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Analytical Study and Modeling of Free Vibrations of
Functionally Graded Plates Using a Higher Shear
Deformation Theory
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Abstract—In this paper, we have used an analytical method to
analyze the vibratory behavior of plates in materials with gradient of
properties, simply supported, proposing a refined non polynomial
theory. The number of unknown functions involved in this theory is
only four, as compared to five in the case of other higher shear
deformation theories. The transverse shearing effects are studied
according to the thickness of the plate. The motion equations for the
FGM plates are obtained by the Hamilton principle application, the
solutions are obtained using the Navier method, and then the
fundamental frequencies are found, solving an eigenvalue equation
system, the results of this analysis are presented and compared to
those available in the literature.
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1. INTRODUCTION

UNCTIONALLY graded materials, FGMs, are composites

that have a continuous variation in material properties
from one surface to another. These materials can be made by
varying the percentage of two or more materials such that the
new material has the desired properties in the desired
direction. FGMs are inhomogeneous microscopic composites.
The concept of FGM was first proposed in Japan in 1984
during a space plane project, since its development in the
1980s [15]. FGMs are alternative materials widely used in the
aerospace, nuclear reactor, biomechanical power and
shipbuilding industries [1]-[4].

Composite materials are booming in almost all sectors, with
significant advantages over traditional materials. They bring
many well-known advantages: Lightness, mechanical and
chemical resistance, good behavior to moisture and corrosion,
reduced maintenance, freedom of shape. They can extend the
life of some equipment thanks to their mechanical and
chemical properties. They contribute to the reinforcement of
safety thanks to a good resistance to shock and fire. They offer
better thermal, acoustic, and electrical insulation. They also
enrich the design possibilities by lightening structures and
making complex shapes, able to fulfill several functions.

Several works have been performed to investigate the
vibration behavior of functionally graduated FGM plates. In
[5], authors have proposed an exact three-dimensional solution
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of free and forced vibrations, for simply supported
functionally graded rectangular plates, Ferreira et al. [6]
studied the vibrations of FGM plates using a global
collocation technique, for a model first and third order shear
deformation plates. Qian et al. [7] discussed the free and
forced bending and vibration of a thick rectangular FGM plate
using a higher order shear theory, and a normal strain theory.
Matsunaga [8] studied the natural frequencies and the
buckling of FGM plates by considering the effects of
transverse deformations, Meftah et al. [9] proposed a non-
polynomial four variable refined plate theory for free vibration
of functionally graded thick rectangular plates on elastic
foundation.

This paper aims to develop a higher order shear
deformation theory for free vibration and analyzed the
response of FGM plates, the properties of materials vary
arbitrarily according to the thickness. The current theory
satisfies the equilibrium conditions on the upper and lower
faces of the plate without shear correction factors.

II. THEORETICAL FORMULATIONS

Consider a FGM plate as shown in Fig. 1 having the
thickness h, length a, and width b. The FGM plate consists of
a mixture of ceramic and metal components whose properties
of the material vary according to the thickness of the plate
according to a power law, fractions of the volume of the
constituents.

-~

Ceramic

Metal

.

Fig. 1 Geometry of the FGM plate

III. PROPERTIES OF EFFECTIVE MATERIALS OF FGM PLATES

The material properties of FGM plates are expressed by
[10]:

P(Z):(Pcfpm)Vc+Pm (1)
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where P(z) is the material properties like Young's modulus £
and mass density p, Pc and Pm represent the property of the
top and the bottom faces of the plate, respectively. The
volume fraction of the ceramic V¢ is given as:

V() = ()P @)
where p is the volume fraction exponent. It should be noted
that the positive real number p (0 < p <o) is the power law
index or a volume fraction, the (upper and lower) faces of the
plate are at z = £ h / 2, the median plane is defined by z =0.
The FGM plate is a fully ceramic plate when P is zeroed and
fully metallic for a value of P equal to infinity.

The Young's modulus of FGM plates is given according to
the exponential law in [11]:

E(Z) — EU ep(z/h+ 0.5) (3)

E) is the homogeneous Young's modulus of materials.

