
 

 

 
Abstract—In this paper, we have used an analytical method to 

analyze the vibratory behavior of plates in materials with gradient of 
properties, simply supported, proposing a refined non polynomial 
theory. The number of unknown functions involved in this theory is 
only four, as compared to five in the case of other higher shear 
deformation theories. The transverse shearing effects are studied 
according to the thickness of the plate. The motion equations for the 
FGM plates are obtained by the Hamilton principle application, the 
solutions are obtained using the Navier method, and then the 
fundamental frequencies are found, solving an eigenvalue equation 
system, the results of this analysis are presented and compared to 
those available in the literature. 

 
Keywords—FGM plates, Navier method, vibratory behavior.  

I. INTRODUCTION 

UNCTIONALLY graded materials, FGMs, are composites 
that have a continuous variation in material properties 

from one surface to another. These materials can be made by 
varying the percentage of two or more materials such that the 
new material has the desired properties in the desired 
direction. FGMs are inhomogeneous microscopic composites. 
The concept of FGM was first proposed in Japan in 1984 
during a space plane project, since its development in the 
1980s [15]. FGMs are alternative materials widely used in the 
aerospace, nuclear reactor, biomechanical power and 
shipbuilding industries [1]-[4]. 

Composite materials are booming in almost all sectors, with 
significant advantages over traditional materials. They bring 
many well-known advantages: Lightness, mechanical and 
chemical resistance, good behavior to moisture and corrosion, 
reduced maintenance, freedom of shape. They can extend the 
life of some equipment thanks to their mechanical and 
chemical properties. They contribute to the reinforcement of 
safety thanks to a good resistance to shock and fire. They offer 
better thermal, acoustic, and electrical insulation. They also 
enrich the design possibilities by lightening structures and 
making complex shapes, able to fulfill several functions. 

Several works have been performed to investigate the 
vibration behavior of functionally graduated FGM plates. In 
[5], authors have proposed an exact three-dimensional solution 
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of free and forced vibrations, for simply supported 
functionally graded rectangular plates, Ferreira et al. [6] 
studied the vibrations of FGM plates using a global 
collocation technique, for a model first and third order shear 
deformation plates. Qian et al. [7] discussed the free and 
forced bending and vibration of a thick rectangular FGM plate 
using a higher order shear theory, and a normal strain theory. 
Matsunaga [8] studied the natural frequencies and the 
buckling of FGM plates by considering the effects of 
transverse deformations, Meftah et al. [9] proposed a non-
polynomial four variable refined plate theory for free vibration 
of functionally graded thick rectangular plates on elastic 
foundation. 

This paper aims to develop a higher order shear 
deformation theory for free vibration and analyzed the 
response of FGM plates, the properties of materials vary 
arbitrarily according to the thickness. The current theory 
satisfies the equilibrium conditions on the upper and lower 
faces of the plate without shear correction factors. 

II. THEORETICAL FORMULATIONS 

Consider a FGM plate as shown in Fig. 1 having the 
thickness h, length a, and width b. The FGM plate consists of 
a mixture of ceramic and metal components whose properties 
of the material vary according to the thickness of the plate 
according to a power law, fractions of the volume of the 
constituents. 

 

 

Fig. 1 Geometry of the FGM plate 

III. PROPERTIES OF EFFECTIVE MATERIALS OF FGM PLATES 

The material properties of FGM plates are expressed by 
[10]: 

 
P(z) = ( Pc – Pm) Vc + Pm                                                   (1) 
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where P(z) is the material properties like Young's modulus E 
and mass density ρ, Pc and Pm represent the property of the 
top and the bottom faces of the plate, respectively. The 
volume fraction of the ceramic Vc is given as: 
 

𝑉௖(z) = (
ଶ௭ା௛

ଶ௛
ሻ௣                                                                     (2) 

 
where p is the volume fraction exponent. It should be noted 
that the positive real number p (0 ≤ p <∞) is the power law 
index or a volume fraction, the (upper and lower) faces of the 
plate are at z = ± h / 2, the median plane is defined by z =0. 
The FGM plate is a fully ceramic plate when P is zeroed and 
fully metallic for a value of P equal to infinity. 

