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XIV.—On Torsional Oscillations of Wires. By Dr W. Peppre.  (With Two Plates.)

(Read 20th June 1898.)

This paper is in continuation of two others, on the same subject, previously
communicated to the Society. In the First Paper (Philosophical Magazine, July 1894)
it was shown that the formula

¥ +a)=1,

where 7, a, and b are constants in any one experiment, represents with accuracy
the relation between y, the range of oscillation, and «, the number of oscillations
which have taken place since torsion was first applied and the wire was left to itself,
so that the oscillations gradually diminished. The apparatus employed, and the
method of observation used, were identical with those deseribed in the Second Paper
above referred to. The wire which was experimented upon was the same as that used
on the previous occasions. Its length, as given in the First and Second Papers, was
89'1 cm. A measurement made on the date 19.10.1897, in the course of the last
series of experiments described in the present paper, showed that the length had
become 893 ecm. This increase was doubtless due to the fact that the heavy lead
oscillator had been left attached to the wire during the whole of the intervening
period. On the date given, it was also found that, with the same oscillator as was
used in the experiments first described, ten oscillations were performed in 81 seconds,
when the range was large, while 79 seconds were occupied when the range was small.
This observation verified the result stated in the First Paper, that the period slightly
increases as the range increases. It also showed that the wire was practically in the
same condition as it was at first, in so far as elastic qualities are concerned; for the
corresponding periods were only slightly less in earlier experiments, the difference
being largely accounted for by the slight increase of length of the wire.

In the First Paper, the above equation was also deduced as an approximation, from
the assumption that the defect of the potential energy of the system, at any given
distortion, from the value which it would have had in accordance with Hooke’s Law,
was proportional to a power of the distortion. It was pointed out that the value
of n seemed to approximate to zero when the range of oscillation was very small ;
and that, when n becomes zero, the equation changes form and becomes the well-
known exponential equation, which was first proved by Lord KELviN to hold when
the oscillations are small.

An improved method of caleulating the values of the quantities n, @, and b was
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described in the Second Paper. That method was employed in-the calculations to be

given subsequently. Since
n log y +log (x +a)=log

if log (x+a) be plotted against log y, the corresponding points lie on a straight line
which intersects the axis along which log ¥ is measured at an angle whose tangent
is m—provided that the proper value of a is used. The value of b can then be
obtained. If a wrong value of @ be used, the points will not lie on a straight line.
If too large a value of & is taken, the curve on which they lie is convex towards the
origin ; if too small a value is taken, the curve is concave towards the origin. In
this way the true values of the constants are obtained in any experiment. Fig. 1
illustrates the method.

First Series of Experiments.

Previous attempts to separate the effects of the magnitude of the initial oscilla-
tion and of fatigue upon the values of the quantities n and b had not been success-
ful. An attempt was therefore made to eliminate entirely the effect of magnitude
of range by inducing very great fatigue in the wire. Before this was done a
single experiment was made on the date 8.6.96, the wire having practically not
been .oscillated since the conclusion, on the date 24.12.95, of the third series of
experiments described in the Second Paper. After the date 8.6.96, the wire was
oscillated three or four times per week, by from 20 to 40 complete oscillations of large
magnitude, until the date 10.7.96, when 150 large oscillations were given. Then, on
the dates 14.7.96 and 15.7.96, respectively, 40 and 5 large oscillations were given. No
readings of the decrease of range with increase of number of oscillations, when the
wire was left to itself so that the oscillations died away, were taken on any of these
occasions—the object being merely to induce excessive fatigue as a permanent condition
in the wire. Such readings were taken on ten succeeding occasions. On each occasion
the wire received 25 complete large oscillations, and was then brought to rest before
being started anew in oscillation, when the readings were commenced.

Table I. gives the results obtained, the quantities &, n, and b being calculated in
the manner already referred to. The magnitude of the initial range y, varied greatly
in different experiments. The table also includes the results of the experiment made
on the date 8.6.96. These show that the wire was practically in the same condition
that it had been left in at the conclusion of the previous experiments.” On the other
hand, the results of the experiments made under conditions of great fatigue of the
wire show a marked change in the state of the wire. The value of the product nb
has attained a practically constant value, about equal to one-half of its previous value.
The values of n and b are practically constant also, though the initial range varies

greatly. The double sets of results given under two dates correspond to slightly
different inclinations of the line in the diagram used to determine » and b.
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Fig. 2 shows the result of taking n.=102, b=98, and choosing a for each experi-
ment, so as to make the points taken from obscrvation in each experiment lie,
as far as possible, on a single curve. Ordinates (y) represent range of oscillation,
and abscissee represent number of oscillations (x) plus a. The diagram shows that
an improvement might be made by taking n larger, the product nb being still kept
equal to 100. The result is given in fig. 3, the value of # heing 108, while that of
bis 97. It appears from that figure that an increase of b would introduce further
improvement. The result of making n=1'08 and =100 is shown in fig. 4. The
closeness with which the points lie on the curve is quite sufficient to justify the adoption
of the general equation

¥ (& +a) = 100

to represent the results of the whole series of experiments. As a rule, the points
which correspond to the first readings taken after the oscillations were started in
each experiment are those which lie furthest off the curve. If the first readings
were as accurate as the others we should have

a=100 g,~1®

where y, is the first reading. It is desirable to determine whether or not a slight
modification of this expression for a will apply when the actually observed values
of y, are used. The data below show that this is the case. The first row gives the
observed values of y, The second gives the values of o, which were employed in
order to make the points agree well with the curve shown in fig. 4. The third row
gives the values of «, calculated by the above expression ; the fourth gives the values
of the differences between the observed and the calculated values of a; and the fifth
gives the values of a, if we assume 1'4 to be the true value of that difference, and
calculate o from the expression

a=14+100 y, ~1%

The initial reading, 805, taken on the date 22.7.96, totally disagrees with the second,
third, and subsequent readings, and seems to have been a mistake. A value 7°5 is
much more in accordance with the others.

75 165 20°3 26-2 29 30 31'5 32'5 351 452
14:2 7 6 5 45 44 4 4 4 3-8
12+6 56 45 37 31 30 2-86 277 2:56 2:36

16 | 14 15 13 14 14 11 1-2 14 14
14:0 7 5'9 51 45 d4 43 42 40 3-8

i
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* The numbers in the last row agree sufficiently:well with those in the second to
justify the adoption of the general formula

YU (24 144y, -193) = 100

for the representation of the results of the whole series of experiments made under
the condition of equal large fatigue.

Table IL. contains a comparison, in the case of each experiment, of the results of
observation with those of calculation. The middle column in each case contains the
observed values of y, when x has successively the values 1, 2, 3, 5, 7, 10, 15, 20, 25,
30, 85, 40, 45, and 50. The numbers in the left hand column are those calculated
for the same values of @, with the values of @, n, and b, given in Table I.; those in
the right hand column are the corresponding values obtained by means of the general
formula just given. The latter have been kindly calculated for me by Mr W. THoMsoN,
formerly Donald Fraser bursar in the Physical Laboratory. In practically all cases,
excepting the one in which the initial range had its largest value, the numbers in the
third column agree at least as well with those in the second as do those in the first.

Drscussion of the Initial Ranges in Previous Experiments.

If we take the data for the experiments detailed in Tables IV. and V. of the Second
Paper (Trans. R.S.E., 1896), and calculate from them, for these experiments, the values
of p in the expression

Y+p+by,™) =0,

we get interesting evidence of the effect of magnitude of initial range and of fatigue
upon the value of p. The results are given in Table III. In the first set, the initial
range, ¥, is fairly constant. The numbers in the column headed N give the number
of large oscillations to which the wire was subjected before readings were taken.
These numbers, therefore, to some extent, indicate the amount of fatigue. They do
not do so entirely, since the effect of previous fatigue persists to some extent from day
to day. This is indicated by the smaller values of p on succeeding dates, when N had
a given value. When fatigue is small, p bears a large ratio to a; when fatigue is
great, p bears a small ratio to a.

