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Abstract—A first fundamental step in the process of analyzing
movement data is trajectory segmentation, i.e., splitting trajecto-
ries into homogeneous segments based on some criteria. Although
trajectory segmentation has been the object of several approaches
in the last decade, a proposal based on a semi-supervised
approach remains inexistent. A semi-supervised approach means
that a user labels manually a small set of trajectories with
meaningful segments and, from this set, the method infers in
an unsupervised way the segments of the remaining trajecto-
ries. The main advantage of this method compared to pure
supervised ones is that it reduces the human effort to label
the number of trajectories. In this work, we propose the use of
the Minimum Description Length (MDL) principle to measure
homogeneity inside segments. We also introduce the Reactive
Greedy Randomized Adaptive Search Procedure for semantic Semi-
supervised Trajectory Segmentation (RGRASP-SemTS) algorithm
that segments trajectories by combining a limited user labeling
phase with a low number of input parameters and no predefined
segmenting criteria. The approach and the algorithm are pre-
sented in detail throughout the paper, and the experiments are
carried out on two real-world datasets. The evaluation tests prove
how our approach outperforms state-of-the-art competitors when
compared to ground truth.

Index Terms—Trajectory segmentation; Semantic annotation;
Semantic trajectory; Semi-supervised learning.

I. INTRODUCTION

Research on trajectory management and analysis is a broad
and mature area [16] since positioning devices are now com-
monly used to track people, vehicles, vessels, and animals.
These devices produce trajectory samples representing the
object movement as a discrete collection of spatiotemporal
points, or samples. An important step that is a prerequisite
to several analysis tasks on these tracks is the trajectory
segmentation [14, 17]. Segmenting a trajectory means splitting
the spatiotemporal sequence of points into segments based on
some properties or criteria that identify a similar behavior in
the segment. Examples of segment splitting criteria are based
on the temporal component like the day of the week or based
on whether the object is moving or not, thus identifying the
stop segments from the move segments [17]. Segmenting a
trajectory with clear criteria is a first step to semantically
enrich trajectories (or semantic annotation), a process to
enrich trajectory parts with meaningful contextual information
[14, 12].

The segmentation task is therefore based on methods ca-
pable of distinguishing the homogeneous or similar parts of
a trajectory based on some criteria. We can distinguish two

cases: supervised and unsupervised segmentation. In super-
vised segmentation, the criteria are already known a priori.
This can be implemented with algorithms based on simple
thresholds (e.g., speed) or machine learning techniques that
learn the correct segmentation from a set of labeled segments.
When the segmentation criteria are unknown, the unsupervised
algorithm derives the homogeneity of segments based on some
cost function. Both supervised and unsupervised methods have
complementary benefits and drawbacks. The supervised meth-
ods rely on user-defined rules, labels or thresholds; therefore
the segmentation is user-driven. This kind of segmentation
is particularly suitable for semantic annotation, thanks to the
human labeling phase that can associated complex semantic
labels to trajectory parts (e.g. activity performed or transporta-
tion means). The drawback is that, in some cases, these criteria
are not clear, they may depend on the characteristics of the
trajectory dataset and the expertise of the domain specialist
to correctly label a set of trajectories and/or configure the
thresholds. Also, obtaining a high quality labeled trajectory
dataset is difficult as it relies on a huge effort by domain
experts and this is one reason why the supervised methods
are not widespread in this field.

Unsupervised algorithms, on the contrary, avoid any control
from the user and automatically detect segments using a cost
function which represents the homogeneity of the segments.
Although these algorithms can produce segments with high
homogeneity, they lack semantics and any connection to the
specific application, making the interpretation task difficult.
Despite the broad spectrum of trajectory segmentation ap-
proaches already proposed in the literature (see for example
[16, 14]), there is still a lack of methods attempting to combine
the benefits of both supervised and unsupervised strategies. As
a possible solution to this, a semi-supervised approach to the
segmentation task is proposed in this work.

Semi-supervised means essentially that a user labels man-
ually a small set of trajectories based on some criteria, thus
giving the semantics of the segmentation and, from that, the
method infers, in an unsupervised way, the segmentation of the
remaining part of the trajectory dataset. Such approach offers
a balance between methods which are entirely supervised,
where the user precisely defines the splitting criteria, and
unsupervised, where the method infers a good splitting based
on a cost function. We observe that when the segmentation is
semantic-based (e.g., representing the activity of the moving
object), in contrast to the geometric-based segmentation (e.g.,
the speed of the object), the need for manually annotated
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trajectories is crucial: minimizing the number of these human-
labeled trajectories, as stated in [8], is fundamental to keep this
task feasible.

This paper comes as advancement and extension of a
previous work [7] based on an unsupervised method named
GRASP-UTS (Greedy Randomized Search Adaptive Search
Procedure for Unsupervised Trajectory Segmentation). Com-
pared to that paper, which introduces an unsupervised algo-
rithm for trajectory segmentation, here we propose a new semi-
supervised segmentation algorithm called RGRASP-SemTS
(Reactive Greedy Randomized Adaptive Search Procedure for
Semantic semi-supervised Trajectory Segmentation).

We summarize below the original contributions of this
paper:
• Proposal of the RGRASP-SemTS as a semi-supervised

algorithm to segment trajectories that uses a small set of
labeled trajectory data during the trajectory segmentation
task to drive the unsupervised segmentation of unlabeled
trajectory data.

