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Abstract: A dominating set D of G which is also a resolving set of G is called a metro

dominating set. A metro dominating set D of a graph G(V,E) as a unique metro dominating

set (in short an UMD-set) if |N(v) ∩D| = 1 for each vertex v ∈ V −D and the minimum

cardinality of an UMD-set of G is the unique metro domination number of G. In this paper,

we determine unique metro domination number of circulant graphs.
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§1. Introduction

All the graphs considered in this paper are simple, connected and undirected. The length of

a shortest path between two vertices u and v in a graph G is called the distance between u

and v and is denoted by d(u, v). For a vertex v of a graph, N(v) denotes the set of all vertices

adjacent to v and is called open neighborhood of v. Similarly, the closed neighborhood of v is

defined as N [v] = N(v) ∪ {v}.
Let G(V,E) be a graph. For each ordered subset S = {v1, v2, · · · , vk} of V , each vertex

v ∈ V can be associated by a vector of distances denoted by Γ(v/S) = (d(s1, v), d(s2, v), · · · ,
d(sk, v)). The set S is said to be a resolving set of G, if Γ(v/S) 6= Γ(u/S), for every u, v ∈
V − S. A resolving set of minimum cardinality is the metric basis and cardinality of a metric

basis is the metric dimension of G. The k-tuple, Γ(v/S) associated to the vertex v ∈ V

with respect to a Metric basis S, is referred as a code generated by S for that vertex v. If

Γ(v/S) = {v1, v2, · · · , vk}, then v1, v2, · · · , vk are called components of the code of v generated

by S and in particular vi, 1 ≤ i ≤ k, is called ith-component of the code of v generated by S.

A dominating set D of a graph G(V,E) is the subset of V having the property that for

each vertex v ∈ V −D there exists a vertex u in D such that uv ∈ E. Generally, a set D ⊆ V

of G is said to be a Smarandachely k-dominating set if each vertex of G is dominated by at

least k vertices of S with k ≥ 1. Clearly, a dominating set is a Smarandachely 1-dominating
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set. A dominating set D of G which is also a resolving set of G is called a metro dominating

set or in short an MD− set. A metro dominating set D of a graph G(V,E) as a unique metro

dominating set (in short an UMD-set) if |N(v) ∩ D| = 1 for each vertex v ∈ V − D and

the minimum cardinality of an UMD-set of G is the unique metro domination number of G,

denoted by γuβ(G).

Metric dimensions and locating dominating sets of certain classes of graphs were studied

in [1-14].

§2. Resolvability of Circulant Graphs

A graph whose vertex set is {vi|i ∈ Z+} and two vertices vi and vj are adjacent if and only if

i − j (mod n) ∈ C, for a given C ⊆ Zn with 0 6∈ C, is called a circulant diagraph. If the set

C has the property that C = −C, then the underlying graph is called circulant graph, and we

denote it by Xn,∆, where |C| = ∆. The set C is referred to as a connected set. The circulant

graph Xn,∆ is a ∆-regular graph. In this paper, we consider a family of circulant graph Xn,3

with connection set C = {1, n2 , n− 1}, where n is even.

We state the following lemma whose proof follows directly by the definition of domination,

and is most helpful to find UMD-sets.

Lemma 2.1 In the circulant graph Xn,3, n is even, with connection set C = {1, n2 , n − 1}, a

vertex vi dominates vi−1, vi+1 and vi+ n
2
, where i+ n

2 is under modulo n.

Now we consider G = Xn,3, n is even, where the connection set C = {1, n2 , n− 1}. Let S

be a dominating set of G. Then by Lemma 2.1, a vertex vi ∈ S can dominate at most 3 vertices

in V − S. Hence |V − S| 6 3|S|. Therefore,

|V | − |S| 6 3|S| ⇒ 4|S| > |V | ⇒ |S| >
n

4
.

Thus we have the following lemma.

Lemma 2.2 For any positive even integer n,

γ(Xn,3) >

⌈n
4

⌉
.