~ In the second set, fatigue was practically constant while the initial range varied
between wide limits. As was to be expected, p practially vanishes in comparison with
a when the initial range is very small, so that the curve y(x+a)=>bis very flat.

Re-calculation of Data in Table I. of the First Paper.

The values of #, &, and b, given in Table I. of the First Paper (Philosophical Mag-
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azine, July 1894), were obtained,by superposing the experimental curves upon sets of
curves of the required form, and choosing the one which gave best correspondence. .
A re-calculation of the values, by the method now employed, was made, in order to
get a strict comparison of the earlier results with those more recently obtained.
Table IV. contains the values so found. The columns headed %/, o/, b’ contain the
values of the quantities n, a, and b given in the First Paper. The column headed b”
contains the values of b, calculated by the present method, with the old unit for y
(0'364 times the new unit used in the Second Paper and the present paper). The
columns headed 7, a, and b give the values found by the present method in the new
unit. , The values of n and @ are independent of the y—unit. Table VL is, in part, a
reproduction of Table IL of the First Paper. Values of y are given in the top row,
and corresponding values of x+a’ are given in sets of three rows, each set correspond-
ing to one experiment. The middle row of each set gives the experimentally observed
values of x+a; the upper row of each gives the values of x+ o' calculated by means
of the values of #/, &/, and ¥, given in Table IV.; and the lower row gives the values
of x+a’ calculated by means of the values of n, o, and b”, given in that table. The
new values are, on the whole, just as suitable as the old values, and are accordingly
used in the subsequent discussion.

Relations between n and b,

It was pointed out, in the Second Paper, that, throughout the three series of experi-
ments therein described, the value of the product nb was, within possible experimental
errors, constant. The basis for this statement is exhibited graphically in figs. 5, 6, 7.
In these figures the values of log nb are plotted as ordinates against the values of n
as abscissee, The average values of log nb was in each case taken to be 2:3. By
means of the re-calculated values of n and b for the series described in the First Paper,
a similar diagram (fig. 8) was obtained for that series. With the single exception
of experiment P, all the points group very well about a straight line having a positive
slope. This implies the existence of a Critical Angle (see Second Paper) throughout
the series of experiments described in the First Paper; so that, by a proper choice of
the y~unit, the value of nb might have been made constant in that series also. For
the equation

ny"(x + @) =nb

may be written in the form
ny™x+a)= nb(%.)"

by making ky’ =y, i.e., by taking as the unit a quantity & times greater than the
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unit in terms of which y was measured. And, if we denote the quantity on the right
hand side of the equation by B, we get

log (nb)=1log B+n log £,

which, when % is constant, is the linear relation above referred to.

But the value of = is such, throughout each series of experiments, that it is
impossible to determine whether that relation, or a linear relation between log b
and n, is the more accurate. If one were strictly accurate in a given series, the
other cannot be so simultaneously. Yet the possible variations in the determined
values of n and b, for any experiment in a given series, are such that either
relation may be regarded as practically correct. The results for the latter are
exhibited graphieally in figs. 9, 10, 11, and 12,

Just as the maintenance of a linear relation between log nb and n, in a given
series, implies the existence, throughout that series, of a Critical Angle at which the
loss of energy per oscillation is independent of n; so the maintenance of a linear
relation between log b and n, in a given series, implies the existence, throughout that
series, of an angle at which the loss of energy per oscillation varies inversely as n.
For the equation

yMe+a)y=0
may be put into the form

yi(w+a)=> <717>"

by taking as the y—unit a quantity &’ times greater than the unit in terms of which
y was measured. And %’ can always be chosen so that the right hand side of the equa-
tion has a given constant value, 8 say. We then have

log b=1log B+n log %/,
which, when %' is constant, is the second linear relation. Also

fl:l/' _ n+l

]-/
= g’

Hence, when ¥ is unity, w.e., when y=¥, dy'/dz and y'dy’/dx vary inversely as #,
the latter quantity is practically proportional to the loss of energy per oscillation.
For convenience of reference we may call ¥’ the Inverse Angle.

Existence of an Oscillation Constant,

As we have just seen, we can always choose a unit %”, which will make the relation
between y and x take the form

y(@+a)y=A,

where A is an absolute constant. We may call this quantity, &”, the Unifying Angle,
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since it gives the value of a y-—unit, which, in each case, makes b take the absolutely
constant value A. Its magnitude is given by the relation

v (DY

“=(a).
If a simple expression such as this, connecting the Unifying Angle with the observed
quantities n and b in each experiment, did not exist, we could not regard that angle as
a quantity possessing any physical importance whatsoever. Indeed, we could not re-
gard it as such unless the quantity A is found by experiment to correspond to some
physical constant.

A glance at figs. 5-12 makes it apparent that, in each series of experiments,
the lines representing the linear relations already discussed, pass with great accuracy
through the point corresponding to n=1, log 5=2'8. The value b =200 is therefore
of distinct physical importance in all the series. By giving A this value, and eliminat-
ing B and B from the linear equations, we get

. (b\i

k=37
and

_ [nb i

=(%)

Thus the Inverse and Critical Angles have also simple expressions in terms of b and n.

The quantity A is an Oscillation Constant which depends essentially upon the
material of which the wire is made. Further evidence regarding its constancy will be
given immediately.

Second Series of Experiments.

In order to obtain further evidence ou points already referred to, a second series of
experiments, commencing on the date 14.10.97, was made. Between that date and
the date 30.7.96, on which the first series was concluded, the wire had not been
oscillated except on a few occasions in November 1896, and again in March 1897.
The results are given in Table V.

At the end of the first experiment it was found that 364 full oscillations took place
in 5 minutes when the oscillations were large, while 37 took place in the same time
when the oscillations were small. At the end of the experiment dated 15.11.97 (1),
38 half oscillations took place in 24 minutes when the oscillations were small.

The values of a, n, and b, which are obtained when y, is very small, are extremely
uncertain ; yet there is no doubt that the value of n is considerably less than unity
under that condition, and that the value of b is large.

In the earlier experiments of this series there is evidence that the wire had
recovered to a slight extent from the state of fatigue induced in the first series. But



432 DR W. PEDDIE ON

the subjection of the wirc to a comparatively small number of full oscillations (given
in brackets in Table V.) before an experiment was made, reduced 7 and b to values
like those which were obtained in the first series. This was the case even when y, was
comparatively small—see experiment 12.11.97 (1).

The most important object of the present series of experiments was to determine
whether or not, under different initial conditions, points representing simultaneous
values of log b and 7 still practically lay upon straight lines passing through the
point (2:3,1). This was found to be the case. At first the slope of the line was
found to be positive, as it was in the experiments described in the First Paper. The
slope of the line increased, under increased fatigue, until it became practically vertical.
The wire was very sensitive to variations of fatigne, whether due to magnitude of
initial range or to repeated oscillations. Increased fatigue causes an increase of =
and a diminution of b: see, for example, experiments 11.11.97 (1) and (2); experi-
ments 16.11.97 (1) and (2); and experiments 17.11.97 (1), (2) and (3).

