
 

 

 
Abstract—In this paper, we have used an analytical method to 

analyze the vibratory behavior of plates in materials with gradient of 
properties, simply supported, proposing a refined non polynomial 
theory. The number of unknown functions involved in this theory is 
only four, as compared to five in the case of other higher shear 
deformation theories. The transverse shearing effects are studied 
according to the thickness of the plate. The motion equations for the 
FGM plates are obtained by the Hamilton principle application, the 
solutions are obtained using the Navier method, and then the 
fundamental frequencies are found, solving an eigenvalue equation 
system, the results of this analysis are presented and compared to 
those available in the literature. 

 
Keywords—FGM plates, Navier method, vibratory behavior.  

I. INTRODUCTION 

UNCTIONALLY graded materials, FGMs, are composites 
that have a continuous variation in material properties 

from one surface to another. These materials can be made by 
varying the percentage of two or more materials such that the 
new material has the desired properties in the desired 
direction. FGMs are inhomogeneous microscopic composites. 
The concept of FGM was first proposed in Japan in 1984 
during a space plane project, since its development in the 
1980s [15]. FGMs are alternative materials widely used in the 
aerospace, nuclear reactor, biomechanical power and 
shipbuilding industries [1]-[4]. 

Composite materials are booming in almost all sectors, with 
significant advantages over traditional materials. They bring 
many well-known advantages: Lightness, mechanical and 
chemical resistance, good behavior to moisture and corrosion, 
reduced maintenance, freedom of shape. They can extend the 
life of some equipment thanks to their mechanical and 
chemical properties. They contribute to the reinforcement of 
safety thanks to a good resistance to shock and fire. They offer 
better thermal, acoustic, and electrical insulation. They also 
enrich the design possibilities by lightening structures and 
making complex shapes, able to fulfill several functions. 

Several works have been performed to investigate the 
vibration behavior of functionally graduated FGM plates. In 
[5], authors have proposed an exact three-dimensional solution 
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of free and forced vibrations, for simply supported 
functionally graded rectangular plates, Ferreira et al. [6] 
studied the vibrations of FGM plates using a global 
collocation technique, for a model first and third order shear 
deformation plates. Qian et al. [7] discussed the free and 
forced bending and vibration of a thick rectangular FGM plate 
using a higher order shear theory, and a normal strain theory. 
Matsunaga [8] studied the natural frequencies and the 
buckling of FGM plates by considering the effects of 
transverse deformations, Meftah et al. [9] proposed a non-
polynomial four variable refined plate theory for free vibration 
of functionally graded thick rectangular plates on elastic 
foundation. 

This paper aims to develop a higher order shear 
deformation theory for free vibration and analyzed the 
response of FGM plates, the properties of materials vary 
arbitrarily according to the thickness. The current theory 
satisfies the equilibrium conditions on the upper and lower 
faces of the plate without shear correction factors. 

II. THEORETICAL FORMULATIONS 

Consider a FGM plate as shown in Fig. 1 having the 
thickness h, length a, and width b. The FGM plate consists of 
a mixture of ceramic and metal components whose properties 
of the material vary according to the thickness of the plate 
according to a power law, fractions of the volume of the 
constituents. 

 

 

Fig. 1 Geometry of the FGM plate 

III. PROPERTIES OF EFFECTIVE MATERIALS OF FGM PLATES 

The material properties of FGM plates are expressed by 
[10]: 

 
P(z) = ( Pc – Pm) Vc + Pm                                                   (1) 
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where P(z) is the material properties like Young's modulus E 
and mass density ρ, Pc and Pm represent the property of the 
top and the bottom faces of the plate, respectively. The 
volume fraction of the ceramic Vc is given as: 
 

𝑉 (z) = (                                                                      (2) 

 
where p is the volume fraction exponent. It should be noted 
that the positive real number p (0 ≤ p <∞) is the power law 
index or a volume fraction, the (upper and lower) faces of the 
plate are at z = ± h / 2, the median plane is defined by z =0. 
The FGM plate is a fully ceramic plate when P is zeroed and 
fully metallic for a value of P equal to infinity. 

The Young's modulus of FGM plates is given according to 
the exponential law in [11]: 

 
E(z) = E0 e

p(z/h + 0.5)                                                                 (3) 
 
E0 is the homogeneous Young's modulus of materials. 

