

brought to you by TCORE

Asia Mathematika

Volume 2 Issue 2 (2018) page: 41-48 Available online at www.asiamath.org

Semi-Compact and Semi-Lindelöf Spaces via Neutrosophic Crisp Set Theory

A.A. Salama*, I.M.Hanafy and M. S. Dabash

Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Egypt.

Abstract

The aim of this paper is devoted to introduce and study the concepts of semi-compact (resp. semi-Lindelöf, locally semi-compact) spaces in a neutrosophic crisp topological space. Several properties, functions properties of neutrosophic crisp semi-compact spaces are studied. In addition to these, we introduce and study the definition of neutrosophic crisp semi-Lindelöf spaces and neutrosophic crisp locally semi-compact spaces. We show that neutrosophic crisp semi-compact spaces is preserved under neutrosophic crisp irresolute function and neutrosophic crisp pre-semi-closed function with neutrosophic crisp semi-compact point inverses.

Keywords: Neutrosophic crisp semi-compact spaces, Neutrosophic crisp semi-Lindelöf spaces, Neutrosophic crisp locally semi-compact spaces. Neutrosophic topological spaces

1. Introduction and preliminaries

Neutrosophic Crisp Sets were introduced by Salama & Smarandache in 2015. Neutrosophic topological spaces and many applications have been investigated by Salama et al. [5, 7, 8, 9] and [11-21]. The notions and terminologies not explained in this paper may be found in [9]. Some definitions and results which will be needed in this paper are recalled here. *In this paper, we generalize the crisp semi-compact spaces* [1] *and some notions in* [2, 3, 4, 6] *to the notion of neutrosophic crisp semi-compact spaces*.

Definition 1.1 [9] For any non-empty fixed set *X*, a neutrosophic crisp set (*NC*-set, for short) *A* is an object having the form $A = \langle A_1, A_2, A_3 \rangle$, where A_1, A_2 and A_3 are subsets of *X* satisfying $A_1 \cap A_2 = \emptyset$, $A_1 \cap A_3 = \emptyset$ and $A_3 \cap A_2 = \emptyset$.

Several relations and operations between NC-sets were defined in [8].

Definition 1.2 [9] A neutrosophic crisp topology (*NCT*, for short) on a non-empty set X is a family Γ of neutrosophic crisp subsets of X satisfying the following axioms i) $\phi_N, X_N \in \Gamma$. ii) $A_1 \cap A_2 \in \Gamma$ for any A_1 and $A_2 \in \Gamma$. iii) $\bigcup A_j \in \Gamma$ for any $\{A_{j:j} \in J\} \subseteq \Gamma$.

* Corresponding author: drsalama44@gmail.com Received: 18 June 2018; Accepted: 06 July 2018.

©Asia Mathematika

In this case the pair (X, Γ) is called a neutrosophic crisp topological space (*NCTS*, for short) in *X*. The elements in Γ are called neutrosophic crisp open sets (*NC*-open sets for short) in *X*. A *NC*-set *F* is said to be neutrosophic crisp closed set (*NC*-closed set, for short) if and only if its complement F^c is a *NC*-open set.

Definition 1.3 [8] Let (X, Γ) be a *NCTS* and $A = \langle A_1, A_2, A_3 \rangle$ be a *NC*-set in *X*. Then the neutrosophic crisp closure of *A* (*NCcl*(*A*) for short) and neutrosophic crisp interior (*NCint*(*A*) for short) of *A* are defined by:

(i) $NCcl(A) = \bigcap \{K: K \text{ is a } NC\text{-closed set in } X \text{ and } A \subseteq K\}$

(ii) $NCint(A)=\bigcup \{G: G \text{ is a } NC\text{-open set in } X \text{ and } G\subseteq A\},\$

It can be also shown that NCcl(A) is a NC-closed set, and NCint(A) is a NC-open set in X.

Definition 1.4 [7] Let (X, Γ) be a *NCTS* and $A = \langle A_1, A_2, A_3 \rangle$ be a *NCS* in *X*, then *A* is called:

i) Neutrosophic crisp α -open set iff $A \subseteq NCint(NCcl(NCint(A)))$.

ii) Neutrosophic crisp semi-open set iff $A \subseteq NCcl$ (*NCint* (*A*)).

iii)Neutrosophic crisp pre-open set iff $A \subseteq NCint(NCcl(A))$.

