Z_{k}-Magic Labeling of Cycle of Graphs

P.Jeyanthi
(Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur 628215, Tamilnadu, India)
K.Jeya Daisy
(Department of Mathematics, Holy Cross College, Nagercoil, Tamilnadu, India)
E-mail: jeyajeyanthi@rediffmail.com, jeyadaisy@yahoo.com

Abstract

For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \rightarrow A-\{0\}$ such that, the vertex labeling f^{+} defined as $f^{+}(v)=\sum f(u v)$ taken over all edges $u v$ incident at v is a constant. An A-magic graph G is said to be Z_{k}-magic graph if the group A is Z_{k}, the group of integers modulo k and these graphs are referred as k-magic graphs. In this paper we prove that the graphs such as cycle of generalized peterson, shell, wheel, closed helm, double wheel, triangular ladder, flower and lotus inside a circle are Z_{k}-magic graphs and also prove that if G is Z_{k}-magic graph and n is even then $C(n . G)$ is Z_{k}-magic.

Key Words: A-magic labeling, Z_{k}-magic labeling, Z_{k}-magic graph, cycle of graphs, Smarandachely A-magic.

AMS(2010): 05C78.

§1. Introduction

Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to vertices or edges or both subject to certain conditions. A detailed survey was done by Gallian in [6]. If the labels of edges are distinct positive integers and for each vertex v the sum of the labels of all edges incident with v is the same for every vertex v in the given graph then the labeling is called a magic labeling. Sedláček [8] introduced the concept of A-magic graphs. A graph with real-valued edge labeling such that distinct edges have distinct non-negative labels and the sum of the labels of the edges incident to a particular vertex is same for all vertices. Low and Lee [7] examined the A-magic property of the resulting graph obtained from the product of two A-magic graphs. Shiu, Lam and Sun [9] proved that the product and composition of A-magic graphs were also A-magic.

For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \rightarrow A-\{0\}$ such that, the vertex labeling f^{+}defined as $f^{+}(v)=\sum f(u v)$ taken over all edges $u v$ incident at v is a constant. Otherwise, it is said to be Smarandachely A-magic, i.e., $\left|\left\{f^{+}(v), v \in V(G)\right\}\right| \geq 2$. An A-magic graph G is said to

[^0]be Z_{k}-magic graph if the group A is Z_{k}, the group of integers modulo k. These Z_{k}-magic graphs are referred to as k-magic graphs. Shiu and Low [10] determined all positive integers k for which fans and wheels have a Z_{k}-magic labeling with a magic constant 0 . Motivated by the concept of A-magic graph in [8] and the results in [7], [9] and [10] Jeyanthi and Jeya Daisy [1]-[5] proved that some standard graphs admit Z_{k}-magic labeling. Let G be a graph with n vertices $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ and consider n copies of G as $G_{1}, G_{2}, \ldots G_{n}$ with vertex set $V\left(G_{i}\right)=\left\{u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$. The cycle of graph G is denoted by $C(n . G)$ is obtained by identifying the vertex u_{1}^{j} of G_{j} with u_{i} of G for $1 \leq i \leq n, 1 \leq j \leq n$. In this paper we study the Z_{k}-magic labeling of some cycle of graphs and also prove that if G is Z_{k}-magic graph and n is even then $C(n . G)$ is Z_{k}-magic. We use the following definitions in the subsequent section.

Definition 1.1 A generalized peterson graph $P(n, m), n \geq 3,1 \leq m<\frac{n}{2}$ is a 3 regular graph with $2 n$ vertices $\left\{u_{1}, u_{2}, \cdots u_{n}, v_{1}, v_{2} \ldots v_{n}\right\}$ and edges $\left(u_{i} v_{i}\right),\left(u_{i} u_{i+1}\right),\left(v_{i} v_{i+m}\right)$ for all $1 \leq i \leq n$, where the subscripts are taken modulo n.

Definition 1.2 A shell S_{n} is the graph obtained by taking $n-3$ concurrent chords in a cycle C_{n}. The vertex at which all the chords are concurrent is called the apex.

Definition 1.3 The wheel W_{n} is obtained by joining the vertices $v_{1}, v_{2}, \cdots v_{n}$ of a cycle C_{n} to an extra vertex v called the centre.

Definition 1.4 The closed helm $C H_{n}$ is the graph obtained from a helm H_{n} by joining each pendent vertex to form a cycle.

Definition 1.5 A double wheel graph $D W_{n}$ of size n can be composed of $2 C_{n}+K_{1}$, that is it consists of two cycles of size n, where the vertices of the two cycles are all connected to a common hub.