IV. HIGH-ORDER SHEAR DEFORMATION THEORIES 

The displacement field of a material point located at the 
coordinates (x, y, z) in the plate is given as: 
 

𝑢 𝑥, 𝑦, 𝑧  𝑢 𝑥, 𝑦 𝑧 𝑓 𝑧   

 𝑣 𝑥, 𝑦, 𝑧  𝑣 𝑥, 𝑦 𝑧 𝑓 𝑧         (4) 

𝑤 𝑥, 𝑦, 𝑧  𝑤 𝑥, 𝑦  ,  
 
where u, v, w are the displacements in the directions x, y, z. u0, 
v0 and w0 are the displacements of middle surface of the plate, 
φ rotation of the plane of the bending. f (z) represents the 
shape function determining the distribution of transverse shear 
strains and stresses along the thickness and given as [12]: 
 

𝑓 𝑧  𝑧 sin                                                                 (5) 
 

The compact shape of the deformations is given by: 
 
𝜀  𝜀 𝑧𝑘 𝑓𝑘                   (6a) 

 
𝛾 𝑔𝛾                      (6b) 

 
where:  
 

𝑔 ,  

𝜀 𝜀 𝜀 𝛾 ,  

𝑘 𝑘 𝑘 𝑘 2 ,  

𝑘 𝑘 𝑘 𝑘 2     (7a) 

 

𝛾
𝛾
𝛾

    (7b) 

 

For the FGM plates, the stress-strain relationships for plane-
stress state can be expressed as: 
 

𝜎
𝜎
𝜎

𝐶 𝐶 0
𝐶 𝐶 0
0 0 𝐶

𝜀
𝜀
𝛾

            (8a) 

 
𝜎
𝜎

𝐶 0
0 𝐶

𝛾
𝛾               (8b) 

 
where (𝜎 , 𝜎 , 𝜎 , 𝜎 , 𝜎  and 𝜀 , 𝜀 , 𝛾 , 𝛾 , 𝛾  are 
the stress and strain components, respectively. Using the 
material properties defined in (1), stiffness coefficients 𝐶  can 
be given as: 
 

𝐶 𝑧 𝐶 𝑧  ,𝐶 𝑧 𝑣 𝑧 𝐶 𝑧     (9a) 

 

𝐶 𝑧 𝐶 𝑧 𝐶 𝑧                                (9b) 

V. EQUATIONS OF MOTION 

Hamilton’s principle is employed herein to obtain the 
equations of motion appropriate to the displacement field and 
the constitutive equations. The principle can be stated in 
analytical form as: 

 

dtKVU e

t

)(0
0

     

 

where U  is the variation of the strain energy; eV  is the 

variation of the potential energy of the elastic base; and K is 

the variation of the kinetic energy. The variation of the strain 
energy of the plate is given by: 

 

δU σxx δεxx σyy δεyy τxyδγxy τxzδγxz 
h
2

-
h
2

A
τyzδγyz dAdz

 𝑁 𝑀  

𝑀   𝑁 -Myy 
b ∂2δw0

∂y2 -Myy 
s ∂2δφ

∂y2 Nxy 
∂δu0

∂y

∂δv0

 ∂x
-2Mxy

b ∂2δw0

∂x∂y

2𝑀  𝑄 𝑄 𝑞𝛿𝑤 𝑑𝐴 0   (10) 

 
where N, M and Q are solicitations defined by: 
 

𝑁  , 𝑁 , 𝑁 𝜎  , 𝜎 , 𝜎
/
/  𝑑𝑍     (11a) 

 

𝑀  , 𝑀 , 𝑀 𝑧 . 𝜎  , 𝜎 , 𝜎  𝑑𝑍    (11b) 

 

𝑀  , 𝑀 , 𝑀 𝑓. 𝜎  , 𝜎 , 𝜎
/
/  𝑑𝑍    (11c) 

 

𝑄  , 𝑄 𝑔 . 𝜎  , 𝜎  𝑑𝑍   (11d) 

 
The variables of the potential energy of plate can be 

expressed by: 
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𝛿𝑉𝑒 𝑁 𝛿𝑤 𝑑𝐴 𝑞 𝛿𝑤 𝑑𝐴   (12) 
 
Such as: 
 

𝑁  𝑁  
𝜕  𝑤
𝜕𝑥  

2𝑁  
𝜕  𝑤
𝜕𝑥𝜕𝑦 

𝑁  
𝜕  𝑤
𝜕𝑦  

 

 
The variation of the kinetic energy of the plate can be 

written as: 
 