Fig. 13 represents a number of the results graphically. The group of three points
marked thus © corresponds to the first three experiments. The group marked x
corresponds to the next nine experiments; those marked [J correspond to the next
ten; those marked v correspond to succeeding experiments in which fatigue was
large ; and those marked by single points correspond to some of the experiments in
which fatigue was small. It is evident that the various groups throughout each of
which fatigue was fairly constant are collected in the neighbourhood of straight lines
passing through the point (2'3,1). Variations may be due to slight differences of
condition as to fatigue or to the fact that a is always chosen as a whole number, while
the most suitable value may lie between two consecutive whole numbers. If; in any
case in which a is small, an error of unity were made in the value of a, the correspond-
ing value of n would change by 0'06 or 007, while the value of log b would only
change by about 0°015 or 0:02. As an error of unity, when a is small, is impossible, it
is evident that the grouping of the points round the lines cannot be regarded as
accidental.

It therefore appears that the Oscillation Constant, A, is truly a constant throughout
all the treatment to which the wire has been subjected.

Recovery from Fatigue.

The data given, Table V., show that the wire recovers partially from. the effect of
fatigue.with considerable rapldlty Compare, for example, the data for the experiments
16.11.97 (2) and 25.11.97. This is most marked in the case of small oscillations—see
12.11.97 (1) and 17.11.97 (1), the former experiment heing made 1mmed1ately after
heavy fatigue, while the latter-was made one day after heavy fatigue.

There is ariother fact which may possibly bear on the question. In some of the
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curves obtained by plotting log (x+a) against log y, when the initial oscillation is
small, though a straight line passes with considerable accuracy in the neighbourhood of
the points, leaving as many points on one side as on the other on the average, yet almost
absolute accuracy would be obtained by drawing two lines meeting at a very slight
inclination—the smaller value of n corresponding to the smaller oscillations. The
crossing point of these lines may possibly indicate an angle of torsion, such that
molecular groups which break at a less angle have recovered from fatigue, while those
which break at a greater angle have not yet recovered from fatigue. I first ohserved
this in the experiment 17.11.97 (1), but it was found subsequently in other experiments,
and had also occurred in previous experiments, as detailed below.

It first appeared in the experiment 8.11.97 (2) with y,=12'8, and it appears
slightly also in the succeeding experiment 4.11.97 (1) with y,=207. It occurred also
in the experiment 9.11.97. In the case of the three experiments of date 10.11.97, it
appeared markedly in the first, very slightly, if at all, in the second, and not at all in the
third—each experiment apparently aiding in its obliteration. The initial angles in
these cases were 13°1, 110, and 112 respectively. It could not be said to be evident
in the experiment 11.11.97 (2), y,= 93, which followed immediately after the experi-
ment 11.11.97 (1), y,=35'6; and it did not appear in the experiment 12.11.97 (1),
Yo=94, which was immediately preceded by 40 large oscillations. In the experiment
15.11.97 (1), y,=8'6, made after the wire had remained at rest for three days, it again
appeared markedly, the point of junction of the two lines corresponding to an angle
about one and a half times as large as that indicated in the experiment 10.11.97 (1).
It could not be observed in the experiment 16.11.97 (1), which followed a large oscilla-
tion on the preceding day, though it would appear if a smaller value of a were chosen.
But a smaller value of o would increase the value of n, and it is to be noticed that the
values of n and b, found for that experiment and the preceding one, are abnormally
large (see 18.11.97 (1)). As already mentioned, the peculiarity appears in the experi-
ment 17.11.97 (1), y,=14°3, the wire having been considerably fatigued on the preceding
day. It did not appear in the subsequent experiments on that date. It was evident in
the experiment 18.11.97 (1), ¥,=9'8. In the succeeding experiment on the same date,
Yo=10, it was also apparent, but the joining point of the lines occurred at a smaller
angle. It could not be said to appear in any of the succeeding experiments. In these
the initial range was very small, or very large; or, the initial range being of inter-
mediate size, the experiments were made when the wire had been only slightly oscillated
for some days, in which case the joining point might be expected to occur at smaller
angles than those which were observed.

The phenomenon, although not very readily observed, occurs with such persistency
that I scarcely think that it can be due to accidental causes. The facts that the joining
point occurs at a larger angle when fatigue is small than when it is large, and that
repetition of an experiment with small initial range makes the joining point pass to
smaller angles, seem to indicate that there is a fairly sharply-marked limiting angle,
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below which recovery from fatigue has proceeded .to a greater extent than it has for
larger angles of distortion.

Zero Effect of Period of Oscillation.

In order to determine whether or not the period of oscillation had any influence on
the values of n and b, on the date 27.10.97, the large oscillator was replaced by the
oscillator of smaller moment of inertia, which was used in the experiments described in
the first paper. The results are given in fig. 14. A comparison of the results given
in Table V., for the experiment 27.10.97 (2), with the results for previous experiments
with the large oscillator, e.g., with the results for the experiment 20.10.97, shows that
no change by halving the period. With such speeds of oscillation we must therefore
regard the results as independent of  after-action.”

Law of Oscillation.

We have alveady found that the period of a complete oscillation is very nearly
constant, being slightly greater for large oscillations than for small oscillations,
Some additions were made to the apparatus in order to make possible determinations of
the times of outward and inward motions over a given range. Fig. 17 shows the
details. The torsion head, to which the upper end of the vertical wire is attached, is
seen at the top of the diagram. The horizontal lead ring is seen attached to the lower
end of the wire. A Wimshurst machine is seen on the left side of the wire. A
vertical glass tube is seen at one extremity of a diameter of the lead ring. Its lower
end is drawn to a fine point, and it is filled with a coloured liquid. A similar tube is
placed at the other end of the diameter of the ring to secure symmetry in the oscillator.
The liquid in the tube is placed, by means of a copper wire, visible in the diagram, in
electric connection with the lead ring ; and a copper wire also connects the torsion head
(which is insulated by means of blocks of paraffin from the support to which it is
clamped) to one pole of the Wimshurst machine. When the machine is worked, the
liquid is driven out of the tube in a fine jet. On the right hand side of the diagram, at
a lower level than the lead ring, are seen massive iron blocks, between which is clamped
a horizontal steel wire, which is weighted at its outer end in order to give it a suffi-
ciently long period of vibration. This wire supports a horizontal sheet of paper, which
vibrates with the wire. If this paper be at rest while a torsional oscillation is given to
the vertical wire under test, the jet of liquid will trace a circle on the paper. But if
the paper now oscillates on the whole transversely to the motion of the jet, a waved
curve will be traced, which crosses the circle at each semi-vibration. The interval of
time between two successive crossings is constant (equal to the period of semi-vibration

of the steel wire), and we can thus obtain a comparison of the times of outward and
inward motions over a given range.
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Two of these curves are shown in fig. 16. The part of a curve which corresponds to
the outward motion can easily be distinguished from that which corresponds to the
inward motion by its greater amplitude. In the first curve, 20 semi-vibrations take
place in the range AB in the outward motion, while 20 take place in the range CA in
the inward motion.” The difference BC corresponds (allowing for the slight difference
at the end A) to about one-third of a semi-vibration. Thus the outward motion over the
range AC occupies less time than the inward motion over the same range, the difference
being about 1 in 60.

Result of Heating the Wire to Redness.

[Added 18th July 1898.—It is to be expected that the molecular freedom which is
introduced by heating the wire to redness will undo, to a great extent at least, the
effect of fatigue. Before testing this point the wire was subjected to greater fatigue
than on any previous occasion, and an experiment was then made on the date 1.7.98.
The results were

a=4, n=1015, b=896, nb=91, y,=367.

Thus by excessive fatigue the value of b was made smaller than it had ever been, while
n, as formerly under such conditions, approximated to unity.

On the date 14.7.98 the wire was heated to redness by a Bunsen flame, the lead
ring being removed to prevent stretching. An experiment was then made, and the
results were

a=7, n=1953, b=680, nb=852, y,=434.