Definition 1.6 The triangular ladder graph $T L_{n}, n \geq 2$ is obtained by completing the ladder $P_{2} \times P_{n}$ by adding the edges $v_{1, j} v_{2, j+1}$ for $1 \leq j \leq n$. The vertex set of the ladder is $\left\{v_{1, j}, v_{2, j}:\right.$ $1 \leq j \leq n\}$.

Definition 1.7 The flower $F l_{n}$ is the graph obtained from a helm H_{n} by joining each pendent vertex to the central vertex of the helm.

Definition 1.8 A lotus inside a circle $L C_{n}$ is a graph obtained from the cycle $C_{n}: u_{1}, u_{2}, \ldots u_{n}, u_{1}$ and a star $K_{1, n}$ with the central vertex v_{0} and the end vertices $v_{1}, v_{2}, \cdots, v_{n}$ by joining each u_{i} and $u_{i+1}(\bmod n)$.

§2. Main Results

Theorem 2.1 Let G be a Z_{k}-magic graph with magic constant b then $C(n . G)$ is Z_{k}-magic if n is even.

Proof For any integer $b \in Z_{k}$. Let $v_{1}, v_{2}, \cdots v_{n}$ be the vertices of the cycle C_{n}. Let G be
any Z_{k}-magic graph with magic constant b. Therefore $f^{+}(v) \equiv b(\bmod k) \quad$ for all $v \in V(G)$.
For any integer $a \in Z_{k}-\{0\}$, define the edge labeling $g: E(C(n . G)) \rightarrow Z_{k}-\{0\}$ as follows:

$$
g\left(v_{i} v_{i+1}\right)= \begin{cases}a & \text { for } i \text { is odd } \\ k-a & \text { for } i \text { is even }\end{cases}
$$

and $g(e)=f(e)$ for other $e \in E(C(n . G))$. Then the induced vertex labeling $g^{+}: V(C(n . G)) \rightarrow$ Z_{k} is $g^{+}(v) \equiv b(\bmod k)$ for all $v \in V(C(n . G))$. Hence g^{+}is constant and it is equal to $b(\bmod k)$. Notice that $C(n . G)$ admits Z_{k}-magic labeling when n is even, then it is therefore a Z_{k}-magic graph.

Theorem 2.2 Let G be a Z_{k}-magic graph with magic constant b then $C(n . G)$ is Z_{k}-magic if k is even.

Proof For any integer $b \in Z_{k}$. Let $v_{1}, v_{2}, \cdots v_{n}$ be the vertices of the cycle C_{n}. Let G be any Z_{k}-magic graph with magic constant b. Therefore $f^{+}(v) \equiv 0(\bmod k) \quad$ for all $v \in V(G)$.

For any integer $a \in Z_{k}-\{0\}$, define the edge labeling $g: E(C(n . G)) \rightarrow Z_{k}-\{0\}$ to be $g\left(v_{i} v_{i+1}\right)=\frac{k}{2}$ for $1 \leq i \leq n-1, g\left(v_{n} v_{1}\right)=\frac{k}{2}, g(e)=f(e)$ for other $e \in E(C(n . G))$.

Then the induced vertex labeling $g^{+}: V(C(n . G)) \rightarrow Z_{k}$ is $g^{+}(v) \equiv b(\bmod k)$ for all $v \in V(C(n . G))$. Hence g^{+}is constant and it is equal to $b(\bmod k)$. Since $C(n . G)$ admits Z_{k}-magic labeling when k is even, then it is a Z_{k}-magic graph.

Theorem 2.3 The graph $C\left(n . C_{r}\right)$ is Z_{k}-magic except r is even, n is odd and k is odd.
Proof Let the vertex set and the edge set of $C\left(n . C_{r}\right)$ be $V\left(C\left(n . C_{r}\right)\right)=\left\{v_{i}^{j}: 1 \leq i \leq\right.$ $r, 1 \leq j \leq n\}$ and $E\left(C\left(n . C_{r}\right)\right)=\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r-1, i \leq j \leq n\right\} \bigcup\left\{v_{r}^{j} v_{1}^{j}: 1 \leq j \leq\right.$ $n\} \bigcup\left\{v_{1}^{j} v_{1}^{j+1}: 1 \leq j \leq n-1\right\} \bigcup\left\{v_{1}^{n} v_{1}^{1}\right\}$.

