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Abstract— In this paper the problem of simulation of
differential-algebraic systems is addressed. In modelling me-
chanical systems the use of redundant coordinates and con-
straints results in differential-algebraic equations, the integra-
tion of which can lead to numerical instabilities, such as the
so-called drift phenomenon. In [1] the authors have proposed
a globally convergent conceptual continuous-time algorithm
for the integration of constrained mechanical systems which
ensures the existence of solutions and global attractivity of the
solution manifold. The objective of this paper is to study the
numerical implementation of the algorithm presented in [1]. In
addition, the stability properties of the constrained system in
the manifold are studied in both the continuous and discrete
time cases. The proposed technique is illustrated by means of
a simple example.

I. INTRODUCTION

The numerical analysis of differential-algebraic (DA) sys-
tems has gained great relevance in the last decades. The
DA formulation is more flexible than that given by or-
dinary differential equations (ODEs) in modelling large-
scale systems, often composed by the interconnection of
multiple differential subsystems and in which the relations
among the subsystems are described by algebraic constraints.
For instance, constrained mechanical systems are inherently
simpler to model in the framework of differential-algebraic
equations (DAEs). The interest raised in the simulation of
mechanical systems, together with the increasing computa-
tional power of computers, have motivated the development
of different techniques for the integration of DA systems, see
for example [2], [3], [4], [5] and [6].

One of the most relevant problems in integrating DAEs
is the drift phenomenon. Since the solution manifold is
invariant but not attractive, see [7], any constraint violation
due to numerical approximations may make the solution drift
away from the manifold. Stabilization methods provide a
possible solution to this problem within a control theory
perspective. The basic idea of such methods is to stabilize the
constraint manifold by feeding back the constraint violation.
Among all the methods of this class, Baumgarte’s stabiliza-
tion has gained prominence because of its simplicity, see [8].
However, this method does not solve all possible numerical
instabilities as recently pointed out in [1].
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In [1] the authors have proposed a globally convergent
conceptual continuous-time algorithm for the integration of
constrained mechanical systems based on the geometric
interpretation of DA systems given in [9]. This algorithm en-
sures global convergence of the constraint violation onto the
manifold and existence of solutions. However, a discretiza-
tion scheme is required for any numerical implementation of
the algorithm. In addition, no results have been provided on
the preservation of stability properties of the system in the
manifold.

Based on the results presented in [9] and [1], the objective
of this study is to investigate both the aforementioned
problems. In Section II we introduce some preliminaries
and recall results from [1] which are instrumental for the
rest of the paper. The section is concluded with a new
result regarding the stability properties for the “stabilized
system” in continuous-time. In Section III we provide the
main theoretical results of the paper: two discretization
schemes for the algorithm proposed in [1] are presented
and conditions for the preservation of the continuous-time
stability properties given in [1] and in Section II are provided.
In Section IV the method is validated via an example in
which a simple nonlinear oscillator is integrated with one of
the proposed schemes. Finally in Section V we report our
conclusions.

Notation. We use standard notation. The set of real and
natural numbers (including 0) are denoted, respectively, by
R and N. The symbols R≥0 and N≥0 indicate the sets of
non-negative real numbers and non-negative integer num-
bers, respectively. The superscripts > and −> represent the
transposition operator and the transposition of the inverse
operator, respectively. I represents the identity matrix. Given
a matrix A, A ≺ 0 denotes that A is negative definite and
symmetric. Given a vector x, the symbol ||x|| denotes its
L2 norm while the symbol xi denotes the i-th element of x.
Given a differentiable map f : Rn → R, we use the symbol
∂f
∂x to denote the row vector of partial derivatives of f with
respect to the vector x ∈ Rn. The symbol Lfh denotes the
Lie derivative of the function h along the vector field f ,
while Lkfh = Lf

(
Lk−1f h

)
provided these exist.

II. PRELIMINARIES

In this section we introduce some definitions and give
some preliminary results which are instrumental for the
remaining of the paper. To begin with we recall the relation
between differential-algebraic systems and a class of ordi-
nary differential equations presented in [1], [10]. At the end
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of the section a new result is given regarding the stability
properties of the solutions of the system.