• Unlike previous related works, RGRASP-SemTS focuses
on performing semantic trajectory segmentation using
features evaluation, non-monotone criteria, semantic an-
notation, cost function and meta-heuristics.

• Description of a feature evaluation step that aims to find
the best set of features for increasing the RGRASP-
SemTS’s performance.

• Proof that using labeled data helps speeding up the
RGRASP-SemTS’s performance when compared to our
previous unsupervised algorithm, GRASP-UTS.

• Description of experiments with two real world datasets
showing that the performance of RGRASP-SemTS is
superior when compared to other unsupervised and su-
pervised approaches of the literature.

The remainder of the paper is organized as follows. Sec-
tion II surveys the related work. Section III shows con-
cept definitions, terminologies, and theories used in the
proposed solution. Section IV presents the novel semantic
semi-supervised algorithm for trajectory segmentation named
RGRASP-SemTS. Section V presents the metrics and the
results obtained by the novel approach when applied to real
datasets. Finally, Section VI concludes the paper.

II. RELATED WORKS

As the interest in the literature is increasing, new methods
to segment trajectories are being proposed. Pioneering work is
the stop and move definition given by [17] where the segmen-
tation was used to identify the parts of the trajectories where
the object stays still and separate it from the moving parts. We
later come to a broader definition of semantic trajectory, where
the segments may identify and be annotated not only as stops
and moves, but also with more meaningful and context-aware
labels such as transportation means or activities [2, 14, 12].
The need to identify segments based on some semantics
fostered the developments of different segmentation methods.
A possible classification of these methods is based on the
characteristics of the algorithm: supervised or unsupervised,
application-oriented or general purpose, monotone criteria

or non-monotone criteria and with a predefined number of
segments versus a non-predefined number of segments.

Supervised means that the segmentation criteria are based
on ad-hoc standards and predefined rules. This is the case
when the rules are clear and predefined by experts of the
domain as in works [13, 11, 20]. The second line of approaches
follows an unsupervised methodology, where no predeter-
mined criteria are imposed in the segmentation process, and
the segment split is based on data properties as in works
[9, 18, 7]. To the best of our knowledge, no works found
in the trajectory segmentation literature tried to combine both
supervised and unsupervised criteria as we are doing in the
present paper.

Another possible classification of segmentation algorithms
is to distinguish between application-oriented and general
purpose methods [9]. Application-oriented algorithms for tra-
jectory segmentation are designed for a specific purpose and,
consequently, they are difficult to reuse in different domains.
Examples of application-oriented algorithms for trajectory
segmentation are described in [18, 19, 20]. On the other hand,
the general purpose algorithms for trajectory segmentation are
easily reused in many different domains. Examples of general
purpose algorithms for trajectory segmentation are explained
in [4, 7, 9, 13, 11]

Trajectory segmentation algorithms can also be monotone
or non-monotone, and this affects the results of the splitting
task [4]. Indeed, a criterion is monotone if any sub-segment
S′ of a segment S always fulfills the whole segment criterion.
Monotone criteria are found when values of the features fall
within a range or ratio. On the other hand, values computed
from means and standard deviations are non-monotone. Trajec-
tory segmentation algorithms with monotone criteria includes
works [4, 1], while the approaches with non-monotone criteria
include [9, 13, 11, 7, 20]

Another issue related to the segmentation of trajectories is
the number of segments that must be found. In [9], the number
of segments is given as input to the algorithm, so it is already
predefined, whereas, in [7, 13, 11, 20], the number of segments
is found automatically by the algorithm during its execution.

The RGRAPS-SemTS algorithm proposed in this paper is
classified as being semi-supervised, general purpose, non-
monotone and lacking a predefined number of segments.
To the best of our knowledge, none of the segmentation
algorithms proposed in the literature has such classification.

III. BASIC CONCEPTS

This section addresses concepts and terminologies used in
this work. A trajectory is a representation of the spatiotemporal
movement of an object. Trajectories are usually collected by
tracking devices into discrete samples and represented as a
sequence of spatiotemporal points [7]:

Definition 1: A trajectory sample is a list of spatiotemporal
points τN = {tp0, tp1, . . . , tpN}, where tpi = (xi, yi, ti, ωi).

A point feature (ωi in Definition 1, is a set of point features
with ωi = {pf0 , pf1 , . . . , pfA}) is any numeric information
that can be extracted from a trajectory sample and associated
to a spatiotemporal point. A point feature can be acquired
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by a geolocation device (e.g., the instantaneous speed) or
calculated using the trajectory sample (e.g., the direction
variation between two consecutive points) and is assigned to
a single point of the trajectory.

A segment feature is any numeric information computed
from the trajectory sample and associated with a segment
(e.g., average or maximal speed). The difference between point
feature and segment feature is that, while the former is static,
the latter is more dynamic. Once a point feature information
is collected or computed it will not change over time. The
segment features depend on the segment definition and when
the segment is recomputed by adding or removing points, then
the segment feature has to be recomputed too.

A semantic label (or semantic annotation) is any additional
semantic and/or contextual information that can be added to a
trajectory segment [14]. Such information can be, for example,
an activity (e.g., walking, studying or driving) or a behavioral
pattern (e.g., foraging or running from a predator). Henceforth,
the term label refers to a semantic label. A trajectory dataset
is called a labeled dataset when its trajectories’ segments have
been annotated with semantic labels. More formally:

Definition 2: A labeled trajectory segment s is a sublist
of τ and s = (tid, sid, {tpu, . . . , tpv}, semantic label, ζsid),
where: (i) tid is the trajectory identifier; (ii) sid is the segment
identifier; (iii) tpu, . . . , tpv represent a sublist of τN starting
from tpu and ending at tpv (1 ≤ u ≤ v ≤ N ); (iv)
semantic label is the additional information that characterizes
the segment and (v) ζsid is a list of segment features, with
ζsid = {sf0 , sf1 , . . . , sfB}.