Definition 1.5 [3,10] A subset A of space X is called semi-compact relative to X if any semiopen cover of A in X has a finite subcover of A.

Definition 1.6 [10] A subset *A* of a space *X* is called semi-Lindelöf in *X* if any semi-open cover of *A* in *X* has a countable subcover of *A*.

Definition 1.7 [5] Let (X, Γ) be a *NCTS* and $A = \langle A_1, A_2, A_3 \rangle$ be a *NCS* in X, then $f: X \rightarrow X$ is *NC*semi-continuous if the inverse image of *NC*semi-open set is *NC*semi-open.

2. Neutrosophic Crisp Semi-compact Spaces.

Definition 2.1 Let (X, Γ) be a *NCTS*.

- (i) If a family $\{\langle G_{i_1}, G_{i_2}, G_{i_3} \rangle$: $i \in I\}$ of *NC*-semiopen sets in *X* satisfies the condition $X_N = \bigcup\{\langle G_{i_1}, G_{i_2}, G_{i_2} \rangle$: $i \in I\}$, then it is called a *NC*-semiopen cover of *X*.
- (ii) A finite subfamily of a *NC*-semiopen cover { $(G_{i_1}, G_{i_2}, G_{i_3})$: *i*=1,2, 3, ..., *n*} on *X*, which is also a *NC*-semiopen cover of *X*, is called a finite sub cover of *NC*-semiopen sets.

Definition 2.2A *NCTS* (X, Γ) is called neutrosophic crisp semi-compact spaces (*NC*-semi-compact, for short) if any *NC*-semiopen cover of X has a finite subcover.

Definition 2.3

A family $\{\langle k_{i_1}, k_{i_2}, k_{i_3} \rangle: i \in I\}$ of *NC*-semiclosed sets in *X* satisfies the finite intersection property (*FIP* for short) iff every finite subfamily $\{\langle k_{i_1}, k_{i_2}, k_{i_3} \rangle: i=1, 2, 3, ..., n\}$ of the family satisfies the condition $\bigcap_{i_1} \{\langle k_{i_1}, k_{i_2}, k_{i_3} \rangle: i=1, 2, 3, ..., n\} \neq \Phi_N$.

Theorem 2.4 A *NCTS* (*X*, Γ) is *NC*-semi-compact iff every family { $(G_{i_1}, G_{i_2}, G_{i_3})$: $i \in I$ } of *NC*-semiclosed sets in *X* having the *FIP* has a nonempty intersection.

Proof. Let *X* be a *NC*-semi-compact space and $\mathcal{G} = \{\langle G_{i_1}, G_{i_2}, G_{i_3} \rangle: i \in I\}$ be a cover of *NC*-semiopen sets of *X* having the *FIP*. Suppose that $\bigcap \{\langle G_{i_1}, G_{i_2}, G_{i_3} \rangle: i \in I\} = \Phi_N$, then $\{X \setminus \{G_{i_1}, G_{i_2}, G_{i_3} \rangle: i \in I\}$ is a

NC-semiopen cover of X and must contain a finite subcover $\{X \setminus (G_{i_1}, G_{i_2}, G_{i_3}): i=1,2,3,\dots,n\}$ for X. This implies that $\bigcap \{(G_{i_1}, G_{i_2}, G_{i_3}): i=1,2,3,\dots,n\} = \Phi_N$ this contradicts our assumption

that \mathcal{G} has a *FIP*. Conversely, assume that X is not *NC*-semi-compact. Then there exists a *NC*-semiopen cover $\{\langle G_{i_1}, G_{i_2}, G_{i_3} \rangle: i \in I\}$ for X, which contain a finite subcover for X. Thus, $\{X \setminus \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle: i \in I\}$ is a family of *NC*-semiclosed sets of X having the *FIP*. Moreover, we have $\bigcap_{i} \{X \setminus \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle: i \in I\} = \Phi_N$. This complete the proof.

Definition 2.5A subset $u = \langle u_1, u_2, u_3 \rangle$ of a *NCTS* (X, Γ) is called *NC*-semi-compact relative to X if any *NC*-semiopen cover of u in X has a finite subcover of u. By *NC*-semi-compact in X, we will mean *NC*-semi-compact relative to X.

Definition 2.6 A subset $u = \langle u_1, u_2, u_3 \rangle$ of a *NCTS* (X, Γ) is called *NC*-semi-Lindelöf in X if any *NC*-semiopen cover of u in X has a countable subcover of u.

