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On the Equilibrium of a Thin Elastic Spherical Bowl.

By A. E. H. LOVE, B.A.

[Read Leo. \Ztht 1888.]

1. In a recent paper (Phil. Trans., 1888) I have considered the
deformation of a thin elastic shell, and have obtained the general
equations of motion and equilibrium, under any system of applied
forces and edge-tractions, subject to the condition that the displace-
ment of any point of the shell is always small. In the present com-
munication, the theory there developed is applied to some cases of the
equilibrium of a spherical bowl.*

In the paper referred to, it was shown that the potential energy of
deformation of the shell consisted of two terms, one depending on
functions <r, <r2, rsr defining the stretching of the middle-surface, and
the other depending on functions K9, X,, *r, defining the bonding of the
middle-surface. Of these the first is proportional to the thickness of
the shell, and the second is proportional to the cube of the thickness.
It was shown to be inadmissible to suppose the middle-surface un-
stretched, because the boundary conditions cannot then be satisfied;
and it then appeared that, in case the boundary conditions can be
satisfied, it is legitimate to neglect the term of the potential energy
depending on the bending as unimportant compared with the torm
depending on the stretching. It is only for certain distributions of
bodily force and edge-traction that the boundary conditions can be
satisfied. These will be the cases here treated. I may remark that
the problems solved are of comparatively little physical interest,
but I think the differential equations whose solution is obtained
justify me in bringing tho results before the society.

The bodily forces acting on any line-element of the shell, which is
normal to its middle-surface, can be reduced to a force and a couple
at tho point in which tho element meets the middle-surface. Tho

* In Lord Rayloigh's paper on the " Bonding of Surfaces of Revolution " (I'ro-
cccdings. Vol. xiu.), a diIferont theory of tho behaviour of a strained elastic shell is
advanced. Lord llayleigh has also extended his method to the case of cylindiicul
shells, in a paper read before the Royal Society, in December, 1888. I have dis-
cussed Lord Rayleigh's method of proceduro in my paper on the "Small Free
Vibrations and Deformation of a Thin Elastic Shell," in tho Phil. Trans., 1888. I
do not regard the question as yet settled, nor do I think the present occasion
appropriate for its discussion.
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90 Mr. A. E. H. Love on the [Deo. 13,

components of the force along tho lines of curvature and tho normal
are taken to bo X, Y, Z, the components of the couple about the lines
of curvature are taken to be L, M. These are estimated per unit of
area of the middle-sarface.

In like manner, the edge-tractions can be reduced to a force whose
components along the lines of curvature and the normal are A, B, G,
and a couple whose components about the lines of curvature are U, V.
These are estimated per unit of length of the curve in which the
middle-surface cuts the edge.

There is no couple about the normal, because all the forces com-
pounded meet it.

It appears from the boundary conditions given in the paper referred
to, viz., equations (33), (34), (35), on pp. 519 and 520, that the last
two of these contain only terms depending on the bending, and on the
forco- and couple-components G, U, F, L, M; and we may therefore
neglect the terms depending on the bending, and form approximate
equations of equilibrium depending on the strotching only, if the
quantities G, U, V, L, M all vanish.

This is the case when the bodily-forces and edge-tractions, acting
on a line of the shell drawn normal to its middle-surface, have no
moments about any line in the middle-surface, and when there is no
edge-traction along the normal to the middle-surface.

2. In the equations obtained in tho paper referred to, tho displace-
ment of a point on tho middle-surface is estimated by its components
along tho lines of curvature and the normal. We suppose the lines
of curvature to be drawn, and to be given by parameters a, ft; wo
further suppose a system of orthogonal surfaces constructed of which
the middle-surface is one, and the lines of curvature are its intersec-
tions with the other two co-orthogonal families of surfaces. Tho
parameters of the three families of surfaces are a, ft, y, and y = const,
is the equation of the middle-surface. Writing

the element of length is

(<W7
The principal radii of curvature of tho normal flections through da,
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and dfi are pv p2, where

91

1 T. 7 d / 1 \
Pi dy \ Ai /

The displacement of any point of the middle-surface is taken to be
u along /S = const., « along a = const., w along the normal outwards.

The extensions of the line-elements initially lying along the lines
of curvature are ctx, <ra, where

3»
da

9 / l \ , w
d/3 v «i / Pi

, 9 « . T , 9 / l

Cj8 Oa ^ ^ Ps

•a),

and the shear of these two lino-elements is cr, where

7'« 9 / , v .(2).

