also defined the distance between these two sets.
They also investigated the measure of entropy of a single-valued neutrosophic set. The entropy of IFSs
was introduced by Szmidt and Kacprzyk [42]. The fuzziness measure in terms of distance between the
fuzzy set and its compliment was put forward by Yager [43].



Symmetry 2018, 10, 428 21 of 30

The LNCS was examined by managing undetermined data with the truth, indeterminacy and
falsity membership function. For the neutrosophic entropy, we will trace the Kosko idea for fuzziness
calculation [40]. Kosko proposed to measure this information feature by a similarity function between
the distance to the nearest crisp element and the distance to the farthest crisp element. For neutrosophic
information, the two crisp elements are (1, 0, 0) and (0, 0, 1). We consider the following vector: B =

(µ− ν, µ + ν− 1, w) . For (1, 0, 0) and (0, 0, 1), it results in BTru = (1, 0, 0) and BFal = (−1, 0, 0) . We
will now compute the distances as follows:

D (B, BTru) = |µ− ν− 1|+ |µ + ν− 1|+ w (30)

D (B, BFal) = |µ− ν + 1|+ |µ + ν− 1|+ w (31)

The neutrosophic entropy will be defined by the similarity between these two distances.
The similarity Ec and neutrosophic entropy Vc are defined as follows:

Ec = 1− |D (B, BTru)− D (B, BFal) |
D (B, BTru) + D (B, BFal)

(32)

Vc = 1− |µ− ν|
1|+ |µ + ν− 1|+ w

(33)

Definition 16. Suppose that H =
{(

xı̂, p̊(α̃H,α̊H)(xı̂), p̊(β̃H,β̊H)(xı̂)
, p̊(γ̃H,γ̊H)(xı̂)

)
| xı̂ ∈ X

}
is an LNCS;

we define the entropy of LNCS as a function Gk̊ : k̊(X) → [0, t], where t is an odd cardinality with t + 1.
The following are some conditions.

1. Gk̊(H) = 0 îf H is a crisp set;

2. Gk̊(H) = [1, 1] if and only if
˜̊αH(x)

t =
˜̊βH(x)

t =
˜̊γH(x)

t = [0.5, 0.5] and Gk̊(H) = 1 if and only if
α̊H(x)

t = β̊H(x)
t = γ̊H(x)

t = 0.5, ∀x ∈ X ;

3. Gk̊(H) ≤ Gk̊(ı̂) if and only if H is less indeterminable than ı̂, i.e., if
˜̊αH(x)

t +
˜̊γH(x)

t ≥ ˜̊αı̂(x)
t +˜̊γı̂(x)

t , α̊H(x)
t + γ̊H(x)

t ≥ α̊ı̂(x)
t + γ̊ı̂(x)

t and
∣∣∣∣ ˜̊βH(x)

t −
˜̊βHC (x)

t

∣∣∣∣ ≥ ∣∣∣∣ ˜̊βı̂(x)
t −

˜̊βı̂C (x)
t

∣∣∣∣ , ∣∣∣∣ β̊H(x)
t − β̊HC (x)

t

∣∣∣∣ ≥∣∣∣∣ β̊ ı̂(x)
t −

β̊ ı̂C (x)
t

∣∣∣∣ ;

4. Gk̊(HC) = Gk̊(H).

We need to consider three factors for the uncertain measure of LNCS; one is the truth membership
and false membership, and the other is the indeterminacy term. We define the entropy measure of Gk̊
of an LNCS H, which depends on the following terms:

Gk̊(H) = 1− 1
n ∑

x∈X

(˜̊αH(x)
t

+
˜̊γH(x)

t

)
.

∣∣∣∣∣ ˜̊βH(x)
t
−
˜̊βHC (x)

t

∣∣∣∣∣ (34)

Then, we prove that (34) can meet the condition of Definition (16).

Proof. 1. For a crisp set H, there is no indeterminacy function for any LNCN of H. Hence, Gk̊(H) =

0 is satisfied.