Case 1. r is odd.
For any integer $a \in Z_{k}-\{0\}$, define the edge labeling $f: E\left(C\left(n . C_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}k-a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(v_{1}^{j} v_{1}^{j+1}\right)=a$ for $1 \leq j \leq n-1$,
$f\left(v_{1}^{n} v_{1}^{1}\right)=a$.
Then the induced vertex labeling $f^{+}: V\left(C\left(n \cdot C_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . C_{r}\right)\right)$.

Case 2. r is even.
Subcase $2.1 n$ is even.
The cycle C_{r} is Z_{k}-magic with magic constant zero when r is even. Therefore by theorem 2.1 it is Z_{k}-magic.

Subcase $2.2 n$ is odd and k is even.
By Theorem 2.2 it is Z_{k}-magic.
Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C\left(n . C_{r}\right)$ admits Z_{k}-magic labeling, then it is a Z_{k}-magic graph.

The example for Z_{15}-magic labeling of $C\left(5 . C_{7}\right)$ is shown in Figure 1.

Figure $1 Z_{15}$-magic labeling of $C\left(5 . C_{7}\right)$

Conjecture 2.4 The graph $C\left(n . C_{r}\right)$ is not Z_{k}-magic when r is even, n is odd and k is odd.
Observation 2.1 The graph $C\left(n . C_{n_{1}}, C_{n_{2}} \cdots, C_{n_{l}}\right)$ is Z_{k}-magic when $n_{1}, n_{2}, \cdots n_{l}$ are odd.
Theorem 2.5 The cycle of generalized peterson graph $C(n . P(r, m))$ is Z_{k}-magic except r is even, n is odd and k is odd.

Proof Let the vertex set and the edge set of $C(n \cdot P(r, m))$ be respectively $V(C(n \cdot P(r, m)))=$ $\left\{u_{i}^{j}, v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E(C(n . P(r, m)))=\left\{u_{i}^{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\} \bigcup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq n\right\} \bigcup\left\{u_{r}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \bigcup\left\{v_{i}^{j} v_{i+m}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\}$ where the subscripts are taken modulo r.

Case 1. r is odd.
For any integer a such that $k>3 a$, define the edge labeling $f: E(C(n \cdot P(r, m))) \rightarrow Z_{k}-\{0\}$ as follows:

$$
f\left(v_{i}^{j} v_{i+m}^{j}\right)=a \text { for } 1 \leq i \leq r, 1 \leq j \leq n
$$

$f\left(u_{i}^{j} v_{i}^{j}\right)=k-2 a$ for $1 \leq i \leq r, 1 \leq j \leq n$,
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}3 a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ k-a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(u_{1}^{j} u_{1}^{j+1}\right)=k-2 a$ for $1 \leq j \leq n-1$ and $f\left(u_{1}^{n} u_{1}^{1}\right)=k-2 a$.
Then the induced vertex labeling $f^{+}: V(C(n . P(r, m))) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V(C(n . P(r, m)))$.

Case 2. r is even.
Subcase $2.1 n$ is even.
The graph $P(r, m)$ is Z_{k}-magic with magic constant zero. Therefore by theorem 2.1 it is Z_{k}-magic.

Subcase $2.2 n$ is odd and k is even.
By theorem 2.2 it is Z_{k}-magic in this case.
Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C(n . P(r, m))$ admits Z_{k}-magic labeling, then it is a Z_{k}-magic graph.

The example for Z_{5}-magic labeling of $C(5 \cdot P(5,2))$ is shown in Figure 2.

Figure $2 Z_{5}$-magic labeling of $C(5 . P(5,2))$
Conjecture 2.6 The cycle of generalized peterson graph $C(n . P(r, m))$ is not Z_{k}-magic when r is even, n is odd and k is odd.

Theorem 2.7 The cycle of shell graph $C\left(n . S_{r}\right)$ is Z_{k}-magic.
Proof Let the vertex set and the edge set of $C\left(n \cdot S_{r}\right)$ be respectively $V\left(C\left(n \cdot S_{r}\right)\right)=$ $\left\{v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(C\left(n \cdot S_{r}\right)\right)=\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq\right.$ $n\} \bigcup\left\{v_{r}^{j} v_{1}^{j}: 1 \leq j \leq n\right\} \bigcup\left\{v_{1}^{j} v_{i+2}^{j}: 1 \leq i \leq r-3,1 \leq j \leq n\right\} \bigcup\left\{v_{1}^{j} v_{1}^{j+1}: 1 \leq\right.$ $j \leq n-1\} \bigcup\left\{v_{1}^{n} v_{1}^{1}\right\}$. For any integer a such that $k>(r-2) a$, define the edge labeling
$f: E\left(C\left(n . S_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{1}^{j} v_{i+2}^{j}\right)=2 a$ for $1 \leq i \leq r-3,1 \leq j \leq n$,
$f\left(v_{1}^{j} v_{2}^{j}\right)=f\left(v_{r}^{j} v_{1}^{j}\right)=a$ for $1 \leq j \leq n$,
$f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-a$ for $2 \leq i \leq r-1,1 \leq j \leq n$,
$f\left(u_{1}^{j} u_{1}^{j+1}\right)=k-(r-2) a$ for $1 \leq j \leq n-1$,
$f\left(u_{1}^{n} u_{1}^{1}\right)=k-(r-2) a$.
Then the induced vertex labeling $f^{+}: V\left(C\left(n \cdot S_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . S_{r}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C\left(n . S_{r}\right)$ admits Z_{k}-magic labeling, then it is a Z_{k}-magic graph.