The Young's modulus of FGM plates is given according to 
the exponential law in [11]: 

 
E(z) = E0 e

p(z/h + 0.5)                                                                 (3) 
 
E0 is the homogeneous Young's modulus of materials. 

IV. HIGH-ORDER SHEAR DEFORMATION THEORIES 

The displacement field of a material point located at the 
coordinates (x, y, z) in the plate is given as: 
 

𝑢ሺ𝑥, 𝑦, 𝑧ሻ ൌ  𝑢଴ሺ𝑥, 𝑦ሻ െ 𝑧 డ௪బ

డ௫
െ 𝑓ሺ𝑧ሻ డఝ

డ௫
  

 𝑣ሺ𝑥, 𝑦, 𝑧ሻ ൌ  𝑣଴ሺ𝑥, 𝑦ሻ െ 𝑧 డ௪బ

డ௬
െ 𝑓ሺ𝑧ሻ డఝ

డ௬
        (4) 

𝑤ሺ𝑥, 𝑦, 𝑧ሻ ൌ  𝑤଴ሺ𝑥, 𝑦ሻ ,  
 
where u, v, w are the displacements in the directions x, y, z. u0, 
v0 and w0 are the displacements of middle surface of the plate, 
φ rotation of the plane of the bending. f (z) represents the 
shape function determining the distribution of transverse shear 
strains and stresses along the thickness and given as [12]: 
 

𝑓ሺ𝑧ሻ ൌ  𝑧 െ sin
గ௭

௛
                                                                (5) 

 
The compact shape of the deformations is given by: 

 
𝜀 ൌ  𝜀଴ ൅ 𝑧𝑘௕ ൅ 𝑓𝑘௦                  (6a) 

 
𝛾 ൌ 𝑔𝛾଴                     (6b) 

 
where:  
 

𝑔 ൌ െ ௗ௙

ௗ௭
,  

𝜀଴ ൌ ൛𝜀௫௫
଴ 𝜀௬௬

଴ 𝛾௫௬
଴ ൟ ൌ ቄడ௨బ

డ௫

డ௩బ

డ௬

డ௨బ

డ௬
൅ డ௩బ

డ௫
ቅ,  

𝑘௕ ൌ ൛𝑘௫௫
௕ 𝑘௬௬

௕ 𝑘௫௬
௕ ൟ ൌ ቄെ డమ௪బ

డ௫మ െ డమ௪బ

డ௬మ െ 2 డమ௪బ

డ௫డ௬
ቅ,  

𝑘௦ ൌ ൛𝑘௫௫
௦ 𝑘௬௬

௦ 𝑘௫௬
௦ ൟ ൌ ቄെ

డమఝబ

డ௫మ െ
డమఝబ

డ௬మ െ 2
డమఝబ

డ௫డ௬
ቅ    (7a) 

 

𝛾଴ ൌ ቊ
𝛾௫௭

଴

𝛾௬௭
଴ ቋ ൌ ቐ

డఝ

డ௫
డఝ

డ௬

ቑ    (7b) 

 

For the FGM plates, the stress-strain relationships for plane-
stress state can be expressed as: 
 

൝
𝜎௫௫
𝜎௬௬
𝜎௫௬

ൡ ൌ ൥
𝐶ଵଵ 𝐶ଵଶ 0
𝐶ଵଶ 𝐶ଶଶ 0
0 0 𝐶଺଺

൩ ൝
𝜀௫௫
𝜀௬௬
𝛾௫௬

ൡ            (8a) 

 

ቄ
𝜎௫௭
𝜎௬௭

ቅ ൌ ൤
𝐶ହହ 0
0 𝐶ସସ

൨ ቄ
𝛾௫௭
𝛾௬௭

ቅ              (8b) 

 
where (𝜎௫௫, 𝜎௬௬, 𝜎௫௬, 𝜎௫௭, 𝜎௬௭ሻ and ሺ𝜀௫௫, 𝜀௬௬, 𝛾௫௬, 𝛾௫௭, 𝛾௬௭ሻ are 
the stress and strain components, respectively. Using the 
material properties defined in (1), stiffness coefficients 𝐶௜௝ can 
be given as: 
 