IV. HIGH-ORDER SHEAR DEFORMATION THEORIES

The displacement field of a material point located at the
coordinates (x, y, z) in the plate is given as:

f()
f()

u(x,y,2) = uo(x,y) —z—
v(x,y,2) = vo(x, y)—z——
W(x'yyz) = Wo(x:}’);

“)

where u, v, w are the displacements in the directions x, y, z. ug,
vy and w, are the displacements of middle surface of the plate,
¢ rotation of the plane of the bending. f (z) represents the
shape function determining the distribution of transverse shear
strains and stresses along the thickness and given as [12]:

f(z)=z- sin% %)
The compact shape of the deformations is given by:
e= &%+ zkP + fk$ (6a)
y=gv° (6b)
where:
=4
9= dz’
dug 6170 6u0 vy
{gxxsyyyxy} { ax dy dy + E}'
b (1.b b Lb _62w0 _ 2wy _ 8%wo
k> = {k k k y} { dx? dy? 2 axay}
_ %py %9 %9
{ks ks ks } {_ axz dy? N Zaxay} (72)
o¢
]/0 {sz} — g:; (7b)
yyz —_
ady
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For the FGM plates, the stress-strain relationships for plane-
stress state can be expressed as:

Oxx Ci1 Cyp 0 Exx
Oyyr=|Cz Caz 0 |§&yy
ny O 0 C66 )/xy
{O-xz} _ C55 0 ]{yxz}

Tyz 0 Cuyl Wyz

where (Oyx, Oyy, Oxy, Oxz, Oyz) and (Exx, Eyy, Vay) Yazs Vyz) are
the stress and strain components, respectively. Using the
material properties defined in (1), stiffness coefficients C;; can
be given as:

(8a)

(8b)

E(z)

C11(2) = Cy2(2) = ()2 .C12(2) = v(2)Cy41(2) (%a)
Caa(2) = Cs5(2) = Coo(2) = 37,0 (9b)

V.EQUATIONS OF MOTION

Hamilton’s principle is employed herein to obtain the
equations of motion appropriate to the displacement field and
the constitutive equations. The principle can be stated in
analytical form as:

0=[(8U +6V, -5 K)dt
0

where O U is the variation of the strain energy; OV, is the

e

variation of the potential energy of the elastic base; and ¢ K is

the variation of the kinetic energy. The variation of the strain
energy of the plate is given by:

h
L
su=/, [ : 2 (O 88+ 0yy 88y +T,, 83y + T 8Yx, +7,,8Yy,)dAdz =

Bduo b 928w
f [Nxx xx a)éz
s %68 advqy 25w s 9%8 adu, A8, 98w,
Myx 5 S TNy ay -Myy ay? 7 My a_z(p+N ( y0+0_x0) My Oxﬁyo_
s, Zx‘;‘y”+0xf—x‘”+oy6——q6wo]dA =0  (10)
where N, M and Q are solicitations defined by:
/2
(N, Ny, Nyy ) = [ h/z(gxx ,Oyy, Oxy) dZ (11a)
(Ma?x ) yy' y) f hZ (‘Txx » Oyy» ny) dz (11b)
s s h/2
(M3 M5y, M3,) = [ o f (0xx » Oyy, Oxy) AZ (11¢)
h
(Qx ’ Qy) = f_zﬁg . (sz , Uyz) az (11d)
2

The variables of the potential energy of plate can be
expressed by:
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8Ve = — [ N 6wydA — [, q SwydA (12)
Such as:
2w, 2w, 9% w,
N = N2, Ix2 % +2NY, 9%y + Ny, I

The variation
written as:

of the kinetic energy of the plate can be

h
8K = [, [ 2@t + 060 + ww)p(2)dAdz (13)
2

where dot-superscript convention indicates the differentiation
with respect to the time variable ¢, p(z) is the mass density
given by (1); and (i, Ji, Ki) are mass inertias expressed by

Uo Iy ) = [ 7(1,2,2%)p(2)dz (142)
LB
(]1!]2'K2) = f_ﬁz(f! Zf,fz)p(Z)dZ (14b)

By substituting (10), (12) in (14) and by the integration by
part, the equations of motion are obtained as:

ONygy , ONyy 6‘47

61.10: ox +— ay _Iouo Il ox ]1 (15a)

0@
]1

0Ny ON
8V0: B_Xy+ —IO 0" Il oy (15b)

a°Mp, azMxy+a My
ax? 0xdy dy?