The example for Z_{7}-magic labeling of $C\left(5 . S_{5}\right)$ is shown in Figure 3.

Figure $3 Z_{7}$-magic labeling of $C\left(5 . S_{5}\right)$
Theorem 2.8 The cycle of wheel graph $C\left(n . W_{r}\right)$ is Z_{k}-magic.
Proof Let the vertex set and the edge set of $C\left(n . W_{r}\right)$ be respectively $V\left(C\left(n . W_{r}\right)\right)=$ $\left\{w_{j}, u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(C\left(n . W_{r}\right)\right)=\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq\right.$ $n\} \bigcup\left\{u_{r}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \bigcup\left\{w_{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \bigcup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\} \bigcup\left\{u_{1}^{n} u_{1}^{1}\right\}$. For any integer a such that $k>2(r-1) a$, define the edge labeling $f: E\left(C\left(n . W_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(w_{j} u_{i}^{j}\right)=2 a \text { for } 2 \leq i \leq r, 1 \leq j \leq n, \\
& f\left(w_{j} u_{1}^{j}\right)=k-2(r-1) a \text { for } 1 \leq j \leq n, \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)=k-a \text { for } 1 \leq i \leq r-1,1 \leq j \leq n,
\end{aligned}
$$

$$
\begin{aligned}
& f\left(u_{r}^{j} u_{1}^{j}\right)=k-a \text { for } 1 \leq j \leq n, \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)=r a \text { for } 1 \leq j \leq n-1, \\
& f\left(u_{1}^{n} u_{1}^{1}\right)=r a .
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(C\left(n \cdot W_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . W_{r}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C\left(n . W_{r}\right)$ admits Z_{k}-magic labeling, the cycle of wheel graph $C\left(n . W_{r}\right)$ is a Z_{k}-magic graph.

The example of Z_{13}-magic labeling of $C\left(5 . W_{7}\right)$ is shown in Figure 4.

Figure $4 Z_{13}$-magic labeling of $C\left(5 . W_{7}\right)$

Theorem 2.9 The cycle of closed helm graph $C\left(n . C H_{r}\right)$ is Z_{k}-magic.
Proof Let the vertex set and the edge set of $C\left(n . C H_{r}\right)$ be respectively $V\left(C\left(n . C H_{r}\right)\right)=$ $\left\{w_{j}, u_{i}^{j}, x_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(C\left(n . C H_{r}\right)\right)=\left\{u_{i}^{j} u_{i+1}^{j}: \quad 1 \leq i \leq r-1,1 \leq\right.$ $j \leq n\} \bigcup\left\{u_{r}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \bigcup\left\{x_{i}^{j} x_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq n\right\} \bigcup\left\{x_{r}^{j} x_{1}^{j}: 1 \leq j \leq\right.$ $n\} \bigcup\left\{w_{j} x_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \bigcup\left\{x_{i}^{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \bigcup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq\right.$ $n-1\} \bigcup\left\{u_{1}^{n} u_{1}^{1}\right\}$.