𝐶ଵଵሺ𝑧ሻ ൌ 𝐶ଶଶሺ𝑧ሻ ൌ ாሺ௭ሻ

ଵିሺ௩ሺ௭ሻሻమ ,𝐶ଵଶሺ𝑧ሻ ൌ 𝑣ሺ𝑧ሻ𝐶ଵଵሺ𝑧ሻ    (9a) 

 

𝐶ସସሺ𝑧ሻ ൌ 𝐶ହହሺ𝑧ሻ ൌ 𝐶଺଺ሺ𝑧ሻ ൌ ாሺ௭ሻ

ଶሺଵା௩ሺ௭ሻሻ
                               (9b) 

V. EQUATIONS OF MOTION 

Hamilton’s principle is employed herein to obtain the 
equations of motion appropriate to the displacement field and 
the constitutive equations. The principle can be stated in 
analytical form as: 

 

dtKVU e

t

)(0
0

     

 

where U  is the variation of the strain energy; eV  is the 

variation of the potential energy of the elastic base; and K is 

the variation of the kinetic energy. The variation of the strain 
energy of the plate is given by: 

 

δUൌ ׬ ධ ሺσxx δεxx൅σyy δεyy ൅τxyδγxy൅τxzδγxz 
൅

h
2

-
h
2

A
൅τyzδγyzሻdAdz ൌ

׬  ሾ𝑁௫௫
డఋ௨బ

డ௫
െ 𝑀௫௫ 

௕ డమఋ௪బ

డ௫మ െ
஺

𝑀௫௫ 
௦ డమఋఝ

డ௫మ  ൅𝑁௬௬
డఋ௩బ

డ௬
-Myy 

b ∂2δw0

∂y2 -Myy 
s ∂2δφ

∂y2 ൅Nxy ቀ
∂δu0

∂y
൅

∂δv0

 ∂x
ቁ -2Mxy

b ∂2δw0

∂x∂y
െ

2𝑀௫௬ 
௦ డమఋఝ

డ௫డ௬
൅ 𝑄௫

డఋఝ

డ௫
൅ 𝑄௬

డఋఝ

డ௬
െ 𝑞𝛿𝑤଴ሿ𝑑𝐴 ൌ 0   (10) 

 
where N, M and Q are solicitations defined by: 
 

൫𝑁௫௫ , 𝑁௬௬, 𝑁௫௬൯ ൌ ׬ ൫𝜎௫௫ , 𝜎௬௬, 𝜎௫௬൯
௛/ଶ

ି௛/ଶ  𝑑𝑍     (11a) 

 

൫𝑀௫௫
௕  , 𝑀௬௬

௕ , 𝑀௫௬
௕ ൯ ൌ ׬ 𝑧 . ൫𝜎௫௫ , 𝜎௬௬, 𝜎௫௬൯

೓
మ

ି
೓
మ

 𝑑𝑍    (11b) 

 

൫𝑀௫௫
௦  , 𝑀௬௬

௦ , 𝑀௫௬
௦ ൯ ൌ ׬ 𝑓. ൫𝜎௫௫ , 𝜎௬௬, 𝜎௫௬൯

௛/ଶ
ି௛/ଶ  𝑑𝑍    (11c) 

 

൫𝑄௫ , 𝑄௬൯ ൌ ׬ 𝑔 . ൫𝜎௫௭ , 𝜎௬௭൯
೓
మ

ି
೓
మ

 𝑑𝑍   (11d) 

 
The variables of the potential energy of plate can be 

expressed by: 
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𝛿𝑉𝑒 ൌ െ ׬ 𝑁 തതത
஺

𝛿𝑤଴𝑑𝐴 െ ׬ 𝑞
஺

𝛿𝑤଴𝑑𝐴   (12) 
 
Such as: 
 

