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Abstract—Ant colony optimization (ACO) algorithms have
proved to be powerful tools to solve difficult optimization prob-
lems. In this paper, ACO is applied to the electric vehicle routing
problem (EVRP). New challenges arise with the consideration of
electric vehicles instead of conventional vehicles because their
energy level is affected by several uncertain factors. Therefore, a
feasible route of an electric vehicle (EV) has to consider visit(s) to
recharging station(s) during its daily operation (if needed). A look
ahead strategy is incorporated into the proposed ACO for EVRP
(ACO-EVRP) that estimates whether at any time EVs have within
their range a recharging station. From the simulation results on
several benchmark problems it is shown that the proposed ACO-
EVRP approach is able to output feasible routes, in terms of
energy, for a fleet of EVs.

Index Terms—Ant colony optimization, electric vehicle, vehicle
routing problem

I. INTRODUCTION

Transportation has been the main contributor to CO2 emis-

sions. Due to global warming, pollution and climate changes,

modern logistic companies such as FedEx, UPS, DHL and

TNT have became more sensitive to the environment and they

are looking for ways to reduce the CO2 emissions of their daily

operations. There is no doubt that using electric vehicles (EVs)

instead of conventional vehicles will significantly contribute to

the reduction of CO2 emissions.

The conventional vehicle routing problem (VRP) can be

described as follows: given a fleet of vehicles with a certain

capacity, the objective is to find the shortest delivery route

for each vehicle satisfying customers’ demands starting from

the central depot and returning to it. Exact [17], [22], [27],

[28], heuristic [7], [8], [17], [18] and metaheuristics [14],

[15] approaches were designed to solve the VRP. Since VRP

is an NP-hard combinatorial problem, exact methods can

only solve relatively small problem instances [13]. Therefore,

heuristic and metaheuristic are more reliable and efficient since

they trade optimality for efficiency.

Recently, the VRP with electric vehicles (EVRP) variation

has attracted a lot of attention by the research community due

to the extra constraints regarding energy and emissions. So far,

the research on EVRP has focused on problem formulations

for routing passenger cars (e.g., shortest routes from source to

destination) [1], [16], problem formulations for charging coor-

dination in recharging stations [29] and problem formulations

for advanced logistics systems [4].

In this paper, an EVRP variation for an advanced logistic

system to minimize the total operation time of a fleet of electric

vans is formulated. There are also other objectives that can be

considered such as operation costs [4] and energy efficiency

[2]. The difference of the EVRP with the conventional VRP

is that vehicles may require to visit a recharging station to

address the driving anxiety of the limited range of EVs [16].

The recharging station may be visited by any vehicle multi-

ple times (if required) or none (if not necessary). Although

recharging is essential to generate a feasible route for EVs,

it is time consuming. Depending on the technology of the

recharging station and the EV’s specifications (e.g., battery

capacity and on-board charger) the recharging time varies from

1 to 12 hours for a full charge [10]. In addition, the EV has to

travel extra distance to visit the recharging station. Hence, the

recharging process of EVs will increase the operation time of

companies (and possibly also their operation costs).

The ant colony optimization (ACO) metaheuristic [9] has

state-of-the-art results on many variations of the conventional

VRP [5], [6], [12], [20]. However, ACO applications focused

on finding the shortest paths for commercial EVs [3]. In

this paper, an algorithm based on ACO is proposed to find

Hamiltonian paths for electric vans in an EVRP formulation.

Based on the experimental results, the effectiveness of the

proposed ACO to generate feasible routes in terms of energy

for different EVRP scenarios is presented.

The rest of the paper is organized as follows. Section II

describes the EVRP model used in this paper. Section III de-

scribes the proposed ACO for EVRP (ACO-EVRP) algorithm.

Section IV presents the experimental results and analysis

of ACO-EVRP. The effect of key algorithmic parameters is

also analyzed. Finally, Section V concludes this paper with

discussions on future work.

II. ELECTRIC VEHICLE ROUTING PROBLEM

A. Problem Formulation

The EVRP is a variation of the conventional VRP and, thus,

it follows a similar formulation as described in this section.

An EVRP instance is modelled by a fully connected weighted

graph G = (N ∪ F,L), where N = {1, . . . , n} is a set of n
customers (nodes), F = {n+1, . . . , n+ s}∪{0} is a set of s
energy recharging stations and a central depot 0 which is also
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a recharging station and L = {(i, j) | i, j ∈ N} is a set of

links (arcs) connecting them.