Consider a nonlinear differential-algebraic system of the
form

ẋ = f(x) + g(x)λ,

0 = h(x),
(1)

where x(t) ∈ Rn is the state vector, λ(t) ∈ Rm is the
algebraic variable, and f : Rn → Rn, g : Rn → Rn×m
and h : Rn → Rm are smooth mappings. Note that the
form in (1) represents a general class of systems which result
from the application of the Euler-Lagrange equations, as for
example mechanical systems with holonomic constraints. For
simplicity we assume that m = 1 and that the origin is the
only equilibrium point of the system. All statements are valid
locally around the origin if not otherwise stated. We now
recall the definition of index for a DA system.

Definition 1. [11] The differentiation index ν of the
differential-algebraic system (1) is equal to the minimum
number of times it is necessary to differentiate (1) to find an
explicit expression of ẋ and λ̇ as continuous functions of x
and λ.

For the DA system (1) the following proposition holds.

Proposition 1. [9] Consider system (1). Assume it has index
ν = r + 1, r ∈ N≥0. Consider the mapping z = Φ(x), with

Φ(x) =
(
h(x), Lfh(x), . . . , Lr−1f h(x), φr+1, . . . , φn

)>
.

(2)
Assume that the Jacobian of Φ(x) is invertible and that φi :
Rn → R, for i = r + 1, . . . , n, are such that Lgφi(x) = 0.
Then system (1) can be written as

ξ1 = 0,

ξ̇1 = ξ2,

ξ̇2 = ξ3,

...

ξ̇r−1 = ξr,

ξ̇r = b(ξ, µ) + a(ξ, µ)λ,

µ̇ = q(ξ, µ),

(3)

where ξi(t) ∈ R, for i = 1, . . . , r, µ(t) ∈ Rn−r, ξ =
(ξ1, . . . , ξr)

>, z = (ξ, µ>)>, a, b and q are smooth map-
pings and a(0, 0) 6= 0. Moreover, the solution manifold of
system (3) is

M =
{

(ξ>, µ>)> : ξ = 0
}
. (4)

Usual index reduction techniques (see [12], [13] or [14])
would normally impose ξ̇r = 0 and directly integrate the
differential subsystem in (3). However, since the solution of
(3) with ξ̇r = 0 and disregarding the equation ξ1 = 0 is such
that

ξ1(t) =

r∑
i=1

ti−1

(i− 1)!
ξi(0),

it is clear that violation of the constraints would grow un-
bounded, if r > 1. This phenomenon is known as constraint
“drift” and many stabilization methods have been proposed in
the literature to deal with this issue, see for example [8], [15],
[16] and [17]. In addition, as pointed out in [1], stabilization
methods which rely on linear feedback control theory do not
guarantee existence of solutions for all t ≥ 0. Thus, in [1]
a globally stable convergent continuous-time algorithm has
been presented. The main properties of the algorithm therein
are recalled in Proposition 2 and Theorem 1. Consider the
following differential system

ξ̇1 = k1(ξ, µ)ξ1,

ξ̇2 = k2(ξ, µ)ξ2,

...

ξ̇r−1 = kr−1(ξ, µ)ξr−1,

ξ̇r = kr(ξ, µ)ξr,

µ̇ = q0(µ) +
r∑
i=1

qi(ξ, µ)ξi,

(5)

where ξi(t) ∈ R, for i = 1, . . . , r, µ(t) ∈ Rn−r, ξ =
(ξ1, . . . , ξr)

>, q0 and qi, for i = 1, . . . , r, are smooth
mappings and

ki(ξ, µ) = −δ
2

2
||qi(ξ, µ)||2 − ε, (6)

for i = 1, . . . , r, with ε > 0 and δ > 0. For such a system
the following results hold.

Proposition 2. [1] Consider systems (3) and (5). Suppose
ξ(0) belongs to the solution manifoldM. Then any solution
of (3) is a solution of (5) and viceversa.

Theorem 1. [1] Consider system (5). Assume there exists a
positive definite radially unbounded function W such that

∂W (µ)

∂µ
q0(µ) ≤ γW (µ) + γ0, (7)

for some γ ∈ R and γ0 ∈ R, and

sup
µ∈Rn−r

∣∣∣∣∣∣∂W (µ)
∂µ

∣∣∣∣∣∣2
W (µ)

≤W < +∞, (8)

for some W > 0. Then there exists δ̄ > 0 such that for all
δ ≥ δ̄ in (6) the following statements hold.

1) µ(t) and ξ(t) exist for all µ(0) ∈ Rn−r and ξ(0) ∈ Rr
and t ≥ 0;

2) lim
t→∞

ξi(t) = 0, for i = 1, ..., r.