𝑁ഥ ൌ  𝑁௫௫
଴  

𝜕ଶ 𝑤଴

𝜕𝑥ଶ 
൅ 2𝑁௫௬

଴  
𝜕ଶ 𝑤଴

𝜕𝑥𝜕𝑦 
൅ 𝑁௬௬

଴  
𝜕ଶ 𝑤଴

𝜕𝑦ଶ 
 

 
The variation of the kinetic energy of the plate can be 

written as: 
 

𝛿𝐾 ൌ ׬  ׬ ሺ𝑢ሶ
ା

೓
మ

ି
೓
మ

௏ 𝛿𝑢ሶ ൅ 𝑣ሶ𝛿𝑣ሶ ൅ 𝑤ሶ 𝛿𝑤ሶ ሻ𝜌ሺ𝑧ሻ𝑑𝐴𝑑𝑧   (13) 

 
where dot-superscript convention indicates the differentiation 
with respect to the time variable t; ρ(z) is the mass density 
given by (1); and (Ii, Ji, Ki) are mass inertias expressed by 

 

ሺ𝐼଴, 𝐼ଵ, 𝐼ଶሻ ൌ ׬ ሺ
ା

೓
మ

ି
೓
మ

1, 𝑧, 𝑧ଶሻ𝜌ሺ𝑧ሻ𝑑𝑧          (14a) 

 

ሺ𝐽ଵ, 𝐽ଶ, 𝐾ଶሻ ൌ ׬ ሺ
ା

೓
మ

ି
೓
మ

𝑓, 𝑧𝑓, 𝑓ଶሻ𝜌ሺ𝑧ሻ𝑑𝑧          (14b) 

 
By substituting (10), (12) in (14) and by the integration by 

part, the equations of motion are obtained as: 
 

δu0: ∂Nxx

∂x
൅

∂Nxy

∂y
ൌI0u0ሷ -I1

∂w0ሷ

∂x
-J1

∂φሷ

∂x
           (15a) 

 

δv0: 
∂Nxy

∂x
൅

∂Nyy

∂y
ൌI0v0ሷ -I1

∂w0ሷ

∂y
-J1

∂φሷ

∂y
          (15b) 

 

δw0: ∂2Mxx
b

∂x2 ൅2
∂2Mxy

b

∂x∂y
൅

∂2Myy
b

∂y2 ൅Nഥ൅qൌ𝐼଴𝑤଴ሷ ൅ 𝐼ଵ ቀడ௨బሷ

డ௫
൅ డ௩ሷ

డ௬
ቁ െ

𝐼ଶ𝛻ଶ𝑤଴ሷ െ 𝐽ଶ𝛻ଶ𝜑ሷ  (15c) 
 

δφ0: ∂2Mxx
s

∂x2 ൅2
∂2Mxy

s

∂x∂y
൅

∂2Myy
s

∂y2 ൅ ∂Qx

∂x
൅

∂Qy

∂y
ൌJ1 ቀ∂u0ሷ

∂x
൅ ∂vሷ

∂y
ቁ -J2∇2w0ሷ -K2∇2φሷ  

(15c) 
 
By the substitution of (6a) and introduced in (8a), the 

results introduced in (11a), (11b) and (11c) give: 
 

൝
𝑁

𝑀௕

𝑀௦
ൡ ൌ ൥

𝐴 𝐵 𝐵௦

𝐵 𝐷 𝐷௦

𝐵௦ 𝐷௦ 𝐻௦
൩ ൝

𝜀଴

𝑘௕

𝑘௦
ൡ     (16) 

 
in which: 
 

ሺ𝐴, 𝐵, 𝐷, 𝐵௦, 𝐷௦, 𝐻௦ሻ ൌ ׬ ሺ1, 𝑧, 𝑧ଶ, 𝑓, 𝑓𝑧, 𝑓ଶሻ
೓
మ

ି
೓
మ

𝐶ሺ𝑧ሻ𝑑𝑍  (17) 

 
For (6b), (8b) and (11d), the constituent relations are 

obtained as: 
 

൜
𝑄௫
𝑄௬

ൠ ൌ ൤
𝐴ହହ

௦ 0
0 𝐴ସସ

௦ ൨ ቊ
𝛾௫௭

଴

𝛾௬௭
଴ ቋ     (18) 