𝛿𝐾  𝑢 𝛿𝑢 𝑣𝛿𝑣 𝑤𝛿𝑤 𝜌 𝑧 𝑑𝐴𝑑𝑧   (13) 

 
where dot-superscript convention indicates the differentiation 
with respect to the time variable t; ρ(z) is the mass density 
given by (1); and (Ii, Ji, Ki) are mass inertias expressed by 

 

𝐼 , 𝐼 , 𝐼 1, 𝑧, 𝑧 𝜌 𝑧 𝑑𝑧          (14a) 

 

𝐽 , 𝐽 , 𝐾 𝑓, 𝑧𝑓, 𝑓 𝜌 𝑧 𝑑𝑧          (14b) 

 
By substituting (10), (12) in (14) and by the integration by 

part, the equations of motion are obtained as: 
 

δu0: ∂Nxx

∂x

∂Nxy

∂y
I0u0-I1

∂w0

∂x
-J1

∂φ

∂x
           (15a) 

 

δv0: 
∂Nxy

∂x

∂Nyy

∂y
I0v0-I1

∂w0

∂y
-J1

∂φ

∂y
          (15b) 

 

δw0: ∂2Mxx
b

∂x2 2
∂2Mxy

b

∂x∂y

∂2Myy
b

∂y2 N q 𝐼 𝑤 𝐼

𝐼 𝛻 𝑤 𝐽 𝛻 𝜑 (15c) 
 

δφ0: ∂2Mxx
s

∂x2 2
∂2Mxy

s

∂x∂y

∂2Myy
s

∂y2

∂Qx

∂x

∂Qy

∂y
J1

∂u0

∂x

∂v

∂y
-J2∇2w0-K2∇2φ 

(15c) 
 
By the substitution of (6a) and introduced in (8a), the 

results introduced in (11a), (11b) and (11c) give: 
 
𝑁

𝑀
𝑀

𝐴 𝐵 𝐵
𝐵 𝐷 𝐷
𝐵 𝐷 𝐻

𝜀
𝑘
𝑘

     (16) 

 
in which: 
 

𝐴, 𝐵, 𝐷, 𝐵 , 𝐷 , 𝐻 1, 𝑧, 𝑧 , 𝑓, 𝑓𝑧, 𝑓 𝐶 𝑧 𝑑𝑍  (17) 

 
For (6b), (8b) and (11d), the constituent relations are 

obtained as: 
 

𝑄
𝑄

𝐴 0
0 𝐴

𝛾
𝛾

     (18) 

 
𝑄  𝐴                     (19) 

𝐴 ,𝐴  the stiffness components are given as: 
 

A44   
s A55

S  g2 z C44 z dZ 
h
2

-
h
2

g2 z C55 z dZ
h
2

-
h
2

    (20) 

 
By substituting (16) and (18) and introducing into (15a)-

(15d), the equations of motion can be expressed in terms of 
displacements (u0, v0, w0 , φ) and the appropriate equations 
take the form 
 

𝐴 𝐴 𝐴 𝐴

𝐵 - B12 2B66
∂2w0

∂x∂y2 -B11
s ∂3φ

∂x3 𝐵 2𝐵 𝐼 𝑢

𝐼 𝐽  (21a) 
 

A22
∂2v0

∂y2 A66
∂2v0

∂x2 A12 A66
∂2u0

∂x∂y

𝐵 /- B12 2B66
∂2w0

∂x2∂y
-B22

S ∂3φ

∂y3 𝐵 2𝐵 𝐼 𝑣

𝐼 𝐽  (21b) 

 

𝐵 𝐵 2𝐵 𝐵 2𝐵 B22
∂3v0

∂y3   

-D11
∂4w0

∂x4 -D22
∂4w0

∂y4 -2 D12 2D66
∂4w0

∂x2∂y2 -D11
s ∂4φ

∂x4 -D22
s ∂4φ

∂y4   

-2 D12
s 2D66

s ∂4φ

∂x2∂y2 N w q I0w0 I1
∂u0

∂x

∂v

∂y
-I2∇2w0-J2∇2φ 

(21c) 
 

B11
s ∂3u0

∂x3 Bs
12 2Bs

66
∂3u0

∂x∂y2 Bs
12 2Bs

66
∂3v0

∂x2∂y
Bs

66
∂3v0

∂y3   

-D11
s ∂4w0

∂x4 -D22
s ∂4w0

∂y4 -2 D12
s 2D66

s ∂4w0

∂x2∂y2 A55
s ∂2φ

∂x2 A44
s ∂2φ

∂y2 -D11
s ∂4φ

∂x4   

-H11
s ∂4φ

∂y4 -2 Hs
12 2Hs

66
∂3φ

∂x2∂y2 -H22
s ∂4φ

∂y4 J1
∂u0

∂x

∂v

∂y
-J2∇2w0-K2∇2φ

 (21d) 

VI. ANALYTICAL SOLUTION FOR SIMPLY-SUPPORTED FG 

PLATES 

For the analytical solution of the partial differential 
equation (21), the Navier technique, based on double Fourier 
series, is employed under the specified boundary conditions.  