Two more concepts are used in the segmentation algorithm
definition to refer to the representative points inside a seg-
ment and inside a labeled dataset: the segment landmark in
Definition 3, already introduced in [7] and semantic landmark
in Definition 4, introduced here for the first time:

Definition 3: A segment landmark lmr is a representative
point of a trajectory sample τN , where lmr = tps and 1 ≤
r ≤ s ≤ N , used to represent a trajectory segment in terms
of its point features.

A segment landmark is a point inside the segment that is
chosen to represent the whole segment: it is used as reference
point to characterize the behavior of a part of the trajectory.
After defining a set of segment landmarks, it is possible to
create segments by partitioning the points in the neighborhood
where each segment landmark is defined (i.e. the trajectory’s
consecutive points respecting a time constraint). The decision
of which point to choose as a segment landmark depends on
a cost function that should be optimized.

Definition 4: A semantic landmark sem lm =
(semantic label, ωA, ζB) is a set that represents a pattern
extracted from a labeled dataset consisting of: (i) a semantic
label; (ii) ωA is a list of point features values; and (iii) a list
ζB of segment features values.

Differently from segment landmarks that are decided by the
cost function, the semantic landmarks are computed from a set
of examples given by the user. Example of semantic landmarks
are segments labeled as fishing or not fishing for vessels or
foraging and traveling for animals.

IV. SEMANTIC AND SEMISUPERVISED TRAJECTORY
SEGMENTATION

This section introduces the novel RGRASP-SemTS process
for semantic and semi-supervised trajectory segmentation.
This process is summarized in Figure 1 where we specify the
process tasks and their input and output. Starting with a set of
trajectories, the domain expert labels a subset of them using
some criteria (e.g., the activity performed). The first step of the
process is the features evaluation step where the features that
will be used in the learning phase are generated and selected
for a particular domain. This step is detailed later in Section
IV-A. The second task is the actual segmentation performed by
RGRASP-SemTS. The input parameters of RGRASP-SemTS
are: (i) a set of labeled segment examples; (ii) a reactive
proportion (rp) to update internal list of parameters values
for minTime and α, and (iii) the maximal number of itera-
tions (max it) to execute RGRASP-SemTS over a trajectory
sample. This algorithm and the input parameters are detailed
in Section IV-B. Finally, the output of RGRASP-SemTS is a
set of semantically segmented trajectories produced in a semi-
supervised way by considering both the examples provided by
the user (supervised phase) and the similarities computed by
the algorithm in the neighborhood of the segments (unsuper-
vised phase).

Fig. 1. The semantic and semi-supervised trajectory segmentation process of
RGRASP-SemTS

A. Feature evaluation

The feature evaluation follows two steps: (i) the feature
generation and (ii) the selection of a subset of features enabling
the algorithm to achieve its best performance. In the features
generation step, the objective is to create as many features as
possible to characterize the behavior of the moving object for
each dataset. The features created for each dataset used in the
experiments of this work are detailed in Section V-B.

As the number of features can grow very fast, it is necessary
to select the most representative point and segment features
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to perform the segmentation, and this is the second step of
features evaluation. In this work, the Weka package and the
filtering χ2 algorithm [10] were used to select the features. The
χ2 feature selection algorithm evaluates the value of a feature
by computing the value of the χ2 statistic concerning the label.
The advantages of this method are that it is fast, scalable and
independent from the chosen segmentation algorithm.

B. The RGRASP-SemTS Segmentation Algorithm

Semi-supervised strategies take advantage of both unsuper-
vised and supervised strategies, thus exploiting labeled and
unlabeled data. In fact, we want to achieve homogeneity
inside a segment using an unsupervised strategy (segment
landmarks), while obtaining a degree of similarity between the
segments using a supervised strategy on a labeled dataset (se-
mantic landmarks). The properties we want to optimize in the
segments (e.g., minimal distortion and maximal compression),
previously presented in [7], and the extended cost functions
we use in this work are discussed below.

1) Desirable properties and Cost function definition: In this
work, achieving minimal distortion in a trajectory segmen-
tation task is to achieve as much homogeneity as possible
inside the trajectory segments regarding its point and segment
features. On the other hand, achieving maximal compression
for the trajectory segments means that the resulting segments
(i.e. number of segment landmarks) should be as few as
possible and as similar as possible to a semantic landmark
extracted from the labeled dataset.

The concepts of maximal compression and minimal distor-
tion are inversely correlated since when one increases, the
other decreases. For example, selecting all the spatiotemporal
points as segment landmarks naturally decrease the minimal
distortion increasing the maximal compression since many
segment landmarks will be chosen. Conversely, choosing one
point as a segment landmark for the entire trajectory lowers
maximal compression, but increases the distortion produced
by the segmentation since a single segment landmark will be
compared to all the points of the trajectory. As these concepts
are inversely correlated, it is necessary to define a function
that represents the trade-off between them. We propose to use
the MDL principle to compute this trade-off as detailed below.

