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Abstract 

The aim of this paper is devoted to introduce and study the concepts of semi-compact (resp. 
semi-Lindelӧf, locally semi-compact) spaces in a neutrosophic crisp topological space. Several 
properties, functions properties of neutrosophic crisp semi-compact spaces are studied. In 
addition to these, we introduce and study the definition of neutrosophic crisp semi-Lindelӧf 
spaces and neutrosophic crisp locally semi-compact spaces. We show that neutrosophic crisp 
semi-compact spaces is preserved under neutrosophic crisp irresolute function and neutrosophic 
crisp pre-semi-closed function with neutrosophic crisp semi-compact point inverses. 

  
Keywords:  Neutrosophic crisp semi-compact spaces, Neutrosophic crisp semi-Lindelӧf spaces, 
Neutrosophic crisp locally semi-compact spaces. Neutrosophic topological spaces  

 

1. Introduction and preliminaries 

Neutrosophic Crisp Sets were introduced by Salama & Smarandache in 2015. Neutrosophic 
topological spaces and many applications have been investigated by Salama et al. [5, 7, 8, 9] and 
[11-21]. The notions and terminologies not explained in this paper may be found in [9]. Some 
definitions and results which will be needed in this paper are recalled here. In this paper, we 
generalize the crisp semi-compact spaces [1] and some notions in [2, 3, 4, 6] to the notion of 
neutrosophic crisp semi-compact spaces. 

Definition 1.1 [9] For any non-empty fixed set X, a neutrosophic crisp set (��-set, for short) � is 
an object having the form �= 〈�1, �2, �3〉, where �1, �2 and �3 are subsets of �satisfying�1∩ �2 
=∅, �1∩ �3 = ∅ and �3 ∩ �2 = ∅. 

Several relations and operations between ��-sets were defined in [8]. 

Definition 1.2 [9] A neutrosophic crisp topology (���, for short) on a non-empty set � is  
a family � of neutrosophic crisp subsets of � satisfying the following axioms 

i) ∅�, ��∈�.  
ii)�1⋂�2∈� for any � 1 and � 2∈�. 
iii) ⋃� j∈� for any {�j: j ∈ J} ⊆�.  
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In this case the pair (�, �) is called a neutrosophic crisp topological space (����, for short) in 
�. The elements in � are called neutrosophic crisp open sets (��-open sets for short) in �. A 
��-set � is said to be neutrosophic crisp closed set (��-closed set, for short) if and only if its 
complement ��is a ��-open set.  

Definition 1.3 [8] Let (�, �) be a ���� and �=〈�1, �2, �3〉 be a ��-set in �. Then the 
neutrosophic crisp closure of � (����(�) for short) and neutrosophic crisp interior (�����(�) for 
short) of � are defined by: 

(i) ����(�)=⋂ {� : �  is a ��-closed set in � and �⊆� } 
(ii) �����(�)=⋃ {�: � is a ��-open set in � and �⊆�),  

It can be also shown that ����(�) is a ��-closed set, and �����(�) is a ��-open set in �.  

Definition 1.4 [7] Let (�, �) be a ���� and � =〈�1, �2, �3〉 be a ��� in �, then � is called: 
i) Neutrosophic crisp �-open set iff �⊆�����(����(�����(�)).   
ii) Neutrosophic crisp semi-open set iff �⊆���� (����� (�)). 
iii)Neutrosophic crisp pre-open set iff �⊆�����(����(�)). 

Definition 1.5 [3,10] A subset � of space � is called semi-compact relative to � if any semi-
open cover of � in � has a finite subcover of �. 

Definition 1.6 [10] A subset � of a space � is called semi-Lindelӧf in � if any semi-open cover 
of � in � has a countable subcover of �. 

Definition 1.7 [5] Let (�, �) be a ���� and � =〈�1, �2, �3〉 be a ��� in �, then  
�: �⟶ � is ��semi-continuous if the inverse image of ��semi-open set is ��semi- open. 