Theorem 1 ensures that the manifoldM is globally attrac-
tive and that the solutions of the system exist for all t ≥ 0.
However, it does not give any information on the stability
properties of the constrained system. The first objective of
this paper is to study the behaviour of the solutions in the
manifoldM. To this end we first recall a preliminary result.
Let

µ̇ = q0(µ), (9)



be the constrained dynamics, also called zero dynamics, of
system (3) (equivalently of system (5)) in the manifold M,
i.e. for ξ(t) ≡ 0. Then the following result holds.

Proposition 3. [9] Suppose that the differential-algebraic
system (1) has differentiation index ν ≤ n. Stability prop-
erties of the zero equilibrium of system (1) are equivalent
to stability properties of the zero equilibrium of the zero
dynamics of system (3).

The problem we want to address in the remainder of the
section is to find out under which conditions the stability
properties of the zero dynamics of system (3), and according
to Proposition 3 of the DA system (1), are preserved by
the stabilization method in equation (5). In particular, the
following result holds.

Theorem 2. Consider system (5) with ki as in (6). Assume
(7) and (8) holds with γ < 0 and γ0 = 0. Then there exists
δ̄ > 0 such that for all δ ≥ δ̄ the following statements hold.

1) µ(t) and ξ(t) exist for all µ(0) ∈ Rn−r and ξ(0) ∈ Rr
and t ≥ 0.

2) lim
t→∞

ξi(t) = 0, for all ξi(0) ∈ R, i = 1, ..., r;

3) lim
t→∞

µ(t) = 0, for all µ(0) ∈ Rn−r.

Remark 1. Observe that assumption (7) with γ < 0 and
γ0 = 0 in Theorem 3 can be rewritten as

Ẇ ≤ γW, (10)

where the function W (µ) evolves along the trajectory of sys-
tem (9), i.e. the zero dynamics. According to Proposition 3
and Theorem 2, if the equilibrium point of system (1) is
globally asymptotically stable then also the equilibrium point
of the “stabilized” system (5) is globally asymptotically
stable.

III. MAIN RESULT

In this section the problem of the discretization of
system (5) is addressed. Since for a numerical implemen-
tation of any integration method a discretization scheme is
required, we now study under which conditions the results
obtained in [1] and in Section II of this paper for the
continuous-time case remain valid when a discretization is
performed. In the remainder of the paper we use the notation
x := x(t) and x+ := x(t+ T ), where t = k̃T , ∀k̃ ∈ N and
T ∈ R>0 is the sample period.

Consider the discrete-time system

ξ+ − ξ
T

= K(ξ, µ)ξ,

µ+ − µ
T

= ϕT (q0) +Q(ξ, µ)ξ,

(11)

where µ(t) ∈ Rn−r, ξ(t) ∈ Rr, Q : Rr ×Rn−r → Rn−r×r,
Q = [q1, . . . , qr], ϕT : Rn−r → Rn−r, ϕT , q0 and qi, for
i = 1, . . . , r are smooth mappings, and K : Rr × Rn−r →
Rr×r. Recalling the definition of ki given in (6), let K(ξ, µ)

be such that

K(ξ, µ) = −δ
2

2
diag(q21(ξ, µ), . . . , q2r(ξ, µ))− εI =

= diag(k1, . . . , kr).
(12)

Observe that system (11) is a discretization scheme for
system (5), provided the map ϕT (q0) is such that

lim
T→0

ϕT (q0) = q0, (13)

see for example [18] for conserving time-integration schemes
for mechanical systems. Similarly to Theorem 1 for the
continous-time system (5), for the discrete-time system (11)
the following result holds.

Theorem 3. Consider system (11) and assume
(ξ(0), µ(0)) ∈ B, where B ⊂ Rn is a compact set.
For all T such that

T <
2

max
i=1,...,r

(
sup

(ξ,µ)∈B
(−ki(ξ, µ))

) (14)

the following claims hold.

1) lim
t→+∞

ξ(t) = 0 for all (ξ(0), µ(0)) ∈ B;

2) ξ(t) and µ(t) exist for all ξ(0) ∈ Rr, µ(0) ∈ Rn−r.

Note that different discretization schemes provide different
properties. For instance, consider the modified discrete-time
system

ξ+ − ξ
T

=K(ξ, µ)ξ+,

µ+ − µ
T

=ϕT (q0) +Q(ξ, µ)ξ.