Each arc (i, j) ∈ L is associated with non-negative value

tij = R
+ which represents the travel time between customers

i and j and can be defined as:

tij = dij/sij, (1)

where dij and sij are the distance (km) and average speed

(km/h)1 associated with arc (i, j) ∈ L, respectively. Each

customer i ∈ N is associated with a non-negative demand

δi of some goods that need to be delivered by a fleet of

m vehicles as well as service time σi to unload the goods

from the vehicle. Note that σi is proportional to the demand

of the customer i ∈ N (e.g., the higher the demand, δi, the

more the service time required). The vehicle load of an EV,

say k, on arc (i, j), is given be lkij (i.e., 0 ≤ lkij ≤ Q),

where Q is the maximum vehicle capacity (which may be

different for each EV). The maximum service time for each

EV is J minutes (which is the same for all drivers of an

EV and basically defines the maximum working hours of the

drivers). Each recharging station i ∈ F is associated with a

non-negative waiting time wi that represent possible waiting

time. The battery recharging rate r in all charging stations is

the same and is constant.

Each EV has a battery level (i.e., eki ) that determines the

current energy when reaching customer or recharging station

i ∈ N ∪ F which satisfies 0 ≤ eki ≤ BC where BC is the

maximum battery capacity. The charging time cki of an EV

at the charging station i ∈ F is determined by its current

energy level eki and the charging rate of the station such that

cki = (BC−eki )/r assuming that the EV will be fully charged

(i.e., to its maximum battery capacity BC). Note that all EVs

are fully charged and loaded when they leave the depot at the

start of the day.

The objective of the problem is to find the minimum set of

M = {1, . . . ,m} EVs visiting all customers once and only

once satisfying their demands, all starting from and ending

at the depot, such that the total travel time (including driving

time, and charging and waiting time at the energy recharging

station(s)) is minimized. A complete EVRP solution π is

defined by a permutation of nodes (both customers and energy

recharging stations) and consists of the complete routes of all

the EVs. An EVRP solution is evaluated as follows:

minφ(π) =

m
∑

k=1





n
∑

i=0

n
∑

j=0

(tij + σi)x
k
ij + (cki + wi)y

k
i



 ,

(2)

s.t
n
∑

j=0

m
∑

k=1

xk
ij = 1, ∀i ∈ N, (3)

1Note that the average speed is based on the speed limit of the roads. It
may also be affected by other uncertainties such as traffic, road conditions,
etc.

n
∑

i=0

m
∑

k=1

xk
i0 = m, (4)

n
∑

j=0

m
∑

k=1

xk
0j = m, (5)

n
∑

i=0

xk
il −

n
∑

j=0

xk
lj = 0, ∀l ∈ N ∪ F, ∀k ∈M, (6)

n
∑

i=1

n
∑

j=0

δix
k
ij ≤ Q, ∀k ∈M, (7)

n
∑

i=0

n
∑

j=0

(tij + σi)x
k
ij + (cki + wi)y

k
i ≤ J, ∀k ∈M (8)

ekj ≤ eki − bkijx
k
ij +BC(1 − xk

ij),

∀i ∈ N ∪ F, ∀j ∈ N, ∀k ∈M,
(9)

eki ≥ min{bki0, (bkij + bkj0)}, ∀i ∈ N, ∀j ∈ F ∀k ∈M, (10)

xk
ij ∈ {0, 1}, ∀i, j ∈ N ∪ F, ∀k ∈M, (11)

yki ∈ {0, 1}, ∀i ∈ F, ∀k ∈M, (12)

where Eq. (2) defines the EVRP objective function (output in

minutes), Eq. (3) ensures that each customer is visited exactly

once, Eqs. (4) and (5) ensure that all EVs leave and return to

the central depot, Eq. (6) ensures that when an EV visits a

customer or a charging station it also leaves from it, Eq. (7)

ensures that no EV is overloaded, Eq. (8) ensures that the

maximum service time of an EV is respected, Eq. (9) ensures

that the battery level is reduced by bkij (described in more

details in Eq. (15) later on) when visiting customer j from

customer i, Eq. (10) ensures that there is enough energy to

either return to the depot or visit a recharging station, Eq. (11)

is a binary decision variable defined as follows:

xk
ij =

{

1, if EV k visited customer j immediately after i,

0, otherwise,
(13)

and Eq. (12) is another binary decision variable defined as

follows:

yki =

{

1, if EV k recharged at station i,

0, otherwise,
(14)