SWO: +N+q 10W0 + Il (auo av) -

127 W() _]ZV (p (ISC)

62M)S(x
6([)0 H %2 +2

%M, 0Qy d
y+ yy+Q+ay_]1(U0

ﬁ ~ 2 3 _ 2..
e 2) 2 VAio-Ka V26

(15¢)

By the substitution of (6a) and introduced in (8a), the
results introduced in (11a), (11b) and (11c¢) give:

N A B BS](&°

MPy=|B D DS|{kb (16)
MS BS DS S kS
in which:

(4,B,D,B%,D%,H°) = [%(1,2,2, f, fz,f?) C(2)dZ (17)

For (6b), (8b) and (11d), the constituent relations are
obtained as:

@)=1% 2

Q=4S

(18)

(19)
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2,45, the stiffness components are given as:

Als —Ass = fhg (2)Cys(z)dZ = fhg (2)Cs5(z)dZ (20)

By substituting (16) and (18) and introducing into (15a)-
(15d), the equations of motion can be expressed in terms of
displacements (ug, Vo, Wo , @) and the appropriate equations
take the form

0170

A11 axz +A66 3y? >+ (A2 +A66)a oy

02 2°
Biy 220 (Byp+2Bgs) St B3, 22 = Ipti —

axdy? 11 6x3 (BIZ + 2366) ax 0 2

22— 1,2 (21a)

i o
Aoy = +A66 +(A12+A66) p ;;
%w 3
By 2 97 2 /-(By2+2Bge) axz; B§23_3_ By, + 2366) = IoVp —

"W° 11 2 21b)

a3 a3
B11 Fye >+ (B, + 2366)6 auoz + (B2 + 2366)a 3y > +B3, a;n
w *w, a*e AL
Dy 2% a 3 Dzz '2(D12+2D66)M—®02'D§1W'D§26_}A
av . ..
2(D5,+2D%6) 55 +N(w)+q Iowo 1y (G2 +57) -1 V2ol V2
(21c¢)
s 0 g" U s N s s s ﬂ
153 +(B%1,+2B 66)0 3y z+(B 12+2B 66) +B%6 oy
a*w, *w, *w, 3 ()] GAL0)
'Dsuﬁ D%za_f'z(D 2+2D 6); 2302 A3s oz +A44a Dl

o ? "
Hiy ﬁ'Z(H 12+2H%6) -5 Xza 7-H3, ay¢ =h (;(0 6_y) J2VAWo-K, V2

21d)

VI. ANALYTICAL SOLUTION FOR SIMPLY-SUPPORTED FG
PLATES

For the analytical solution of the partial differential
equation (21), the Navier technique, based on double Fourier
series, is employed under the specified boundary conditions.

Using Navier’s procedure, the solution of the displacement
variables satisfying the above boundary conditions can be
expressed in the following Fourier series:

q(x,y) = Xn=1 X1 Gy Sin Ax sin pye'®* (22)
where: A=mp /aet pu=np /b, A and p are natural numbers
and « a », «b » are the dimensions of the plate along the x and
v directions, respectively, and for a sinusoidal distributed load.
Assuming that the plate is subjected to a compression load in
its plane in the form:

Na(c)x = _NO'N)(I)y = —YNy
(uo, vo, Wo and @) are given as double Fourier series, satisfying
boundary conditions.

(23a)

uo(x, ) = i1 X1 Uiy €08 Ax sin pye'®*
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vo(x,y) = X2 ¥ v9., sin Ax cos uye'®t (23b) VII. NUMERICAL EXAMPLES AND DISCUSSIONS
- o 0 . ] ot We consider a simply supported plate FG, rectangle of
wo(X,¥) = Xm=1 Xn=1 Xmn Sin Ax sin pye (23¢) " dimensions a and b in the directions x, y respectively, Fig. 1.
. The material properties are given in Table I.
@(x,y) = Xim=1 Ln=1 Ymn Sin Ax sin pye'®* (23d)
TABLEI
Substituting (19), (20a-d) in (18a-d), we obtain: MATERIAL PROPERTIES OF METAL AND CERAMICS
Material moleﬁﬁrslg( GS a) Ma(is ?;r;;ny Poisson’s ratio v
Fu ke s kg M 0 myg g\ [t 0 Aluminium (Al) 70 : 2g702 03
ki kya kyz kau| w2 0 my Mz My v | _ ) O . ' ’
ls Kye s Ko iy mas may M| a0 [ ) G Alumina (AL,O3) 380 3.800 0.3
kiy Koy kas Ky My Mpy Mgy My L%?m) 0 Zirconia (ZrO,) 151 3.000 0.3
(24) ‘ . .
The different one-dimensional parameters used are:
where
g = /m
kyg = Ay A2+ Agept®  kyp = (Ayg + Age) Mt Zh Ec
ki3 = —B11A° — (B, + 2Bge) Al* )
ks = —Bf1A% — (Bi, + 2BE)AU? , kpp = AgeA® + Agpt®, o= |E
ka3 = —Bpalt® — (Byz + 2Bs) A 4, b
ko = —B5,u3 — (BS, + 2B A% u,
k24 -D 2/124# + 2((D 12 +2D 66))/12 lfz + Dyt The objective of this example is to verify the validity of the
k33 _ Dlsl A+ 2( D1sz 42 D656) A2 2+ D?IJ‘; current theory by predicting the vibratory behavior.
3 " 12 66 22t Table II shows the wvariation of the non-dimensional
kyq = HS 2% + 2(HS, + 2HS)A% 12 + H,ut + AS A2 + fundamental frequencies of a rectangular Al/ZrO, plate as a
s 12 22) function of thickness ratio a/h on the one hand, and the power
4 law index on the other hand. The results are compared to 3D
My = Myy = lop,Myz = —Al;,myy = =4, in[13], [14]. .
Mys = —ply, Myy = —f Excellent agreements between the results are obtained. It
Man = 1 +1} ( /1;‘ + ) ;n = 1,(A% + u?) should be noted that the non-dimensional frequency decreases
m33 _ I? ( /122 +p2) sz ' with the increase of the power index, and increases with the
“14 _N z 22+ yu2) increase in the thickness ratio.
= =\
For free vibration: q,,, = 0.
TABLEII