 
𝑄 ൌ  𝐴௦                    (19) 

𝐴ହହ
௦ ,𝐴ସସ

௦  the stiffness components are given as: 
 

A44   
s ൌA55

S  ൌ ׬ g2ሺzሻC44ሺzሻdZ 
h
2

-
h
2

ൌ ׬ g2ሺzሻC55ሺzሻdZ
h
2

-
h
2

    (20) 

 
By substituting (16) and (18) and introducing into (15a)-

(15d), the equations of motion can be expressed in terms of 
displacements (u0, v0, w0 , φ) and the appropriate equations 
take the form 
 

𝐴ଵଵ
డమ௨బ

డ௫మ ൅ 𝐴଺଺
డమ௨బ

డ௬మ ൅ ሺ𝐴ଵଶ ൅ 𝐴଺଺ሻ డమ௩బ

డ௫డ௬
െ

𝐵ଵଵ
డయ௪బ

డ௫య -ሺB12൅2B66ሻ ∂2w0

∂x∂y2 -B11
s ∂3φ

∂x3 െ ሺ𝐵ଵଶ
௦ ൅ 2𝐵଺଺

௦ ሻ డయఝ

డ௫డ௬మ ൌ 𝐼଴𝑢଴ሷ െ

𝐼ଵ
డ௪బሷ

డ௫
െ 𝐽ଵ

డఝሷ

డ௫
 (21a) 

 

A22
∂2v0

∂y2 ൅A66
∂2v0

∂x2 ൅ሺA12൅A66ሻ ∂2u0

∂x∂y
െ

𝐵ଶଶ
డయ௪బ

డ௬య /-ሺB12൅2B66ሻ ∂2w0

∂x2∂y
-B22

S ∂3φ

∂y3 െ ሺ𝐵ଵଶ
௦ ൅ 2𝐵଺଺

௦ ሻ డయఝ

డ௫మడ௬
ൌ 𝐼଴𝑣଴ሷ െ

𝐼ଵ
డ௪బሷ

డ௬
െ 𝐽ଵ

డఝሷ

డ௬
 (21b) 

 

𝐵ଵଵ
డయ௨బ

డ௫య ൅ ሺ𝐵ଵଶ ൅ 2𝐵଺଺ሻ డయ௨బ

డ௫డ௬మ ൅ ሺ𝐵ଵଶ ൅ 2𝐵଺଺ሻ డయ௨బ

డ௫డ௬మ ൅B22
∂3v0

∂y3   

-D11
∂4w0

∂x4 -D22
∂4w0

∂y4 -2ሺD12൅2D66ሻ ∂4w0

∂x2∂y2 -D11
s ∂4φ

∂x4 -D22
s ∂4φ

∂y4   

-2ሺD12
s ൅2D66

s ሻ ∂4φ

∂x2∂y2 ൅Nഥሺwሻ൅qൌI0w0ሷ ൅I1 ቀ∂u0ሷ

∂x
൅ ∂vሷ

∂y
ቁ -I2∇2w0ሷ -J2∇2φሷ  

(21c) 
 

B11
s ∂3u0

∂x3 ൅ሺBs
12൅2Bs

66ሻ ∂3u0

∂x∂y2 ൅ሺBs
12൅2Bs

66ሻ ∂3v0

∂x2∂y
൅Bs

66
∂3v0

∂y3   

-D11
s ∂4w0

∂x4 -D22
s ∂4w0

∂y4 -2ሺD12
s ൅2D66

s ሻ ∂4w0

∂x2∂y2 ൅A55
s ∂2φ

∂x2 ൅A44
s ∂2φ

∂y2 -D11
s ∂4φ

∂x4   

-H11
s ∂4φ

∂y4 -2ሺHs
12൅2Hs

66ሻ ∂3φ

∂x2∂y2 -H22
s ∂4φ

∂y4 ൌJ1 ቀ
∂u0ሷ

∂x
൅

∂vሷ

∂y
ቁ -J2∇2w0ሷ -K2∇2φሷ

 (21d) 

VI. ANALYTICAL SOLUTION FOR SIMPLY-SUPPORTED FG 

PLATES 

For the analytical solution of the partial differential 
equation (21), the Navier technique, based on double Fourier 
series, is employed under the specified boundary conditions.  