(15)

Observe that, since

lim
T→0

ξ+ = lim
T→0

ξ(t+ T ) = ξ(t),

and since (13) holds, system (15) is a discretization of system
(5). The following result holds.

Theorem 4. Consider system (15). Then the following
claims hold for any T > 0.

1) lim
t→+∞

ξ(t) = 0 for all ξ(0) ∈ Rr, µ(0) ∈ Rn−r;

2) ξ(t) and µ(t) exist for all ξ(0) ∈ Rr, µ(0) ∈ Rn−r.

Theorem 4 ensures that the manifold

M =
{

(ξ>, µ>)> : ξ = 0
}
.

is globally attractive and that the solutions of the system
exist for all t ∈ N≥0 and for any T > 0. We consider now
the stability properties of the zero equilibrium of systems
(11) and (15). The following result provides a discrete-time
equivalent of Theorem 2.

Theorem 5. Consider system (11) and assume
(ξ(0), µ(0)) ∈ B, where B ⊂ Rn is a compact set.
Suppose the assumptions of Theorem 2 hold. Let T be such



that

1

n− r

n−r∑
i=1

W (µ(t+ T ))−W (µ(t))

µi(t+ T )− µi(t)
ϕTi

(µ) ≤ γW (µ),

(16)
and

sup
µ∈B

(
1

n−r

n−r∑
i=1

W (µ(t+ T ))−W (µ(t))

µi(t+ T )− µi(t)

)2

W (µ)
≤W. (17)

Let T ≤ min(
√
5−1
4 T , T ) if the discretization (15) is used

and T ≤ min(T2 , T ) if the discretization (11) is used, where
T is such that Theorem 3 holds. Then for this selection of
T and for δ and ε selected as in Theorem 2, the following
claims hold.

1) ξ(t) and µ(t) exist, for all (ξ(0), µ(0)) ∈ B and t ∈ N+;
2) lim

t→+∞
ξ(t) = 0, for all (ξ(0), µ(0)) ∈ B and t ∈ N+;

3) lim
t→+∞

µ(t) = 0, for all (ξ(0), µ(0)) ∈ B and t ∈ N+.

Remark 2. Assumption (16) can be rewritten as

∆W

T
=
W (µ+)−W (µ)

T
≤ γW (µ), (18)

where W (µ) is a positive definite function evaluated along
the trajectories of the system

µ+ − µ
T

= ϕT (q0), (19)

i.e. the constrained system. Moreover, note that for T → 0
equation (16) becomes

lim
T→0

1

n− r

n−r∑
i=1

W (µ(t+ T ))−W (µ(t))

µi(t+ T )− µi(t)
ϕTi(µ) =

= lim
T→0

∆W

T
= Ẇ ≤ γW.

(20)

Hence, according to Remark 1, condition (16) is the discrete-
time counterpart of (7). Similarly, condition (17) is the
discrete-time counterpart of (8). This observation implies that
for T small enough, (7) and (8) imply (16) and (17).

Observe that while the discretization scheme in (15)
ensures global attractivity of the constraint manifold, for
the discretization scheme (11) attractivity holds only locally,
see Theorems 3 and 4. However, this comes at the cost
of a smaller sample time required to preserve the stability
properties of the system, see the assumptions of Theorem 5.
The results so far presented, together with the algorithm
presented in [1], outline a procedure to simulate DA systems,
as shown in the following example.

IV. EXAMPLE
Consider the nonlinear oscillator depicted in Figure 1

with mass m and spring constant k. Let (X,Y )> and
(Ẋ, Ẏ )> be the position and the velocity coordinates of the
mass m, respectively. Assume that the only external forces
acting on the system are the gravitational force (with ga the
gravitational acceleration), the constraint force λ of the floor,

m
k

X

Y

Fig. 1: A nonlinear oscillator.

the friction force Fd = −dẊ and the nonlinear spring force
Fk = −kX3. Such a system can be described by a set of
differential-algebraic equations in the state space form (1).
To this end, let

x=


x1
x2
x3
x4

 =


X
Y

Ẋ

Ẏ

 ,

f(x)=


x3
x4

−kx31 − dx3
−ga

, g(x) =


0
0
0
− 1
m

 ,
h(x) = x2,

and set (x1(0), x2(0), x3(0), x4(0))>=(x01, x02, x03, x04)>.
Consider the coordinates transformation