2. Neutrosophic Crisp Semi-compact Spaces. 

Definition 2.1 Let (�, �) be a ����.  
(i) If a family {〈���

,���
,���

〉: �∊I} of ��-semiopen sets in � satisfies the condition ��= 

⋃{〈���
,���

,���
〉:�∊I}, then it is called a ��-semiopen cover of �. 

(ii) A finite subfamily of a ��-semiopen cover {〈���
,���

,���
〉: �=1,2, 3, ..., �} on �, which is also a ��-

semiopen cover of �, is called a finite sub cover of ��-semiopen sets. 

Definition 2.2A ���� (�, �) is called neutrosophic crisp semi-compact spaces (��-semi-
compact , for short) if any ��-semiopen cover of � has a finite subcover. 

Definition 2.3.1.3 
A family {〈���

,���
,���

〉:�∊I} of ��-semiclosed sets in � satisfies the finite intersection 

property (��� for short) iff every finite subfamily {〈���
,���

,���
〉:�=1, 2,3……,�} of the family 

satisfies the condition 
i

{〈���
,���

,���
〉:�=1,2,3……,�}≠ � �. 

Theorem 2.4 A ���� (�, �) is ��-semi-compact iff every family {〈���
,���

,���
〉: �∊I} of ��-

semiclosed sets in � having the ��� has a nonempty intersection. 
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Proof. Let � be a ��-semi-compact space and �={〈���
,���

,���
〉: �∊I}be a cover of ��-semiopen 

sets of � having the ���. Suppose that
i

{〈���
,���

,���
〉:�∊I}= � �, then {�\〈���

,���
,���

〉:�∊I} is a 

��-semiopen cover of � and must contain a finite subcover {�\〈���
,���

,���
〉: �=1,2,3……,�} for 

�. This implies that 
i

{〈���
,���

, ���
〉: �= 1,2, 3……, �} = � � this contradicts our assumption 

that � has a ���. Conversely, assume that � is not ��-semi-compact. Then there exists a ��-
semiopen cover {〈���

,���
,���

〉:�∊I} for �, which contain a finite subcover for �. Thus, 

{�\〈���
,���

,���
〉:�∊I} is a family of ��-semiclosed sets of � having the ���. Moreover, we have 


i

{�\〈���
,���

, ���
〉: �∊I}= � �. This complete the proof. 

Definition 2.5A subset �=〈��, ��,��〉 of a ���� (�, �) is called ��-semi-compact relative to � 
if any ��-semiopen cover of � in � has a finite subcover of �. By ��-semi-compact in �, we 
will mean ��-semi-compact relative to �. 

Definition 2.6 A subset �=〈��, ��,��〉 of a ���� (�, �) is called ��-semi-Lindelӧf in � if any 
��-semiopen cover of � in � has a countable subcover of �. 

Remark 2.74.1.1 
Since the family of all ���-open subset of a ���� (�, �), denoted by �� is ��� on � finer 

that �, then the family of all ��-semiopen subsets of (�,��) is equal to the family of all ��-
semiopen subsets of (�,��). Hence, it easily to see that a ��-set � of (�, �) is ��-semi-compact 
(resp��-semi-Lindelӧf) in � iff it is ��-semi-compact (resp. ��-semi-Lindelӧf) in (�,��). 

Theorem 2.8 The finite (resp. countable) union of ��-semi-compact (resp. ��-semi-Lindelӧf) 
sets in a ����� is a ��-semi-compact (resp. ��-semi-Lindelӧf) in �. 

Proof .  obvious. 

Lemma 2.9 Let �⊆�⊆�, where � is a ����. Then � is ��-semiopen set in �, if � is ��-
semiopen set in �. 

Theorem 2.10 Let � be a ��-preopen subset of a ����� and �⊆�. If � is ��-semi-compact 
(resp. ��-semi-Lindelӧf) in �, then � is ��-semi-compact (resp. ��-semi-Lindelӧf) in �. 