To achieve homogeneity inside a trajectory segment we use
Equation 1 which represents a Euclidean distance between the
trajectory point features (ωA) of two points tp1 and tp2. In
Equation 1, ω1i represents the i-th point feature value of tp1
and ω2i the i-th point feature value of tp2.

simtf (ω, ω) =

√√√√ A∑
i=

(ωi
− ωi

) (1)

The segment cohesiveness is shown in Equation 2 and
measures the similarity between the point features of a chosen
segment landmark ωlm and all the points between tpu and tpv
(ωk).

S Cohe(ωlm, {ωu, . . . , ωv}) =
v∑

k=u

simtf (ωlm, ωk) (2)

As segment feature is a new concept defined in this work
and as it is necessary to compare the segment features of
different segments, Equation 3 defines a similarity between
the segment features (ζ) of two segments s1 and s2, where ζ1i
represents the i-th segment feature of s1 and ζ2i represents the
i-th segment feature of s2.

simsf (ζ1, ζ2) =

√√√√ B∑
i=1

(ζ1i − ζ2i)2 (3)

In the MDL theory, the best model is the one that minimizes
the result of L(H)+L(D|H) [5]. In this work, the hypothesis
H consists of choosing an optimal set of segment landmarks
that are more similar to the semantic landmarks included in the
labeled dataset and also contains high homogeneity rates in its
neighborhood. Finding the optimal set of segment landmarks
reflects the decision of finding the best hypothesis according
to the MDL principle. It is crucial also to consider the use of
unsupervised and supervised data in both L(H) and L(D|H).

Given a trajectory sample τN = (tp, tp, ..., tpN ), a set
of segment landmarks φT = {lm, lm, ..., lmT }, a set of
semantic landmarks λV = {s lm, s lm, ..., s lmV }, and
a set of trajectory segments θT = {s, s, ..., sT }, the cost
function is formally defined as follows.

The cost of the hypothesis (L(H)) is computed by compar-
ing, regarding their point features: (i) the chosen consecutive
segment landmarks (unsupervised measure); and (ii) each
segment landmark to the most similar semantic landmark
found in the labeled dataset (supervised measure). Equation
4a represents the cost of encoding a hypothesis of a trajectory
sample τN when a set φT of segment landmarks are chosen.
If T is equal to 1, L(H) = 0. Otherwise, Equation 4a is used.
The max represents the maximum possible similarity between
two trajectory features. The first part of Equation 4a repre-
sents the unsupervised measure (Equation 4b) that takes into
account the unlabeled data. This value will decrease when the
consecutively chosen segment landmarks are dissimilar; hence,
this Equation identifies less similar movement behaviors by
comparing the current segment to the next one. The second
part of the L(H) function (Equation 4c), which stands for
the supervised measure, computes the similarity between the
chosen segment landmark and the closest semantic landmark
regarding their point features.

L(H) = Uns L(H)(φT ) + Sup L(H)(φT , λV ) (4a)

Uns L(H) = log2(1 +

T−1∑
j=1

max− simtf (ωlmj , ωlmj+1)) (4b)

Sup L(H) = log2(1 +
T∑

j=1

arg min
i∈[1,V ]

simtf (ωlmj , ωs lmi)) (4c)

The L(D|H) cost function, representing the cost of bits
for encoding a dataset D when testing a hypothesis H, is
defined in Equation 5a. The cost of encoding a dataset given
a hypothesis (L(D|H)) is computed by comparing: (i) the
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segment cohesiveness (Equation 2) between all the points
of each segment ({ωu, ..., ωv}k) and its respective segment
landmark (ωlmk

) in terms of point features values; and (ii) the
segment features similarity (Equation 3) between each segment
found and the more similar semantic landmark. The first part
of Equation 5a is the unsupervised measure (Equation 5b) that
will compare the chosen segment landmark of each segment
with all point features’ values inside this segment. This value
increases when fewer segments are found and decreases when
more segments are found. The supervised measure of our
L(D|H) is shown in Equation 5c. Each segment θT found
is compared to all semantic landmarks of the set λV and
the closest one is selected. This is the part of the cost
function where semantic enrichment is performed. Since the
unsupervised measure of L(D|H) (Equation 5b) compares all
the point features’ values of each segment with the respective
segment landmark, it is necessary to multiply this similarity
by the number of points located inside this segment (|sk|)
and subtract one, since the segment landmark is a point of
the segment and the similarity between them is equal to 0. If
such approach is not adopted, the L(D|H) value will consider
the unsupervised measure more costly when compared to the
supervised measure since greater similarity costs would be
computed.

L(D|H) = Uns L(D|H)(θT ) + Sup L(D|H)(φT , λV ) (5a)

Uns L(D|H) = log2(1 +
T∑

k=1

SCohe(ωlmk
, {ωu, . . . , ωv}k)) (5b)

Sup L(D|H) = log2(1 +

T∑
k=1

arg min
i∈[1,V ]

simsf (ζsli , ζsk ) ∗ |sk|) (5c)

2) The Algorithm: In this section, we present the algorithm
RGRASP-SemTS. Two issues must be considered: (i) the
number of segments that makes the cost function minimum
is not known a priori; (ii) switching the segment landmarks
implies that the segment configuration will also be affected,
since the cost function value must be recomputed every
time a modification in the set of segment landmarks is per-
formed. To manage these issues, we adopt the Reactive Greedy
Randomized Adaptive Search Procedure (RGRASP) meta-
heuristic[15], aiming at determining the number of segments
and the boundaries between the consecutive segments.