Let R be a set of two or more vertices of the principal cycle. Consider two distinct vertices

u and v of R. Let P , P ′ be two distinct uv-path on the principal cycle. The vertices u and v

are said to be neighboring vertices if u and v are the only vertices of S contained in one of the

paths P , P ′. If P (or P ′) is the path containing only u, v from S, then the set of all vertices

of P − {u, v} is called a gap of S determined by u and v and is denoted by γ. The number of

vertices in the gap is called order of the gap and is denoted by o(γ).

Notice that it is shown that X26,3 with a unique metro dominating set S = {vi, vi+4, vi+8,

vi+15, vi+19, vi+23, vi+24, vi+25} in Figure 1. We observe that vi, vi+4 are neighboring vertices
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of S and the gap determined by vi and vi+4 is of order 3. Similarly, the gap determined by vi+8

and vi+15 is of order 6. The gap between vi+24 and vi+25 is of order 0 or empty gap.
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Figure 1 Circulant graph X26,3 with C = {1, 13, 25}.

Consider G = Xn,3, n is even. Let S be a UMD-set of G. Suppose there is a gap of S of

order 1. Let u, v be two neighboring vertices and w be the only vertex of the gap. Then w is

dominated by both u and v and hence w is not uniquely dominated. Thus, we have

Lemma 2.1 If γ is a gap of a UMD-set S of the graph G = Xn,3, then 0(γ) 6= 1.

In the discussion to follow, we want to find suitable gaps of a dominating set S, so that

S becomes a UMD-set. Gaps of order 4 or more will introduce gaps of order 0 and thereby

increase |S|; for, consider a gap γ of order 4 between the neighboring vertices vi and vi+5.

Vertices in the gaps are vi+1, vi+2, vi+3 and vi+4. Vertices vi+1 and vi+4 are dominated by vi

and vi+5 respectively. It is therefore obvious that vi+2 and vi+3 should be dominated by vi+2+ n
2

and vi+3+ n
2
. Thus, vi+2+ n

2
and vi+3+ n

2
belongs to S. The gap between them is empty. Hence

|S| is increased.

If all the gaps of S are of order 3, then |S| is the least; for, if vi, vi+4 ∈ S and are neighboring

vertices, then the gap determined by them is of order 3. As vi+1 and vi+3 are dominated by vi

and vi+4 respectively, the vertex vi+2 has to be dominated by vi+2+ n
2
. Thus, vi+2+ n

2
∈ S.

Observe that vi+ n
2 +4 is dominated by vi+4. Therefore, we take vi+ n

2 +6 ∈ S, so that vi+ n
2 +6

and vi+ n
2
+2 are neighboring vertices of a gap of order 3. As vi+ n

2
+6 dominates vi+6, we include

vi+8 in S so that vi+4 and vi+8 are neighboring vertices of gap of order 3. Thus, S = {vi, vi+4,

vi+2+ n
2
, vi+8, · · · }.

If the above set of vertices has vi + n
2 − 2 as the last vertex, then the above sequence of

vertices in S terminates at vi−4. In this case each vertex in S is uniquely dominating exactly

3 vertices in V − S. Thus by Lemma 2.1, |S| is the least. This leads to the lemma.

Lemma 2.4 A dominating set S of Xn,3 has a least |S|, when each gap of S is of order 3.

Lemma 2.5 If G is a graph of order n having a dominating set S such that every gap of S is

of order 3, then n ≡ 4(mod 8).
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Proof If every gap is of order 3, then vi+ n
2
+6, vi+ n

2
+10, · · · , vi−4 are in S. Hence n

2 +4k+2 ≡
0 (mod n)⇒ n ≡ 4 (mod 8). 2

Note that when n ≡ 4 (mod 8), there are exactly n
4 gaps of order 3 on the principal cycle.

Also observe that n
4 is an odd integer. From these we conclude the following result.

Lemma 2.6 When n ≡ 0(mod 8), n > 8, there is at least one gap of order less than 3.