A comparison with the results given in the last column of Table IV. shows that b has
become much more than twice as large as the greatest previous value.

It is interesting to compare this result with the results of two experiments made on
the date 19.7.983, but not published in the first paper. In these experiments the wire
hung inside a long solenoid composed of two similar coils of stout copper wire. In the
first experiment a heavy current was run, in opposite directions, through the coils. The
effect was to maintain the wire at a temperature of about 80° C. The results were

a=2, n=1747, 0=536, nb=936.

The difference between the conditions now considered and those above described is that
now the wire is maintained ab a comparatively high temperature during the experiment,
while formerly it was heated to redness and was then experimented upon when cold.
Though b is not quite so large in the latter case as in the former, n is con§ideral')ly
greater than formerly—so much so that nb is greater in the case now under discussion
than in the other. Hence, when the temperature is maintained high, the loss of energy
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per oscillation is much greater at large angles, much less at small angles, than it is when
the temperature is normal, even after heating to redness.

In the second of the two experiments, performed immediately after the first, the
only change made was that the current was sent in the some direction round the two
coils. Thus, in addition to the maintenance of the wire at a temperature of about
80° C., a steady state of magnetisation was maintained. The results were

a=2, n=2312, 0=2210, =b=5110.

The effects just described are, therefore, in all respects greatly intensified. The
molecular theory of magnetisation would lead one to expect decreased loss of energy at
small angles, and increased loss at high angles, when the magnetisation is great. ]

Theory of the Oscillations of an Imperfectly-Elastic Solid.

The first attempt at a theoretical investigation of the properties of a ductile solid
was made by James TroMsoN (Camb. and Dub. Math. Journ., 1848) in a paper “On
the Strength of Materials, as influenced by the existence or non-existence of certain
Mutual Strains among the Particles composing them.” In applying his investigation to
the case of torsion of a wire, he assumed that a certain definite tangential stress per
unit area could be sustained without the production of permanent distortion, while an
infinitesimal increase of the stress over this value caused continuous sliding until the
stress diminished to the given definite value. In this way he explained the existence
of elastic limits, and the greater strength of a wire as regards torsion in one direction or
the opposite.

A mathematical development of MAXWELL's views of the molecular constitution of a
material substance is given by J. G. Burcuer (Proc. Lond. Math. Soc., vol. viii.) in a
paper “ On Viscous Fluids in Motion.” In it, molecular groups are considered as con-
sisting of two classes—those in which finite strain can be sustained without, rupture,
-and those in which no strain can be sustained; and the properties of substances are
regarded as depending upon the relative proportions in which those groups are present.
“The investigation deals only with those cases in which fluidity is manifest. The
question of “elastic after-action” is included.

In the present investigation, the question of an imperfectly-elastic solid is alone
considered, and elastic after-action is neglected. The case of torsion of a wire is
explicitly developed. The fact that the period of oscillation had no effect on the
experimental results obtained in the preceding part of the paper justifies the omission
of the consideration of after-action in the application of the theory to these cases.

The time which elapses between the breaking down of a group and its formation

into a new configuration is regarded as being zero in comparison with the time of
motion of the wire through any finite range.
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Consider unit length of the wire. Let £ be the relative linear displacement per
unit length at which a particular group breaks down, and let vd¢ be the number of such
groups which break in the increment of displacement df. Then, in the element of
volume 27rdyr, the number 2mvrdrdE break down in the increment df€. Let 0 be the
angular distortion per unit length of the wire. Then 70 is the shear in the element of
volume under consideration. Let

1
m_lré‘,

1
¢=_r0, £=

where m is a whole number. If we assume that a group which breaks at the shear £ is,
on the average, formed again into a group which also breaks at the shear & those
groups which break at £ and & will also break at 76, Now take

=t -9=e(14 L),

where p is a proper fraction.

A group which breaks at £”, has had, when the total shear is 76, m—1 breaks, its
last being at (m—1)¢”=(m—1+p)E The shear to which it is subjected, when the
total shear is 76, is therefore

(m=1)(¢ -¢")=(1-p)¢.

Hence, if we divide the shear & —¢ into an infinite number of equal parts d¢, the
average value of p is 4, so that the average value of the stretch to which the group
which breaks at £ is subjected, when the total shear is 70, is 76/2m.

Now the number 2mrdrdg, when summed over the range corresponding to two con-

secutive values of m, becomes

2mvrdr
m(m-1)""""

So, if the stress to which a group is subjected when it sustains a shear x is, on the
average, kx, the total stress for the above number of groups is

wkvr3@2dr
mim-1)

And the total stress due to groups which break at shears lying between 0 and 79 is

2 1 ¢ 1 g 1
2 2 gl g & L . . . . 1
oSt fo = JatvtuS ol (1)
where a is the radius of the wire, and » and % are assumed to be constants.
If N be the total number of groups per unit volume, the number of unbroken groups’
is, in the volume 27rdr,

r8

(N - [ vd$)2m'dr;

[
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and the total stress due to such groups is

“ N ;
f (N — vr0) k6 -2mrdr = 27rka2<—3-a9 - 'éazgz) O -]
0

The total force tending to diminish the torsion is therefore

2 iNat(a) - L 2[-”;‘] o
.gwlea (ae) 471"12]/“ 2 E._,m?(m—l) (a) )

The single force which, acting at the distance a from the axis, would equilibrate this is

1 a2 _'1 ; 2[ _§ 1 ‘ ] 2
—2-7r7uNa (a6) g1rk:/a _2 T =) (a)?.

= LeiNa¥(a) - LatvatS L (ag)2. . : )
2 5 1 m?

Hence the deviation from Hooke's Law s represented by a negative term involving the
square of the distortion, provided that the quantity v is constant.

But » is the rate at which groups break down per unit change of distortion. Thus
(3) gives the theoretical deviation from Hooke's Law when the range of distortion at
which a group breaks down 1s, on the average for all groups, unitformly distributed
over all possible ranges.

If v were zero there would be no internal loss of energy in the wire ; and, if the wire
were once set in oscillation, the oscillations would, so far as this cause is concerned, con-
tinue for ever without any loss of amplitude. If v is very small, the difference between
the quantities of energy stored up in the wire in two successive maximum twists is
practically proportional to ydy/dx, where y is the scale-reading and x represents number
of oscillations, since Hooke’s Law is nearly obeyed; and we can easily prove (see below)
that the loss of energy in an outward oscillation is proportional to the cube of the
distortion. ~ Also, since, by our fundamental assumptions, every group which broke down
at a certain stage in the outward motion breaks down again at the same point in the
inward motion, the total loss of energy, in the form of heat, in the inward motion to the
zero is equal to that in the outward motion from zero. Hence we get — bdy =1y'dz,
which gives

ye+a)=>.

This is, as we have seen, precisely the equation which was found experimentally to con-
nect range of oscillation with number of oscillations when the wire is greatly fatigued.
If, therefore, our theoretical assumptions correctly represent the physical conditions, the

¢ffect of great fatigue is to produce averagely uniform distribution of breaking range
over all possible values. )
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The apparatus which was used in the experimental investigations was not suitable
for the purpose of testing the expression (8) directly in its application to the torsion of
wires,. Table VIL bas been drawn up for me by Mr P. 8. Harpik, formerly Neil
Arnott scholar in the Physical Laboratory, to test the applicability to the bending of
bars of the equation

y=ax-bx?,

where y represents distorting force and x represents distortion. The data used in the
calculation are some of those given by HopeKiNson and FAIRBAIRN in the B. 4. Reports,
1837. The columns headed z and y give observed values of these quantities; the
columns headed y’ give calculated values of y. The correspondence is extremely close,
in some cases remarkably so, when it is considered that any flaw in the homogeneity
of the material tends to introduce irregularities in the action under stress. Fig. 15
exhibits graphically the results in one case. The full curve represents a curve y = ax — ba?,
and the points on or near it are obtained from the experiments. The straight full
line in the diagram represents the Hooke’s Law line y=ax. The coordinate, y=a?/4D,
of the vertex of the parabola corresponds theoretically to the breaking stress. The
material always, as is to be expected, breaks at a smaller stress.