COMPARISON OF NON-DIMENSIONAL FUNDAMENTAL FREQUENCIES(_ﬁ) OF A RECTANGULAR PLATE FGM IN AL/ZRO, SIMPLY SUPPORTED

o/h Theory power law index (p)
0 0.1 0.2 0.5 1 2 5 10
[13] 1.2589 1.2296 1.2049 1.1484 1.0913 1.0344 0.9777 0.9507
2 [14] 1.2571 1.2259 1.2010 1.1443 1.0882 1.0325 0.9771 0.9540
Present 1.2653 1.2265 1.2001 1.1431 1.0856 1.0304 0.9762 0.9532
[13] 1.7748 1.7262 1.6881 1.6031 1.4764 1.4628 1.4106 1.3711
5 [14] 1.7723 1.7241 1.6850 1.6003 1.5245 1.4629 1.4084 1.3726
Present 1.7693 1.7225 1.6829 1.597 1.5194 1.4576 1.4043 1.369
[13] 1.9339 1.8788 1.8357 1.7406 1.6583 1.5958 1.5491 1.5066
10 [14] 1.9330 1.8783 1.8342 1.7402 1.6593 1.5994 1.5500 1.5095
Present 1.9319 1.8785 1.8337 1.7383 1.6554 1.5951 1.547 1.5074
[13] 1.9570 1.9261 1.8788 1.7832 1.6999 1.6401 1.5937 1.5491
20 [14] 1.9824 1.9257 1.8799 1.7830 1.7006 1.6417 1.5945 1.5524
Present 1.9821 1.9265 1.8801 1.7816 1.6973 1.6378 1.592 1.551
[13] 1.9974 1.9390 1.8920 1.7944 1.7117 1.6522 1.6062 1.5620
50 [14] 1.9971 1.9398 1.8935 1.7957 1.7129 1.6544 1.6079 1.5653
Present 1.9971 1.9409 1.894 1.7945 1.7097 1.6506 1.6055 1.5641
[13] 1.9974 1.9416 1.8920 1.7972 1.7117 1.6552 1.6062 1.5652
100 [14] 1.9993 1.9418 1.8955 1.7975 1.7147 1.6562 1.6098 1.5671
Present 1.9993 1.9430 1.8960 1.7964 1.7116 1.6525 1.6075 1.5602
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5 10 15 20 25 30 35 40 45 S0
ah
(b)

Fig. 2 Effect of the power law index p and the thickness ratio a/h on the non-dimensional natural frequency of the Al/AL,O; rectangular plates

As another attempt at verification, Fig. 2 shows the
variation of the natural, non-dimensional frequency as a
function of the power index and the thickness ratio, we
observe that the natural frequencies decreased with the
increase of the index of power, due to the fact that a higher
value of p corresponds to the lower value of the volume
fraction of the ceramic, and thus makes the plates become
more flexible.

VIII.CONCLUSION

In this work, we presented a theory of high-order four-
variable shear deformation that determines the frequencies for
simply supported functionally graded rectangular plates. The
theory takes into account the transverse shear effects and a
parabolic distribution of transverse shear stresses across the
thickness of the FGM plate, therefore it is not necessary to use
shear correction factors.

Navier solutions are obtained for a simply supported plate
and compared to existing solutions to check the validity of the
developed theory.

The material properties are estimated by the power law and
exponential form, this theory is efficient and simple for the
analysis of the vibratory behavior of the FGM plates.

Finally, the numerical results presented in this paper can be
used as a reference for the study of simply supported FGM
plate vibration.
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