Proof. Suppose that �= {〈���
,���

,���
〉: �∊I} is a cover of � by ��-semiopen sets in �. Using 

lemma 2.9, ���
=���

∩ � for  each �∊�, �=1,2,3,where ���
 is ��-semiopen set in � for each �∊�, 

�=1,2,3.  Thus �={〈���
,���

,���
〉: �∊� }  is a cover of � by ��-semiopen set in �, but � is ��-semi-

compact  in �, so there exists �=1,2,3……,�, �=1,2,3. Such that �⊆
n

i 1=
 ���

 and thus �⊆
n

i 1=
 (���

∩�) 

=
n

i 1=
 ���

.Hence � is ��-semi-compact  in �.  

The other case is similar.  

Corollary 2.11 Let � be ��-open (���-open) set of ���� and �⊆�, if � is ��-semi-compact 
(resp. ��-semi-Lindelӧf) in �, then � is ��-semi compact (resp. ��-semi-Lindelӧf) in �. 
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Proof. It is obviously, since each ��-open set is ���-open set and also ��-preopen set. 

Lemma 2.12 Let �⊆�⊆�, where � is a ���� and � is a ��-preopen set in �, then � is ��-
semiopen (resp. ��-semiclosed) in �iff�= �∩�, where � is ��-semiopen (resp. ��-semiclosed) 
in �. 

Proof.  Obvious. 

Theorem 2.13 Let � be a ��-preopen subset of ����� and �⊆�. Then � is ��-semi compact 
(resp. ��-semi-Lindelӧf) in �iff� is ��-semi compact (resp. ��-semi-Lindelӧf) in �. 

Proof. Necessity. It follows from Theorem 2.8 sufficiency. Suppose that �= {〈���
,���

, ���
〉: �∊�} 

is a cover of � be ��-semiopen sets in �. Then �= {���
∩�: �∊�, �=1,2,3} is a cover of �. Since 

���
 is ��-semiopen in � for each �∊� and � is ��-preopen in �, it follows from Lemma 2.12 that 

���
∩� is ��-semiopen set in � for each �∊�, �=1,2,3, but � is ��-semi-compact  in �, so there 

exists �∊�, �=1,2,3 that �⊆
n

i 1=
 ���

∩�⊆
n

i 1=
 ���

. Hence, � is ��-semi-compact  in �. 

The other case is similar. 

Corollary 2.14 A ��-preopen subset � of � is ��-semi compact (resp. ��-semi-Lindelӧf) iff� 
is ��-semi compact (resp. ��-semi-Lindelӧf) in �. 

Corollary 2.15 A ��-open (���-open) subset � of � is ��-semi compact (resp. ��-semi-
Lindelӧf) iff� is ��-semi compact (resp. ��-semi-Lindelӧf) in �. 

Theorem 2.16 Let � be a ��-semi-compact (resp. ��-semi-Lindelӧf) set in  
a ����� and � be is ��-semiclosed of �. Then �∩� is ��-semi-compact (resp. ��-semi-
Lindelӧf) in �. 

Proof. Suppose that �= {���
:�∊I, �=1,2,3} is a cover of �∩� by ��-semiopen set in �. Then �= 

{���
:�∊I, �=1,2,3} ⋃{�\�} is a cover of � by ��-semiopen sets in �, but � is ��-semi-compact 

in �, so there exists �= 1.2.3……�, �=1.2.3 such that  

�⊆ (
n

i 1=
 ���

)⋃{�\�}. Thus �∩�⊆
n

i 1=
 (���

∩�) ⊆
n

i 1=
 ���

. Hence, �∩� is ��-semi-compact in �.  

The other case is similar.  

Corollary 2.17A ��-semiclosed subset � of a ��-semi-compact (resp. ��-semi-Lindelӧf) 
space � is ��-semi-compact (resp. ��-semi-Lindelӧf) in �.  

Remark 2.18 From the Definition 2.1 of ��-semi-compact space, one may deduce that: ��-
semi-compact space ⟹��-compact space, but the inverse direction may not be true in general 
as show by the following example. 

Example 2.19 Let (�, �) be a ����, where � is infinite, and �= {��, � �} ⋃{�} where 
�=〈{p1}, {p2}, {p3} 〉 be a ��-point in �. Then (�, �) is ��-compact but not ��-semi-compact, 
since {〈 {�, p1}, {�, p2}, {�, p3} 〉: �∊�} is ��-semiopen cover of � which has no finite 
subcover. 
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3. Functions and Neutrosophic Crisp Semi-compact Spaces 

Definition 3.1 A function � from a ����� into a ����� is called ��-irresolute if the inverse 
image of each ��-semiopen set in �, is a ��-semiopen set in �. 