B. Energy Consumption

The energy consumption model utilized to calculate the

energy consumption of the k-th EV between customers i and

j is defined as follows [19]:

bkij =
(

aij(w + lkij)dij + z(sij)
2dij

)

/EF (15)

where aij = a + g sin θij + gCR cos θij is an arc specific

constant, z = 0.5CDAD is a vehicle specific constant, EF is

the engine efficiency, w is the vehicle curb weight (kg), a is

the acceleration (m/s2), g is the gravitational constant (m/s2),

θij is the road angle (degree) associated with arc (i, j), A is



Algorithm 1 ACO-EVRP

1: t← 0
2: InitializePheromoneTrails(τ0)

3: while (termination condition not satisfied) do

4: ConstructSolutions
5: πib ← FindIterationBest

6: if (φ(πib) < φ(πbs)) then

7: πbs ← πib

8: end if

9: PheromoneUpdate
10: t← t+ 1
11: end while

12: OUTPUT: πbs %best EVRP solution

the frontal surface area of the vehicle (m2), D is the air density

(kg/m3), CR is the coefficient of rolling resistance and CD

is the coefficient of rolling drag.

Note that the energy consumption calculated using Eq. (15)

for different EVs (even if we have a homogeneous fleet of

EVs) travelling on the same arc may be different because their

current loads may differ (i.e., lkij). An EV with a heavier load

will consume more energy than an EV with a lighter load.

Note that the load of an EV changes whenever a customer is

served (e.g., unloading goods). There are other dynamic factors

that can affect the energy consumption of an EV such as the

traffic conditions [24], the number of idle and acceleration

situations [1], the angle of the roads [23], the weather and

cabin temperature [2], and many other uncertainties.

III. ANT COLONY OPTIMIZATION FOR EVRP

A. Constructing Solutions

Ants read pheromones to construct solutions and write

pheromones to mark their constructed solutions (see Algorithm

1). Each ant h represents a complete EVRP solution (i.e., the

routes of all EVs). With probability (1− q0) the h-th ant uses

a probabilistic rule to choose customer j from customer i (i.e.,

exploration) as follows:

phij =







[τij ]
α[ηij ]

β

∑
l∈Nh

i
[τil]

α[ηil]
β , if j ∈ N h

i ,

0, otherwise
(16)

and with probability q0 the h-th ant chooses the next customer

j from customer i with the highest probability (i.e., exploita-

tion) as follows:

j = arg max
l∈Nh

i

{phil}, (17)

where q0 (0 ≤ q0 ≤ 1) is a decision rule parameter, τij and ηij
are the existing pheromone trail and the heuristic information

available a priori between customers i and j, respectively. The

heuristic information is calculated as ηij = (1/tij) where

tij is defined as in Eq. (1). N h
i is the set of unvisited

customers satisfying EV’s capacity constraint in Eq. (7) and

the maximum service time constraint in Eq. (8) for the h-th

ant adjacent to customer i. When N h
i = ∅ then the central

depot (i.e., 0) is added to the EVRP solution that denotes the

route of another EV. α and β are the two parameters which

determine the relative influence of τij and ηij , respectively.

B. Visiting a Recharging Station

In order to ensure that EVs have enough energy to travel

and satisfy the demands of their customers and return back to

the central depot, they may need to make a visit (or visits) to

energy charging stations. In other words, to satisfy the energy

constraints in Eqs. (9) and (10) at each solution construction

step each ant h must ensure that enough energy is left to the

EV to visit at least one charging station from F set. Note that

charging stations can be visited multiple times by the same or

a different EV.

To construct a feasible solution in terms of energy the

algorithm must look ahead to discover if any charging sta-

tion (including the depot as charging station) is within its

range after a customer is visited. Therefore, the N h
i set of

unvisited customers in Eqs. (16) and (17) must also satisfy

the aforementioned energy constraints. If not, then their is a

potential risk that the EV will run out of energy at some point.

Suppose that an EV, say k, visits customer i using the decision

rule defined in Eqs. (16) and (17). Then based on the energy

level at customer i the range of energy required for visiting a

recharging charging station or the central depot must satisfy

eki − bil ≥ 0, ∃ l ∈ F to be able to recharge at any time (if

required). In this way, the algorithm ensures that no EV is

left without energy and eliminates the violation of the energy

constraints in Eqs. (9) and (10).