We have now to investigate the inward motion. At any stage, all groups which
give rise to an inward force in the outward motion give rise to the same inward force
in the inward motion, provided that their last breaking-point has not been repassed.
On the other hand, those groups whose last breaking-point has been repassed do not exert
an inward force, but in general exert an outward force. Hence the inward force at any
stage on the inward motion to zero is less than the inward force at the same stage on
the outward motion. Thus we deduce at once from the theory the observed result that
the time of outward motion over a given range s less than the time of wward motion
over the same range.

Let us suppose now that the angular distortion ¢, in the inward motion, has become
less than half the maximum angular distortion . Every group which broke down in
the outward motion is now exerting an outward force. In the volume 27rdr, since we
are assuming that the breaking range of distortion for different groups is, on the
average, uniformly distributed over all possible values, all groups which broke first
between ¢ and 6 are now exerting on the average an outward force Fir(6—¢). All
those which broke at a range less than ¢ are now exerting an outward force which is
proportional to the distance between ¢ and their lust breaking-point on the inward
motion. To find the total value of this force, consider mE=rp,(m—1)¢ =r¢p. A group
which broke at

E=frplt-9= m< m!ﬁ_i

had its nearest breaking-point outside r¢ at mg”. Its distortion is therefore m&" —r¢p =
pre/(m—1). Now, at the fixed point r¢, when f” ranges over £ — &, p takes all values
from 0 to 1 uniformly, so that its average value is 3. Hence we find that the outward
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pull exerted by all groups which broke first in the range & —& is

f (& - 5)1 ’¢  Smrdr _lﬂwaﬁ( 7)

m(m - 1)2

Thus the total outward force due to those groups whose breaking-range & is less than
re is’

1 varaigrys — L

4 s mm—1) Z’rkm‘z(a?&)?

§||—-

The single force, equivalent to this, acting at a distance o from the axis, is

_wkvag(a%?)E mz )
The outward force due to groups which broke first between 6 and ¢ is
f %kr(@ - ). 2mrdr . vr(0 ~ @)= iwk‘vaz’[a?(é’ -¢)7].
0
Referred to & this becomes
éwkvaz[az(ﬂ— . . . ...
The whole inward force due to unbroken groups is
/ :(N —vr6). 2mrdr . ey = 2mka(ad) [ :1): N- i va o)] .
When referred to distance a this becomes
1 1
27rzsa2(a¢)hN - 5v(ae)]. N
The total inward force is therefore
% mkNa%(ad) - é7r7cva‘3(a2¢>2) . %% - é mhva®(a26?) . . . . . )]

By comparison of the expressions (3) and (7) we see that when, in the inward motion,
the range 1s less than half its maximum value, the inward force is less than the inward

Jorce at the same stage on the outward motion by c«n amount which depends only on the
square of the maximum range.
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When, in the inward motion, the zero is reached, every group which has broken
breaks and re-forms into its initial condition, so that the oscillation proceeds, as formerly,
on the other side of the zero, but with less initial energy,—so giving rise to the lessening
of amplitude. :

Now, as a given increase of maximum range decreases the inward force at any stage
of the inward motion more and more as that range is greater, the time of inward motion
increases when the range increases. But the form of (3) shows that the time of outward
motion is less when the range of oscillation is small than when it is large. Therefore
the period of complete oscillation is greater for large oscillations than for small. This
was shown in the first paper. KUPFFER pointed it out first in 1853.

The result that the zero of oscillation is a point at which groups re-form into their
original condition explains the fact of the constancy of that zero which was found to
obtain as oscillations proceed (see Second Paper).

The expression (7) vanishes when

lI2

‘...

e 1 m

This is, according to the theory, the relation which connects the angle of set with the
angle of maximum twist, provided that the former does not exceed half the latter,
and provided also that v is constant—a condition which seems to hold, as we have
seen, when the wire is greatly fatigued. This equation represents an ellipse whose
semi-axes have aratio of about 13 to 10, and would imply that the wire would flow round
under the action of continued stress when the set equalled about ten-thirteenths of
the distortion, if we could apply the equation to sets beyond half distortion (see Note).

If the inward motion were stopped just short of the zero, and the wire were then
given an outward motion, the conditions differ from those in the first outward motion.
When the angle reaches a value v, equation (6) gives the inward force due to unbroken
groups if ¢ be replaced by . With the same substitution, (5) represents the outward
pull due to groups which broke first between \» and 6. So also, ¥ being substituted
for 6, (1) gives the inward pull due to groups which broke between 0 and . Hence,
the expression in (1) being referred also to distance o from the axis, the total inward
force in this case is

riNa¥(ay) - drhva? (a2y?) S, - inbva? (@267) . . N ()

This differs from the expression (7) in the multiplier of the middle term. The
value of %"% is very closely 5/3 and that of X2, is closely 2/3.
The expressions (3) and (9) have identical values when V=0, after which, the

angle 6 not being exceeded, the inward motion again obeys the law of force given
VOL. XXXIX. PART II (NO. 14). 3 X
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by (7); the next outward motion, the in motion being stopped just short of the' zero,
again obeys the law of force given by (9); and so on. By taking %.#'inste‘ad of Zji,
in equation (8) we get an expression for the angle of set in the first part of the outi-
ward motion under these circumstances. '

We can easily get a simple graphical construction for the two extreme positiong,
of set. Plot forces as absciss® and angles as ordinates. Draw the Hooke’s Law line
as indicated by the first term of (3). Draw also the parabolic curve given by (3), and
the parabolic curve indicated by the first two terms of (9). Take three-fifths of the
difference of abscisse of the Hooke’s Law line and the former parabola at the ordinate
corresponding to the maximum angle 6, and plot it along the line of abscisse. The
ordinate drawn through the point so found intersects the two parabols at points whose
ordinates are the extreme angles of set. The method is shown in fig. 15. '

The dotted curve in fig. 15 is the second parabola above referred to, the full curve
being the first. The position of set being taken as origin, the dotted curve does not
greatly differ from a straight line, the deviations at the larger forces being in the
direction of too great distortion. This result explains WIEDEMANN'S observation (Philo-
sophical Magazine, vol. ix., 1880) that, after a wire has been twisted a few times in
opposite directions alternately by o given couple, and is then twisted by increasing
couples in the direction of the last twist, Hooke’s Law is nearly obeyed, provided the
orginal couple is not exceeded, the slight deviations being in the direction of too
great tunst.

In order to deduce the expression

ye+a)y=0

as the more general relation connecting range of oscillation with number of oscillations,
we have only to assume that the quantity », employed in the preceding investigation,

varies as a power of the strain. Take =176/ (m+p) where m is a whole number and p
is a proper fraction; and, instead of », let us write

1’( 76 ),u,
m +/;

where v and x are regarded as constants. Each group which breaks at £ has, when it
breaks, potential energy 3k£%, which is transformed into heat. Also each such group,

p varying from O to 1, breaks m times. Hence the heat developed in the range 0 to ,
is, in the volume 27rdy,

=9

! 0 \? (10 \* 7 70 G)+e T
Lhm ( ! )v< ) ( o v o (r) rdr
: m+p) \mrp d mEp 2wrdr = why 3y T T

r=1
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The total loss of 'energy is therefore

mhva*(af) <, m .
(B+p) G+p) 1 [mOn+

If this loss is a small fraction of the whole ‘energy we may write it proportional to
6df/dwx, and, by integration, obtain, in the former notation, the result

Y +a)=0..