In a circulant graph G = Xn,3, let vi, vi+1, · · · , vi+(n−1), vi+n = vi (subscripts increase in

anti-clockwise direction) form the principal cycle. Each vertex vi, on the principal cycle, also

lies on two other cycles:

(1) vi, vi+ n
2
, vi+ n

2 −1, . . . , vi+1, vi (Clockwise) and

(2) vi, vi+ n
2
, vi+ n

2
+1, . . . , vi−1, vi (anti-clockwise).

Length of these cycles is n
2 + 1. Hence maximum distance between any two vertices on

these cycles is 1
2

(
n
2 + 1

)
, if n

2 + 1 is even and is 1
2

(
n
2

)
if n

2 + 1 is odd. Thus we have

Lemma 2.7 If x and y are any two vertices of Xn,3 then d(x, y) = k 6
⌈
n
4

⌉
.

Note that the subscripts of the vertex names are in Zn, i.e. congruent modulo n.

Lemma 2.8 If n > 8 and n ≡ 0 (mod 4), then for a fixed i, {vi, vi+4, vi+ n
2 +2} is a resolving

set.

Proof For the cases, n = 12, 16 and 20, it is easy to see that the set S is a resolving set.

We prove the case when n > 20. Suppose that x and y are vertices on the principal cycle such

that d(vi, x) = d(vi, y). Then there are four cases, in each case k 6 ⌈n4 ⌉.

Case 1. x = vi−k and y = vi+k.

In this case we see that d(vi+4, y) = |k−4|. If k 6
n
4 −4, then d(vi+4, x) = k+4 6= d(vi+4, y);

If k > n
4 − 4, then d(vi+4, x) = n

2 +1− (k+ 4) = n
2 − k− 3 6= d(vi+4, y) for if n2 − k− 3 = k− 4,

then 2k = n
2 + 1 ⇒ k = n

4 + 1
2 , which is not possible as n ≡ 0 modulo 4. Thus vi+4 resolves x

and y.

4

4

n

k

k
iv

y
i
v

44

nk k
i
v

x

4
4n

k
k

i
v

y
)
1

(

2

k
n

i
v

y

5
k

4
iv

) 1
( 2k

n i

v
y

5
k

5
k

) 1
(

2

k n

i v
x

k
i
v

x

4
4

n

k
5

k

1
2
k

n
iv

Figure 2. Circulant graph X32,3.
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Case 2. x = vi+ n
2
+k−1 and y = vi+ n

2 −(k−1).

If k 6 5, then d(vi+4, x) = 6−k and d(vi+4, y) = 4+k. Now 6−k = 4+k ⇒ 2k = 2 ⇒ k = 1

which is not possible. Hence d(vi+4, x) 6= d(vi+4, y); If k > 5, then d(vi+4, x) = k − 4, which is

not equal to d(vi+4, y). Thus vi+4 resolves x and y.

Case 3. x = vi−k and y = vi+ n
2 −(k−1).

If k 6 ⌈n4 ⌉− 4, then we have d(vi+4, x) = 4 + k and d(vi+4, y) = 4 + k. But d(vi+ n
2
+2, x) =

3 + k 6= d(vi+ n
2 +2, y) = k + 1; If n

4 − 4 < k 6
n
4 then d(vi+4, x) = n

2 − k − 3 = d(vi+4, y) and

d(vi+ n
2
+2, x) 6= d(vi+ n

2
+2, y). Hence in all the cases, vi+ n

2
+2 resolves x and y.

Case 4. If x = vi+ n
2 +k−1 and y = vi+k then d(vi+4, y) = |k − 4|.

If k < 5, then d(vi+4, x) = 6−k 6= d(vi+4, y); If k > 5, then d(vi+4, x) = k−4 = d(vi+4, y).

However, d(vi+ n
2
+2, x) = k − 3 6= d(vi+ n

2
+2, y) = k − 1. Hence vi+ n

2
+2 resolves x and y.

Note that the Theorem 1 of Muhammad Salman et al in [6], states that for all n > 4 and

n ≡ 0 (mod 4), the metric dimension of Xn,3 > 2. Hence {vi, vi+4, vi+ n
2 +2} is a resolving set.