The equations of equilibrium become, by the omission of the
couples L, My and of the terms depending on the bending,

—2 —C 1 / 2m m—w \ ")

7 9mi—w
m + ?i

r_2~ f— —
L 9/3 i A, »»+•.

TO + W l

r 1 / 2m
— I —-

Lp, \
w—n

p, \vi + n m + n
, )

, 1 / 2m TO—n \" | 2
pa \»)i+» m + w IA\\

(3),

where 27i is the thickness of tho shell, and vi, n are constants of
elasticity, viz., n is tho rigidity and m = k + \n, where k is the re-
sistance to compression,
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The boundary conditions become

—A + znh 2\ I a-H ar9 ] +uvr = 0 }
L \m+n m+n / J / ...

} (4),
n . o , r o / 2m , m—n \ , % 1 A I

—B+2nh\ 2n[—-—<r,H — vx +Xw = 0 \
L \m+n m+n I J I

where X and /i are the cosines of the angles which the normal to the
edge, drawn on the middle-surface and outwards from the edge, makes
with the lines of curvature /3 = const, and a = const, at the edge.

3. I propose to apply these equations to the equilibrium of a thin
spherical bowl bounded by a small circle. The poles of the small
circle define a system of meridians 0 = const., and the parallel small
circles a system of parallels 0 = const., and those are linos of curva-
ture, so thab we may take

o = 0, /3 = 0, y = r,

where r is the radius of the sphere concentric with the middle-surface
and passing through any point, and r— a is the equution of the
middle-surface. The values of A, fi at the edge are A = 1, p = 0.

In this case, we have

l//*, = r, l/h2=zrs'm0t l/hi =

Pi = a> Pi = a

JL_ cm , w_
1 ~~ a fid a

•(6);a sin 0 9rt a

1 do . 1 du v , a

tsr = — — H — cot 0

a> od a sin 0 3^ a

and, if we write for shortness,

atX/2nh = X\ a%Y/2nh = Y\ a?ZI2nh = Z' (7),
equations (3) become

H 7— ^r ^-+ucot6+ -:— — +2io — 0 (8),
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3m—n
s in 0 3<*> L30 sin 0 (9),

(10).

Hence u and v must be found from the equations

38w , , f l3ii—- +COt0—
sin8 0

2cos0

...(11),

T 2 si

and then u; is determined by (10).

4. To solve these equations, we suppose u cc cos ŝ », v oc sin fl^»,
whore 8 is an integer, then (11) become

~ +cot0 ^ +u ( 2 - ( l + « 8 ) cosec80} -

=^- + cot 0 ~ + v f2 — (1 -f s8) coseo8 0) — 2su cot0 coseo 0
3fl8 30

= — ( Y'+% coseo 0 -7T-
* c

Putting u + v = 2/,, t*—1> = j / 8 ,

...(12).

these become
dlIL + cot0 ^ +y, f 2 - ( l +»8) cosec80] - 2scosec 0 cot 6Vl = y, *
ilil" /iff •• "•

(13);

dd

y ^ + cot 0 ̂ « + 2/j [ 2 — (1+s8) cosec8 0 ] + 2s cosec 0 cot 0 y% — Y3
dO

(14).
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5. We can solve these equations completely when we know a
particular integral of each of the equations derived from them, by
making Ylf Ya zero.

Now, from the way in which the equations were formed, it is plain
that one particular solution of the system will be derived by putting
<r,, (7j, vr = 0. Hence, to find a particular solution for u and v,

du
we have

do+w =
1 dv

sin0 d<p

1 du ,
d

(15),

s i n 0 dcj> dd

the equations of inextensibility.

ji (_JL.) + sin0 I- (-»-) =0From these

(16),

d<p >sin0'

so that u cosec 0 and v cosec 8 are conjugate solutions of the equation

f ) = ° (17)i

hence particular solutions are

u = sin 0 tan' ^0 cos ŝ l), u = sin 6 cot' £0 cos «̂>,*

« = sin 0 tan' £ 0 sin s ,̂ « = sin 0 cot' £0 sin s#.
We may show that sin0tan'|0 is a particular integral of the

equation for ?/, when Yx = 0, and sin 0 cot1 £0 is a particular integral
of the equation for y% when Yt = 0.