2. If H is such that
˜̊αH(x)

t =
˜̊βH(x)

t =
˜̊γH(x)

t = [0.5, 0.5], α̊H(x)
t , β̊H(x)

t , γ̊H(x)
t = 0.5, ∀x ∈ X, then˜̊αH(x)

t +
˜̊γH(x)

t = [1, 1], α̊H(x)
t + γ̊H(x)

t = 1 and
˜̊βH(x)

t −
˜̊βHC (x)

t = [0.5, 0.5]− [0.5, 0.5] = 0, β̊H(x)
t −

β̊HC (x)
t = 0.5− 0.5 = 0, ∀x ∈ X⇒ Gk̊(H) = 1.
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3. H is less uncertain than I; we assume
˜̊αH(x)

t +
˜̊γH(x)

t ≥ ˜̊αı̂(x)
t +

˜̊γı̂(x)
t , α̊H(x)

t + γ̊H(x)
t ≥ α̊ı̂(x)

t + γ̊ı̂(x)
t

and
∣∣∣∣ ˜̊βH(x)

t −
˜̊βHC (x)

t

∣∣∣∣ ≥ ∣∣∣∣ ˜̊βı̂(x)
t −

˜̊βı̂C (x)
t

∣∣∣∣ , ∣∣∣∣ β̊H(x)
t − β̊HC (x)

t

∣∣∣∣ ≥ ∣∣∣∣ β̊ ı̂(x)
t −

β̊ ı̂C (x)
t

∣∣∣∣ . Depending on the

entropy value in Equation (34), we can obtain Gk̊(H) ≤ Gk̊(ı̂).

4. HC =
{(

xı̂, p̊γ̃H(xı̂)
, p̊t−β̃H(xı̂)

, p̊α̃H(xı̂)
, p̊γ̊H(xı̂)

, p̊t−β̊H(xı̂)
, p̊α̊H(xı̂)

)
| xı̂ ∈ X

}
,

Gk̊(HC) = 1− 1
n ∑x∈X

( ˜̊γH(x)
t +

˜̊αH(x)
t

)
.
∣∣∣∣ ˜̊βHC (x)

t −
˜̊βH(x)

t

∣∣∣∣ = Gk̊(H).

Example 6. Let p̊ = { p̊0, p̊1, p̊2, p̊3, p̊4} be a linguistic term set with cardinality t+ 1, g̊1 = ( p̊3, p̊2, p̊1), g̊2 =

( p̊4, p̊3, p̊1, ), be two LNCNs based on p̊ and U be the universal set where:

H =

{
([0.1, 0.3], [0.4, 0.5], [0.4, 0.6], (0.4, 0.6, 0.7)) ,
([0.1, 0.2], [0.2, 0.5], [0.1, 0.4], (0.4, 0.6, 0.5))

}

is an LNCS in U. Then, the entropy of U will be:

Gk̊(H) = 1− 1
2

 (
[0.1,0.3]

5 + [0.4,0.6]
5

)
.
∣∣∣ [0.4,0.5]

5 − 5−[0.4,0.5]
5

∣∣∣
+
(
[0.1,0.2]

5 + [0.1,0.4]
5

)
.
∣∣∣ [0.1,0.4]

5 − 5−[0.1,0.4]
5

∣∣∣


= [0.89, 0.93]

5. The Method for MAGDM Based on the WLNCHM Operator

In this section, we discuss MAGDM, based on the WLNCHM operator with LNCN.
Let U = {U1, U2, ..., Um} be the set of alternatives, V = {V1, V2, ..., Vn} be the set of attributes

and ẘ = (ẘ1, ẘ2, ..., ẘn)
T be the weight vector. Then, by LNCNs and from the predefined linguistic

term set ϕ = {ϕj | j ∈ [0, t]} (where t + 1 is an odd cardinality), the decision makers are invited to
evaluate the alternatives Uı̂(ı̂ = 1, 2, ..., m) over the attributes Vj(j = 1, 2, ..., n). The DMs can assign the
uncertain LTS to the truth, indeterminacy and falsity linguistic terms and the certain LTS to the truth,
indeterminacy and falsity linguistic terms in each LNCNs, which is based on the LTS in the evaluation
process of the linguistic evaluation of each attribute Vj(j = 1, 2, ..., n) on each alternative Uı̂(ı̂ =

1, 2, ..., m). Thus, we obtain the decision matrix S = (sı̂j)m× n,
(

g̊ı̂j , g̊ı̂j

)
= ( p̊α̊ı̂j

, p̊β̊ ı̂j
, p̊γ̊ı̂j

, p̊α̊ı̂j
, p̊β̊ ı̂j

, p̊γ̊ı̂j
)