ξ1
ξ2
µ1

µ2

 =


x2
x4

x1 + x2
x2 + x3

 , (21)

calculated according to Proposition 1. The system in the new
coordinates is described by the equations

ξ̇1
ξ̇2
µ̇1

µ̇2

 =


ξ2
0

µ2 − ξ1 + ξ2
−k(µ1 − ξ1)3 − d(µ2 − ξ1) + ξ2

 . (22)

For simulation purposes we consider the “stabilized” and
discretized system

ξ+ − ξ
T

= K(ξ, µ)ξ+,

µ+ − µ
T

= ϕ(q0) +Q(ξ, µ)ξ,

(23)

where µ = (µ1, µ2)>, ξ = (ξ1, ξ2)>,

q0(µ) =

[
µ2

−kµ3
1 − dµ2

]
,

Q(ξ, µ) =

[
−1 1

k(3µ1ξ1 − 3µ2
1 − ξ21) + dξ1 1

]
,

K(ξ, µ)=

=

[
− δ

2

2 (1+(k(3µ1ξ1−3µ2
1−ξ21)+dξ1)2)−ε 0

0 −δ2−ε

]
,



and where

ϕT (q0) =

[
µ+
2 +µ2

2

−k µ
+3
1 +µ3

1+(µ+
1 +µ1)µ

+
1 µ1

4 − dµ2

]
has been selected according to [18] to preserve the total
mechanical energy.

The data used for the simulation are m = 1, k = 2,
d = 0.03, ε = 1, δ = 2 and (x01, x02, x03, x04)> =
(0.1, 0.6, 0, 0)>. Let

B =

{
(ξ, µ) : −0.7≤ξ1 ≤ 0.7, ξ2 ∈ R,

− 0.9 ≤ µ1≤ 0.9, −0.9 ≤ µ2≤ 0.9

}
.

For this set of parameters we have

max
i=1,...,r

(
sup

(ξ,µ)∈B
(−ki(ξ, µ))

)
= 188.9. (24)

Note that the assumptions of Theorem 5 are satisfied for
T = 0.001, with

W (µ) =
1

2
mµ2

2 +
1

4
kµ4

1,

and γ = 0.00001.
Simulation results are shown in Figures 2, 3, 4 and 5. As

expected from Theorems 4 and 5, we observe in Figure 2 that
the constraint violation converges to zero, while from Figure
3 we observe that the origin is an asymptotically stable
equilibrium for the constrained system. Figure 4 displays
the trajectory of the system in the X-Y plane, while Figure
5 shows the total mechanical energy which is dissipated
because of the friction force acting on the system.

Consider now the case where d = 0. The results of
the simulation for the same set of parameters are shown
in Figures 6, 7, 8 and 9. As expected from Theorem 4,
we observe from Figure 7 that the constraint violation
converges to zero. In addition, observe from Figure 9 that
the mechanical energy is preserved at steady state, i.e. once
solutions reach the manifold M. This observation suggests
that the method proposed can be used also in the case in
which the equilibrium is marginal stable, even though this
has not been proved.
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Fig. 2: Time history of the coordinate Y for d = 0.03.
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Fig. 3: Time history of the coordinate X for d = 0.03.
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Fig. 4: Path of the mass m on the X-Y plane for d = 0.03.

0 20 40 60 80 100 120

time [sec]

0

0.05

0.1

0.15

0.2

0.25

E
ne

rg
y 

[J
]

Fig. 5: Time history of the total mechanical energy for
d = 0.03.

V. CONCLUSIONS

We have studied the problem of integration of DA systems.
In Section II we have extended the theory developed in [1] by
studying the stability properties of the “stabilized” system in
continuous-time. We have concluded that if the equilibrium
of the constrained system is globally asymptotically stable
then the stabilization method preserves this property. In
Section III we have extended the results to discrete-time. We
have concluded that the solution manifold remains globally
attractive for one of the discretization scheme proposed for
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Fig. 6: Time history of the coordinate X for d = 0.
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Fig. 7: Time history of the coordinate Y for d = 0.

Fig. 8: Path of the mass m on the X-Y plane for d = 0.

any sampling time. Moreover asymptotic stability of the
equilibrium is preserved (locally). Finally, in Section IV
we have demonstrated the technique with an example and
discussed the results.
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