Remark 2.7

Since the family of all $NC\alpha$ -open subset of a $NCTS(X, \Gamma)$, denoted by Γ^{α} is NCT on X finer that Γ , then the family of all NC-semiopen subsets of (X,Γ^{α}) is equal to the family of all NC-semiopen subsets of (X,Γ^{α}) . Hence, it easily to see that a NC-set u of (X, Γ) is NC-semi-compact (respNC-semi-Lindelöf) in X iff it is NC-semi-compact (resp. NC-semi-Lindelöf) in (X,Γ^{α}) .

Theorem 2.8 The finite (resp. countable) union of *NC*-semi-compact (resp. *NC*-semi-Lindelöf) sets in a *NCTSX* is a *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in *X*.

Proof . obvious.

Lemma 2.9 Let $u \subseteq v \subseteq X$, where X is a *NCTS*. Then u is *NC*-semiopen set in v, if u is *NC*-semiopen set in X.

Theorem 2.10 Let v be a *NC*-preopen subset of a *NCTSX* and $u \subseteq v$. If u is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in X, then u is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in v.

Proof. Suppose that $\mathcal{G} = \{ \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i \in I \}$ is a cover of u by NC-semiopen sets in v. Using lemma 2.9, $G_{i_j} = S_{i_j} \cap v$ for each $i \in I$, j=1,2,3, where S_{i_j} is NC-semiopen set in X for each $i \in I$, j=1,2,3. Thus $\xi = \{ \langle S_{i_1}, S_{i_2}, S_{i_3} \rangle : i \in I \}$ is a cover of u by NC-semiopen set in X, but u is NC-semicopen set in X, so there exists $i=1,2,3,\ldots,n$, j=1,2,3. Such that $u \subseteq \bigcup_{i=1}^{n} S_{i_j}$ and thus $u \subseteq \bigcup_{i=1}^{n} (S_{i_j} \cap v)$

 $= \bigcup_{i=1}^{n} G_{i_i}$. Hence *u* is *NC*-semi-compact in *v*.

The other case is similar.

Corollary 2.11 Let v be *NC*-open (*NC* α -open) set of *NCTS* and $u \subseteq v$, if u is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in X, then u is *NC*-semi compact (resp. *NC*-semi-Lindelöf) in v.

Proof. It is obviously, since each *NC*-open set is $NC\alpha$ -open set and also *NC*-preopen set.

Lemma 2.12 Let $u \subseteq v \subseteq X$, where X is a *NCTS* and v is a *NC*-preopen set in X, then u is *NC*-semiopen (resp. *NC*-semiclosed) in viff $u = S \cap v$, where S is *NC*-semiopen (resp. *NC*-semiclosed) in X.

Proof. Obvious.

Theorem 2.13 Let v be a *NC*-preopen subset of *NCTSX* and $u \subseteq v$. Then u is *NC*-semi compact (resp. *NC*-semi-Lindelöf) in *X*iffu is *NC*-semi compact (resp. *NC*-semi-Lindelöf) in v.

Proof. Necessity. It follows from Theorem 2.8 sufficiency. Suppose that $\xi = \{\langle S_{i_1}, S_{i_2}, S_{i_3} \rangle$: $i \in I\}$ is a cover of u be *NC*-semiopen sets in X. Then $G = \{S_{i_j} \cap v: i \in I, j=1,2,3\}$ is a cover of u. Since S_{i_j} is *NC*-semiopen in X for each $i \in I$ and v is *NC*-preopen in X, it follows from Lemma 2.12 that $S_{i_j} \cap v$ is *NC*-semiopen set in v for each $i \in I$, j=1,2,3, but u is *NC*-semi-compact in v, so there

exists $i \in I$, j=1,2,3 that $u \subseteq \bigcup_{i=1}^{n} S_{i_j} \cap v \subseteq \bigcup_{i=1}^{n} S_{i_j}$. Hence, u is *NC*-semi-compact in *X*.

The other case is similar.

Corollary 2.14 A *NC*-preopen subset *u* of *X* is *NC*-semi compact (resp. *NC*-semi-Lindelöf) iff *u* is *NC*-semi compact (resp. *NC*-semi-Lindelöf) in *X*.

Corollary 2.15 A *NC*-open (*NC* α -open) subset *u* of *X* is *NC*-semi compact (resp. *NC*-semi-Lindelöf) iff*u* is *NC*-semi compact (resp. *NC*-semi-Lindelöf) in *X*.