(ı̂ = 1, 2, ..., m; j = 1, 2, ..., n) as an LNCN.
Based on the above information, the MAGDM on the WLNCM operator is described as follows:
Step 1: Regulate the decision making problem.
Step 2: Calculate g̊ı̂j = WLNCM(sı̂1, sı̂2, ..., sı̂n) to obtain the collective approximation value for

alternatives Uı̂ with respect to attribute Vj.
Step 3: In this step, we operate the entropy of LNCSs to find out the weight of the elements.

g̊j = ( p̊(α̃j ,α̊j)
, p̊(β̃ j ,β̊ j)

, p̊(γ̃j ,γ̊j)
)

Gk̊(g̊j) = 1− 1
m ∑

x∈X

˜̊αRj(x)

t
+
˜̊γRj

(x)

t

 .

∣∣∣∣∣∣∣
˜̊βRj

(x)

t
−
˜̊βRC

J
(x)

t

∣∣∣∣∣∣∣
v = Gk̊(g̊j)/

n

∑
j=1

Gk̊(g̊j) (35)

Step 4: In this step, we calculate the values of the score function ϕ(S), accuracy function Φ(S)
and certain function Ψ(S) based on Equations (12)–(14).
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Step 5: In this step, we find out the sequence of the alternatives Uı̂(ı̂ = 1, 2, ..., m) . According to
the ranking order of Definition 8, with a greater score function ϕ(S), the ranking order of alternatives
Uı̂ is the best. If the score functions are the same, then the accuracy function of alternatives Uı̂ is larger,
and then, the ranking order of alternatives Ui is better. Furthermore, if the score and accuracy function
both are the same, then the certain function of alternatives Uı̂ is larger, and then, the ranking order of
alternatives Uı̂ is best.

Step 6: End.

6. Numerical Applications

A corporation intends to choose one person to be the area supervisor from five candidates
(U1 −U4), to be further evaluated according to the three attributes, which are shown as follows:
ideological and moral quality (V1), professional ability (V2) and creative ability (V3). The weights of
the indicators are ẘ = (0.5, 0.3, 0.2).

6.1. Procedure

Case 1: If the weights of the element are absolutely unidentified, then we use the suggested
technique to solve the above problem in which the decision making steps are as follows:

Step 1: Let U = {U1, U2, ..., U4} be a set of alternatives and V = {V1, V2, V3} be a set of attributes.
Let S = (sı̂j)4×3 be a set of decision matrices. A decision matrix evaluates each alternative based on
the given attributes;

S1 =

V1 V2 V3

U1


([0.4, 0.5],
[0.1, 0.2],
[0.3, 0.6],

(0.6, 0.3, 0.7))




([0.3, 0.5],
[0.6, 0.7],
[0.4, 0.6],

(0.6, 0.8, 0.7))




([0.2, 0.5],
[0.4, 0.7],
[0.7, 0.8],

(0.6, 0.8, 0.9))


U2


([0.4, 0.7],
[0.7, 0.8],
[0.4, 0.8],

(0.8, 0.9, 0.9))




([0.4, 0.7],
[0.7, 0.8],
[0.1, 0.5],

(0.8, 0.9, 0.7))




([0.1, 0.4],
[0.1, 0.7],
[0.7, 0.9],

(0.5, 0.8, 1.0))


U3


([0.2, 0.7],
[0.5, 0.7],
[0.1, 0.8],

(0.8, 0.8, 0.9))




([0.5, 0.5],
[0.4, 0.6],
[0.3, 0.8],

(0.6, 0.7, 0.9))




([0.1, 0.5],
[0.4, 0.9],
[0.2, 0.8],

(0.6, 1.0, 0.9))


U4


([0.4, 0.9],
[0.3, 0.7],
[0.4, 0.9],

(1.0, 0.8, 1.1))




([0.1, 0.3],
[0.2, 0.7],
[0.7, 0.7],

(0.4, 0.8, 0.9))




([0.2, 0.6],
[0.2, 0.7],
[0.1, 0.8],

(0.7, 0.8, 0.9))
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S2 =

V1 V2 V3

U1


([0.4, 0.6],
[0.1, 0.3],
[0.3, 0.5],

(0.7, 0.4, 0.6))




