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 ABSTRACT 

In the current study, the Bernoulli polynomials are used to obtain the numerical solution of 

fractional differential equations. For the concept of fractional derivative, we will use Caputo sense. Also, 

the Bernoulli operational matrix of fractional integration is utilized to reduce the problem to a set of 

algebraic equations. Finally, some examples are included for demonstrate the validity and applicability of 

our method. 
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1 INTRODUCTION 

In this paper, we consider the fractional differential equation  

 [0,1], ,<1  ),()()()]()[(=)(
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subject to the initial conditions  

  1.0,1,...,= ,=(0))( nix i

i   (2) 

Here, lrnr 1,2,...,= ,<0   ; )(tx  is an unknown function; )(tg , )(ta   and lrtbr 1,2,...,=),( , are 

the known functions defined in [0, 1] and s  is a positive integer. 

         The present article is organized as follows. In section 2, we remind Bernoulli polynomials,  their 

properties and some basic definitions of fractional calculus. In section 3, we recall Bernoulli operational 

matrix of the fractional integration. In section 4, the numerical method for solving the fractional 

differential equations is expressed. In section 5, we report our numerical results and demonstrate the 

accuracy of the proposed method by considering numerical examples. A conclusion is given in section 6. 

 

2 PRELIMINARIES AND NOTATIONS 
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2.1 The fractional integral and derivative 

Definition 1. The Riemann-Liouville fractional integral operator of order   is defined as 

(Podlubny, 1998)  
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For the Riemann-Liouville fractional integral we have  
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The Riemann-Liouville fractional integral is a linear operation, namely:  

 ),()(=))()(( tgItfItgtfI     

where   and   are constants. 

Definition 2. Caputo fractional derivative of order   is defined as  
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where 0>  is the order of the derivative and n  is the smallest integer greater than  . 

         For the Caputo derivative we have (Keshavarz et al., 2014)  
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The ceiling function   denotes the smallest integer greater than or equal to  , and the floor function 

  denotes the largest integer less than or equal to  . Also {1,2,...}=  and }{0,1,2,...=0 . The 

Caputo fractional differentiation is a linear operation, namely:  

 ),()(=))()(( tgDtfDtgtfD     

where   and   are constants. 

 

2.2 Properties of the Bernoulli polynomials  

          Bernoulli polynomials of order m  can be defined with the following formula (Costabile et al., 

2006)  
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where mii 0,1,...,=,  are Bernoulli numbers. These numbers can be defined by the identity  
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        The first few Bernoulli numbers are  
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with 1,2,3,=0,=12 ii .  

        The first few Bernoulli polynomials are  
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According to Kreyszig (1978), Bernoulli polynomials form a complete basis over the interval [0,1] . 

 

2.3 Function approximation  

Suppose that [0,1]= 2LH  is a Hilbert space and )}(,),(),({= 10 tttspanY m   is a finite 

dimensional and closed subspace, therefore Y  is a complete subspace of H . So, if )(tf  is an arbitrary 

element in H , it has a unique best approximation out of Y  such as )(0 tf , that is  

0(t) Y,f   s.t ( ) ,y t Y   0 ( ) ( ) ( ) ( )f t f t f t y t   , 

since ,)(0 Ytf   there exist the unique coefficients mccc ,...,, 10  such that  
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where C  and )(t  are given by  
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and T  indicates transposition. C  in Eq. (6), can be calculated by (Keshavarz et al., 2016)  

 >,)(),(<= 1 ttfDC 
  

where  

 ,)()(>=)(),(=<
1

0
dtttttD T    

is an 1)(1)(  mm  matrix and ><,  denotes inner product. 

 

3 BERNOULLI OPERATIONAL MATRIX OF THE FRACTIONAL INTEGRATION 

The Riemann-Liouville fractional integration of the vector )(t  given in Eq. (7) can be expressed 

by  

 
( )( ) ( ),I t F t     (8) 

where 
)(F  is the 1)(1)(  mm  Riemann-Liouville fractional operational matrix of integration. 

Keshavarz et al. (2016) derived matrix 
)(F  as following  
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Error upper bounds for the operational matrix of the fractional integration obtained by Keshavarz et 

al. (2016). Also, they showed that with an increase in the number of Bernoulli polynomials, the error 

vector )()(=)( )( tFtIteI  
 tend to zero. 

 

4 THE NUMERICAL METHOD 

In this section, we consider the problem given in Eqs. (1) and (2). For this problem we expand 

)(txD
 by Bernoulli polynomials as  

 ( ) ( ).TD x t C t    (10) 

From Eqs. (8), (10) and properties of Caputo derivative, we have  
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Making use of Eqs. (8), (11) and Caputo derivative of 
it  for lr 1,2,...,= , we get  
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r  . Also, suppose known functions )(ta , 

lrtbr 1,2,...,=),( , and )(tg  are approximated as  

 ( ) ( ),Ta t A t   ( ) ( ),T

rb t B t  ( ) ( ),Tg t G t    (13) 

where  

 ],,,[=   ],,,[=   ],,,[= 000 m
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are known. Here, by substituting Eqs. (10)-(13) in Eq. (1), we obtain a system of algebraic equations. 