RGRASP-SemTS is detailed in Algorithm 1. The trajectory
τN to be segmented is read in Line 1. In Line 2, the algorithm
extracts a semantic landmark for each type of semantic label
that must be found by finding the average of each point and
segment feature contained in the segment examples consider-
ing the semantic label. Lines 3 and 4 initialize minTimelist
and αlist for possible values for minTime and α using
equal width binning. In the case of αlist, the minimum and
maximum values are predetermined and range from 0.1 to
0.6. These values were determined because, for values below
0.1, the algorithm chooses the same segment landmarks in
each iteration. For values above 0.6, the segment landmarks
chosen by RGRASP-SemTS were completely random. From

Algorithm 1 RGRASP-SemTS
Input: A set of segment examples ψE = (ex1, ex2, ..., exT )

A reactive proportion value rp
A number of iterations max it

Output: A set of semantically enriched segments θT =
(s1, s2, ..., sT )

1: τN ⇐ read trajectory data;
2: λV ⇐ extract all semantic landmarks from examples ψE ;
3: minTimelist ⇐ initialize the minTime values;
4: αlist ⇐ initialize the α values;
5: for k = 1→ max it do
6: minTime ⇐ randomly select from minTimelist;
7: α ⇐ randomly select from αlist;
8: θT ⇐ Greedy Randomized Construction Procedure(τ ,
minTime, α,λV );

9: θT ⇐ Local Search Procedure(θT , minTime,λV );
10: Update Best Solution(θT , Best θT );
11: if mod(k, rp) == 0 then
12: Update minTimelist and αlist probabilities;
13: end if
14: end for

return Best θT ;

Lines 5 to 14, max it iterations are executed aiming at
building and evaluating different segmentations. Values for α
and minTime are randomly selected from the lists αlist and
minTimelist (Lines 6 and 7). Then, a first feasible solution
(θT segments) is built by executing the procedure shown in
Algorithm 2 (Line 8). After building the first set of feasible
segments θT , Local Search Procedure (Algorithm 3) is applied
to optimize the segments (Line 9) locally. RGRASP-SemTS
(Algorithm 1) verifies if the new set of optimized segments
θT is the best one found by evaluating the cost according to
the MDL function (Line 10). If the cost of these segments is
lower, it updates the set of best segments (Best θT ).

The reactive part of this algorithm is concluded by updating
the probabilities of minTimelist and αlist (Lines 11 to 13).
If the modulo (mod) of the multiplication between it and
rp is equal to 0, the probabilities of αlist and minTimelist
are updated using Equation 6 [15]. Equation 6 (a) deter-
mines the probability of selecting a determined value of
αlist or minTimelist. Equation 6 computes the values for
pi (i.e. probability of selecting an element of the αlist or
minTimelist) when all values for qi are established. This is
achieved by dividing each value of qi by the total sum of all
qis.

qi = (
best mdl value found

average mdl value for ith element of the list
)10 (6a)

pi = qi/

m∑
j=

qj (6b)

Finally, Algorithm 1 returns the best set of semantically
enriched segments (Best θT ) found by max it iterations. The
procedure for building the initial solutions (Algorithm 2) of
the RGRASP-SemTS is explained as follows.
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Algorithm 2 Greedy Randomized Construction Procedure
Input: A set of points ordered by time τN =

(tp1, tp2, ..., tpN )
A minimum time threshold minTime
An α threshold to define the amount of greediness

of the construction algorithm
A λV set of semantic landmarks

Output: A set of semantically enriched segments θT =
(s1, s2, ..., sT )

1: while candidatelist is not empty do
2: RCLlist ⇐ add points of candidatelist from index 0

to RCLsize;
3: candidate ⇐ randomly select a point from RCLlist;
4: semanticLandmark⇐ get the most similar semantic

landmark from λV in terms of point features;
5: segment ⇐ add candidate;
6: while minTime threshold condition not satisfied do
7: best neighbor⇐ evaluate left and right neighbor;
8: segment ⇐ best neighbor;
9: end while

10: θT ⇐ add segment;
11: remove from candidatelist unfeasible points;
12: sort points of candidatelist according to the closer

semantic landmark in terms of point features;
13: end while

return θT ;

Algorithm 2 starts in Line 1 by considering all points as can-
didate segment landmarks (candidatelist). In the initialization
of all GRASP-based algorithms, the creation of a restricted
candidate list (RCL) is necessary. This list is used to manage
the amount of greediness of the initialization method that is
determined by the parameter α. This procedure is executed
until all points in candidatePointslist are considered land-
marks (Lines 2 to 15). In this work, the RCL is built by sorting
all points inside τ according to its distance (Equation 1) to the
closest semantic landmark regarding the point features values
(Line 1). The size of the RCL (RCLsize) is determined by
multiplying the size of the candidatelist by the value of α,
thereby creating a variable RCLlist with all points spanning
from the first element of the candidatelist to the position
determined in RCLsize. Afterward, a point from the RCLlist

is randomly chosen as candidate segment landmark (Line 3)
and the closest semanticLandmark for this point is chosen
by computing the trajectory features distance (Equation 1)
between this candidate and all semantic landmarks of the
set ψV (Line 4).