Using Navier’s procedure, the solution of the displacement 
variables satisfying the above boundary conditions can be 
expressed in the following Fourier series:   

  
𝑞ሺ𝑥, 𝑦ሻ ൌ ∑ ∑ 𝑞௠௡ sin 𝜆𝑥 sin 𝜇𝑦𝑒௜ఠ௧ஶ

௡ୀଵ
ஶ
௠ୀଵ       (22) 

 
where: 𝛌 = mp / a et 𝛍 = np / b , 𝛌 and 𝛍 are natural numbers 
and « a », «b » are the dimensions of the plate along the x and 
y directions, respectively, and for a sinusoidal distributed load. 
Assuming that the plate is subjected to a compression load in 
its plane in the form: 

 
𝑁௫௫

଴ ൌ െ𝑁଴ , 𝑁௬௬
଴ ൌ െ𝛾𝑁଴   

 
(u0, v0, w0 and φ) are given as double Fourier series, satisfying 
boundary conditions. 
 

𝑢଴ሺ𝑥, 𝑦ሻ ൌ ∑ ∑ 𝑢௠௡
଴ cos 𝜆𝑥 sin 𝜇𝑦𝑒௜ఠ௧ஶ

௡ୀଵ
ஶ
௠ୀଵ     (23a) 
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𝑣଴ሺ𝑥, 𝑦ሻ ൌ ∑ ∑ 𝑣௠௡
଴ sin 𝜆𝑥 cos 𝜇𝑦𝑒௜ఠ௧ஶ

௡ୀଵ
ஶ
௠ୀଵ     (23b) 

 

𝑤଴ሺ𝑥, 𝑦ሻ ൌ ∑ ∑ 𝑥௠௡
଴ 𝑠𝑖𝑛 𝜆𝑥 𝑠𝑖𝑛 𝜇𝑦𝑒௜ఠ௧ஶ

௡ୀଵ
ஶ
௠ୀଵ     (23c) 

 

𝜑ሺ𝑥, 𝑦ሻ ൌ ∑ ∑ 𝑦௠௡
଴ sin 𝜆𝑥 sin 𝜇𝑦𝑒௜ఠ௧ஶ

௡ୀଵ
ஶ
௠ୀଵ      (23d) 

 
Substituting (19), (20a-d) in (18a-d), we obtain: 

 

൮൦

𝑘ଵଵ 𝑘ଵଶ 𝑘ଵଷ 𝑘ଵସ

𝑘ଵଶ 𝑘ଶଶ 𝑘ଶଷ 𝑘ଶସ

𝑘ଵଷ 𝑘ଶଷ 𝑘ଷଷ 𝑘ଷସ

𝑘ଵସ 𝑘ଶସ 𝑘ଷସ 𝑘ସସ

൪ െ 𝑤ଶ ൦

𝑚ଵଵ 0 𝑚ଵଷ 𝑚ଵସ
0 𝑚ଶଶ 𝑚ଶଷ 𝑚ଶସ

𝑚ଵଷ 𝑚ଶଷ 𝑚ଷଷ 𝑚ଷସ
𝑚ଵସ 𝑚ଶସ 𝑚ଷସ 𝑚ସସ

൪൲

⎩
⎪
⎨

⎪
⎧𝑢௠௡

଴

𝑣௠௡
଴

𝑥௠௡
଴

𝑦௠௡
଴

⎭
⎪
⎬

⎪
⎫

ൌ ൞

0
0

𝑞௠௡
0

ൢ 

(24)  
 
where: 
 
𝑘ଵଵ ൌ 𝐴ଵଵ𝜆ଶ ൅ 𝐴଺଺𝜇ଶ , 𝑘ଵଶ ൌ ሺ𝐴ଵଵ ൅ 𝐴଺଺ሻ𝜆𝜇 ,  
𝑘ଵଷ ൌ െ𝐵ଵଵ𝜆ଷ െ ሺ𝐵ଵଶ ൅ 2𝐵଺଺ሻ𝜆𝜇ଶ , 
𝑘ଵସ ൌ െ𝐵ଵଵ