Using Navier’s procedure, the solution of the displacement 
variables satisfying the above boundary conditions can be 
expressed in the following Fourier series:   

  
𝑞 𝑥, 𝑦 ∑ ∑ 𝑞 sin 𝜆𝑥 sin 𝜇𝑦𝑒       (22) 

 
where: 𝛌 = mp / a et 𝛍 = np / b , 𝛌 and 𝛍 are natural numbers 
and « a », «b » are the dimensions of the plate along the x and 
y directions, respectively, and for a sinusoidal distributed load. 
Assuming that the plate is subjected to a compression load in 
its plane in the form: 

 
𝑁 𝑁  , 𝑁 𝛾𝑁    

 
(u0, v0, w0 and φ) are given as double Fourier series, satisfying 
boundary conditions. 
 

𝑢 𝑥, 𝑦 ∑ ∑ 𝑢 cos 𝜆𝑥 sin 𝜇𝑦𝑒     (23a) 
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𝑣 𝑥, 𝑦 ∑ ∑ 𝑣 sin 𝜆𝑥 cos 𝜇𝑦𝑒     (23b) 
 

𝑤 𝑥, 𝑦 ∑ ∑ 𝑥 𝑠𝑖𝑛 𝜆𝑥 𝑠𝑖𝑛 𝜇𝑦𝑒     (23c) 
 

𝜑 𝑥, 𝑦 ∑ ∑ 𝑦 sin 𝜆𝑥 sin 𝜇𝑦𝑒      (23d) 
 

Substituting (19), (20a-d) in (18a-d), we obtain: 
 

𝑘 𝑘 𝑘 𝑘
𝑘 𝑘 𝑘 𝑘
𝑘 𝑘 𝑘 𝑘
𝑘 𝑘 𝑘 𝑘

𝑤

𝑚 0 𝑚 𝑚
0 𝑚 𝑚 𝑚

𝑚 𝑚 𝑚 𝑚
𝑚 𝑚 𝑚 𝑚

⎩
⎪
⎨

⎪
⎧𝑢

𝑣
𝑥
𝑦 ⎭

⎪
⎬

⎪
⎫ 0

0
𝑞

0

 

(24)  
 
where: 
 
𝑘 𝐴 𝜆 𝐴 𝜇  , 𝑘 𝐴 𝐴 𝜆𝜇 ,  
𝑘 𝐵 𝜆 𝐵 2𝐵 𝜆𝜇  , 
𝑘 𝐵 𝜆 𝐵 2𝐵 𝜆𝜇  , 𝑘 𝐴 𝜆 𝐴 𝜇  , 
𝑘 𝐵 𝜇 𝐵 2𝐵 𝜆  𝜇, 
𝑘 𝐵 𝜇 𝐵 2𝐵 𝜆  𝜇 , 
𝑘 𝐷 𝜆 2 𝐷 2𝐷 𝜆  𝜇 𝐷 𝜇 , 
𝑘 𝐷 𝜆 2 𝐷 2𝐷 𝜆  𝜇 𝐷 𝜇 , 
 

𝑘 𝐻 𝜆 2 𝐻 2𝐻 𝜆  𝜇 𝐻 𝜇 𝐴 𝜆
𝐴 𝜇  (22) 

 
𝑚 𝑚 𝐼 , 𝑚 𝜆𝐼 , 𝑚 𝜆𝐽  
𝑚 𝜇𝐼 , 𝑚 𝜇𝐽  
𝑚 𝐼 𝐼 𝜆 𝜇 , 𝑚 𝐽 𝜆 𝜇 , 
𝑚 𝐾 𝜆 𝜇  
∝ 𝑁 𝜆 𝛾𝜇  
 
For free vibration: 𝑞 0. 

VII. NUMERICAL EXAMPLES AND DISCUSSIONS 

We consider a simply supported plate FG, rectangle of 
dimensions a and b in the directions x, y respectively, Fig. 1. 
The material properties are given in Table I. 