A new segment is created in Line 5 with the initial point
being the candidate and its semantic label being the one
determined by the semanticLandmark (Line 8). From Lines
6 to 9, the size of the segment is increased by adding points
to the segment’s neighborhood (respecting the chronological
order) until the time threshold (minTime) is reached. This
is done by determining the most suitable neighbor in terms
of point features’ values (i.e. segmentu−1 and segmentv+1)
of the segment (Line 7) and adding this bestNeighbor to
the segment (Line 8). When segment contains at least the

minTime threshold, this segment is added to the set θT
(Line 10). After, all points of the segment (Line 10) and
the neighborhoods that could not be used to build a feasible
segment regarding the time constraint (Line 11) are removed
from the candidatelist. After removing all these points, the
candidatePointslist is re-sorted (Line 12), and the same
procedure is applied until the there are no candidate points
in this list. Subsequently, all points that were not assigned to
a segment are placed in the neighbor segment (segment in the
point’s right or left). From that point on, the algorithm detects
which position, among a set of consecutive points that had not
been assigned to a segment, is the best one - that is, the one
which reduces the cost function. These points are then added
to the respective segment (i.e., a segment on the left or the
right) whose cost function was minimized. Finally, feasible
and semantically enriched θT segments are returned.

Algorithm 3 Local Search Procedure
Input: A set of semantically enriched segments θT =

(s1, s2, ..., sT )
A minimum time threshold minTime
A ψV set of semantic landmarks

Output: A set of optimized semantically enriched segments
optimized θR = (s1, s2, ..., sT )

1: optimized θR ⇐ {};
2: c segment ⇐ θ0;
3: p sem label ⇐ c segmentlabel;
4: for i = 1 → T do
5: if p sem label != θi’s semantic label then
6: update segment landmark of c segment;
7: optimized θ ⇐ add c segment;
8: p sem label ⇐ c segmentlabel;
9: c segment ⇐ θi;

10: else
11: current segment ⇐ insert all points from θi;
12: end if
13: end for
14: for i = 0 → R− 1 do
15: bpp ⇐ Find the best position to partition points

between indexlm1
and indexlm2

;
16: optimized θi ⇐ create segment from optimized θi’s

first index position to bpp;
17: optimized θi+1 ⇐ create segment from bpp + 1 to

optimized θi+1’s last index;
18: update segment landmark of optimized θi and

optimized θi+1;
19: end for

return optimized θR;

The procedure to locally optimize the initial solution (Algo-
rithm 3) of the RGRASP-SemTS is explained as follows. Line
1 initializes a list of optimized segments named optimized θR
that will be the output of this procedure. Lines 2 and 3
initialize the current segment (c segment) to be analyzed
with all the points contained in θ0 and stores this segment’s
semantic label in p sem label.

The objective of lines from 4 to 13 is to merge segments
with the same semantic labels. For all the remaining segments
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θT , if the consecutive labels (i.e., labels from the previous
segment and the current) are not equal (Line 5), the algorithm
updates the c segment’s segment landmark (Line 6), adds this
segment to the output list of segments optimized θ (Line 7),
sets the previous semantic label as the actual one in the current
segment (Line 8), and finally sets c segment as being equal to
θi (Line 9). If the p sem label is equal to the θi’s semantic
label, all points from θi are added to the c segment (Line
10).

From Lines 14 to 19, Algorithm 3 optimizes the MDL based
cost function L(H) + L(D|H). The optimization is carried
out by finding the best partitioning position (bpp) between
the consecutive segments on the set optimized θ (Line 15).
This method verifies for all points between consecutive seg-
ment landmarks, which one causes a sharper decrease in the
MDL-based cost function result, and considers this position
as the local optimum for these successive segments. The
optimized θi and optimized θi+1 boundaries in Lines 16
and 17 are updated, as well as their segment landmarks in
Line 18. Finally, a set of optimized θR is returned by this
procedure.

Since RGRASP-SemTS works with distances, the stan-
dardization of the data is a crucial step because features
can have different variances. Indeed, when there is a feature
with a very high variance, the distances computed between
the features will be greater than the distances computed for
features with smaller variances. This difference would impact
the RGRASP-SemTS by raising the cost of the features with
higher variances and decreasing the cost of features with lower
variances. In this work, each feature was normalized using the
well-known statistical method known as standard score. This
method produces a dimensionless number that is obtained by
subtracting a raw value from the mean and then, dividing this
difference by the standard deviation.

At this point, the complexity analysis of the RGRASP-
SemTS is explained. The complexity of the construction
procedure (Algorithm 2) is defined by the while structure from
Lines 2 to 17. This structure has a complexity of O(N),
and it evaluates, for each point from the trajectory τN , the
possibility of it being selected as a segment landmark. When
these lines are executed, every time a new segment is created,
points from the list of candidate points (candidatePointslist)
are removed in Lines 14 or 15. At maximum, all the points
from trajectory τN could be selected as segment landmarks
to generate segments. The complexity of the local optimiza-
tion procedure (Algorithm 3) is defined by the for structure
from Lines 13 to 21. Observe that the θR segments evalu-
ated by Algorithm 3 contain all the points from τN . Note
also that all the possibilities for partitioning the N points
between two consecutive segment landmarks are analyzed,
determining a complexity of O(N) for Algorithm 3. Finally,
the RGRASP-SemTS (Algorithm 1) complexity is defined as
O(N ∗ max it). It results from the multiplication of Lines
7 or 8 and the number of iterations the algorithm executed
(max it), since all the previous Lines of this algorithm have
lower complexities.

V. EXPERIMENTS

This section details the experiments performed in this work
and is organized as follows. Section V-A presents the datasets
and evaluation metric, while Section V-B details the features
evaluation. Finally, Section V-C compares the semantically
enriched segments generated by RGRASP-SemTS with other
state-of-the-art supervised and unsupervised algorithms.

A. Datasets and evaluation metric

We used two real world datasets: (i) the Atlantic hurricane
track dataset and (ii) tracked grey seals dataset.