Case 1. r is odd.
For any integer a such that $k>(r+1) a$, define the edge labeling $f: E\left(C\left(n . C H_{r}\right)\right) \rightarrow$ $Z_{k}-\{0\}$ as follows:

$$
f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}k-a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ 2 a & \text { for } i \text { is even, } 1 \leq j \leq n\end{cases}
$$

$f\left(x_{i}^{j} x_{i+1}^{j}\right)= \begin{cases}k-a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(w_{j} x_{1}^{j}\right)=k-(r-1) a$ for $1 \leq j \leq n$,
$f\left(w_{j} x_{i}^{j}\right)=a$ for $2 \leq i \leq r, 1 \leq j \leq n$,
$f\left(x_{1}^{j} u_{1}^{j}\right)=(r+1) a$ for $1 \leq j \leq n$,
$f\left(x_{i}^{j} u_{i}^{j}\right)=k-a$ for $2 \leq i \leq r, 1 \leq j \leq n$,
$f\left(u_{1}^{j} u_{1}^{j+1}\right)=k-\frac{(r-1) a}{2}$ for $1 \leq j \leq n-1$,
$f\left(u_{1}^{n} u_{1}^{1}\right)=k-\frac{(r-1) a}{2}$.
Then the induced vertex labeling $f^{+}: V\left(C\left(n . C H_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . C H_{r}\right)\right)$.

Case 2. r is even.
For any integer a such that $k>r a$, define the edge labeling $f: E\left(C\left(n \cdot C H_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}k-a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ 2 a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(x_{i}^{j} x_{i+1}^{j}\right)= \begin{cases}k-a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(w_{j} x_{1}^{j}\right)=k-(r-1) a$ for $1 \leq j \leq n$,
$f\left(w_{j} x_{i}^{j}\right)=a$ for $2 \leq i \leq r, 1 \leq j \leq n$,
$f\left(x_{1}^{j} u_{1}^{j}\right)=(r-1) a$ for $1 \leq j \leq n$,
$f\left(x_{i}^{j} u_{i}^{j}\right)=k-a$ for $2 \leq i \leq r, 1 \leq j \leq n$,
$f\left(u_{1}^{j} u_{1}^{j+1}\right)=k-\frac{r a}{2}$ for $1 \leq j \leq n-1$,
$f\left(u_{1}^{n} u_{1}^{1}\right)=k-\frac{r a}{2}$.

Figure $5 Z_{6}$-magic labeling of $C\left(3 . C H_{3}\right)$

Then the induced vertex labeling $f^{+}: V\left(C\left(n . C H_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . C H_{r}\right)\right)$.

Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C\left(n . C H_{r}\right)$ admits Z_{k}-magic labeling, then it is a Z_{k}-magic graph.

The example of Z_{6}-magic labeling of $\mathrm{C}\left(3 . \mathrm{CH}_{3}\right)$ is shown in Figure 5.

Theorem 2.10 The cycle of double wheel graph $C\left(n . D W_{r}\right)$ is Z_{k}-magic except r is even, n is odd and k is odd.

Proof Let the vertex set and the edge set of $C\left(n . D W_{r}\right)$ be respectively $V\left(C\left(n . D W_{r}\right)\right)=$ $\left\{v_{j}, u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(C\left(n . D W_{r}\right)\right)=\left\{v_{i} v_{i}^{j}, v_{i} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\} \bigcup\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq n\right\} \bigcup\left\{v_{r}^{j} v_{1}^{j}: 1 \leq j \leq n\right\} \bigcup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq\right.$ $j \leq n\} \bigcup\left\{u_{r}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \bigcup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\} \bigcup\left\{u_{1}^{n} u_{1}^{1}\right\}$.

Case 1. r is odd.
For any integer a such that $k>3 a$, define the edge labeling $f: E\left(C\left(n . D W_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(v_{i} v_{i}^{j}\right)=2 a \text { for } 1 \leq i \leq r, 1 \leq j \leq n \\
& f\left(v_{i} u_{i}^{j}\right)=k-2 a \text { for } 1 \leq i \leq r, 1 \leq j \leq n \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-a \text { for } 1 \leq i \leq r-1,1 \leq j \leq n \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}3 a & \text { for } i \text { is odd, } 1 \leq j \leq n \\
k-a & \text { for } i \text { is even, } 1 \leq j \leq n\end{cases} \\
& f\left(v_{r}^{j} v_{1}^{j}\right)=k-a \text { for } 1 \leq j \leq n
\end{aligned} \begin{aligned}
& f\left(u_{1}^{j} u_{1}^{j+1}\right)=k-2 a \text { for } 1 \leq j \leq n-1 \\
& f\left(u_{1}^{n} u_{1}^{1}\right)=k-2 a
\end{aligned}
$$

Case 2. r is even.
Subcase $2.1 n$ is even.
The graph $D W_{r}$ is Z_{k}-magic with magic constant zero. Therefore by theorem 2.1 it is Z_{k}-magic.

Subcase $2.2 n$ is odd and k is even.
By Theorem 2.2 it is Z_{k}-magic in this case.
Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C\left(n . D W_{r}\right)$ admits Z_{k}-magic labeling, then it is a Z_{k}-magic graph.