Theorem 2.16 Let v be a *NC*-semi-compact (resp. *NC*-semi-Lindelöf) set in a *NCTSX* and v be is *NC*-semiclosed of X. Then $u \cap v$ is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in X.

Proof. Suppose that $\mathcal{G} = \{G_{i_j}: i \in I, j=1,2,3\}$ is a cover of $u \cap v$ by *NC*-semiopen set in *X*. Then $\mathcal{G} = \{G_{i_j}: i \in I, j=1,2,3\} \cup \{X \setminus v\}$ is a cover of *u* by *NC*-semiopen sets in *X*, but *u* is *NC*-semi-compact in *X*, so there exists i = 1.2.3...n, j=1.2.3 such that $u \subseteq (\bigcup_{i=1}^{n} S_{i_j}) \cup \{X \setminus v\}$. Thus $u \cap v \subseteq \bigcup_{i=1}^{n} (S_{i_j} \cap v) \subseteq \bigcup_{i=1}^{n} S_{i_j}$. Hence, $u \cap v$ is *NC*-semi-compact in *X*. The other ease is similar

The other case is similar.

Corollary 2.17A *NC*-semiclosed subset u of a *NC*-semi-compact (resp. *NC*-semi-Lindelöf) space X is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in X.

Remark 2.18 From the Definition 2.1 of *NC*-semi-compact space, one may deduce that: *NC*-semi-compact space \Rightarrow *NC*-compact space, but the inverse direction may not be true in general as show by the following example.

Example 2.19 Let (X, Γ) be a *NCTS*, where X is infinite, and $\Gamma = \{X_N, \Phi_N\} \cup \{P\}$ where $P = (\{p_1\}, \{p_2\}, \{p_3\})$ be a *NC*-point in X. Then (X, Γ) is *NC*-compact but not *NC*-semi-compact, since $\{(\{x, p_1\}, \{x, p_2\}, \{x, p_3\}): x \in X\}$ is *NC*-semiopen cover of X which has no finite subcover.

3. Functions and Neutrosophic Crisp Semi-compact Spaces

Definition 3.1 A function *f* from a *NCTSX* into a *NCTSY* is called *NC*-irresolute if the inverse image of each *NC*-semiopen set in *X*, is a *NC*-semiopen set in *Y*.

Theorem 3.2Let $f:(X,\Gamma_1) \rightarrow (Y,\Gamma_2)$ be a *NC*-irresolute function. Then

(i) If u is *NC*-semi-Lindelöf in X, then f(A) is *NC*-semi-Lindelöf in Y.

(ii) If u is *NC*-semi-compact in X, then f(A) is *NC*-semi-compact in Y.

Proof. We will proof (i) and (ii) is similar.

Suppose that $\mathcal{G} = \{\langle G_{i_j} \rangle: i \in I, j=1, 2, 3\}$ is a cover of f(A) by *NC*-semiopen sets in *Y*. Then $\mathcal{F} = \{\langle f^{-1}(G_{i_j}) \rangle: i \in I, j=1,2,3\}$ is a cover of *u*, but *f* is *NC*-irresolute function, so $\langle f^{-1}(G_{i_j}) \rangle$ is *NC*-semiopen sets in *X* for each $i \in I$, j=1,2,3. Since *u* is *NC*-semi-Lindelöf in *X*, there exists $i_1,i_2, i_3,\ldots,\in I$ such that $u \subseteq \bigcup_{i=1}^{\infty} \langle f^{-1}(G_{i_j}) \rangle$. Thus $f(u) \subseteq \bigcup_{i=1}^{\infty} \langle f(f^{-1}(G_{i_j})) \rangle \subseteq \bigcup_{i=1}^{\infty} \langle G_{i_j} \rangle$. Hence, f(A) is *NC*-semi-Lindelöf in *X*.

Corollary 3.3 If a function $f:(X,\Gamma_1) \rightarrow (Y,\Gamma_2)$ is a *NC*-irresolute (resp. *NC*-semi continuous) surjective and X is *NC*-semi-compact, then Y is *NC*-semi-compact (resp. *NC*-compact).

Definition 3.4 A function f from a *NCTSX* into a *NCTSY* is called *NC*-pre-semiopen (resp. *NC*-pre-semiclosed) if the image of each *NC*-semiopen (resp. *NC*-semiclosed) subsets of X is *NC*-semiopen (resp. *NC*-semiclosed) subsets of Y.

