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On the Equilibrium of a Thin Elastic Spherical Bowl.
By A. E. H, Lovg, B.A,

[Read Deo. 13th, 1888.]

1. In a recent paper (Phil. Trans.; 1888) I have considered the
deformation of a thin elastic shell, and have obtained the general
equations of motion and equilibrium, under any system of applied
forces and edge-tractions, subject to the condition that the displace-
rent of any point of the shell is always small. In the present com-
munication, the theory there developed is applied to some cases of the
cquilibrium of a spherical bowl.*

In the paper referred to, it was shown that the potential energy of
deformation of the shell consisted of two terms, one depending on
functions o, oy, w defining the stretching of the middle-surface, and
the other depending on functions «;, A,, «, defining the bending of the
middle-surface. Of these the first is proportional to the thickness of
the shell, and the second is proportional to the cube of the thickness.
It was shown to be inadmissible to suppose the middle-surface un-
stretched, because the boundary conditions cannot then be satisfied ;
and it then appeared that, in case the boundary conditions can be
satisfied, it is legitimate to neglect the term of the potential energy
depending on the bending as unimportant compared with the term
depending on the stretching. Itis only for certain distributions of
bodily force and edge-traction that the boundary conditions can be
satisfied. These will be the cases here treated. I may remark that
the problems solved are of comparatively little physical interest,
but I think the differential equations whose solution is obtained
justify me in bringing the results before the society.

The bodily forces acting on any line-element of the shell, which is
normal to its middle-surface, can be reduced to a force and a couple
at the point in which the element meets the middle-surface. The

* In Lord Rayleigh's paper on the ¢ Bonding of Surfaces of Revolution?’ (Z%o-
ceedings, Vol. xur), a diffcront theory of the behaviour of a strained clastic shell is
advanced. Lord Rayleigh has also extended his mothod to the case of cylindiical
shells, in a paper read before the Royal Society, in December, 1888. I have dis-
cussed Lord Rayleigh's method of procedure in my paper on the ¢ Small Free
Vibrations and Doformation of a Thin Elastic Shell,” in the PAil. Traus., 1888, I
do not regard the question as yct settled, nor do I think the present occasion
appropriate for its discussion,
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components of the force along tho lines of curvature and the normal
are taken to be X, Y, Z, the components of the couple about the lines
of curvature are taken to be I, M. These are estimated per unit of
area of the middle-sarface.

In like manner, the edge-tractions can be reduced to & force whose
components along the lines of curvature and the normal are 4, B, C,
and a couple whose components about the lines of curvatureare U, V.
These are estimated per unit of length of the curve in which the
middle-surface cuts the edge.

There is no couple about the normal, because all the forces com-
pounded meet it.

It appears from the boundary conditions givenin the paper referred
to, viz., equations (33), (34), (85), on pp. 519 and 520, that the last
two of these contain only terms depending on the bending, and on the
forco- and couple-components C, U, V, L, M ; and we may therefore
neglect the terms depending on the bending, and form approximate
equations of equilibrium depending on the strotching only, if the
quantities 0, U, V, L, M all vanish.

This is the case when the bodily-forces and cdge-tractions, acting
on a line of the shell drawn normal to its middle-surface, have no
moments about any line in the middle-surface, and when there is no
edge-traction along the normal to the middle-surface.

2. In the equations obtained in tho paper referrcd to, tho displace-
ment of & point on the middlc-surface is estimated by its components
along tho lines of curvature and the normal. We suppose the lines
of curvature to be drawn, and to be given by parameters «, 3; we
.further suppose n system of orthogonal surfaces constructed of which
the middle-surface is one, and the lines of curvature are its intersce-
tions with the other two co-orthogonal families of surfaces. Tho
parameters of the three families of surfaces are a, 3, y, and y = const.
is the equation of the middle-surface. Writing

= (24 (2) 4 (), m= (.3_@)’+ (28)'+ (22,

du/ ~ \0y/ "\ 0/ ' \dy/ T \0z
o B\, (By), (2
5= (50 + (5)'+ (31)"

the element of length is
(da/m) +(dB/hg)*+ (dy [ hy)'.

The principal radii of curvature of tho normnl geotions through da,
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and dp are p,, p,, where

91

F11—= klhaéa; (”}—l): ”l‘=”9h g(_1“)

The displacement of any point of the middle-surface is taken to be
u along B = const., v along a = const., w along the normal outwards

The extensions of the line-elements initially lying along the lincs
of curvature are o,, o,, where

zrl=hlaa+hlk,'va'6( 1 )+."_0.