Hence the lemma. 2
Lemma 2.9 For any integer n > 8 and n ≡ 2(mod 4), the set {vi, vi+4, vi+ n

2 +2, vi+ n
2 +6} is a

resolving set.

Proof The cases where n 6 22 follows easily. We now suppose n > 22 and, x and y are

two vertices of G such that d(vi, x) = d(vi, y). Then there are four cases in each case k 6
n+2

4 .

Case 1. x = vi−k and y = vi+k.

In this case d(vi+4, y) = |k − 4|. If k 6
n+2

4 − 4, then d(vi+4, x) = k + 4 6= d(vi+4, y); If

k > n+2
4 − 4, then d(vi+4, x) = n

2 − k − 3. Now d(vi+4, y) = d(vi+4, x) ⇒ k − 4 = n
2 − k − 3 ⇒

k = n+2
4 . If k = n+2

4 , d(vi+ n
2
+2, x) = k − 3 6= d(vi+ n

2
+2, y) = k − 1.

Case 2. x = vi+ n
2
+k−1 and y = vi+ n

2 −(k−1).

If k 6 5, d(vi+4, x) = 6 − k 6= d(vi+4, y) = k + 4; except when k = 1. But when k = 1, x

and y coincide. Now if 5 < k < n+2
4 , then d(vi+4, y) = k − 4 6= d(vi+4, x) = k + 4.

Case 3. x = vi−k and y = vi+ n
2 −(k−1).

When k 6
n+2

4 − 4, d(vi+4, x) = 4 + k and d(vi+4, y) = 4 + k. But d(vi+ n
2 +2, x) =

3 + k 6= d(vi+ n
2
+2, y) = k + 1, and when n+2

4 − 4 < k 6 n+2
4 , d(vi+4, x) = n

2 − k − 3 and

d(vi+4, y) = n
2 − k − 3. However d(vi+ n

2 +2, x) = n
2 − k − 2 and d(vi+ n

2 +2, y) = k + 1.

Now n
2 − k − 2 = k + 1 ⇒ 2k = n

2 − 3 ⇒ k = n−6
4 .

If k 6= n−6
4 , then vi+ n

2 +2 resolves x and y; If k = n−6
4 , then d(vi+ n

2 +6, x) = n
2 − k − 6 and

d(vi+ n
2
+6, y) = n

2 − k − 4, which are not equal. Hence vi+ n
2
+6 resolves x and y.

Case 4. x = vi+ n
2 +k−1 and y = vi+k.

If k 6 5, then d(vi+4, x) = 6 − k 6= d(vi−4, y) = |k − 4|; If 5 < k < n+2
4 , then d(vi+4, x) =

k − 4 = d(vi+4, y). But d(vi+ n
2
+2, x) = k − 3 6= d(vi+ n

2
+2, y) = k − 1. Thus vi+ n

2
+2 resolves x

and y.
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Now by the Theorem 2 of Muhammad Salman et al [6], we have for all n > 6 and n ≡ 2

(mod 6), the metric dimension of the graph Xn,3 > 3.

Hence the set {vi, vi+4, vi+ n
2
+2, vi+ n

2
+6} as per the above four cases becomes a resolving

set. Hence the lemma. 2
§4. Algorithm to Extend Circulant Graphs and Resolving Sets

We give an algorithm, which constructs new circulant graph from the old one by increasing its

order and extending the its resolving set to suit for the newly constructed one (as in Figure 3).
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Figure 3. Algorithmic construction of Xn+8,3 from Xn,3.

Input: The graph Xn,3 and a metric basis S with |S| = k.

Step 1: Select two neighboring vertices on the principal cycle with a gap of 3. Let vi and vi+4 be

the vertices. Then vi, vi+4 and vi+ n
2 +2 ∈ S.

Step 2: Delete the edge vivi+1. Add four vertices v′i+1, v
′
i+2, v

′
i+3 and v′i+4 between the vertices

vi and vi+1. Join the vertices to get the edges viv
′
i+1, v

′
i+1v

′
i+2, v

′
i+2v

′
i+3, v

′
i+3v

′
i+4 and

v′i+4vi+1.