The example of Z_{9}-magic labeling of $C\left(5 . D W_{3}\right)$ is shown in Figure 6.

Figure $6 Z_{9}$-magic labeling of $C\left(5 . D W_{3}\right)$

Conjecture 2.11 The cycle of double wheel graph $C\left(n . D W_{r}\right)$ is not Z_{k}-magic when r is even, n is odd and k is odd.

Obsevation 2.2 The graph $C\left(n . D W_{n_{1}}, D W_{n_{2}} \ldots, D W_{n_{l}}\right)$ is Z_{k}-magic when $n_{1}, n_{2}, \ldots n_{l}$ are odd.

Theorem 2.12 The cycle of triangular ladder graph $C\left(n . T L_{r}\right)$ is Z_{k}-magic.
Proof Let the vertex set and the edge set of $C\left(n . T L_{r}\right)$ be respectively $V\left(C\left(n . T L_{r}\right)\right)=$ $\left\{u_{i}^{j}, v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(C\left(n \cdot T L_{r}\right)\right)=\left\{u_{i}^{j} u_{i+1}^{j}, v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq\right.$ $n\} \bigcup\left\{u_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq n\right\} \bigcup\left\{u_{i}^{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \bigcup\left\{v_{1}^{j} v_{1}^{j+1}: 1 \leq j \leq\right.$ $n-1\} \cup\left\{v_{1}^{n} v_{1}^{1}\right\}$.

Case 1. r is odd.
For any integer a such that $k>2 a$, define the edge labeling $f: E\left(C\left(n \cdot T L_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}2 a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\
k-a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases} \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}k-a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\
a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases} \\
& f\left(u_{1}^{j} v_{1}^{j}\right)=k-a \text { for } 1 \leq j \leq n, \\
& f\left(u_{i}^{j} v_{i}^{j}\right)=a \text { for } 2 \leq i \leq r, 1 \leq j \leq n,
\end{aligned}
$$

$f\left(u_{1}^{j} v_{2}^{j}\right)=k-a$ for $1 \leq j \leq n$,
$f\left(u_{i}^{j} v_{i+1}^{j}\right)=k-2 a$ for $2 \leq i \leq r-1,1 \leq j \leq n$,
$f\left(v_{1}^{j} v_{1}^{j+1}\right)=a$ for $1 \leq j \leq n-1$,
$f\left(v_{1}^{n} v_{1}^{1}\right)=a$.

Then the induced vertex labeling $f^{+}: V\left(C\left(n . T L_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . T L_{r}\right)\right)$.

Case 2. r is even.

For any integer a such that $k>2 a$, define the edge labeling $f: E\left(C\left(n \cdot T L_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}2 a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ k-2 a, & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}k-a & \text { for } i \text { is odd, } i \neq(r-1) 1 \leq j \leq n, \\ a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(v_{r-1}^{j} v_{r}^{j}\right)=a$ for $1 \leq j \leq n$,
$f\left(u_{1}^{j} v_{1}^{j}\right)=k-a$ for $1 \leq j \leq n$,
$f\left(u_{i}^{j} v_{i}^{j}\right)=a$ for $2 \leq i \leq r-2,1 \leq j \leq n$,
$f\left(u_{r-1}^{j} v_{r-1}^{j}\right)=k-a$ for $1 \leq j \leq n$,
$f\left(u_{r}^{j} v_{r}^{j}\right)=a$ for $1 \leq j \leq n$,
$f\left(u_{i}^{j} v_{i+1}^{j}\right)=k-a$ for $1 \leq i \leq r-2,1 \leq j \leq n$,
$f\left(u_{r-1}^{j} v_{r}^{j}\right)=a$ for $1 \leq j \leq n$,
$f\left(v_{1}^{j} v_{1}^{j+1}\right)=a$ for $1 \leq j \leq n-1$,
$f\left(v_{1}^{n} v_{1}^{1}\right)=a$.

Then the induced vertex labeling $f^{+}: V\left(C\left(n . T L_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . T L_{r}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C\left(n . T L_{r}\right)$ admits Z_{k}-magic labeling, then it is a Z_{k}-magic graph.

The example of Z_{10}-magic labeling of $C\left(5 . T L_{5}\right)$ is shown in Figure 7.