Theorem 3.5Let $f:(X,\Gamma_1) \rightarrow (Y,\Gamma_2)$ be a *NC*-pre-semiclosed surjection. If for each *NC*-point $y = \langle \{y_1\}, \{y_2\}, \{y_3\} \rangle$ in *Y*, $f^{-1}(y) = \langle f^{-1}\{y_1\}, f^{-1}\{y_2\}, f^{-1}\{y_3\} \rangle$ is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in *X*, then $f^{-1}(u)$ is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in *X*, where *u* is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in *Y*.

Proof. Will show the case when *u* is *NC*-semi-compact in *X*, the other case is similar. Let $\mathcal{G} = \{\langle f^{-1}(\mathcal{G}_{i_j}) \rangle : i \in I, j=1,2,3\}$ is a cover of $f^{-1}(u)$ by *NC*-semiopen sets in *X*. Then it follows by assumption that for each *NC*-point $y = \langle \{y_1\}, \{y_2\}, \{y_3\} \rangle$ in *Y*, there exists a finite subcollection \mathcal{G}_j^{Y} of \mathcal{G} such that $f^{-1}(y) \subseteq \bigcup \mathcal{G}_j^{Y}$. Let $H_{y_j} = \bigcup \mathcal{G}_j^{Y}$. Then H_y is *NC*-semiopen in *X* where any union of *NC*-semiopen sets is *NC*-semiopen. Let $F_{y_j} = Y \setminus f(X \setminus H_{y_j})$. Then F_{y_j} is *NC*-semiopen in *Y* where *f* is *NC*-pre-semiclosed, also $y_i \in F_{y_j}$; for each $y_i \in u$, since $f^{-1}(y) \subseteq H_{y_j}$. Thus the family $\{H_{y_j}: y_j \in u\}$ is a cover of *u* by *NC*-semiclosed sets in *Y*, but *u* is *NC*-semi-compact in

Y, so there exists $y_1, y_2, \dots, y_n \in u$ such that $u \subseteq \bigcup_{i=1}^n F_{y_{ij}}, j=1,2,3$. Thus $f^{-1}(u) \subseteq \bigcup_{i=1}^n f^{-1}(F_{y_{ij}}) \subseteq F_{y_{ij}}$. Since $\mathcal{G}_j^{y_i}$ is a finite sub collection of \mathcal{G} for each $i=1,2, \dots,n, j=1,2,3$, it follows that $\bigcup_{i=1}^n \mathcal{G}_j^{y_i}$ is a finite sub collection of \mathcal{G} . Hence, $f^{-1}(u)$ is *NC*-semi-compact in *X*.

Corollary 3.6 Let $f:(X,\Gamma_1) \rightarrow (Y,\Gamma_2)$ be a *NC*-pre-semiclosed surjection. and $f^{-1}(y)$ is *NC*-semicompact in *X*, for each *NC*-point $y = \langle \{y_1\}, \{y_2\}, \{y_3\} \rangle$ in *Y*. If *Y* is *NC*-semi-compact, so is *X*.

Definition 3.7 A *NCTS* (X, Γ) is called *NC*-Hausdorff space if for each distinct *NC*-pointsx and y of X, there exists two disjoint *NC*-open sets u and v of X containing x and y, respectively.

Theorem 3.8Let $f:(X,\Gamma_1) \rightarrow (Y,\Gamma_2)$ is a *NC*-irresolute function from a *NC*-semi-compact space *X* into a*NC*-Hausdorff space *Y*, then

(i) *f* is *NC*-pre-semiclosed.

(ii) f is *NC*-semi-homomorphism if it is bijective.

Proof. Let u be a NC-semiclosed set of X. Then u is NC-semi-compact in X, (by Corollary 2.17). By Theorem 3.2, f(u) is NC-semi-compact in Y and hence it is NC-semi-compact. Since Y is NC-Hausdorff, then f(A) is NC-closed set in Y and NC-semiclosed. hence f is NC-presemiclosed.

(ii) Obvious.

4. Locally Neutrosophic Crisp Semi-compact Spaces

Definition 4.1 A *NCTSX* is said to be locally neutrosophic crisp semi-compact (*LNC*-semi-compact, for short) if each *NC*-point of X has a *NC*-open neighborhood which is a *NC*-semi-compact X.

Remark 4.2 It is obvious that every *NC*-semi-compact space is *LNC*-semi-compact but the converse may not be true as show by the following example.