Step 3: Delete the edge vi+ n
2
vi+ n

2 +1. Add four vertices vertices v′i+ n
2 +1, v

′
i+ n

2 +2, v
′
i+ n

2 +3 and

v′i+ n
2 +4 between the vertices vin

2
and vi+ n

2 +1. Join these vertices to get the edges vin
2
v′i+ n

2 +1,

v′i+ n
2 +1v

′
i+ n

2 +2, v
′
i+ n

2 +2v
′
i+ n

2 +3, v
′
i+ n

2 +3v
′
i+ n

2 +4 and v′i+ n
2 +4vi+ n

2
+1.

Step 4: Join these 8 vertices to get the edges, vi+1v
′
i+ n

2 +1, vi+2v
′
i+ n

2 +2, vi+3v
′
i+ n

2 +3 and vi+4v
′
i+ n

2 +4.
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Step 5: Add v′i+4 and vi+ n
2
+2 into S.

Output: The graph Xn+8,3 and a metric basis S with |S| = k + 2

§4. Unique Metro Domination Number of Xn,3

In this section we completely determine unique metro domination number of 3-regular circulant

graphs in the form of following sequence of theorems.

Theorem 4.1 If n > 8 is an even integer and n ≡ 6 or 4 (mod 8), then γµβ(Xn,3) =
⌈
n
4

⌉
.

Proof We consider two cases separately following.

Case 1. n ≡ 4 (mod 8) and n > 8.

We first take the smallest possible n, that is n = 12. Define S = {vi, vi+4, vi+ n
2 +2} for any

i, 1 6 i 6 12. In view of Lemma 2.8, the set S so defined is a resolving set. Further, each gap

is of order 3. Hence S is uniquely dominates V − S. So, by Lemma 2.2, γµβ(X12,3) >
⌈
n
4

⌉
and

here |S| = 3. Thus, S is a UMD-set. Therefore, γµβ(X12,3) =
⌈
n
4

⌉
, when n = 12.

Now we apply the algorithm to construct the next cases for n. At each time algorithm

increases the order by 8 and |S| by 2. Hence γµβ(Xn+8,3) =
⌈
n
4

⌉
+ 2 =

⌈
n+8

4

⌉
.

Case 2. n ≡ 6 (mod 8) and n > 8.

For the least possible n = 14, by Lemma 2.8, it follows that the set {vi, vi+4, vi+ n
2 +2, vi+ n

2 +6}
resolves V −D. Now from Lemma 2.2, γµβ(Xn,3) >

⌈
n
4

⌉
= 4. There is a gap of order 0 in S.

The middle vertex vk of a gap of order 3 is dominated by vk+ n
2
∈ S. Hence S is a UMD-set.

We apply the algorithm on X14,3. It increases n = 14 to n = 22. It also increases |S| by 2.

Hence γµβ(X22,3) =
⌈
n
4

⌉
. Repeated application of the algorithm gives the theorem. 2

Theorem 4.2 If n is any even integer, n > 8 and n ≡ 0 or 2 (mod 8), then γµβ(Xn,3) =
⌈
n
4

⌉
+1.

Proof We prove the theorem in two different cases as follows:

Case 1. n ≡ 0 (mod 8).

The graph X16,3 is the graph of least possible order in this case. Invoking Lemma 2.4,

consider a gap of order 3, having vi and vi+4 as the neighboring vertices. Then vi, vi+4, and

vi+ n
2 +2 ∈ S.

This leads to a gap of order 5 between vi+4 and vi+ n
2 +2 in which vi+6, vi+7 are not

dominated and a gap of order 5 between vi+ n
2
+2 = vi+10 and vi in which vi−2 and vi−3 are

not dominated. As
⌈
n
4

⌉
= 4, S contains a minimum of 4 vertices by Lemma 2.2. If vi+6 ∈ S,

then vi+5 is not uniquely dominated. If vi+7 ∈ S, then vi−1 is not uniquely dominated and

if vi−3 ∈ S, then vi+5 is not uniquely dominated. Hence none of vi+6, vi+7, vi−2, vi−3 can be

included in S. If vi−1 ∈ S, then vi−2 and vi+7 ∈ V − S are uniquely dominated. Similarly if

vi+5 ∈ S, then vi+6 and vi−3 in V − S are uniquely dominated. However |S| = 5 and is not
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possible to reduce it to 4. (Because each gap of order 5 can be converted to two gaps of order

2, But it will have |S| = 5).