Then, we collocate this system at 1m  zeros of shifted Legendre polynomial. These equations give 

1m  nonlinear algebraic equations, which can be solved for the unknown vector C  using Newton’s 

iterative method. 
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5 ILLUSTRATIVE EXAMPLES  

In this section, three examples are given to demonstrate the applicability and accuracy of our 

method. In all examples, the package of Mathematica version (11.0) has been used to solve the test 

problems considered in this section. 

 

5.1 Example 1 

Consider the following nonlinear initial value problem (Kazem et al., 2013)  

 ,=)()()( 422

5

3 ttxtxDtxD    

with the initial conditions 2=(0) 0,=(0)=(0) xxx  . 

The exact solution of this problem is 
2t . By applying the technique described in section 4 with 

3=m , we get the exact solution 
2=)( ttx . 

 

5.2 Example 2  

Consider the following fractional oscillation equation  

 ( ) ( ) ( ) = 8,   0 < 2x t aD x t bx t       

with the initial conditions 0.=(0) 0,=(0) xx   

         Taking 1== ba , we solve this problem by presented method in previous section with 8=m . In 

Table 1, we compare numerical results obtained by using our method and Adomian decomposition 

method (ADM) presented by Momani et al. (2007), where the exact solution refers to the closed form 

series solution as (Momani et al., 2007)  
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It’s clear that our method provide highly accurate solution. 

         Also, Figures 1 and 2 display the approximate solutions obtained with 5=m  for different values of 

  on the interval [0,1] . 

 

 

  Table 1. Numerical results with comparison to Momani et al. (2007), for example 2.   

       0.5=         1.5=      

t   ADM      Our method   Exact solution   ADM     Our method   Exact solution  

0.0   0.000000     0.000000   0.000000   0.000000     -0.000127   0.000000  

0.1   0.039874     0.039750   0.039750   0.036478     0.033505   0.033507  

0.2   0.158512     0.157036   0.157036   0.140640     0.125209   0.125221  

0.3   0.353625     0.347370   0.347370   0.307485     0.267620   0.267609  

0.4   0.622083     0.604695   0.604695   0.533284     0.455441   0.455435  

0.5   0.960047     0.921768   0.921768   0.814757     0.684328   0.684335  

0.6   1.363093     1.290457   1.290457   1.148840     0.950387   0.950393  

0.7   1.826257     1.702008   1.702008   1.532571     1.249963   1.249959  

0.8   2.344224     2.147287   2.147287   1.963033     1.579564   1.579557  

0.9   2.911278     2.617001   2.617001   2.437331     1.935825   1.935832  

1.0   3.521462     3.101905   3.101906   2.952567     2.315552   2.315526  
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Figure 1: Comparison of )(tx  for 5=m , with 8,0.9,10.4,0.6,0.=  and exact solution, for Example 2 

  

  

  

      
    

Figure 2: Comparison of )(tx  for 5=m , with 7,1.9,21.3,1.5,1.=  and exact solution, for Example 2 

  

 

5.3 Example 3  

Consider the following initial value problem with fractional order (Mokhtary et al., 2016)  

 1<0   0,=)()(   txtxD  

with the initial conditions 1.=(0)x  

        The exact solution is given by )(=)( ,1


 tEtx  , where )(, tE   is Mittag-Leffler function with 

parameters 0>,  defined by 
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         Doha et al. (2012) adopted the Legendre Tau scheme to numerical solution of this problem. As a 

comparison, we solve this problem for 0.5=  with 5,8=m  and in Table 2, compare 
2L -norm error for 

our method and presented method in Doha et al. (2012) with 5,8=N . 

         To show efficient of the present method for this problem, we define the norm of residual error as 

follows  

 
12 2

0
Re (t) Re ( )s s t dt  , ( )Re (t) ( ) ( ) 1.T Ts C t C F t      

Table 3 displays 
2

Re (t)s  with 5=m  and various values of  . These two tables demonstrate the 
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advantages and the accuracy of presented method for solving fractional differential equation. 

         Also, Figure 3 displays the approximate solutions obtained with 5=m  for different values of  . 

 

  Table 2. The comparison 
2L -norm error of )(tx , for example 3. 

Legendre Tau method N=5            N=8 
2103.32     

2101.85     

Bernoulli basis m=5            m=8 
5102.95229     

6105.96269     

 

  

 

 

  Table 3. The 
2

Re (t)s  with various values of  , for example 3.   

                 Bernoulli basis          

0.2               
30105.18292    

0.4               
31106.59718    

0.5                 
30101.76676    

0.6                  
31104.90345    

0.8                  
32105.80262    

 

  

 

 

       
   

Figure 3: Comparison of )(tx  for 5=m , with 16,0.8,0.9,0.2,0.4,0.=  and exact solution, for 

Example 3 

 

6 CONCLUSION  

In this article, we recall a general formulation for Bernoulli operational matrix of fractional 

integration 
)(F . Then a numerical method based on Bernoulli polynomials expansions together this 

matrix and collocation method are proposed to obtain the numerical solution of fractional differential 

equations. The achieved solutions with the suggested method demonstrate that the method is very 

efficient for the numerical solution of fractional differential equations and only a few number of Bernoulli 

polynomials expansion terms are needed to obtain a good approximate solution for these problems. 
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