([0.3, 0.4],
[0.6, 0.7],
[0.5, 0.6],

(0.5, 0.8, 0.7))




([0.2, 0.3],
[0.4, 0.5],
[0.7, 0.8],

(0.4, 0.6, 0.9))


U2


([0.3, 0.7],
[0.7, 0.8],
[0.6, 0.8],

(0.8, 0.9, 1.0))




([0.4, 0.5],
[0.7, 0.9],
[0.1, 0.4],

(0.6, 1.0, 0.8))




([0.3, 0.4],
[0.1, 0.8],
[0.6, 0.9],

(0.5, 0.9, 1.0))


U3


([0.2, 0.4],
[0.5, 0.6],
[0.1, 0.3],

(0.5, 0.7, 0.7))




([0.5, 0.6],
[0.3, 0.6],
[0.3, 0.7],

(0.7, 0.8, 0.9))




([0.1, 0.3],
[0.4, 0.6],
[0.2, 0.5],

(0.4, 0.7, 0.6))


U4


([0.4, 0.7],
[0.3, 0.5],
[0.4, 0.6],

(0.8, 0.6, 0.7))




([0.1, 0.4],
[0.2, 0.6],
[0.6, 0.7],

(0.5, 0.7, 0.8))




([0.2, 0.7],
[0.2, 0.8],
[0.1, 0.5],

(0.8, 0.9, 0.7))



S3 =

V1 V2 V3

U1


([0.4, 0.5],
[0.1, 0.2],
[0.3, 0.6],

(0.6, 0.3, 0.7))




([0.3, 0.4],
[0.5, 0.7],
[0.4, 0.5],

(0.5, 0.8, 0.6))




([0.2, 0.4],
[0.4, 0.6],
[0.7, 0.9],

(0.5, 0.7, 1.0))


U2


([0.4, 0.5],
[0.7, 0.9],
[0.4, 0.9],

(0.6, 1.0, 1.1))




([0.4, 0.6],
[0.7, 0.9],
[0.1, 0.4],

(0.7, 1.0, 0.5))




([0.1, 0.4],
[0.1, 0.7],
[0.7, 0.8],

(0.5, 0.8, 0.9))


U3


([0.2, 0.6],
[0.5, 0.8],
[0.1, 0.7],

(0.7, 0.9, 0.8))




([0.5, 0.6],
[0.4, 0.6],
[0.6, 0.8],

(0.7, 0.8, 0.9))




([0.1, 0.4],
[0.4, 0.8],
[0.6, 0.8],

(0.5, 0.9, 1.0))


U4


([0.3, 0.9],
[0.4, 0.7],
[0.5, 0.9],

(1.1, 0.8, 1.0))




([0.1, 0.2],
[0.2, 0.5],
[0.6, 0.7],

(0.3, 0.6, 0.8))




([0.2, 0.5],
[0.2, 0.4],
[0.1, 0.9],

(0.7, 0.8, 1.0))
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Step 2: Calculate sı̂j = WLNCHM(sı̂1, sı̂2, ..., sı̂n) to obtain the overall assessment value for
alternatives Uı̂ with respect to attribute Vj.

V1 V2 V3

U1



([0.110, 0.127],
[0.055, 0.084],
[0.095, 0.131],
(0.139, 0.101,

0.142))





([0.101, 0.119],
[0.115, 0.127],
[0.110, 0.135],
(0.127, 0.156,

0.142))





([0.078, 0.110],
[0.110, 0.135],
[0.146, 0.159],
(0.123, 0.110,

0.169))


U2



([0.105, 0.139],
[0.146, 0.159],
[0.119, 0.159],
(0.149, 0.169,

0.175))





([0.110, 0.135],
[0.146, 0.162],
[0.055, 0.115],
(0.146, 0.172,

0.142))





([0.071, 0.110],
[0.055, 0.149],
[0.142, 0.162],
(0.123, 0.159,

0.172))


U3



([0.078, 0.131],
[0.123, 0.146],
[0.055, 0.135],
(0.142, 0.156,

0.156))





([0.123, 0.131],
[0.105, 0.135],
[0.123, 0.153],
(0.142, 0.153,

0.165))





([0.055, 0.110],
[0.110, 0.153],
[0.101, 0.110],
(0.123, 0.162,

0.159))