Finally, in case all customers within the energy range of

the EV violate the capacity constraint in Eq. (7) or service

constraint in Eq. (8) then the EV has to return back to the

central depot according to the decision rule in Eq. (16).

C. Updating Pheromones

In this paper, the pheromone update policy ofMMAS [25],

[26] is used. At the beginning all the pheromone trails are

initialized as follows:

τ0 ← 1/ρCnn, ∀(i, j) ∈ L, (18)

where ρ (0 < ρ ≤ 1) is the pheromone evaporation rate

(see below) and Cnn is the length of a tour generated by

the nearest-neighbor heuristic2. Then, the pheromone trails are

updated by applying evaporation as follows:

τij ← (1− ρ) τij , ∀(i, j) ∈ L, (19)

where ρ is the pheromone evaporation rate and τij is the

existing pheromone value on arc (i, j). After evaporation, the

best ant deposits pheromone proportional to its solution quality

as follows:

τij ← τij +∆τbestij , ∀(i, j) ∈ πbest, (20)

2The tour may not be feasible in terms of energy because energy stations are
not considered in the tour. However, it does not affect the performance of the
algorithm since an estimation is enough to generate good initial pheromone
trail values.



F-n45-k4.evrp F-n72-k4.evrp F-n135-k7.evrp

Fig. 1. Illustration of the generated EVRP instances where the white squares are energy recharging stations, the black square is the central depot (also an
energy recharging station) and the black circles are customer locations.

TABLE I
DETAILS OF THE GENERATED EVRP INSTANCES

Instance Name # of Customers # of Depots # of Charging Stations Gross Vehicle Weight Rating (GVWR)

F-n45-k4.evrp 45 1 5 7.5 tons

F-n72-k4.evrp 72 1 10 7.5 tons

F-n135-k7.evrp 135 1 15 7.5 tons

where ∆τbestij = 1/Cbest is the amount of pheromone that the

best ant deposits and Cbest is the cost of the best solution

πbest (i.e., Cbest = φ(πbest)). The “best” ant that is allowed

to deposit pheromone may be either the best-so-far ant3 (πbs),

in which case Cbest = Cbs, or the iteration-best ant (πib), in

which case Cbest = Cib, where Cbs and Cib are the tour costs

of the best-so-far ant (i.e., Cbs = φ(πbs)) and the iteration-

best (i.e., Cib = φ(πib)), respectively. These two types of ants

are applied in an alternate way. More precisely, the iteration-

best ant is allowed as a default to deposit pheromone and the

best-so-far ant is used only every fixed number of iterations

(i.e., 25, more details in [26]).

The lower and upper limits τmin and τmax of the pheromone

trail values are imposed. The τmax value is bounded by

1/(ρCbs), where Cbs is initially the solution quality of an

estimated optimal tour (i.e., Cnn) defined in Eq. (18), and

later on is updated whenever a new best-so-far ant solution

quality is discovered. The τmin value is set to τmin =
τmax(1− n

√
0.05)/((avg− 1)n

√
0.05) where avg is the average

number of different choices available to an ant at each solution

construction step.

Since only the best-so-far and iteration best ants are allowed

to deposit pheromone, the algorithm may reach stagnation

behavior quickly. To address this issue, the pheromone trails

are occasionally reinitialized to the value τmax. For exam-

3The best-so-far ant is a special ant and may not necessarily belong to the
colony of the current iteration. It is the best solution found among all the
iterations.

ple, whenever the stagnation behavior4 occurs or when no

improved solution is found for a given number of iterations,

the pheromone trails are reinitialized.