Figure $7 Z_{10}$-magic labeling of $C\left(5 . T L_{5}\right)$
Theorem 2.13 The cycle of flower graph $C\left(n . F l_{r}\right)$ is Z_{k}-magic.
Proof Let the vertex set and the edge set of $C\left(n . F l_{r}\right)$ be respectively $V\left(C\left(n . F l_{r}\right)\right)=$ $\left\{v_{j}, v_{i}^{j}, u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(C\left(n . F l_{r}\right)\right)=\left\{v_{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\} \bigcup\left\{v_{i}^{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \bigcup\left\{v_{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \bigcup\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq\right.$ $r-1,1 \leq j \leq n\} \bigcup\left\{v_{r}^{j} v_{1}^{j}: 1 \leq j \leq n\right\} \bigcup\left\{v_{1}^{j} v_{1}^{j+1}: 1 \leq j \leq n-1\right\} \bigcup\left\{v_{1}^{n} v_{1}^{1}\right\}$.

Case 1. r is odd.
For any integer a such that $k>3 a$, define the edge labeling $f: E\left(C\left(n . F l_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(v_{j} v_{i}^{j}\right)=a \text { for } 1 \leq i \leq r, 1 \leq j \leq n, \\
& f\left(v_{i}^{j} u_{i}^{j}\right)=a \text { for } 1 \leq i \leq r, 1 \leq j \leq n, \\
& f\left(u_{i}^{j} v_{j}\right)=k-a \text { for } 1 \leq i \leq r, 1 \leq j \leq n, \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\
k-3 a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases} \\
& f\left(v_{1}^{j} v_{1}^{j+1}\right)=k-2 a \text { for } 1 \leq j \leq n-1, \\
& f\left(v_{1}^{n} v_{1}^{1}\right)=k-2 a .
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(C\left(n . F l_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . F l_{r}\right)\right)$.

Case 2. r is even.
For any integer a such that $k>2 a$, define the edge labeling $f: E\left(C\left(n . F l_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

```
\(f\left(v_{j} v_{1}^{j}\right)=2 a\) for \(1 \leq j \leq n\),
\(f\left(v_{j} v_{i}^{j}\right)=a\) for \(2 \leq i \leq r, 1 \leq j \leq n\),
\(f\left(v_{1}^{j} u_{1}^{j}\right)=2 a\) for \(1 \leq j \leq n\),
\(f\left(v_{i}^{j} u_{i}^{j}\right)=a\) for \(2 \leq i \leq r, 1 \leq j \leq n\),
\(f\left(u_{1}^{j} v_{j}\right)=k-2 a\) for \(1 \leq j \leq n\),
\(f\left(u_{i}^{j} v_{j}\right)=k-a\) for \(2 \leq i \leq r, 1 \leq j \leq n\),
\(f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-a\) for \(1 \leq i \leq r-1,1 \leq j \leq n\),
\(f\left(v_{n}^{j} v_{1}^{j}\right)=k-a\),
\(f\left(v_{1}^{j} v_{1}^{j+1}\right)=k-a\) for \(1 \leq j \leq n-1\),
\(f\left(v_{1}^{n} v_{1}^{1}\right)=k-a\).
```

Then the induced vertex labeling $f^{+}: V\left(C\left(n . F l_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . F l_{r}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C\left(n . F l_{r}\right)$ admits Z_{k}-magic labeling, then it is a Z_{k}-magic graph.

The example of Z_{5}-magic labeling of $C\left(3 . F l_{3}\right)$ is shown in Figure 8.

Figure $8 \quad Z_{5}$-magic labeling of $C\left(3 . F l_{3}\right)$

Theorem 2.14 The cycle of lotus inside a circle graph $C\left(n . L C_{r}\right)$ is Z_{k}-magic.
Proof Let the vertex set and the edge set of $C\left(n . L C_{r}\right)$ be respectively $V\left(C\left(n . L C_{r}\right)\right)=$ $\left\{v_{j}, v_{i}^{j}, u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(C\left(n \cdot L C_{r}\right)\right)=\left\{v_{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\} \bigcup\left\{v_{i}^{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \bigcup\left\{u_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq n\right\} \bigcup\left\{u_{r}^{j} v_{1}^{j}: 1 \leq\right.$ $j \leq n\} \bigcup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq j \leq n\right\} \bigcup\left\{u_{r}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \bigcup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq\right.$ $n-1\} \bigcup\left\{u_{1}^{n} u_{1}^{1}\right\}$.