The theory therefore indicates that n us greater or less than unity, according as groups
breaking at large distortions are more or less numerous than groups breaking at ‘small
distortions.

" "'We can easily, as above, determine the more general relation which connects set with
torsion, but it is sufficient to note that the preceding considerations justify, from the
point of view of theory, the adoption of the approximate expression used in the first
paper on this subject, and that they are therefore justified, in turn, by the experimental
confirmation therein given.

It is not to be supposed that the agreement of the results of the above theory
with the results of observation necessarily proves the truth of the particular assump-
tions therein made. The object of the investigation is rather to show how well a
theory based upon simple and reasonable assumptions concerning molecular statistics
can account for general phenomena exhibited by imperfectly elastic solid media.

Nore. Added 6th October 1898.

It is of interest to determine the general law of motion at all stages of the inward
motion. Let 6 and ¢ have the same meanings as formerly, and take

0=(1+p)rd
with the condition

1
;_[’“"k,

where'u is a whole number and X is a proper fraction. Consider the various stages
r¢/(m + 1) to r¢p/m, where m is a whole number.
A group which breaks at
b,
m+1" “m(m+1)
has its (m + 1)™ break at
ré + a,’is

.
"y
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For all values of = from 0 to 1 this point lies between »¢ and 70, provided that

we have
m> 1 .
P

When the stage ¢ on the inward motion is reached, all such groups exert outward
force, and their average stretch is

m+1 lr¢
[ |=a
The total outward pull due to them is therefore

Lo rp |
M/z e e T

the summation being with respect to m.
When we have
m<k,
p

we must take the fraction x so that its largest value is given by r¢ +xrp/m =19, v.e.,

z=mp.
Then the number of groups
¢ rB-7rd
Polm+ ) mtl

break in the range r¢ to 70 with an average stretch (r6 —r¢). Hence their outward
pull is

T;nb-l-il / 2mrdr . -k(19—7¢x) . . . . (11)
In the case of the remaining number

1-mp) 19 =[?'$_19_,
( mp)m(7n+1) m mal|”

we have to consider the m™ break. Now the m break of a group which broke at
r¢/(m + 1)+ mpre/m(m +1) occurs at mr6/(m+ 1), so that the average stretch for this

number is
ENER
9 m m+1

Hence the total inward pull of these groups is

a

{2md1 vll.m[ ¢ rd ]2 . . . . (12)

Je m m+l,

- [/:



TORSIONAL OSCILLATIONS OF WIRES. 445

To these expressions we have to add the outward pull of groups which break only
between ¢ and 76, This is

j [owrar gto-—rgy . ... L L )
By integration of the expressions (10), (11), (12), and (13), and by supposing, as for-
“merly, that the forces act at a distance & from the axis, we find that the total inward
force is

1 4§[$_L]ﬁ_0_ 5 1 0% 1 o } 9 3[N 1 ]
51rkva{lmm mrl (6-4¢) 21 ¢'Elm (6-¢)2 ; +2m a¢I—5va0

if we take account of the pull (6) due to unbroken groups. This can be put in the
form
%wlcN a*(ag) - évrkva2(a2¢2)'§lm_l_2 - %wkvm(a?m)“%l’% . . . (14)

which reduces, when we put x =0, to the expression (7) applying to the second half of
the inward motion.

The points (1—;?1-1)7'0'are points such that, in the intermediate ranges, the multi-

pliers of the second and third terms in (14) remain constant. The sudden changes in
the magnitudes of these terms are equal and opposite. For, when ¢ reaches the value
#8/(x+1), A having become zero in the expression 1+u+A, » is to be suddenly
changed to »—1 in the affixes of the summations, so that the second term is suddenly
increased by the amount

1 2<2 » 2>_1__1 2a26?)— L
51rkva a(M+l)20 #2_51rkva (“9)(,L+1)2

which is also the decrease of the third term. Thus the force varies continuously.
The amount by which (14) differs from (3) at any definite value of the angle is

1 Bt} B
- _rkan[ 3 —.af?-3—. a2¢2] .
b 1 m2 1m?

This is therefore the continuously varying expression for the defect of the inward force
at a given stage in the inward motion from the inward force at the same stage in the
outward motion.

The limiting boundary of the space included by the series of ellipses represented by
equating (14) to zero indicates the general relation between torsion and set when v is
constant. These ellipses intersect consecutively at points where 2¢=0, 3¢ =29,
4¢ =30, etc. At these points the rate of variation of set with torsion changes suddinly.
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Tasie 1.—Results of the First Series of Emperiments,
*Date. a n b nb Yo
8.6.96 5 1-148 178 204 445
16.7.96 4 1037 100 104 ~- -
18.7.96 4 1030 997 103 325
20.7.96 1 1040 99 103 315
21.7.96 4 1045 100 104 301
22.7.96 13 1033 935 966 8051
23.7.96 7 1:040 101 105 165
23.7.96 7 1020 98 100 165
24.7.96 3 1067 99 106 452
27.7.96 5 1000 97 97 29-0
97.7.96 4 1:060 100 106 29-0
98.7.96 5 1017 100 102 262
30.7.96 6 1033 100 103 203
TABLE II.—Test of the Results of the First Series.
16.7.96 18.7.96 20.7.96
179 198 183 182 185 176 176 184 17°3
15°1 155 153 153 149 149 148 149 15°0
130 130 132 132 12:9 129 128 128 127
102 102 103 103 102 101 10-0 101 100
84 84 85 85 84 84 83 84 83
67 6'6 67 67 66 67 66 66 66
50 49 50 50 49 50 49 49 49
40 40 40 10 40 40 3-9 39 39
33 33 33 33 33 33 3:9 3:2 33
28 2:9 29 28 28 2:8 28 .29 28
25 25 25 25 25 25 2.5 96 95
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TaBLe II.—Continued.
21.7.96 22.7.96 23.7.96

175 184 | 17 63 64 62 114 118 116
147 14'8 144 59 59 59 10-2 10-4 10-4
127 128 12'5 55 56 55 99 94 9-4
100 100 99 50 49 50 77 77 78
83 838 82 46 44 45 67 66 67
66 64 66 3-9 39 40 55 54 5'6
49 49 49 32 32 33 43 43 43
39 39 39 2+7 27 2:8 36 36 36
33 33 33 24 24 25 30 30 30
28 29 28 21 22 22 26 27 26
25 2:6 2'5 19 20 20 2:3 24 23
2-9 23 2:2 17 19 18 21 21 21
20 20 | 20 16 18 17 19 19 19