IV. SIMULATION STUDIES

A. Experimental Setup

In the experiments, we apply ACO-EVRP to three typical

VRP problem benchmark instances (i.e., F-n45-k4.vrp,

F-n72-k4.vrp, and F-n135-k7.vrp) obtained from

the VRPLIB5. Considering the EVRP described in Sec-

tion II, charging stations are required for EVs for recharg-

ing purposes. Since EVRP benchmark instances are not

available, charging stations are added to the three con-

ventional VRP instances to generate three EVRP bench-

mark instances F-n45-k4.evrp, F-n72-k4.evrp, and

F-n135-k7.evrp, respectively6. The charging stations are

distributed in such a way to cover all the customers of the

problem instance. The resulting problem instances are shown

in Fig. 1 and their specifications in Table I. Furthermore, the

capacities and customer demands of the conventional VRP

benchmark instances are modified to fit the specifications of

Smith Newton’s electric vans [19]. Considering that these EVs

have a gross vehicle weight rating (GVWR) of 7.5 tons and

4Stagnation behaviour is detected using the λ-branching scheme [11] that
calculates the statistics regarding the distribution of the current pheromone
trails.

5A library that consists of VRP problem instances, which is available at
http://neo.lcc.uma.es/vrp/

6Note that the generated EVRP benchmark problems have an .evrp exten-
sion, which are available at https://github.com/Mavrovouniotis/evrp-instances/



TABLE II
EVRP MODEL PARAMETER VALUES

Parameter Description Value

EF Engine efficiency 70%

w Vehicle curb weight 3.629 tons

a Acceleration 0 m/s2

g Gravitational constant 9.81 m/s2

A Frontal surface area of the EV 5 m2

θij Road angle 0 ◦

sij Average EV speed 50 kph

D Air density 1.2041 kg/m3

r Charging rate in public stations 40 kW

CR Coefficient of rolling resistance (unitless) 0.01

CD Coefficient of rolling drag (unitless) 0.7

BC EV battery capacity 120 kWh

J Maximum service time of EV 480 mins

Q Maximum EV capacity 3.871 tons

their vehicle curb weight is 3.629 tons, the maximum cargo

(or capacity) is estimated up to 3.871 tons (i.e., parameter Q
in Eq. (7)). The maximum service time for an EV driver is set

up to 480 minutes (8 hours) for one day (i.e., parameter J in

Eq. (8)). The rest of the parameter values used in our EVRP

model for our simulation experiments are shown in Table II.

The algorithms perform 10e4 iterations for 50 independent

executions (on the same set of random seeds) and the mean

total travel time (in minutes) is recorded together with the total

distance travelled (in kilometres), feasibility (as a percentage

of successful executions), number of recharges and number

of EVs used. The feasibility of a complete EVRP solution in

terms of energy for each execution must satisfy eki ≥ 0, ∀i ∈
N ∪ F, ∀k ∈ M . Also the average number of iterations and

CPU time (in seconds) to find the solution in an execution

is recorded. The experiments were performed under a Linux

System with an Intel Core i7-3930K 3.20GHz processor with

12MB cache and 16GB RAM.

For the experiments 50 ants were used and the common

parameters used were set to typical values as follows: α = 1
and β = 5 whereas the effect of q0 and ρ parameters are

further investigated in the following subsection.

B. Results on the Effect of the Decision Rule and Evaporation

Rate Parameters

It is well known that the q0 and ρ parameters defined

in Eq. (17) and Eq. (19), respectively, have a great impact

on the exploration and exploitation of the ACO metaheuris-

tic. Since they are key parameters, we systematically vary

the values as follows: q0 ∈ {0.0, 0.2, 0.5, 0.9} and ρ ∈
{0.02, 0.2, 0.4, 0.6, 0.8}. The experimental results with all the

combinations of the parameters are given in Table III. More-

over, the solution quality (in minutes) against the iterations

TABLE III
EXPERIMENTAL RESULTS REGARDING THE TOTAL TRAVEL TIME (mins)
OF ACO-EVRP WITH DIFFERENT PARAMETER SETTINGS OF q0 AND ρ.
BEST AND WORST ARE THE MINIMUM AND MAXIMUM VALUES. MEAN