Writing u0 = sin 0 tan* ^

and v0 = sin 0 cot' |
(18),

we have, by equation (17), for w0 and u0,

^ sin 0sin

Hence

i n 0 | - j s i n 0 ^ - / - ^ _ ) ) - ^ = 0.
d9 <- d^ \ smO/ ) sinfl

+ u0 = cot 0 - ^ + « 0 (sa cosec2 0—cot2 0),
do

* Of. Lord Raylcigh "Ou the Infinitesimal Bonding of Surfaces of Revolution,"
Proceedings, Vol. xm.
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also -r-2 = u0 cot 0 + lsuQ sec2 |0 c ot £0 = M0 (S 4- cos 0) cosec 0 ;
do

a n d ? § +^o = cote^B +1>0 (s2 cosec2 0-cot20),
do an

also -^ = v0 cot 0—|su0 coseca f 0 tan | 0 = v0 (cos 0 — s) cosec 0;

= w o [ - l - c o t 2 0 + s2cosec20 + 2 cot20 + 2scot0 cosec0],

= v0 [ - 1 -cot2 0 + s2 cosec2 0 + 2 cot2 $ - 2s cot 0 cosec 0] ,

coinciding with (14).

We can hence deduce the general solutions for yv yv

6. Let yx = yu0.

T h e n

Writing y for -r̂ , and multiplying by u0, we have
da

£ i ( s i n s * + sib <2 sin" * ̂
Put cos 0 = /x, then this is

— (ttj

so that «*c sin2 0 y — f Ti w0 sin 0 ̂  + B[.

Hence integrating,

Iii like manner, writing y2 = zv0, we find

,. = v, [ J l , + « | _ ^ - + [ [ _^_Jr,»0sineM} »]...(20).

In these solutions .4,, -42> î> ^ a r e arbitrary constants.
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Now to find the integrals

| w0"
2 cosec 0 d$, j v'* coseo 0 df),

put log tan £0 = z,

then Jcot2' £0 cosec80d0 = —J cosec4 0 cot21 £0 d (cos 0)

= J e"2" cosh* z d (tanh z)

= Je '2 ' 1 cosh* z dz

(21).
f s—

In like manner

f tan2' i0 cosec8 0 dd = £ tan2' ̂ 0 f— H—^j tan* £0+ -X: cot* £
J Lfi S + l 8 — 1 A

(22).
Thus
yx = Ax sin 0 tan1 £0 + Bx sin 0 cot' \Q \— + - ^ r cot'^0 + - J - tan8 \d\

L 8 S + l S — 1 J
+ sin 6 tan' \Q J {cosec8 0 cot2'\B f (Y, sin8 0 tan' \6) dti] dO ... (22),

y3 = J 8 sin 0 cof £0 + i?8 sin 0 tan* £0 f— + -J—tan* £0+ - ^ - cot8 $tf\
Ls s + l s—1 J

+ s in0cof |0f {cosec80 tan2*i0j(ra sin20 cof A0)d0} <Z0......(23).

This is the complete solution of the system of differential
equations (14) in the general case.

7. Whon s = 0, or s = 1, we get failing cases.

(i.) When s = 0, the equations for yu y% aro

+cot0 -^i + (2-cosec80)yi = Y, j

\ ( 2 4 ) ,

and sin 0 is a particular integral when Y,, Y8 are zero.

Thus, proceeding as before, we obtain

yx = sin0 [A^B'i (cosec8 0^+J{cosec80 J Yxsin*Odd}dd],

and a similar expression for yr
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Hence

(25).

In this caso we could find u, v immediately from (12), putting
dZ'
~ == 0 on account of the symmetry.
V(j)

Thus, or by (25), we obtain

u = Ax sin 6 + Bx (cot 0—sin 0 log tan £0)

+ sin0 [ [coscc8 of -sin3 6 ( x ' + | ^ ) M } dOl

v — A% sin 0 + B% (cot 0—sin 0 log tan £0)

+ sin 0 f {coscc8 0 f - s in 2 0 Y'dO}d$J

(ii.) When's = 1, we write /i for cos 0, and the equations bocomo

(27).

An integral of tho first is

yx — 1—ft = 1—cos0 = 2 s i n 2 £ 0 , w h e n Yt = 0,

Kb • y% = \+n = 1 + c o s 0 = 2 c o s 2 1 6 , w h e n I7
2 = 0.