18 18 | 19

23.7.96 24.7.96 27.7.96

11-7 11-8 11'6 17-7 20°3 191 16-7 168 167
10-4 10-4 104 148 155 15'9 14'3 141 142
94 94 94 131 133 136 12'5 123 124
78 77 78 10°3 10-3 106 100 97 98
67 66 67 84 85 87 83 81 82
56 54 56 66 65 68 67 64 65
42 43 43 49 47 51 50 48 49
36 36 36 39 3-9 40 40 38 39
30 30 30 32 32 33 3-3 32 33
26 27 26 28 28 29 29 2:8 28
2:3 2:4 23 2'5 25 25 25 2'5 25
20 21 21 2'2 22 22 2-2 2:2 22
19 19 19 19 19 2-0 2:0 20 20
18 18 18 18 18 18
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TasLe II.—Continued.
\' 27.7.96 28.7.96 30.7.96
167 168 167 159 167 151 131 134 13-4
14°1 141 142 131 137 130 11'5 117 11-8
122 123 12:4 120 119 11'5 10:3 10-4 105
96 97 98 98 95 93 85 85 86
80 81 82 75 82 78 72 71 73
64 64 65 64 63 63 59 58 60
48 48 49 49 47 47 45 44 4-6
38 38 39 40 38 38 37 37 37
32 32 33 32 31 32 31 31 31
28 2-8 2:8 28 2:8 2:8 27 27 27
24 25 25 25 2:5 24 - 24 24 24
232 2:2 22 22 2:2 2:2 21 20 2'2
20 20 20 2:0 2:0 2:0 19 19 2:0
1-8 1-8 1-8 17 17 18
TasLe I1L.—Tests of Initial Deviations from Formule.
Date. Yo N P a Date. Yo P a
16.7.95 371 1 2-13 6 9.12.95 37-2 035 3
17.7.95 513 10 206 4 12.12.95 368 1-25 3
18.7.95 44-4 20 200 4 17.12.95 142 000 9
19.7.95 41-2 30 2-49 5 18.12.95 143 | -070 9
20.7.95 366 1 209 5 19.12.95 96 020 22
20.7.95 487 50 158 3 19.12.95 70 | -020 25
20.7.95 397 1 147 4 20.12.95 53 080 80
22.7.95 40-0 80 129 3 20.12.95 30 0-00 120
] 23.7.95 42:0 120 073 2 24.12.95 16 | -200 219
25.7.95 302 160 023 2 24.12.95 85 | -030 47
26.7.95 387 1 1-98 4
-26.7.95 439 200 093 2
27.7.95 415 50 0-95 2
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Tasue IV.—Re-calculated Duta for Table I in the First Puper.
Date. ' o v U n a b
5.7.93 1-06 65 574 543 1-02 75 196
7.7.93 118 75 302 723 113 85 231
10.7.93 118 66 802 770 1-16 66 238
10.7.93 1-18 64 802 847 1-20 64 246
10.7.93 1-18 64 802 820 1-19 64 247
14.7.93 118 73 842 822 1:17 73 252
14.7.93 1:18 67 802 781 1-167 67 240
17.7.93 1:32 14 1074 1080 1-326 44 283
18.7.93 1'18 66 802 820 119 66 247
18.7.93 1-18 70 802 824 1:19 70 248
18.7.93 " 1:40 26 761 738 1-38 30 183
TaBLE V.— Data for Second Series of Hxperiments.
|
Date. a n ’ b ! nb Yy
| —)
14.10.97 7 09 ‘ 129 ‘ 116 375
16.10.97 7 0-89 | 117 104 390
18.10.97 7 0-87 107 93 40-3
19.10.97 6 095 119 113 339
20.10.97 6 0-92 112 103 43°6
21.10.97 6 0935 17 | 109 39:2
22.10.97 6 0917 110 101 412
25.10.97 (1) 6 095 ' 122 | 116 390
I )
25.10.97 (2) 6 091 { 107 | 97 41-0
26.10.97 6 092 | 111 | 102 393
27.10.97 (1) 6 0912 107 98 4011
27.10.97 (2) 6 092 111 102 437
28.10.97 5 096 105 £ 101 371 (N=15) |
o o 3y

VOL. XXXIX. PART IL (NO. 14).



4350

DR W. PEDDIE ON

TasLe V.—Continued.

Date. a " b nb Y%
29.10.97 (1) 5 0957 104 100 387 (N =5)
29.10.97 (2) 5 0957 101 96 383 (N =10)

1.11.97 (1) 5 0985 113 111 396
1.11.97 (2) 6 0990 119 118 229
2.11.97 (1) 7 0-970 127 123 284
2.11.97 (2) 5 0975 105 102 371
3.11.97 (1) 5 1-000 114 114 405
3.11.97 (2) 10 0990 124 123 128
4.11.97 (1) 7 0965 119 115 207
4.11.97 (2) 5 0-968 100 97 357 (N=20)
5.11.97 4 1022 100 102 | 3T'1(N=40)
8.11.97 (1) 5 1025 116 119 ' 407
8.11.97 (2) 5 0985 99 98 | 36°1 (N =20)
9.11.97 12 0992 148 147 127
10.11.97 (1) 12 1010 165 167 131
10.11.97 (2) 17 0913 152 139 110
10.11.97 (3) 16 0°900 147 132 RIS
11.11.97 (1) 5 1012 116 117 | 356
11.11.97 (2) 15 0950 125 119 93
12.11.97 (1) 1 1008 101 102 94 (N =40)
12.11.97 (2) 1 1020 99 101 390
15.11.97 (1) 50 0680 213 145 86
15.11.97 (2) 4 1042 127 132 398
16.11.97 (1) 17 1017 166 175 98
16.11.97 (2) 4 1030 101 104 365 (N=60)
17.11.97 (1) 11 0953 134 128 143
17.11.97 (2) 10 0982 136 134 122
17.11.97 (3) 4 1030 106 109 322
18.11.97 (1) 30 0857 151 129 98
18.11.97 (2) 18 0950 159 152 100
19.11.97 220 0270 562 152 43
22.11.97 (1) 60 0'523 313 164 96
22.11.97 (2) 25 0695 164 114 152
23.11.97 20 0740 160 118 170
24.11.97 8 0925 | 135 125 299
25.11.97 6 0968 | 123 119 380
14.12.97 300 0590 | 655 386 35
15.12.97 6 1010 | 144 145 343
9.2.98 220 0363 f 600 218 45




_a
-+ F -

451

SO~

OO0 S
Lol O o 3

o=
DO
O W~

Py

o +w®
i)
TR T

P

>SS >
© DD

(=3 5 Nl

TORSIONAL OSCILLATIONS OF WIRES.

G-GE
9-€¢
1.¢¢

L19
0-09
0-09

¥19
1.09
0-09

L.8¢
7.8¢
0-6¢

1-09
0-09
0-09

O WD

¥-19
7-09
0-09

L-09
F-09
0-09

1-09
7-09
0-09

¥-6¢
0-09
0-09

L9¢
9-19
1-4¢

B
n e
SRR
&1 = e
I~ b= -
———

SN
b oH

L= PO
AR
larR-rNer)

10 0

1
fn o

=0
o
>~

[ o e |
e

(o)

(=g
~H

-~
[=x3
o

S,
[r s NP |

a—
o

o

0

~H
o

1 S
2 én

~

[

(o)
o

& éaéa
PR R

N
cndned

S =H D S -t R~ D L2l ool

[NERER]
[ar Bl

Qamem
& o
o o e

ot

0
—

ey
b= = L

oo

ol )

©oa
== 0

[ ]

i- 0 0

[ o M |

©ow®
= 0 0

[l e B ]

[ e A |

P =
I~ 0 w0

N T ;™

0 e Q
do G0 &

L1

p—t
—

T ok
Lear o e ka]
B

[~ N e |

Foen

=H ~<H <4 N en e OO

1010
LN N

+ o~

[ et Rt ]

0 0 =

M|

<k H
o e
[ e ]

o R
LeXrkan
[ B B |

+ ¢
[~ B B}

-0
<H < <H bekarkog
[ N R ]

(114

& ~
100

e
M~

—

TN — -
— e —

— P

at | 62 | ¢
¢¢ | 1¢ | LE e6L8L
L¢ | ¢l 86

|
6% | 82 | 02
LR | 6L T4 £6°L'81
6% 1 6L, 1.4
28 | 82 | 0L
88 | 6L | €2 ¢6°L'8I(
68 | 6L | 1.2
69 | 09  e¢  L¥ | eF
69 | 66 | ©¢ g% | 097 | e6LLL
2| 19| &¢  8F | cet
6 | 1.8 | gL
88 | 08 | FL £6°L'F1
68 | 6L | L2
96 | ¢8| 9.1
g6 | 93 08 £6°LY1
€6 | €8 | %L
88 | 8L | 02
LS 8L | 02 £6°L°01
68 | 62| 1.2
88 | 22| 69
L8| 82| 0L £6°L01
68 | 6L | 12
6 | &8 | rL
68 | 08 | 72 £6°L°01
68 | 6L 1.4
88 | L4
68 | 08 h - £6°L'L,
68 | 6L !
ZOl| 76 | 06 | €L
GO0l | %6 | &8 | 08 €6°L°G
GOl | €6 | 8 | 14
6% | 0g 09 g

U g T

VT, (6L VI PRROPROI-aY] puv AT — [ A HTUV],




452 DR W. PEDDIE ON

TasLe VIL— Results for Hodgkinsow's and Fairbairn's Experiments.