AND STDEV ARE THE AVERAGE AND STANDARD DEVIATION. iavg AND

tavg ARE THE AVERAGE NUMBER OF ITERATIONS AND CPU TIME

REQUIRED (secs) TO FIND THE BEST SOLUTION, RESPECTIVELY.
AVERAGES ARE TAKEN OVER 50 EXECUTIONS

Instance & ACO Best Mean±Stdev Worst iavg tavg
F-n45-k4.evrp

q0 = 0.0, ρ = 0.02 1234.3 1258.3±26.8 1332.5 4156.8 3.7

q0 = 0.0, ρ = 0.2 1236.1 1241.8±1.38 1246.0 4656.0 4.0

q0 = 0.0, ρ = 0.4 1233.8 1241.3±2.6 1248.9 4410.2 4.2

q0 = 0.0, ρ = 0.6 1234.6 1240.6±2.5 1245.3 5829.6 5.1

q0 = 0.0, ρ = 0.8 1235.8 1240.4±2.9 1252.8 5374.6 4.7

q0 = 0.5, ρ = 0.02 1241.5 1267.6±24.0 1331.3 4873.5 4.4

q0 = 0.5, ρ = 0.2 1241.5 1261.6±18.8 1310.9 5285.8 4.4

q0 = 0.5, ρ = 0.4 1238.2 1251.1±10.5 1277.6 5459.0 4.5

q0 = 0.5, ρ = 0.6 1236.2 1251.4±14.7 1308.0 5196.4 4.3

q0 = 0.5, ρ = 0.8 1237.3 1247.6±8.8 1275.2 5062.8 4.2

q0 = 0.9, ρ = 0.02 1254.1 1330.8±34.7 1380.6 3758.3 2.8

q0 = 0.9, ρ = 0.2 1273.9 1304.7±10.3 1344.0 4957.8 3.5

q0 = 0.9, ρ = 0.4 1270.7 1303.7±9.9 1308.1 4447.4 3.2

q0 = 0.9, ρ = 0.6 1265.8 1302.4±11.7 1308.1 4215.6 3.0

q0 = 0.9, ρ = 0.8 1261.5 1300.5±10.4 1307.4 4161.4 2.9

F-n72-k4.evrp

q0 = 0.0, ρ = 0.02 686.0 688.2±1.2 689.7 5721.4 8.2

q0 = 0.0, ρ = 0.2 679.9 687.3±1.8 689.6 5537.6 7.9

q0 = 0.0, ρ = 0.4 679.9 685.7±3.1 700.5 5994.2 9.3

q0 = 0.0, ρ = 0.6 679.9 683.7±2.8 689.6 5278.6 7.5

q0 = 0.0, ρ = 0.8 679.9 683.5±2.9 690.7 4965.5 7.1

q0 = 0.5, ρ = 0.02 689.6 690.4±0.8 694.2 4371.2 6.1

q0 = 0.5, ρ = 0.2 687.5 689.8±0.6 690.2 4864.0 6.6

q0 = 0.5, ρ = 0.4 679.9 688.4±2.3 697.1 6440.1 9.0

q0 = 0.5, ρ = 0.6 679.9 686.7±2.6 691.3 6818.5 9.3

q0 = 0.5, ρ = 0.8 679.9 686.4±3.0 692.2 5842.8 8.0

q0 = 0.9, ρ = 0.02 691.3 693.9±3.8 706.6 4408.9 5.4

q0 = 0.9, ρ = 0.2 691.3 692.9±1.1 694.0 4426.4 5.3

q0 = 0.9, ρ = 0.4 686.7 692.4±1.4 694.0 5984.6 6.7

q0 = 0.9, ρ = 0.6 689.3 692.1±1.2 695.3 5343.4 6.0

q0 = 0.9, ρ = 0.8 688.1 692.4±1.8 700.1 5429.6 6.1

F-n135-k7.evrp

q0 = 0.0, ρ = 0.02 1815.7 1843.9±19.0 1936.9 5791.7 21.8

q0 = 0.0, ρ = 0.2 1812.6 1841.5±7.5 1851.8 4818.6 17.7

q0 = 0.0, ρ = 0.4 1828.9 1842.8±6.0 1854.4 5396.1 19.6

q0 = 0.0, ρ = 0.6 1819.4 1838.3±8.4 1859.5 4832.4 17.7

q0 = 0.0, ρ = 0.8 1820.9 1841.1±8.5 1861.1 5037.3 18.6

q0 = 0.5, ρ = 0.02 1821.3 1864.9±33.3 1966.4 5613.3 20.0

q0 = 0.5, ρ = 0.2 1832.6 1849.4±9.1 1879.2 5227.5 18.1

q0 = 0.5, ρ = 0.4 1828.3 1850.5±9.5 1874.4 4613.9 15.9

q0 = 0.5, ρ = 0.6 1817.1 1845.3±9.6 1873.2 5352.7 18.4

q0 = 0.5, ρ = 0.8 1825.9 1850.5±10.3 1871.8 3925.5 13.8

q0 = 0.9, ρ = 0.02 1885.1 2005.9±50.8 2094.7 5200.9 16.1

q0 = 0.9, ρ = 0.2 1857.3 1924.5±36.3 2011.8 5749.2 17.6

q0 = 0.9, ρ = 0.4 1856.0 1915.0±34.1 2010.5 5515.6 16.6

q0 = 0.9, ρ = 0.6 1847.3 1905.5±35.8 2022.1 5652.2 17.0

q0 = 0.9, ρ = 0.8 1838.7 1893.8±31.0 2007.3 5385.4 16.7

Underlined values indicate best performing parameter combination.

