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Abstract. The assessment of the sound properties of a performed mu-
sical note has been widely studied in the past. Although a consensus
exist on what is a good or a bad musical performance, there is not a
formal definition of performance tone quality due to its subjectivity. In
this study we present a computational approach for the automatic assess-
ment of violin sound production. We investigate the correlations among
extracted features from audio performances and the perceptual quality of
violin sounds rated by listeners using machine learning techniques. The
obtained models are used for implementing a real-time feedback learning
system.
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1 Introduction

The quality of a performed sound is assumed to be a contribution of several
parameters of sound such as pitch, loudness and timber. Eerola et al. (2012)
identify 26 acoustic parameters of timbre among several instrument groups, that
combined produce a particular sound quality, which might reflect a particular
instrument performance technique, and/or the expressive intentions of the per-
former. Automatic characterization of dynamics and articulation from low level
audio features has been studied by Maestre & Gómez (2005) in the context
of expressive music performance. Knight et al. (2011) study the automatic as-
sessment of tone quality in trumpet sounds using machine learning techniques.
Romani Picas et al. (2015) make use of machine learning techniques to iden-
tify good and poor quality notes given training data consisting of low and high
level audio features extracted from performed musical sounds. However, whereas
pitch and dynamic measurements can be easily obtained from a computational
perspective, a measure for timbre quality involves significant complications given
that the exact formulation of timbre dimensions are still a matter of debate.

In this study we present an approach to automatically assess tone quality.
Our aim is twofold: firstly, to understand the correlations between the proposed
tone qualities, the ones previously used in the literature (e.g. Romani Picas
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et al. (2015)) and the features extracted from the audio signal, and secondly,
to generate machine learning models to predict the different proposed quality
dimensions of the performance from the audio features. We have investigated the
relationship between the terms that musicians use for quality assessment (e.g.
clarity, warmth, depth, brilliance, resonance, richness, power) and low-level audio
features (e.g. spectral centroid, spread, skewness, kurtosis, slope, decrease, roll-
off point, flatness, spectral variation, spectral complexity, spectral crest MFCCs,
and the energy in specific frequency bands), using machine learning techniques,
based on the recordings and evaluations by music experts.

The predictive models were implemented and incorporated into a real-time
feedback learning system, able to give automatic feedback about the timbral
properties (Timbral dimensions) of exercises/notes being performed.

2 Methodology

2.1 Feature extraction and feature selection for real-time audio
analysis.

Low and high-level audio features were extracted from the audio signals in
both temporal and spectral domains using the Essentia library (Bogdanov et al.
(2013)), using a frame size of 23ms, with a hop size of 11.5ms. On the other hand,
perceptual tests to assess the quality of performed notes was conducted, in which
30 participants (with at least one year of musical training) were asked to mark
sound quality in terms of predefined dimensions: dynamic, pitch and timbre sta-
bility, pitch accuracy and timbre richness, on a 7-point Likert scale. 27 Violin
sounds were obtained from the public available data base by (Romani Picas
et al. 2015), and selected in order to cover an homogeneous range of the violin’s
tessitura. Similarly, a proposed list of tone qualities (see Table 1), defined by
music educators, was presented in pairs to the listener (e.g. Bright/Dark) to
grade the sounds along a 7-point Likert scale.

Table 1: Proposed list of tone qualities by music experts

Tone Qualities
Dark Bright
Cold Warm
Harsh Sweet
Dry Resonant
Light Heavy
Grainy Pure
Coarse Smooth
Closed Open

Restricted Free
Narrow Broad



2.2 Dynamics and intonation dimensions

Dynamics and pitch values were extracted from the audio by extracting the
energy of the signal based on a frame-based calculation of the Root Mean Square
(RMS), as well as, by obtaining frame based pitch values.

Pitch Accuracy (PA) . Pitch accuracy was measured in terms of the deviation
in cents of the measured pitch to the closest tempered semitone. The actual pitch
value was calculated in real-time on a frame basis (at 66 fps) using the Essentia
Pitch Detection library. The obtained pitch values were smoothed using a 10
point average filter. Pitch accuracy was then obtained by obtaining the absolute
difference between the pitch value and the closest semitone, and dividing by 50
cents (i.e. half of a semitone size). Thus, pitch accuracy ranges from 0 to 1, where
the maximum deviation allowed is a semitone.

Pitch Stability (PS) . Pitch stability was calculated based on the standard
deviation of the obtained frame-based value over a 300 ms historic window.
Firstly, pitch frame-based values obtained with the Essentia Pitch Detection
library were smoothed by applying a 10 point average filter. Standard deviation
was calculated over a historical 300ms window. Low standard deviation values
were assumed to indicate high pitch stability and vice versa.

Dynamic Stability (DS) . Dynamic stability was obtained by calculating
the standard deviation of the energy over a 600 ms historic window. Firstly,
we calculated a frame-based RMS (Root Mean Square) values. RMS values are
later converted to decibel (dB) values and smoothed using a 10 point average
filter. The standard deviation of the filtered RMS values was calculated over a
600 ms historical window. Similarly to pitch stability calculation, low standard
deviation values were assumed to correspond to high dynamic stability and vice
versa.