Example 4.3Let (X, Γ) be an infinite discrete *NCTS*. It is obvious that (X, Γ) is *LNC*-semicompact but not *NC*-semi-compact.

Remark 4.4 Every *LNC*-semi-compact space is *LNC*-compact, but the converse may not be true as shown by the following example.

Example 4.5 By Example 2.19 shows that a *NCTS* (X, Γ) is *LNC*-compact but not *LNC*-semicompact.

Remark 4.6 From the above discussion one can draw the following diagram:

Theorem 4.7 A

NCTSX is LNC-semi-

compact iff for each NC-point $x \in X$, there exists a NC-open setu in X which is LNC-semicompact containing x.

Proof. Let $u = \{\langle u_{i_1}, u_{i_2}, u_{i_3} \rangle: i \in I\}$ be a *NC*-open set in *X* containing $x = \langle \{x_1\}, \{x_2\}, \{x_3\} \rangle$ which is *LNC*-semi-compact. Then there exists a *NC*-open neighbourhood $v = \{\langle v_{i_1}, v_{i_2}, v_{i_3} \rangle: i \in I\}$ of *x* in *u* which is a *NC*-semi-compact in *u*. Since *u* is *NC*-open in *X*, so is v and by Corollary 2.11, v is *NC*-semi-compact in *X*. This shows that *X* is *LNC*-semi-compact.

The proof of the converse is obvious.

Theorem 4.8 A *NCTSX* is *LNC*-semi-compact iff for each *NC*-point of X has a *NC*-open neighbourhood which is *LNC*-semi-compact in X.

Proof. This follows from Corollary 2.15.

Theorem 4.9 Let $f:(X, \Gamma_1) \rightarrow (Y, \Gamma_2)$ be a *NC*-open, *NC*-semi continuous surjection. and X is *LNC*-semi-compact space, then Y is *LNC*-semi-compact.

Proof. For any *NC*-point $y \in Y$, there exists *NC*-point $x \in X$ such that f(x)=y. Since X is *LNC*-semi-compact, there exists a *NC*-open neighborhood U_x of x which is *NC*-semi-compact in X. Hence $f(U_x)$ is *NC*-open neighborhood of y which is *NC*-semi-compact in Y. Therefore, by Theorem 4.8 is *LNC*-semi-compact.

Theorem 4.10 Let $f:(X, \Gamma_1) \rightarrow (Y, \Gamma_2)$ be a *NC*-pre-semiclosed, *NC*-continuous surjection. and $f^{-1}(y)$ is *NC*-semi-compact in X, for each *NC*-point $y \in Y$. If Y is *LNC*-semi-compact, so is X.

Proof. Let x is *NC*-point of X, by Theorem 4.8, there exists a *NC*-open neighborhood v of f(x) such that v is *NC*-semi-compact in X. Then $f^{-1}(v)$ is a *NC*-open neighborhood of X. By Theorem 3.5, $f^{-1}(v)$ is *NC*-semi-compact in X. This shows that X is *LNC*-semi-compact.

5. Conclusion

The paper deals with the concept of semi-compact ness (resp. semi-Lindelöf) in the generalized setting of a neutrosophic crisp topological space. We achieve a number of a neutrosophic crisp semi-compact (resp. neutrosophic crisp semi-Lindelöf) space. Also, we introduce and study the concept of neutrosophic crisp locally semi-compact spaces.

References

- [1] M. C. Cueva and J. Dontchev, "On spaces with hereditarily compact α-topologies," *ActaMathematicaHungarica*, vol. 82, no. 1-2, pp. 121–129, 1999.
- [2] J. Dontchev and M. Ganster, "On covering spaces with semi-regular sets," *Ricerche di Matematica*, vol. 45, no. 1, pp. 229–245, 1996.
- [3] C. Dorsett, "Semi-compactness, semiseparation axioms, and product spaces," Bulletin of the Malaysian Mathematical Sciences Soceity, vol. 4, no. 1, pp. 21–28, 1981.
- [4] M. Ganster, "On covering properties and generalized open sets in topological spaces," *Mathematical Chronicle*, vol. 19, pp. 27–33, 1990.
- [5] I.M.Hanafy, A.A.Salama, Hewayda ElGhawalby and M.S.Dabash, "Some GIS Topological Concepts via Neutrosophic Crisp Set Theory", To be published in the book titled *"New Trends in Neutrosophic Theories and Applications"*, Publisher: Europa Nova, Brussels, 2016.
- [6] I. L. Reilly and M. K. Vamanamurthy, "On α-continuity in topological spaces, "Acta Mathematica Hungarica", vol. 45, no. 1-2, pp. 27–32, 1985.
- [7] A.A.Salama, "Fuzzy Hausdorff spaces and fuzzy irresolute functions via fuzzy ideals", *V Italian-Spanish Conference on General Topology and its Applications* June 21-23, 2004 Almeria, Spain.
- [8] A.A.Salama, F. Smarandache and ValeriKroumov. "Neutrosophic crisp Sets & Neutrosophic crisp Topological Spaces", *Neutrosophic Sets and System*, Vol. (2), (2014), 25-30