Theorem 3.2Let �:(�,��)⟶ (�,��) be a ��-irresolute function. Then  
(i) If � is ��-semi-Lindelӧf in �, then �(�) is ��-semi-Lindelӧf in �. 
(ii) If � is ��-semi-compact in �, then �(�) is ��-semi-compact in �. 

Proof. We will proof (i) and (ii) is similar. 
Suppose that �= {〈���

〉: �∊I, �=1, 2, 3} is a cover of �(�) by ��-semiopen sets in �. Then  

℥= {〈�-1(���
)〉:�∊I, �=1,2,3} is a cover of �, but � is ��-irresolute function, so 〈�-1(���

)〉 is ��-

semiopen sets in � for each �∊I, �=1,2,3. Since � is  ��-semi-Lindelӧf in �, there exists �1,�2, 

�3,…..,∊� such that �⊆
¥

=1i
 〈�-1(���

)〉. Thus �(�)⊆
¥

=1i
 〈�(�-1(���

)) 〉⊆
¥

=1i
 〈���

〉. Hence, �(�) is ��-

semi-Lindelӧf in �. 

Corollary 3.3If a function �:(�,��)⟶ (�,��) is a ��-irresolute (resp. ��-semi continuous) 
surjective and � is ��-semi-compact, then � is ��-semi-compact (resp. ��-compact). 

Definition 3.4 A function � from a ����� into a ����� is called ��-pre-semiopen (resp. ��-
pre-semiclosed) if the image of each ��-semiopen (resp. ��-semiclosed) subsets of � is ��-
semiopen (resp. ��-semiclosed) subsets of �. 
 
Theorem 3.5Let �:(�,��)⟶ (�,��) be a ��-pre-semiclosed surjection. If for each ��-point �= 
〈{�1},{�2},{�3}〉  in �, �-1(�)=〈�-1{�1},�-1{�2},�-1{�3}〉    is  ��-semi-compact  (resp. ��-semi-
Lindelӧf) in �, then �-1(�) is ��-semi-compact  (resp. ��-semi-Lindelӧf) in �, where � is ��-
semi-compact  (resp. ��-semi-Lindelӧf) in �. 

Proof. Will show the case when � is ��-semi-compact in �, the other case is similar. Let �= 
{〈�-1(���

)〉:�∊I, �=1,2,3} is a cover of �-1(�) by ��-semiopen sets in �. Then it follows by 

assumption that for each ��-point �=〈{�1}, {�2}, {�3} 〉 in �, there exists a finite 
subcollection ��

�
 of � such that �-1(�)⊆⋃��

�
. Let � � �

=⋃��
�

. Then � �  is ��-semiopen in � 

where any union of ��-semiopen sets is ��-semiopen. Let �� �
= �\�(�\� � �

). Then �� �
is ��-

semiopen in � where � is ��-pre-semiclosed, also ��∊�� �
; for each ��∊�, since �-1(�)⊆� � �

. Thus 

the family {� � �
:��∊�} is a cover of � by ��-semiclosed sets in �, but � is ��-semi-compact in 

�, so there exists �1, �2,…..,��∊� such that �⊆
n

i 1=
 �� ��

, �=1,2,3. Thus �-1(�)⊆
n

i 1=
 �� �(�� ��

)⊆�� ��
. 

Since ��
� � is a finite sub collection of � for each �=1,2, …..,�, �=1,2,3, it follows that 

n

i 1=
 ��

� � is a 

finite sub collection of �. Hence, �-1(�) is ��-semi-compact in �. 

Corollary 3.6 Let �:(�,��)⟶ (�,��) be a ��-pre-semiclosed surjection. and �-1(�) is ��-semi-
compact in �, for each ��-point �=〈{�1}, {�2},{�3}〉  in �. If � is ��-semi-compact, so is �. 
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Definition 3.7 A ���� (�, �) is called ��-Hausdorff space if for each distinct ��-points� and 
� of �, there exists two disjoint ��-open sets � and � of � containing � and �, respectively. 