H. Exp. I, 1. H. Exp. I, 2. H. Exp. I, 3.
@ y y w y y @ y y
37 32 317 51 46 434 38 32 3:32
52 46 4-34 67 60 5.68 52 46 452
70 60 583 129 112 10-91 7:0 6-0 6-06
13-2 11-2 10-90 261 224 2163 133 112 11-45
271 224 2148 561 448 4480 276 224 2276
588 448 4580 900 672 6876 598 448 1547
940 67-2 7002 1297 896 9399 958 672 6595
1360 896 9560 138-8 896 83-60
a=0839 b»=0001 a=0855 0$=0001 a=0880 01=0002
H. Exp. ], 4. H. Exp. L, 5. H. Exp. I, 8.
x y y 2 y ¥ & y Yy
15 2 1-83 26 5 378 7 8 774
32 4 387 45 75 679 11 12 11-93
4'6 6 555 6'5 10 9'79 15 16 15-98
130 16 1553 134 20 20°12 24 24 2448
273 32 31-07 270 40 4059 33 32 3218
444 48 4825 580 .80 8143 44 40 4045
61-8 64 63-94 895 120 119-98 50 14 4450
813 80 79°36 122-4 160 15604 53 15 46-37
103-0 96 939 1585 200 18976
=122 b=0003 a=152 7,=0002 | a=114 b=0005
H. Exp. T, 9. ‘ H. Exp. I, 13. H. Exp. 1T, 1.
@ Y ¥ » ) ¥ @ 3 13
7 8 7-88 85 l(.)/'82 10.‘/75 33 2./‘2 2.9
102 12 11-35 10-6 1343 1319 62 42 42
14 16 15-38 13-0 16-05 15-85 12-0 80 80
22 24 2343 156 1866 18-62 240 16-0 158
31 32 31-90 12-5 21-26 2315 370 240 23-8
40 40 3982 212 2388 24°13 51-0 320 32-3
51 48 4755 24-3 26-49 26-72 64-9 400 403
62 56 56°11 272 29-10 2833 798 480 484
307 3172 32:02 953 560 56°H
340 3433 3444 112+0 64-0 64-8
378 36°94 3683 131-0 720 735
a=1153 b=0004 =135 b=0401 ‘ a=0679 b=00009




TORSIONAL OSCILLATIONS oF WIRES. 453

TaBLE VII.—-Continned.

H. Exp. IIL 7. H. Exp. II, 8 H. Exp. III, 3.

z Yy ¥ x Yy ¥ g Y o
21 4 447 7 8 804 4 8 78
30 6 629 105 12 11-96 8 16 154
40 8 895 12 14 1356 12 24 229
50 10 1013 145 16 1622 17 32 319
60 12 1195 18 20 1984 22 40 407
71 14 1386 22 24 2381 26 48 475
82 16 1562 26 28 2765 31 56 560
109 20 1981 31 32 3186 36 64 638
139 24 2389 41 40 4065 42 72 730
176 28 2781 45 4 4375 47 80 80-4
230 32 3194 51 18 4810 52 88 875
29°5 36 3414 56 52 5147 58 96 956
315 37 3493 62 56 .5520 64 104 1034
71 12 1119

79 120 1210
85 128 1374
96 136 1379
105 146 145%
116 154 1536
a=2905 b=00355 a=1188 b=00048 a=197¢ b=00056
H. Exp. III, 4. H Exp V, L H. Exp. VI, 3.

x / ' x 2 Y @ y v
68 806 0’87 31 21 2250 275 32 307
73 1008 1156 68 450 45°37 610 64 639
77 1082 1112 114 670 6767 | 1000 96:2 970
94 1306 1362 141 780 7770 | 1230 112 1137
108 1530 1526 171 846 8490 149-0 128 1298
125 1754 1659
147 1978 2023 a=0776 7=00016 a=117 b=0002
162 2202 2206
180 2426 2419 :

200 2650 2650 I Exp. 1, 3

218 2874 2850

240 3098 3089 ) ) ¥
26°1 3322 3306 ; ! !
286 3546 3553 H. Exp. VI, 1. 72 . S
310 3770 3780 129 3 310
33:3 3994 3987 , 269 0 73
360 4218 4317 y y 420 o1 612
388 44°42 44-41 280 32 31°18 58-4 30 801
420 4666 4678 612 64 6411 748 8 007
450 4890 4882 1000 96 9700 924 1o 1124
495 5114 5957 1220 112 11300 . 1105 DR 1204
530 5338 5344 | 1460 128 12050 | 131 128 2

a=1517 b5=00096

a=117 b5=0002
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TapLE VIL.—Continued.

F. Exp. I, 4. F. Exp. II, 3. F. Exp. II, 4.

@ Y ’ x Yy y @ y y
28 4 3-98 31 4 366 3 4 370
60 8 811 70 8 8:00 6-6 8 7-90
92 12 1210 109 12 11-98 10-3 12 11-95

125 16 15-99 15-2 16 16-04 14-4 16 16-11
16-2 20 2046 200 20 2020 188 20 20-21
203 24 2424 251 24 2405 238 24 2439
242 28 2794 307 28 2766 290 28 28-22
290 32 31-84 34-3 30 2952 355 32 32-18
316 34 3378 390 34 3378
a=1417 b=0011 a=1214 05=00102 a=1263 0=001
F. Exp. III, 3. F. Exp. III, 4. F. Exp IV, 3.

x Y y y Y z Y y
30 4 362 31 4 4-11 37 4 453
68 8 8-06 60 8 7-86 73 8 8-03

102 12 11-80 92 12 11-95 109 12 1201
140 16 15-96 12-2 16 1575 147 16 16-25
17-8 20 19-88 15-6 20 2070 182 20 20-76
217 24 2374 189 24 2401 22-1 24 23-84
300 33 31-32 221 28 27-86 260 28 2784
349 37 3541 300 36 37-11 30-2 32 32-09
377 39 3762 340 40 41-64 349 36 3676
408 4] 40-07 378 38 39-60
439 43 4215

a=13224 }=0006 a=1327 1=0003 a=1123 5=0002
F. Exp. IV, 4. F. Exp. V, & F. Exp. VI, 4.

x Y Y @ o, y 2 3 Y
3 4 381 32 ! 397 33 s 3’86
70 8 773 66 8 779 70 8 791
108 12 11-81 101 12 11-60 11-0 12 11-99
14-6 16 1579 141 16 16-10 153 16 16-02
183 20 19-58 181 20 20-04 200 20 20-00

220 24 23-41 229 24 24-37 250 24 2375
26-1 28 2725 276 28 2920 306 28 27-36
304 32 3153 330 32 32-11 372 32 3127
328 34 3369 355 33 3375
352 36 3589
380 38 38-42

a=1125 5=0003 a=1327 0=0009 a=12 0=001
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