2.3 Timbral Dimensions Calculation

Timbral dimensions were calculated by training models which combined sev-
eral of the audio features extracted with the Essentia library (Bogdanov et al.
(2013)). Feature selection was performed over spectral descriptors, known to be
close related to timbral characteristics of sound (see Peeters et al. (2011) for an
overview), to obtain a subset of tonal descriptors that best predict each of the
studied timbral dimension. The selected features include pitch, energy, spectral
time-varying descriptors (centroid, spread, skewness, kurtosis, slope, decrease,
rolloff, flatness, crest), spectro-harmonic (tristimulus 1, tristimulus 2, tristimu-
lus 3, harmonic energy, noise energy). Mean and standard deviation over a 300
ms window was considered as well, for all the set of descriptors.



Timbre Stability (TS) and Timbre Richness (TR) The spectrum was
obtained from the audio frame by means of the Fast Fourier Transform (FFT)
and peak detection was performed on the spectrum afterwards. Based on the
actual pitch value detected, the harmonic peaks were selected, allowing a 20%
deviation from the ideal harmonic series. Later, spectral harmonic features, (e.g.
tristimulus 1, 2 and 3) as well as time varying spectral features (e.g. kurtosis,
skewness) were calculated.

2.4 Sound Dimensions Modelling.

Machine learning techniques were used to generate models to predict the differ-
ent quality dimensions from the extracted features. Feature selection techniques
were applied in order to obtain the subset of low level (frame-based) descriptors
that best predict each of the studied sounds dimensions. Several machine learn-
ing schemes were compared, i.e., Linear Regression, M5-trees, Artificial Neural
Networks, and Support Vector Machines.

Stability of pitch energy and timber Models were trained, to map the
calculated standard deviations of the highest pitch stability rated sounds to 1
(good pitch stability) and, conversely, the bad examples to 0 (bad pitch stabil-
ity). Correspondingly,models were trained to map the standard deviation values
calculated in good/bad dynamic stability examples with a corresponding 0 to 1
dynamic stability value.

Timbre richness and stability Previously selected features were used to train
models to order to best predict the ratings obtained on the surveys for timbral
properties. For both Timbre Stability and Timbre Richness logistic regression
models were obtained, using combinations of spectral features explained in Sec-
tion 2.1.

3 Results

3.1 Tone survey

Consistency among participants ratings was assessed using Cronbach’s coefficient
(alpha). An acceptable degree of reliability was obtained (alpha>80, MCGraw
and Wong, 1996) for all the sound examples. On the other hand, higher correla-
tions (i.e. CC>0.8) were obtained between the overall quality of the sound and
pitch stability/timbre richness.

3.2 Models accuracy

In Table 2 we present the Correlation Coefficient Index (CCI) obtained by the
different models studied for the prediction of the rating on each of the dimen-
sions considered. The obtained CCI of the models is presented as calculated in



both the Train Set (TS) and on a 10-Cross Fold validation scheme (CV), as an
indicator of over-fitting. Consideration was also taken in terms of the feasibility
of implementation of the models in a real-time application, giving priority to
the ones less computationally expensive. For all the dimensions studied linear
regression models were selected because of its overall good performance in terms
of accuracy, low computational cost, and simplicity for implementation.

Table 2: Accuracies (CCI) for different sound’s dimensions quality

Sound Dimension
Lin.Reg Reg-Trees SVMreg ANN

cv / train cv / train cv / train cv/ train
Pitch Accuracy 0.89 / 0.80 0.60 / 0.88 0.79 / 0.86 0.64 / 0.72
Pitch Stability 0.80 / 0.91 0.82 / 0.98 0.81 / 0.88 0.68 / 0.68
Dynamic Stability 0.82 / 0.84 0.67 / 0.87 0.78 / 0.85 0.69 / 0.65
Timbre Stability 0.80 / 0.89 0.63 / 0.91 0.86 / 0.81 0.60 / 0.75
timbre Richness 0.78 / 0.86 0.71 / 0.97 0.85 / 0.80 0.60 / 0.66

3.3 Real-time feedback learning widget

The aforementioned sound dimensions models for measuring the goodness in
terms of the intonation, dynamics and tone, were presented in a intuitive graphic
user interface, on the Violin RT app, as illustrated in Figure 1. Each sound
dimension is presented on each axis of a spider chart, aiming at an intuitive user
interaction in which the best sound quality is obtained when the chart is full
filled.

Fig. 1: Real-time feedback system learning system screen shoot



4 Conclusions

In this paper a computational approach to automatically assess the quality of
performed violin sounds was proposed. We conducted perceptual tests on the
quality of recorded sounds based on previous defined quality dimensions, and
studied the correlation among the different quality dimensions. Energy and spec-
tral descriptors were extracted from the audio signal and machine learning mod-
els were obtained to predict the different quality dimensions from the audio
features. Results indicate consistency among users responses, and the obtained
models accuracy suggests that the extracted audio features contain sufficient
information for characterizing the proposed tonal dimensions. Ongoing work in-
cludes extending the recording data, as well as modelling other tonal dimensions.
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