Theorem 3.8Let �:(�,��)⟶ (�,��) is a ��-irresolute function from a ��-semi-compact space � 
into a��-Hausdorff space �, then  

(i) � is ��-pre-semiclosed. 
(ii) � is ��-semi-homomorphism if it is bijective. 

Proof. Let � be a �� -semiclosed set of �. Then � is ��-semi-compact   in �, (by Corollary 
2.17). By Theorem 3.2, �(�) is ��-semi-compact in � and hence it is ��-semi-compact. Since � 
is ��-Hausdorff, then �(�) is ��-closed set in � and ��-semiclosed. hence � is ��-pre-
semiclosed. 

(ii) Obvious. 

4. Locally Neutrosophic Crisp Semi-compact  Spaces  

Definition 4.1 A ����� is said to be locally neutrosophic crisp semi-compact (���-semi-
compact, for short) if each ��-point of � has a ��-open neighborhood which is a ��-semi-
compact �. 

Remark 4.2 It is obvious that every ��-semi-compact space is L��-semi-compact but the 
converse may not be true as show by the following example. 

Example 4.3Let (�, �) be an infinite discrete ����. It is obvious that (�, �) is ���-semi-
compact but not ��-semi-compact. 

Remark 4.4 Every ���-semi-compact space is ���-compact, but the converse may not be true 
as shown by the following example. 

Example 4.5 By Example 2.19 shows that a ���� (�, �) is ���-compact but not ���-semi-
compact. 

Remark 4.6 From the above discussion one can draw the following diagram: 

 
 
 
 
 
 

�����is ���-semi-Theorem 4.7 A 
compact iff for each ��-point �∊�, there exists a ��-open set� in � which is ���-semi-
compact containing�. 

Proof. Let �= {〈���
,���

,���
〉: �∊I} be a ��-open set in� containing �=〈{�1}, {�2}, {�3} 〉which is 

���-semi-compact. Then there exists a ��-open neighbourhood v= {〈v��
,v��

,v��
〉: �∊I} of � in � 

which is a ��-semi-compact in �. Since � is ��-open in �, so is v and by Corollary 2.11, v is ��-
semi-compact in �. This shows that � is ���-semi-compact. 
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The proof of the converse is obvious. 

Theorem 4.8 A �����is ���-semi-compact iff for each ��-point of � has  
a ��-open neighbourhood which is ���-semi-compact in �. 

Proof. This follows from Corollary 2.15. 

Theorem 4.9 Let �:(�, �1)⟶ (�, �2) be a ��-open, ��-semi continuous surjection. and � is 
���-semi-compact space, then � is ���-semi-compact. 

Proof. For any ��-point �∊�, there exists ��-point �∊� such that �(�)=�. Since � is ���-
semi-compact, there exists a ��-open neighborhood�� of � which is ��-semi-compact in �. 
Hence �(��) is ��-open neighborhood of � which is ��-semi-compact in �. Therefore, by 
Theorem 4.8 is ���-semi-compact. 

Theorem 4.10 Let �:(�, �1)⟶ (�, �2) be a ��-pre-semiclosed, ��-continuous surjection. and �-

1(�) is ��-semi-compact in �, for each ��-point �∊�. If � is ���-semi-compact, so  
is �. 

Proof. Let � is ��-point of �, by Theorem 4.8, there exists a ��-open neighborhood � of �(�) 
such that � is ��-semi-compact in �. Then �-1(�) is a ��-open neighborhood of �. By Theorem 
3.5, �-1(�) is ��-semi-compact in �. This shows that � is ���-semi-compact. 

5. Conclusion 
The paper deals with the concept of semi-compact ness (resp. semi-Lindelӧf) in the 

generalized setting of a neutrosophic crisp topological space. We achieve  
a number of a neutrosophic crisp semi-compact (resp. neutrosophic crisp semi-Lindelӧf) space. 
Also, we introduce and study the concept of neutrosophic crisp locally semi-compact spaces. 
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