௦ 𝜆ଷ െ ሺ𝐵ଵଶ
௦ ൅ 2𝐵଺଺

௦ ሻ𝜆𝜇ଶ , 𝑘ଶଶ ൌ 𝐴଺଺𝜆ଶ ൅ 𝐴ଶଶ𝜇ଶ , 
𝑘ଶଷ ൌ െ𝐵ଶଶ𝜇ଷ െ ሺ𝐵ଵଶ ൅ 2𝐵଺଺ሻ𝜆ଶ 𝜇, 
𝑘ଶସ ൌ െ𝐵ଶଶ

௦ 𝜇ଷ െ ሺ𝐵ଵଶ
௦ ൅ 2𝐵଺଺

௦ ሻ𝜆ଶ 𝜇 , 
𝑘ଷଷ ൌ 𝐷ଵଵ𝜆ସ ൅ 2ሺ𝐷ଵଶ ൅ 2𝐷଺଺ሻ𝜆ଶ 𝜇ଶ ൅ 𝐷ଶଶ𝜇ସ, 
𝑘ଷସ ൌ 𝐷ଵଵ

ௌ 𝜆ସ ൅ 2ሺ𝐷ଵଶ
ௌ ൅ 2𝐷଺଺

ௌ ሻ𝜆ଶ 𝜇ଶ ൅ 𝐷ଶଶ
ௌ 𝜇ସ, 

 

𝑘ସସ ൌ 𝐻ଵଵ
ௌ 𝜆ସ ൅ 2ሺ𝐻ଵଶ

ௌ ൅ 2𝐻଺଺
ௌ ሻ𝜆ଶ 𝜇ଶ ൅ 𝐻ଶଶ

ௌ 𝜇ସ ൅ 𝐴ହହ
௦ 𝜆ଶ ൅

𝐴ସସ
௦ 𝜇ଶ (22) 

 
𝑚ଵଵ ൌ 𝑚ଶଶ ൌ 𝐼଴, 𝑚ଵଷ ൌ െ𝜆𝐼ଵ, 𝑚ଵସ ൌ െ𝜆𝐽ଵ 
𝑚ଶଷ ൌ െ𝜇𝐼ଵ, 𝑚ଶସ ൌ െ𝜇𝐽ଵ 
𝑚ଷଷ ൌ 𝐼଴ ൅ 𝐼ଶሺ𝜆ଶ ൅ 𝜇ଶሻ, 𝑚ଷସ ൌ 𝐽ଶሺ𝜆ଶ ൅ 𝜇ଶሻ, 
𝑚ସସ ൌ 𝐾ଶሺ𝜆ଶ ൅ 𝜇ଶሻ 
∝ൌ െ𝑁଴ሺ𝜆ଶ ൅ 𝛾𝜇ଶሻ 
 
For free vibration: 𝑞௠௡ ൌ 0. 

VII. NUMERICAL EXAMPLES AND DISCUSSIONS 

We consider a simply supported plate FG, rectangle of 
dimensions a and b in the directions x, y respectively, Fig. 1. 
The material properties are given in Table I. 

 
TABLE I 

MATERIAL PROPERTIES OF METAL AND CERAMICS 

Material 
Young’s 

modulus (Gpa) 
Mass density 

(kg/m3) 
Poisson’s ratio υ 

Aluminium (Al) 70 2.702 0.3 

Alumina (Al2O3) 380 3.800 0.3 

Zirconia (ZrO2) 151 3.000 0.3 

 
The different one-dimensional parameters used are: 

 

𝛽̅ ൌ
ఠ௔௕

గమ௛
ටଵଶሺଵି௩೎

మ ሻఘ೎

ா೎
  

 

𝜔ഥ ൌ ఠ௔మ

௛ ට
ఘ೎

ா೎
,   

 
The objective of this example is to verify the validity of the 

current theory by predicting the vibratory behavior. 
Table II shows the variation of the non-dimensional 

fundamental frequencies of a rectangular Al/ZrO2 plate as a 
function of thickness ratio a/h on the one hand, and the power 
law index on the other hand. The results are compared to 3D 
in [13], [14]. 