The Atlantic hurricane track dataset 1 contains information
regarding hurricanes collected from 2000 to 2012 and it was
divided into segments labeled low intensity hurricanes (e.g.,
surface wind ≤ 63 knots) and high intensity hurricanes (e.g.,
surface wind > 64 knots). Trajectories with less than 20
points were discarded to avoid the segmentation of very small
trajectories and because most of them only contained the
semantic label low intensity.

The grey seals dataset contains information regarding seals’
trajectories collected from Argos satellite tags deployed from
Sable Island, Nova Scotia, Canada. This dataset contains
segments with labels foraging and traveling, assigned by
domain specialists [3].

In the experiments we evaluate the segments generated
by the segmentation algorithms using the Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC)
analysis. The semantic label was registered for each trajectory
point of all datasets with the ground truth in the datasets used
in the experiments. The ground truth is the data classification
stored in the database by domain specialists, and it is used
to validate the segmentation results. This validation aims at
verifying if the assignment of the semantic label to each point
of the segment done by a segmentation algorithm is correct.
Thanks to this information, it is possible to build the confusion
matrix of the ROC analysis and compute the AUC.

B. Features evaluation tests

The first step of the features evaluation is the features
generation. This step is very important for RGRASP-SemTS
because many point and segment features can be generated
from trajectory raw data and relevant features are unknown a
priori for a given domain. The key idea is to generate a large
set of point and segment features and verify in a subsequent
step which of them better characterizes a semantic label.

For the hurricanes dataset, we generated as point features:
the maximum sustained surface wind at six-hour intervals,
the estimated speed in meters per second and the direction
variation between points from 0 to 180 degrees. For segment
features, we computed: average, minimum and maximum
values of surface wind, estimated speed, and direction, the
ground distance between the first point and the last point
of the segment and the elapsed time for each segment. For
the grey seals dataset, the point features extracted were the
depth, the distance from the shore in km, and a binary column

1http://weather.unisys.com/hurricane/atlantic/
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indicating whether the seal was near the shore using a distance
threshold of 15km, estimated speed, and direction variation.
For segment features, we computed: average, minimum and
maximum values of all the 5 point features and the ground
distance between the first point and the last point of the
segment and the elapsed time for each segment.

Finally, for the features selection we used the feature rank-
ing method χ2 [10] implemented in the Weka [6] package. We
selected the best set of features, by analyzing the RGRASP-
SemTS’s performance in terms of AUC values. In particular,
five trajectories were randomly selected, and their segment
features were extracted. Sequentially, an ARFF file (the Weka
input format) was generated, containing the acquired infor-
mation. It is worth noticing that we used here only segment
features due to a Weka package limitation since this software
only allows the representation of each labeled segment as a
single example. The χ2 algorithm has been executed, and
stored the rank of each segment feature. Subsequently, we
executed RGRASP-SemTS with the maximum number of
features, and stored the AUC value. Finally, the last ranked
segment feature from the χ2 was removed and the AUC value
measured once again. The procedure was repeated until only
one segment feature remained.

Figures 2(a) and 2(b) show the AUC performance of the
RGRASP-SemTS using this approach. It is worth noticing that,
for the hurricane dataset, 3 segment features (e.g., average,
minimum and maximum surface wind) have generated the
best result in terms of AUC value (0.9545). For the grey
seals dataset, 8 segment features (e.g., average, maximum and
minimum direction variation, maximum and minimum speed
and the distance between the first and last point of the segment)
have produced the best AUC performances, which was 0.9101.

Based on these results, the decision was to use three segment
features and the point feature surface wind for the hurricane
dataset. For the grey seals dataset, the decision was to use the
eight segment features and the estimated speed and direction
variation as point features.

C. Evaluating RGRASP-SemTS

This section evaluates the performance of the RGRASP-
SemTS when compared to other approaches from the liter-
ature. Section V-C1 compares RGRASP-SemTS’s execution
time to the unsupervised approach GRASP-UTS. Finally, in
Section V-C2, the performance of RGRASP-SemTS is com-
pared with other state-of-art algorithms.

1) Runtime analysis of RGRASP-SemTS: In this section we
evaluate the execution time of RGRASP-SemTS by comparing
with the unsupervised version GRASP-UTS. The objective is
to show how the information provided by the user improves the
execution time when compared to the unsupervised GRASP-
UTS. In this experiment, one trajectory of each dataset was
randomly selected, and both the RGRASP-SemTS and the
GRASP-UTS were executed one hundred times (100 iter-
ations). A minTime value was used for both algorithms
(12 hours for both datasets), and a full search (partitioning
factor input parameter for GRASP-UTS) was ensured for both
algorithms.

Fig. 2. Learning curve for the features selection via χ2 method.

(a) Learning curve for the hurricanes dataset.

(b) Learning curve for the grey seals dataset

Figure 3(a) and Figure 3(b) summarize the results. For
the hurricanes dataset, on average, the RGRASP-SemTS was
0.064 seconds faster than GRASP-UTS, while it was 6.7
seconds faster for the grey seals dataset. After one hundred
iterations, it is possible to notice that 1 second was saved
for executions of the hurricane dataset and 600 seconds were
saved for the grey seal dataset. It is important to observe that
this difference is probably because the hurricanes’ trajectories
are smaller in point length (between 80 and 140 points), while
the grey seals’ trajectories contain more points to be evaluated
(each trajectory contains more than 1000 points).