Hence γµβ(Xn,3) = 5. Application of algorithm now will increase the order by 8 and |S|
increases by 2. Therefore γµβ(Xn,3) =

⌈
n
4

⌉
+ 1.

Case 2. n ≡ 2 (mod 8).

As in Case 1, we take vi, vi+4 and vi+ n
2
+2 ∈ S. If vi+ n

2
+6 ∈ S, then it leaves a gap of order

2 between vi and vi−3 and a gap of order 6 between vi+4 and vi+ n
2 +2. In this gap of order 6,

the vertices vi+5, vi+6, vi+9 and vi+10 are uniquely dominated. If vi+7 ∈ S, then vi−2 and vi+6

are not uniquely dominated. If vi+8 ∈ S, then vi−1 and vi+9 are not uniquely dominated. If

we include vi−2 and vi−1 in S, then the domination of all vertices in V − S is unique. However

|S| = 6. It can not be reduced to 5 =
⌈
n
4

⌉
. If the gap of order 6 between vi+4 and vi+11 is

converted into 2 gaps by including vi+8 ∈ S , then vi−1 is not uniquely dominated. Similarly

including vi+4 fails. Hence γµβ(Xn,3) = 6. As before we apply algorithm to conclude the rest

of the theorem. 2
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[1] José Cáceres, Marýa L. Puertas, Carmen Hernando, Mercè Mora, Ignacio M. Pelayo, Car-

los Seara and David R. Wood, On the metric dimension of cartesian product of graphs,

http://www.arxiv.org/math/0507527, March 2005, 1-23.

[2] Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R. Oellermann, Resolvability

in graphs and the metric dimension of a graph, Discrete Appl. Math., 105(1-3)(2000),

99-113.

[3] Harary F, Melter R.A., On the metric dimention of a graph, Ars Combinatoria, 2 (1976),

191-195.

[4] S.Kuller, B.Raghavachari and A.Rosenfied, Land marks in graphs, Disc. Appl. Math., 70

(1996), 217-229.

[5] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math Comb.

Compu., 40 (2002), 17-32.

[6] Muhammad Salman, Imran Javaid, Muhammad Anwar Chaudhry, Resolvability in circu-

lant graphs, Acta Mathematica Sinica, English Series, Vol 28(9), (2012), 1851–1864.

[7] Peter J. Slater, Leaves of trees, In Proc. 6th Southeastern Conf. on Combinatorics, Graph

Theory and Computing, Congressus Numerantium, Vol. 14 (1975), 549-559.

[8] P. J. Slater, Domination and location in acyclic graphs, Networks, 17 (1987), 55-64.

[9] P. J. Slater, Locating dominating sets, in Y. Alavi and A. Schwenk ed. Graph Theory,

Combinatorics, and Applications, Proc. Seventh Quad International Conference on the

theory and applications of Graphs. John Wiley & Sons, Inc. (1995), 1073-1079.

[10] A.Sebo and E.Tannier, On metric generators of graphs, Math. Opr. Res., 29 (2004), No.2,

383-393.



Unique Metro Domination Number of Circulant Graphs 61

[11] B.Shanmukha, B.Sooryanarayana and K.S.Harinath, Metric dimension of wheels, Far East

J. Appl. Math., 8(3) (2002) 217-229.

[12] B.Sooryanarayana, On the metric dimension of graph, Indian J. Pure and Appl. Math.,

29(4)(1998), 413 - 415.

[13] B.Sooryanarayana and John Sherra, Unique metro domination in graphs, Adv Appl Discrete

Math., Vol 14(2), (2014), 125-149.

[14] B.Sooryanarayana and Shanmukha B, A note on metric dimension, Far East J. Appl.

Math., 5(3)(2001) 331-339.