Case 1. r is odd.
For any integer a such that $k>(r-1) a$, define the edge labeling $f: E\left(C\left(n . L C_{r}\right)\right) \rightarrow$ $Z_{k}-\{0\}$ as follows:
$f\left(v_{j} v_{1}^{j}\right)=k-(n-1) a$ for $1 \leq j \leq n$,
$f\left(v_{j} v_{i}^{j}\right)=a$ for $2 \leq i \leq r, 1 \leq j \leq n$,
$f\left(v_{1}^{j} u_{1}^{j}\right)=(r-2) a$ for $1 \leq j \leq n$,
$f\left(v_{i}^{j} u_{i}^{j}\right)=k-2 a$ for $2 \leq i \leq r, 1 \leq j \leq n$,
$f\left(u_{i}^{j} v_{i+1}^{j}\right)=a$ for $1 \leq i \leq r-1,1 \leq j \leq n$,
$f\left(u_{r}^{j} v_{1}^{j}\right)=a$ for $1 \leq j \leq n$,
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}2 a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ k-a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(u_{1}^{j} u_{1}^{j+1}\right)=k-\frac{(r+3) a}{2}$ for $1 \leq j \leq n-1$,
$f\left(u_{1}^{n} u_{1}^{1}\right)=k-\frac{(r+3) a}{2}$.
Then the induced vertex labeling $f^{+}: V\left(C\left(n . L C_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . L C_{r}\right)\right)$.

Case 2. r is even.

For any integer a such that $k>(r-1) a$, define the edge labeling $f: E\left(C\left(n \cdot L C_{r}\right)\right) \rightarrow$ $Z_{k}-\{0\}$ as follows:
$f\left(v_{j} v_{1}^{j}\right)=k-(n-1) a$ for $1 \leq j \leq n$,
$f\left(v_{j} v_{i}^{j}\right)=a$ for $2 \leq i \leq r, 1 \leq j \leq n$,
$f\left(v_{1}^{j} u_{1}^{j}\right)=(r-2) a$ for $1 \leq j \leq n$,
$f\left(v_{i}^{j} u_{i}^{j}\right)=k-2 a$ for $2 \leq i \leq r, 1 \leq j \leq n$,
$f\left(u_{i}^{j} v_{i+1}^{j}\right)=a$ for $1 \leq i \leq r-1,1 \leq j \leq n$,
$f\left(u_{r}^{j} v_{1}^{j}\right)=a$ for $1 \leq j \leq n$,
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}2 a & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ k-a & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(u_{1}^{j} u_{1}^{j+1}\right)=k-\frac{r a}{2}$ for $1 \leq j \leq n-1$,
$f\left(u_{1}^{n} u_{1}^{1}\right)=k-\frac{r a}{2}$.
Then the induced vertex labeling $f^{+}: V\left(C\left(n . L C_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(C\left(n . L C_{r}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $C\left(n . L C_{r}\right)$ admits Z_{k}-magic labeling, then it is a Z_{k}-magic graph.

The example of Z_{8}-magic labeling of $C\left(5 . L C_{5}\right)$ is shown in Figure 9.

Figure $9 Z_{8}$-magic labeling of $C\left(5 . L C_{5}\right)$

References

[1] P.Jeyanthi and K.Jeya Daisy, Z_{k}-magic labeling of open star of graphs, Bulletin of the International Mathematical Virtual Institute, 7 (2017), 243-255.
[2] P.Jeyanthi and K.Jeya Daisy, Z_{k}-magic labeling of subdivision graphs, Discrete Math. Algorithm. Appl., 8(3) (2016), [19 pages] DOI: 10.1142/ S1793830916500464.
[3] P.Jeyanthi and K.Jeya Daisy, Certain classes of Z_{k}-magic graphs, Journal of Graph Labeling, 4(1) (2018), 38-47.
[4] P.Jeyanthi and K.Jeya Daisy, Z_{k}-Magic labeling of some families of graphs, Journal of Algorithms and Computation, 50(2) (2018),1-12.
[5] P.Jeyanthi and K.Jeya Daisy, Some results on Z_{k}-magic labeling, Palestine Journal of Mathematics, to appear.
[6] J.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 2017.
[7] R.M. Low and S.M Lee, On the products of group-magic graphs, Australian J. Combin., 34 (2006), 41-48.
[8] J. Sedláček, On magic graphs, Math. Slov., 26 (1976), 329-335.
[9] W.C. Shiu, P.C.B. Lam and P.K. Sun, Construction of magic graphs and some A-magic graphs with A of even order, Congr. Numer., 167 (2004), 97-107.
[10] W.C. Shiu and R.M. Low, Z_{k}-magic labeling of fans and wheels with magic-value zero, Australian. J. Combin., 45 (2009), 309-316.

[^0]: ${ }^{1}$ Received August 8, 2018, Accepted March 2, 2019.