graphs are plotted in Fig. 2 for ACO-EVRP with q0 = 0.0 and

different ρ values and in Fig 3 for ACO-EVRP with ρ = 0.8
and different q0 values.
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Fig. 2. Effect of the parameter ρ when q0 = 0.0 on the solution quality of ACO-EVRP in minutes (given on y-axis) and the number of algorithmic iterations
(given on x-axis).
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Fig. 3. Effect of the parameter q0 when ρ = 0.8 on the solution quality of ACO-EVRP in minutes (given on y-axis) and the number of algorithmic iterations
(given on x-axis).

From Table III, Fig. 2, and Fig. 3 it can be observed that

ACO-EVRP solution quality improves as the ρ value increases.

The best mean results are obtained when the evaporation rate

is set to ρ = 0.6 for F-n135-k7.evrp and ρ = 0.8 for the

other two instances. The same observation holds for all values

of q0. However, the performance of ACO-EVRP is better when

the decision rule parameter is set to q0 = 0.0. In terms of

efficiency, ACO-EVRP outputs its best solution within a few

seconds (e.g., 18.6secs for F-n135-k7.evrp which is the

largest problem instance).

For the remaining experiments we set the decision rule

parameter to q0 = 0.0 for all problem instances, and the

evaporation rate to ρ = 0.8 for F-n45-k4.evrp and

F-n72-k4.evrp and to ρ = 0.6 for F-n135-k7.evrp. It

is worth mentioning that for other problem instances a different

parameter combination may perform better.

C. Results on the Effect of the Pheromone Trails

To investigate the effect of the pheromone trails generated

by ACO-EVRP we set α = 0 from Eq. (16) so pheromone

trails are not considered when solutions are constructed. The

comparisons for ACO-EVRP with pheromone trails (denoted

TABLE IV
EXPERIMENTAL RESULTS REGARDING THE TOTAL TRAVEL TIME (mins)

OF ACO-EVRP WITH AND WITHOUT PHEROMONE TRAILS. BEST AND

WORST ARE THE MINIMUM AND MAXIMUM VALUES. MEAN AND STDEV

ARE THE AVERAGE AND STANDARD DEVIATION. iavg AND tavg ARE THE

AVERAGE NUMBER OF ITERATIONS AND CPU TIME REQUIRED TO FIND

THE BEST SOLUTION, RESPECTIVELY. AVERAGES ARE TAKEN OVER 50
EXECUTIONS

Instance & ACO Best Mean±Stdev Worst iavg tavg

F-n45-k4.evrp

ACO-EVRP+ 1235.8 1240.4±2.9 1252.8 5374.6 4.7

ACO-EVRP− 1247.3 1263.2±9.6 1282.1 4521.3 4.4

F-n72-k4.evrp

ACO-EVRP+ 679.9 683.5±2.9 690.7 4965.5 7.0

ACO-EVRP− 699.3 705.5±2.7 709.5 5318.5 8.1

F-n135-k7.evrp

ACO-EVRP+ 1819.4 1838.3±8.4 1859.5 4832.4 17.7

ACO-EVRP− 1932.3 1958.1±16.2 1992.7 5082.6 20.7

Bold values indicate statistical significance.