U4



([0.105, 0.159],
[0.101, 0.139],
[0.115, 0.156],
(0.172, 0.149,

0.169))





([0.055, 0.095],
[0.078, 0.135],
[0.139, 0.146],
(0.110, 0.146,

0.159))





([0.078, 0.135],
[0.078, 0.139],
[0.055, 0.149],
(0.149, 0.159,

0.165))


Step 3: We utilize the entropy of LNCSs to calculate the weight of the attributes, i.e., let

sj = ( p̊(α̃j ,α̊j)
, p̊(β̃ j ,β̊ j)

, p̊(γ̃j ,γ̊j)
) be the LNCN and Gk̊(sj) be the weight of attributes, i.e.,
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Gk̊(sj) = 1− 1
m ∑

x∈X

˜̊αSj(x)

t
+
˜̊γSj

(x)

t

 .

∣∣∣∣∣∣∣
˜̊βSj

(x)

t
−
˜̊βSC

J
(x)

t

∣∣∣∣∣∣∣

Gk̊(s1) = 1− 1
4



(
[0.110,0.127]

7 + [0.095,0.131]
7

)
.
∣∣∣ [0.055,0.084]

7 − 7−[0.055,0.084]
7

∣∣∣
+
(
[0.105,0.139]

7 + [0.119,0.159]
7

)
.
∣∣∣ [0.146,0.159]

7 − 7−[0.146,0.159]
7

∣∣∣
+
(
[0.078,0.131]

7 + [0.055,0.135]
7

)
.
∣∣∣ [0.123,0.146]

7 − 7−[0.123,0.146]
7

∣∣∣
+
(
[0.105,0.159]

7 + [0.115,0.156]
7

)
.
∣∣∣ [0.101,0.139]

7 − 7−[0.101,0.139]
7

∣∣∣


= [0.975, 0.976]

Gk̊(s2) = 1− 1
4



(
[0.101,0.119]

7 + [0.110,0.135]
7

)
.
∣∣∣ [0.115,0.127]

7 − 7−[0.115,0.127]
7

∣∣∣
+
(
[0.110,0.135]

7 + [0.055,0.115]
7

)
.
∣∣∣ [0.146,0.162]

7 − 7−[0.146,0.162]
7

∣∣∣
+
(
[0.123,0.131]

7 + [0.123,0.153]
7

)
.
∣∣∣ [0.105,0.135]

7 − 7−[0.105,0.135]
7

∣∣∣
+
(
[0.055,0.095]

7 + [0.139,0.146]
7

)
.
∣∣∣ [0.078,0.135]

7 − 7−[0.078,0.135]
7

∣∣∣


= [0.975, 0.994]

Gk̊(s3) = 1− 1
4



(
[0.078,0.110]

7 + [0.146,0.159]
7

)
.
∣∣∣ [0.110,0.135]

7 − 7−[0.110,0.135]
7

∣∣∣
+
(
[0.071,0.110]

7 + [0.142,0.162]
7

)
.
∣∣∣ [0.055,0.149]

7 − 7−[0.055,0.149]
7

∣∣∣
+
(
[0.055,0.110]

7 + [0.101,0.110]
7

)
.
∣∣∣ [0.110,0.153]

7 − 7−[0.110,0.153]
7

∣∣∣
+
(
[0.078,0.135]

7 + [0.055,0.149]
7

)
.
∣∣∣ [0.078,0.139]

7 − 7−[0.078,0.139]
7

∣∣∣


= [0.935, 0.982]

v = Gk̊(sj)/
n

∑
j=1

Gk̊(sj)

v1 =
[0.957, 0.976]
[2.883, 2.952]

= [0.338.0.330]

v2 =
[0.973, 0.994]
[2.883, 2.952]

= [0.337, 0.336]

v3 =
[0.935, 0.982]
[2.883, 2.952]

= [0.324, 0.332]

Step 4: By the WLNCHM operator, we calculate the comprehensive evaluation value of each
alternative as:

U1 = ([0.132, 0.182], [0.140, 0.174], [0.127, 0.192], (0.199, 0.189, 0.212))

U2 = ([0.128, 0.186], [0.147, 0.184], [0.141, 0.187], (0.174, 0.207, 0.199))

U3 = ([0.093, 0.153], [0.117, 0.190], [0.147, 0.191], (0.200, 0.195, 0.205))