- [9] A.A.Salama and Florentin Smarandache,"Neutrosophic crisp set theory", *Educational Publisher, Columbus*, (2015).USA.
- [10] Mohammad S. Sarsak, "On Semi-compact Set and Associated Properties", *International Journal of Mathematics and mathematical sciences*, vol. 3, pp. 8, (2009).
- [11] A. A. Salama, F. Smarandache, S. A Alblowi, New neutrosophic crisp topological concepts, Neutrosophic Sets and Systems 2 (2014) 50 54.
- [12] A. A. Salama, Hewayda ElGhawalby, Asmaa.M.Nasr, Retract Neutrosophic Crisp System for Gray Scale Image, Asian Journal of Mathematics and Computer Research, ISSN No. : 2395-4205 (Print), 2395-4213 (Online), Vol.: 24, Issue.: 3, pp104-117
- [13] Eman.M.El-Nakeeb, Hewayda ElGhawalby, A. A. Salama, S.A. El-Hafeez. (2017). Neutrosophic Crisp Mathematical Morphology, Neutrosophic Sets and Systems, Vol. 16, 57-69. http://fs.gallup.unm.edu/NSS/NeutrosophicCrispMathematicalMorphology.pdf
- [14] A.A. Salama, Hewayda, ElGhawalby and Shimaa Fathi Ali. (2017). Topological Manifold Space via Neutrosophic Crisp Set Theory, Neutrosophic Sets and Systems, Vol.15, 18-21. http://fs.gallup.unm.edu/NSS/TopologicalManifoldSpace.pdf
- [15] A. A. Salama, I. M. Hanafy, Hewayda Elghawalby, M. S. Dabash. (2016). Neutrosophic Crisp α-Topological Spaces, Neutrosophic Sets and Systems, vol. 12, 92-96. http://fs.gallup.unm.edu/NSS/NeutrosophicCrispAlphaTopologicalSpaces.pdf
- [16] A. A. Salama, Said Broumi and Florentin Smarandache. (2014). Introduction to Neutrosophic Topological Spatial Region, Possible Application to GIS Topological Rules. I.J. Information Engineering and Electronic Business, 6, pp15-21. http://www.gallup.unm.edu/~smarandache/IntroductionToNeutrosophicTopological.pdf
- [17] A. A. Salama. (2013). Neutrosophic Crisp Points & Neutrosophic Crisp Ideals, Neutrosophic Sets and Systems, Vol. 1, 50-53. http://fs.gallup.unm.edu/NSS/NeutrosophicCrispPointsNeutrosophic.pdf
- [18] A. A. Salama, Florentin Smarandache. (2013). Filters via Neutrosophic Crisp Sets, Neutrosophic Sets and Systems, vol. 1, 34-37.

http://fs.gallup.unm.edu/NSS/FiltersViaNeutrosophicCrispSets.pdf

- [19] A.A. Salama, S.A. Alblowi. (2012). Generalized neutrosophic set and generalized neutrosophic topological spaces.Computer Science and Engineering. 2, 129-132. http://article.sapub.org/10.5923.j.computer.20120207.01.html
- [20] A.A. Salama and S.A. Alblowi. (2012). Neutrosophic Set and Neutrosophic Topological Space, ISOR J. mathematics (IOSR-JM), 3 (4), 31-35. http://www.gallup.unm.edu/~smarandache/NeutrosophicSetAndNeutrosophic.pdf
- [21] A. A. Salama. (2015). Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets & Possible Application to GIS Topology, Neutrosophic Sets and Systems, vol. 7, pp. 18-22. http://fs.gallup.unm.edu/NSS/BasicStructureOfSomeClasses.pdf