Excellent agreements between the results are obtained. It 
should be noted that the non-dimensional frequency decreases 
with the increase of the power index, and increases with the 
increase in the thickness ratio. 

 
 TABLE II 

COMPARISON OF NON-DIMENSIONAL FUNDAMENTAL FREQUENCIES ሺ𝛽തതതതሻ OF A RECTANGULAR PLATE FGM IN AL/ZRO2 SIMPLY SUPPORTED 

a/h 
Theory power law index (p) 

 0 0.1 0.2 0.5 1 2 5 10 

2 

[13] 1.2589 1.2296 1.2049 1.1484 1.0913 1.0344 0.9777 0.9507 

[14] 1.2571 1.2259 1.2010 1.1443 1.0882 1.0325 0.9771 0.9540 

Present 1.2653 1.2265 1.2001 1.1431 1.0856 1.0304 0.9762 0.9532 

5 

[13] 1.7748 1.7262 1.6881 1.6031 1.4764 1.4628 1.4106 1.3711 

[14] 1.7723 1.7241 1.6850 1.6003 1.5245 1.4629 1.4084 1.3726 

Present 1.7693 1.7225 1.6829 1.597 1.5194 1.4576 1.4043 1.369 

10 

[13] 1.9339 1.8788 1.8357 1.7406 1.6583 1.5958 1.5491 1.5066 

[14] 1.9330 1.8783 1.8342 1.7402 1.6593 1.5994 1.5500 1.5095 

Present 1.9319 1.8785 1.8337 1.7383 1.6554 1.5951 1.547 1.5074 

20 

[13] 1.9570 1.9261 1.8788 1.7832 1.6999 1.6401 1.5937 1.5491 

[14] 1.9824 1.9257 1.8799 1.7830 1.7006 1.6417 1.5945 1.5524 

Present 1.9821 1.9265 1.8801 1.7816 1.6973 1.6378 1.592 1.551 

50 

[13] 1.9974 1.9390 1.8920 1.7944 1.7117 1.6522 1.6062 1.5620 

[14] 1.9971 1.9398 1.8935 1.7957 1.7129 1.6544 1.6079 1.5653 

Present 1.9971 1.9409 1.894 1.7945 1.7097 1.6506 1.6055 1.5641 

100 

[13] 1.9974 1.9416 1.8920 1.7972 1.7117 1.6552 1.6062 1.5652 

[14] 1.9993 1.9418 1.8955 1.7975 1.7147 1.6562 1.6098 1.5671 

Present 1.9993 1.9430 1.8960 1.7964 1.7116 1.6525 1.6075 1.5602 
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Fig. 2 Effect of the power law index p and the thickness ratio a/h on the non-dimensional natural frequency of the Al/Al2O3 rectangular plates 
 

As another attempt at verification, Fig. 2 shows the 
variation of the natural, non-dimensional frequency as a 
function of the power index and the thickness ratio, we 
observe that the natural frequencies decreased with the 
increase of the index of power, due to the fact that a higher 
value of p corresponds to the lower value of the volume 
fraction of the ceramic, and thus makes the plates become 
more flexible. 

VIII. CONCLUSION 

In this work, we presented a theory of high-order four-
variable shear deformation that determines the frequencies for 
simply supported functionally graded rectangular plates. The 
theory takes into account the transverse shear effects and a 
parabolic distribution of transverse shear stresses across the 
thickness of the FGM plate, therefore it is not necessary to use 
shear correction factors. 

Navier solutions are obtained for a simply supported plate 
and compared to existing solutions to check the validity of the 
developed theory. 

The material properties are estimated by the power law and 
exponential form, this theory is efficient and simple for the 
analysis of the vibratory behavior of the FGM plates. 

Finally, the numerical results presented in this paper can be 
used as a reference for the study of simply supported FGM 
plate vibration. 
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