U4 = ([0.103, 0.121], [0.133, 0.162], [0.152, 0.171], (0.160, 0.181, 0.175))
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Step 5: We find the values of score function ϕ(S) as:

ϕ(S) =
1
9t
[
(

4t + α̊− β̊− γ̊
)
+
(

2t + α̊− β̊− γ̊
)
], for ϕ(S) ∈ [0, 1]

ϕ(S1) =
1

45
[20 + 0.13 + 0.2− (0.14 + 0.2 + 0.13 + 0.2)

+ 10 + 0.2− (0.2 + 0.21)]

= 654

ϕ(S2) =
1
45

[20 + 0.2 + 0.2− (0.15 + 0.2 + 0.14 + 0.2)

+ 10 + 0.2− (0.2 + 0.2)]

= 0.656

ϕ(S3) =
1
45

[20 + 0.1 + 0.2− (0.12 + 0.2 + 0.15 + 0.2)

+ 10 + 0.2− (0.2 + 0.21)]

= 0.653

ϕ(S4) =
1

45
[20 + 0.1 + 0.1− (0.1 + 0.2 + 0.2 + 0.2)

+ 10 + 0.2− (0.2 + 0.2)]

= 0.657

Step 6: According to the value of the score function, the ranking of the candidates can be confirmed,
i.e., S4 � S2 � S1 � S3., so S4 is the best alternatives.

Case 2: If the DM gives the information about the attributes and weight and the weight vector
is ẘ = (0.1, 0.5, 0.4), then the score function ϕ(Sı̂)(ı̂ = 1, 2, 3, 4) of Case 2 can be obtained as follows;
ϕ(S1) = 0.451, ϕ(S2) = 0.435, ϕ(S3) = 0.504, ϕ(S4) = 0.492. The ranking of these score functions is
S3 � S4 � S1 � S2. Thu,s due to the diverse weights of attributes, the ranking of Case 2 is different
from that of Case 1.

In the MADM method, the attribute weights can return relative values in the decision method.
However, due to the issues such as data loss, time pressure and incomplete field knowledge of the DMs,
the information about attribute weights is not fully known or completely unknown. Through some
methods, we should derive the weight vector of attributes to get possible alternatives. In Case 2, the
attribute weights are usually determined based on DMs’ opinions or preferences, while Case 1 uses
the entropy concepts to determine weight values of attributes to successfully balance the manipulation
of subjective factors. Therefore, the entropy of LNCS is applied in the decision process to give each
attribute a more objective and reasonable weight.

6.2. Comparison Analysis

From the comparison analysis, one can see that the advanced method is more appropriate
for articulating and handling the indeterminate and inconsistent information in linguistic decision
making problems to overcome the insufficiency of several linguistic decision making methods in the
existing work. In fact, most of the decision making problems based on different linguistic variables
in the literature not only express inconsistent and indeterminate linguistic results, but the linguistic
method suggested in the study is a generalization of existing linguistic methods and can handle
and represent linguistic decision making problems with LNN information. We also see that the
advanced method has much more information than the existing method in [26,32,45]. In addition,
the literature [26,32,45] is the same as the best and worst and different from our methods. The reason
for the difference between the given literature and our method may be the decision thought process.
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Some initial information may be missing during the aggregation process. Moreover, the conclusions
are different. Different aggregation operators may appear [32], and our methods are consistent with
the aggregation operator and receive a different order. However, [32] may have some limitations
because of the attributes. The weight vector is given directly, and the positive and negative ideal
solutions are absolute. Other than this, the ranking in the literature [26,32,45] is different from the
proposed method. The reason for the difference may be uncertainty in LNN membership since the
information is inevitably distorted in LIFN. Our method develops the neutrosophic cubic theory and
decision making method under a linguistic environment and provides a new way for solving linguistic
MAGDM problems with indeterminate and inconsistent information.

7. Conclusions

In this paper, we work out the idea of LNCNs, their operational laws and also some properties
and define the score, accuracy and certain functions of LNCNs for ranking LNCNs. Then, we define
the LNCHM and WLNCHM operators. After that, we demonstrate the entropy of LNCNs and relate
it to determine the weights. Next, we develop MAGDM based on WLNCHM operators to solve
multi-attribute group decision making problems with LNCN information. Finally, we provide an
example of the developed method.
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