Hence the complete primitives

yx = 2 sin8 | 0 [ i i ; + J5[f cosec 0 cosec1 i0(Z0]

+ 2 sin* |0 ( {cosec 0cosec* | 0 \ Y, sin 0 sin2%0dO}d(),

y% = 2 cos8 £0 [i l , + B'2 \ cosec 0 sec4 \d dO ]

+ 2 cos310 f { coscc 0 sec* 10 \ Y, sin 0 co.s3 £0 <Z0 } dO.

Observing that

[ coscc 0 cosec4 \6dQ = log tan - ' 0 - - | = ^ 1 ^ . . . ,
J (1 —co.s6)"

f coscc 0 sec410 dO = log tan -J0+ ?-t-°--° .,
J - b (1+co.sO)2'

VOL. XX.—NO. 3 4 0 . II
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we see th at these may be written

y, = A, (1-cos 0) + Bt r2sina|fl log tan ± 0 -
L

^ f l
1—cos a J

+ 2sin2i0{ {cosec0cosec4±0J F, sin0sin2\QdQ}dO (28),

4 i0f F2 sin 0 cosH0 d0} dd (29).

By equations (22) and (23), (25), and (28) and (29), we have y,, y2

in all cases ; u and v are then to be found from

U = 2 G/l + 2/2)> « = I

and w is given by equation (10).

To satisfy the boundary conditions, we shall require to know tr,, <r2, w.
These are to be calculated from the values found for u, v, w by means
of equations (6).

On substituting in the boundary conditions (4), we shall be able to
determine the arbitrary constants.

8. We proceed to consider some examples.

Example I.—A spherical bowl, bounded by the horizontal plane
6 = a, is acted on by a normal pressure on its middle-surface every-
where proportional to the depth below the bounding plane, and is
supported by forces applied to the edge in the directions of the tan-
gents to the meridians on the middle-surface : it is required to find
the displacement.

This is the case of a bowl filled with liquid, since the state of strain
in an element of the bowl, produced by surface tractions applied to its
curved surface, is the same as when corresponding bodily forces are
applied to its middle-surface.*

In this problem

X = 0, T = 0, Z' = Gx (cos 0-cos a),

where Gt = gp'a?/2nh

in the case of a fluid of density />'.

* The method by which M. Boussinesq has proved this result for plates holds
equally for thin shells, see Liouville's Journal de Math., 1871.
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Since all the conditions are symmetrical with respect to the axis,
v is zero, and u and w are independent of <p, and the proper solution
is (25). Hence, observing that

f {cosec8 0 J sin8 6dO}dd = \ cosec* tf-log sin 0,

we find

u — A! sin 0 + V (cot 0-s in 6 log tan§0) + £0^ (cosec0-sin0 logsin 6).

To make this finite when 6 = 0, we must take

QB' + G, = 0; .

thus we have for the tangential displacement

u = A/a\ne + ̂ Cl [tan | 0 - sinolog (1 + cos 6)] (30).

By (10) we find for the radial displacement

w = — ̂ 'cosfl + ^Cj [cos 0 log (1 +cos 0) — l + £cos0]

+-<?! (cos 0-cos a) (31).
m—n

Hence

£±± Ox (cos0-cos a)-^qx + ̂ Ox cos
— n

x L a, (cos0-cos a) +A0,
dm—n 1 + COS0

—cos$)
l

t« a, (cos0-
d m n

Hence a(<,l+™^*2) = , ^+J? - C /2 + cos a)(l-Cos «) ( 3 2 )

\ 2m I 2,m 1+cosa

when 6 = a.

Seeing that vr vanishes identically, the second of the boundary con-
ditions (4) is satisfied identically, and the first gives for the edge-
traction that must be applied to the bowl

A — 0 T, /^m 1 m+n n (2 + cos q)(l — cos n)
+ 12a 2m 1 + cosa

_ 4mh p (2 + cos a) (1 — cos a)
12a l 1 + cosa

A a- • >< i ' a (2 +COS a) (1—COS a) / o o .
and this is A = Ttqpa1 *—!—-—^ ^ (33)

1+cosa
in case the bowl is subject to fluid pressure.