ACO-EVRP+) and ACO-EVRP without pheromone trails

(denoted ACO-EVRP−) are given in Table IV. In addition,



TABLE V
EXPERIMENTAL RESULTS OF THE PROPOSED ACO-EVRP AND AN ACO FOR THE CONVENTIONAL VRP VARIATION. THE NUMBER OF EVS USED, TOTAL

TRAVEL TIME (mins), DISTANCE TRAVELLED (km), NUMBER OF RECHARGES, THE WAITING AND CHARGING TIMES (mins), AND THE FEASIBILITY

PERCENTAGE ARE PRESENTED. AVERAGES ARE TAKEN OVER 50 EXECUTIONS

Instance & ACO # of EVs Total Travel Time Distance # of Recharges Charging Time Waiting Time Feasibility

F-n45-k4.evrp

ACO-EVRP 3 1240.4 780.3 2 33.8 30.0 100%

ACO-VRP 2 1072.4 695.5 – – – 0%

F-n72-k4.evrp

ACO-EVRP 3 683.5 267.1 0 0.0 0.0 100%

ACO-VRP 3 683.5 267.1 – – – 100%

F-n135-k7.evrp

ACO-EVRP 4 1838.3 1076.5 2 29.1 30.0 100%

ACO-VRP 4 1677.2 992.3 – – – 0%

pairwise comparisons are performed using the Mann–Whitney

statistical test (bold value indicates significant difference with

confidence level 95%).

From Table IV it can be observed that ACO-EVRP+
performs significantly better than ACO-EVRP− in all three

problem instances. The results show that the pheromone trails

have a positive effect on the performance of the proposed

ACO-EVRP. This is because the iterative pheromone update

procedure is basically a reinforcement learning procedure:

the arcs of the best path will be rewarded with additional

pheromone. Therefore, at every iteration the optimization

process exploits previous knowledge and is directed towards

promising areas of the search space. After several iterations the

arcs most probably belonging to the global optimum solution

will have a higher probability (i.e., more pheromone than other

arcs) to be selected according to the decision rule in Eq. (17).

When pheromone trails are not considered, then the al-

gorithm behaves as a classic stochastic greedy constructive

heuristic with multiple restarts. This is because the shortest

arcs between two customers are more likely to be selected.

However, in Hamiltonian paths the shortest arcs may not nec-

essarily belong to the global optimum solution. Furthermore,

there is no reinforcement learning therefore the optimization

process will be evolve without exploiting previous knowledge.

D. Results on the Comparison of ACO-EVRP vs ACO-VRP

To investigate the ability of generating feasible solutions

(i.e., no EV is left without energy while operating), the

proposed ACO-EVRP is compared with an ACO for the

conventional VRP (denoted ACO-VRP) [20]. The experimen-

tal results of the two aforementioned ACO variations are

presented in Table V. Apart from the feasibility percentage,

the number of EVs used, number of recharges, the total time

and distance travelled, the waiting and charging times are also

given.

From Table V it can be observed that ACO-EVRP is always

able to find feasible solutions (50 times out of 50 executions)

in all problem instances. This eliminates the anxiety of driving

EVs due to the several factors affecting the already limited

range of their batteries. On the contrary, ACO-VRP is able to

find feasible solutions only for F-n72-k4.evrp. However,

it can be observed that for this specific problem instance there

is no need for EVs to recharge and this is why ACO-VRP is

able to find a feasible solution. It can be observed that exactly

the same solution is found by the proposed ACO-EVRP which

shows that the potentially different neighborhoods (i.e., N h
i )

generated in Eq. (16) during the solution construction are not

degrading the solution quality.

Furthermore, the ACO-EVRP solutions on the re-

maining problem instances (i.e., F-n45-k4.evrp and

F-n135-k7.evrp) are worst than ACO-VRP in terms of

time and distance because some EVs require to visit recharging

stations twice. Therefore, it is straightforward that the total op-

eration time and distance travelled will be increased to ensure

feasibility. Also, it is worth mentioning that the presence of

recharging stations contributes to the feasibility of the routes.

Otherwise, if only the central depot was available to EVs for

recharging, it would not be always possible to generate feasible

routes as in the ACO-VRP case.

V. CONCLUSIONS

In this paper, ACO is applied to the EVRP to minimize

the travel time (and potentially the operation cost) of a fleet

of EVs. The construction of solutions of the proposed ACO

considers the energy levels of the EV and estimates the range

of the charging stations before performing the next operation

step (i.e., visit the next customer). The aim of ACO is to

generate feasible solutions in terms of energy such that EVs

will not run out of energy during their daily operation. The

experimental results on different EVRP scenarios show that the

proposed ACO algorithm can always output a feasible solution

in a few seconds.

For future work, we are also considering other factors in the

EVRP presented model that affect the energy consumption of



EVs, such as traffic [21] and weather [2] conditions. In this

way, the estimation of whether a recharging station is within

the range of an EV will be more accurate.
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