 
TABLE I 

MATERIAL PROPERTIES OF METAL AND CERAMICS 

Material 
Young’s 

modulus (Gpa) 
Mass density 

(kg/m3) 
Poisson’s ratio υ 

Aluminium (Al) 70 2.702 0.3 

Alumina (Al2O3) 380 3.800 0.3 

Zirconia (ZrO2) 151 3.000 0.3 

 
The different one-dimensional parameters used are: 

 

�̅�
 

  

 

𝜔 ,   

 
The objective of this example is to verify the validity of the 

current theory by predicting the vibratory behavior. 
Table II shows the variation of the non-dimensional 

fundamental frequencies of a rectangular Al/ZrO2 plate as a 
function of thickness ratio a/h on the one hand, and the power 
law index on the other hand. The results are compared to 3D 
in [13], [14]. 

Excellent agreements between the results are obtained. It 
should be noted that the non-dimensional frequency decreases 
with the increase of the power index, and increases with the 
increase in the thickness ratio. 

 
 TABLE II 

COMPARISON OF NON-DIMENSIONAL FUNDAMENTAL FREQUENCIES 𝛽  OF A RECTANGULAR PLATE FGM IN AL/ZRO2 SIMPLY SUPPORTED 

a/h 
Theory power law index (p) 

 0 0.1 0.2 0.5 1 2 5 10 

2 

[13] 1.2589 1.2296 1.2049 1.1484 1.0913 1.0344 0.9777 0.9507 

[14] 1.2571 1.2259 1.2010 1.1443 1.0882 1.0325 0.9771 0.9540 

Present 1.2653 1.2265 1.2001 1.1431 1.0856 1.0304 0.9762 0.9532 

5 

[13] 1.7748 1.7262 1.6881 1.6031 1.4764 1.4628 1.4106 1.3711 

[14] 1.7723 1.7241 1.6850 1.6003 1.5245 1.4629 1.4084 1.3726 

Present 1.7693 1.7225 1.6829 1.597 1.5194 1.4576 1.4043 1.369 

10 

[13] 1.9339 1.8788 1.8357 1.7406 1.6583 1.5958 1.5491 1.5066 

[14] 1.9330 1.8783 1.8342 1.7402 1.6593 1.5994 1.5500 1.5095 

Present 1.9319 1.8785 1.8337 1.7383 1.6554 1.5951 1.547 1.5074 

20 

[13] 1.9570 1.9261 1.8788 1.7832 1.6999 1.6401 1.5937 1.5491 

[14] 1.9824 1.9257 1.8799 1.7830 1.7006 1.6417 1.5945 1.5524 

Present 1.9821 1.9265 1.8801 1.7816 1.6973 1.6378 1.592 1.551 

50 

[13] 1.9974 1.9390 1.8920 1.7944 1.7117 1.6522 1.6062 1.5620 

[14] 1.9971 1.9398 1.8935 1.7957 1.7129 1.6544 1.6079 1.5653 

Present 1.9971 1.9409 1.894 1.7945 1.7097 1.6506 1.6055 1.5641 

100 

[13] 1.9974 1.9416 1.8920 1.7972 1.7117 1.6552 1.6062 1.5652 

[14] 1.9993 1.9418 1.8955 1.7975 1.7147 1.6562 1.6098 1.5671 

Present 1.9993 1.9430 1.8960 1.7964 1.7116 1.6525 1.6075 1.5602 
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Fig. 2 Effect of the power law index p and the thickness ratio a/h on the non-dimensional natural frequency of the Al/Al2O3 rectangular plates 
 

As another attempt at verification, Fig. 2 shows the 
variation of the natural, non-dimensional frequency as a 
function of the power index and the thickness ratio, we 
observe that the natural frequencies decreased with the 
increase of the index of power, due to the fact that a higher 
value of p corresponds to the lower value of the volume 
fraction of the ceramic, and thus makes the plates become 
more flexible. 

VIII. CONCLUSION 

In this work, we presented a theory of high-order four-
variable shear deformation that determines the frequencies for 
simply supported functionally graded rectangular plates. The 
theory takes into account the transverse shear effects and a 
parabolic distribution of transverse shear stresses across the 
thickness of the FGM plate, therefore it is not necessary to use 
shear correction factors. 

Navier solutions are obtained for a simply supported plate 
and compared to existing solutions to check the validity of the 
developed theory. 

The material properties are estimated by the power law and 
exponential form, this theory is efficient and simple for the 
analysis of the vibratory behavior of the FGM plates. 

Finally, the numerical results presented in this paper can be 
used as a reference for the study of simply supported FGM 
plate vibration. 
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