Although RGRASP-SemTS and GRASP-UTS have the
same complexity O(N ∗ max it), the runtime difference
between them is a result of the necessary time for the
GRASP-UTS to re-build all the solution when landmarks are
modified (i.e. inserted, removed or had positions switched).
Since RGRASP-SemTS uses some information provided by
the user, fewer modifications in the segments are made when
an iteration is executed.

2) Comparison of RGRASP-SemTS with state-of-art al-
gorithms: This section presents a performance comparison
assessed in terms of AUC between RGRASP-SemTS and
other state-of-art unsupervised (GRASP-UTS [7] and WK-
Means [9]) and supervised (e.g., CB-SMoT [11] and SPD [20])
segmentation algorithms.

The objective was to evaluate the performance of the
algorithms when only small amount of data are available for
training therefore we limit the analysis to one sub-dataset.
We divided both the hurricanes and grey seals dataset into
10 subsets.

The RGRASP-SemTS was executed in the testing set, using
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Fig. 3. Execution time analysis of RGRASP-SemTS

(a) Time analysis for the hurricanes dataset.

(b) Time analysis for the grey seals dataset

as input for the segment landmarks the labeled examples con-
tained in the training set. For the other algorithms, parameters’
values estimated in the training set were used in the testing
set. This procedure was repeated using each single sub-dataset
as the training set and tested in the remaining pieces of data.
We computed the AUC values using all single sub-datasets
as training data and executing the algorithms on the best set
of input parameters’ values found for each method in the test
dataset. We computed an average AUC value (avg. AUC) for
all the combinations of training and testing datasets.

Tables I and II show the results obtained by all methods,
where one sub-dataset was used to train the algorithms and
the remaining 9 sub-datasets were used to test the average
AUC. We verified whether any substantial difference existed
between the means obtained by RGRASP-SemTS and the
means obtained by the other algorithms using a paired t-test.
A confidence level of 5% with 9 degrees of freedom was
required to determine that the differences between the means
are significant. If the t-value computed by the RGRASP-
SemTS and the other algorithms is greater than 2.82, the
evidence that the means are equal is rejected, allowing to draw
the conclusion that there is a substantial evidence that the two
algorithms had significant differences in their performances.

Table I shows the results of the comparison between
RGRASP-SemTS and the other algorithms.

For the hurricane dataset, RGRASP-SemTS had the best
average AUC performance achieving 0.94. Compared to the
unsupervised algorithms GRASP-UTS and WK-Means, which
achieved an average AUC of 0.81 and 0.87 for testing,
respectively, the RGRASP-SemTS offers an improvement of
at least 0.06 in terms of average AUC. The differences in the

TABLE I
COMPARISON OF UNSUPERVISED, SUPERVISED AND SEMI-SUPERVISED

ALGORITHMS FOR THE HURRICANES DATASET.

Algorithm avg. AUC t-score mean
difference

RGRASP-SemTS 0.94 - -
GRASP-UTS 0.81 22.51 0.13
WK-Means 0.87 14.04 0.06
CB-SMoT 0.47 136.13 0.47
SPD 0.45 130.39 0.48

mean AUC are significant since the t-score was higher than
2.82, amounting to 22.51 when compared to GRASP-UTS and
14.04 when compared to the WK-Means. It is important to
point out that the WK-Means algorithm received exactly the
number of segments that should be found on each trajectory,
while the RGRASP-SemTS did not. When compared to the
supervised methods named CB-SMoT and SPD, the gains were
at least 0.47 in terms of avg. AUC.

For the grey seal dataset, RGRASP-SemTS also achieved
the best average AUC performance, as depicted in Table II.
When RGRASP-SemTS is compared to GRASP-UTS, gains
of 0.08 in were obtained. This difference has significance since
the t-score was 14.08 (higher than 2.82). The difference be-
tween RGRASP-SemTS and WK-Means were 0.07 on average
AUC in testing. This difference also has a significance, as the
t-score was 6.23. When compared to the supervised methods,
namely CB-SMoT and SPD, gains of at least 0.37 of average
AUC were obtained.

TABLE II
COMPARISON OF UNSUPERVISED, SUPERVISED AND SEMI-SUPERVISED

ALGORITHMS FOR THE GREY SEALS DATASET.

Algorithm avg. AUC t-score mean
difference

RGRASP-SemTS 0.88 - -
GRASP-UTS 0.80 14.08 0.08
WK-Means 0.81 6.23 0.07
CB-SMoT 0.19 128.69 0.69
SPD 0.53 74.38 0.35

VI. CONCLUSIONS

The research field of trajectory segmentation, although
well studied in the literature, has not explored the concept
of semi-supervised learning deeply: the use a small set of
segments labeled by the user combined with an unsupervised
segmentation driven by the training set. The objective is to
achieve high accuracy even when few labeled examples are
available. This is particularly useful for segmenting trajectories
based on semantics.

This paper gives a contribution in this direction since it
proposes RGRASP-SemTS, a reactive and semi-supervised
algorithm for semantically segmenting trajectory data. This al-
gorithm exploits labeled and unlabeled data to find an optimal
segmentation of a trajectory by modifying segment landmarks
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to achieve homogeneity in the segments using a cost function
based on the MDL principle. We performed experiments
with two real-world datasets to assess the effectiveness of
our approach. The results show that the proposed algorithm
outperforms the state-of-art competitors. We intend to extend
this work towards several directions. For example we can
improve the overall performance by generating better sets of
semantic landmarks, instead of just computing averages.
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