H 2
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It is easy to verify that the resultant upwards traction is equal to
the weight of the liquid, for this resultant is

, , 3 (2 + cosa)(l— cosa) / o . s .
\gp ar -—•—r—^ '- (27ra sin a) sin a,

1 + cos a

or ^gp'ira? (2+cos a) (1 — cos a)8,

winch is right.
The terms in A! represont a rigid-body displacement. The rim to

which the supporting force is applied may bo supposod to suffor no
tangential displacement;. in this case u vanishes when 6 = «, and wo
determine A' by the equation

.4'sin a = $—-; [sin a log (1 +cos a) — tan la];
12nhL - J

and tho displacements at any point aro

[ ]} (34)
along the meridian, and

w = 2-̂—r {—[log (1 + coso) —^sec"a] coaO

+ [cos 6 log (1 +cos 6) — 1 + i cos 8] }

_m±n . ^ ( c o s 0 _ c o f l n ) ( 3 5 )
in—n Huh

along tho normal.

In tho particular caso of a hemisphere supported by a unifoi'mly
Rtretuhcil vcrl-ieal mcmbr'sino in tho form of a cylinder, we find that
tho vertical displacement of tho lowest point is

gp'o? [ i log 2 — h (in+n) / (TO—n) ] / 4» h,

and the tension of the membrane is

Example II.—A bowl supported in the same, way as before is
deflected by its own weight.

In this problem

X = —2gph sin 6, Y = 0, Z = 2gph cos 0,

7\7'
sin 6/n,
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Writing this — \OXsin 0, for shortness, we have, just as boforo,

i=-.4'cos0+$Cr
1[co801og(l+cos0)-£ + cos0] ^

* 3 m -

whcro the last term comes from the Z' term in equation (10).

TT , m + n qpa2
 n . 0. (2 + cos0)(l —eos0)

Hcnco acr, = ± -—'— >>-'— cos 0 + —J —^—
6m—n n 12 1 + cosO

l , r . . a Gx (2 + cos0)(l-cos0)
Uff,, = 4- : ^ COS U • — ' - .

1 t3m-?i n 12 l + cos0
Thus

a, Ox m + n (2 + cos 0)(\— cos 0)

Now tho boundary condition gives for the edge-traction

A — inh —— I <r,+ — (72)
\ 2»» /

7 . , (2 + cos a)(l — cos<t) , ,.
= <ip ah cos a + gp ah -—!—r— • when 0 = u,

1 + COS It

or A = 2g pa h /(l+ cos «.) ' Qi7).

Tho resultant upwards traction is

2(i p nh n . .,

- 1 2n a sin" a
1 + cos u

= 2/A . 27ra2 (1 — cos a) gp

= weight of shell, as it should be.

Example III.—If we cluuigu the sign of g, the above analysis
applies to tho case of a hemispherical bowl, rusting with its verlox
upwards on a smooth horizontal plane.

Wo have to put u = 0 when 6 = |TT ; thus

A' = garp/2nj
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and the displacements are

W = — -—- COS O— iir-J- COS BIOS (1 + COS V)— 1 + i COS V
2n 2n L &K ' * J

. . .(38).

u = '^—-sin ^—^—^-[tan ^—sinolog (1 + cos 0)]

4n 3m — w

2n

Hence, if 2A be the thickness, the deflection at the vertex is

[-2+log2 + ^ (m+?i)/(3m—n)j WjQnnh (39),

where IF" is the weight of the bowl.

A Method of Transformation with the aid of Congruences of a

Particular Type. By J. BRILL, M.A.

{Read Dec. Uth, 1888.]

1. Suppose that we have a family (A) of surfaces. The orthogonal
trajectories of this family will fprm a congruence (a) of curves. On
one of the surfaces belonging to the family (A) draw a family of
lines. The curves of the congruence (a) that meet each of these
lines will form a surface j and the curves of the congruence (a) that
meet all of these lines will form a family (B) of surfaces, which is
such that the members of it intersect orthogonally the members of
the family (A). The curves of intersection of the members of the
family (A) with those of the family (B) will form a congruence (c).
This congruence will possess the property that it is possible to draw
within it* two families of surfaces, viz. the families (A) and (B),
such that the members of the one intersect the members of the other
orthogonally. Further, since the family of lines drawn on the selected
surface of the family (A) are altogether arbitrary, it is evident that
they may be chosen so that at least one other selected property may
belong to the congruence. It is, however, conceivable that cases may

* By this expression it is intended that each surface is the locus of some singly
infinite series of the curves of the congruence"in question.