) ” ORI ¢ 5
Y 4 by +=
aﬁ “aa ( ) Ps
and the shear of these two linc-elements is @, where
== hy _a_ h, O

The equations of equilibrium become, by the omission of the
couples L, M, and of the terms depending on the bending,

hh2+2nh[ 2 1 ( 2m LMo s)} 3

7:, m+nal m-}-na
0 -
25 (5 )(%Miﬁ—ﬁ%) s ()] =0
+2nh[ 2 2m ¢’+m—n ”x)}
Tk h, ﬁ hl m+n m+n [ (3),
a -
—'B(hi,)( m=+n N 7;:_{_::0-,) ai (1;)] =0
_m +2ulh [i ( 2m o, :Z+'n a,)
+i (oot ) im=0]

where 2% is the thickness of the shell, and m, # are constants of

clasticity, viz., # is the rigidity and m = k+1n, where &k is the re-
SiStﬂ.TlCG to COlnI)l‘eSSiOll.
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The boundary conditions become

—A+2nh[2x (2 4 2 )+;mr]=0

)+Aw]=0

m+n

e (4),
—B+2nh [2,‘( 2m

m+9

where A and p are the cosines of the angles which the normal to the
edge, drawn on the middle-surface and outwards from the edge, makes
with the lines of curvature 3 = const. and a = const. at the edge.

3. T propose to apply these equations to the equilibrium of a thin
spherical bowl bounded by a small circle. The poles of the small
circle define a system of meridians 6 = const., and the parallel small
circles a system of parallels ¢ = const., and those are lines of curva-
ture, so that we may take

a =0, ﬁ=¢’ Y=

where 7 is the radius of the sphere concentric with the middle-surface
and passing through any point, and r = a is the equation of the
middle-surface. The values of A, p at the edge are A =1, p = 0.

In this case, we have

1/h, =7, 1/hy=7rsin0, 1/"3=]} .............. ®),
=0, p=a
=1  w
"=t
=L O, u g
37 asind 0p a a R (O F
_ 1 0v 1 Ou
w_;é-e.*-asmoa_q, ;—ct()
and, if we write for shortness,
dX/2nh =X, ’Y/20h=Y, a'Z/2h=2Z........ @™,
equations (3) become
o'n au 1 O 2cosl 0
X'+ =— +cot 6 — 3 v
+80’ +e 00 + ] a ;T (1—cot'6)~ sin’t 9y
3m—un 0 [Ju 1 (’)v
0+ —— =
mtn ae[ae tucotft c 0 0y +2'”] 0......(8),
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,, O ov’ 1 % ’ 2cos § Ou
Y+_+°°wag+sm'oa=+”(l —cot?0) + ——— 55 3¢

3m—n 1 0 [Ou 1 &
ttn Emo aq)[a tucotf+ ——p =~ +2w] 0 .uee 9),

+u cot0+ 1 a

, 8m—n [Ou
7 -2 [ao

Hence » and v must be found from the equa.tlons

Ou au 1 Ju Zcosﬂ o)
a +co ae+m—§-é-a——;+u(1—cot’) g a¢
,. 107
(X'f'——a';)

g—v; +o(l—cot?8) + ——=—

@» +2 ] = Ourereerrnneans(10)

t ... (1),
o dv
%; +cot 06—0 + Bln’(;

, oz
-~ (r+} %)

2 cosf du
Bint 6 a(p

and then w is determined by (10).

4. To solve these equations, we suppose u o Co8sp, v sin 8¢,
where s is an integer, then (11) become

O - +cot 0 Ou +u {2—(1+5") cosec’ 8} —2sv cot §. cosec 8 )

o6 00 -
== (X'*'? de)

g +cotbg—q+v{2 (1 +5°) cosec? 8} —2su cot O cosec b [

..(12).

- (Y’+§ cosec é—)—Z-,)

0p )
Putting u+v =1y, u—v=1y;
(X +3 %i) =—2(+7Y;) (Y’+%coseco %%) =-1(Y,-Y,) }

. (13);

these become

(Lll—ﬂ% +cot 8 ‘—li‘ +u [2—(1 +5%) cosec‘0] —2scosecBcot 0y, = Y,

(ZIU%I +cot 6 dyg +9; [2—(1+5") cosec’ 0] + 25 cosect cot Oy, = ¥,
. (14).
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5. We can solve these equations completely when we know a
particular in‘egral of each of the equations derived from them, by
making Y, ¥, zero.

Now, from the way in which the equations were formed, it is plain
that one particular solution of the system will be derived by putting
oy, 05, w=0. Hence, to find a particular solution for « and v,

we have gy' +w=0
1 o +wtucot =0\ .. ...iiiinenn. (15),
sin 0 a¢

1 Ou , Ov
— 4+ — —vcotd =0
smﬂ 8¢+a vee

the equations of inextensibility.

0 0
From these a(P (Blnﬂ) +8in6 = % (si—:}tz) =0

9 ( v p O (&
(X )—s =0
0p (sinB) i aB (sm())
so that u cosec 6 and v cosec § are conjugate solutions of the equation

aix+sm6-a—(smﬂa—z—c) =0 ciiivinnnnnn (17);

Op? 00 a0

hence particular solutions are

cecereeen (16),

% == 8in 6 tan’ }0 cos s¢, u = sin 6 cot® 50 cos sp,*
v = sin § tan’ 10 sinsp, v = sin 0 cot' 40 sin s9.

We may show that sinftan’30 is a particular integral of the
cquation for y; when Y, = 0, and sin 0 cot* §8 is a particular integral
of the equation for y; when ¥, = 0.

Writin u, = 8in 0 tan’ 16
g 0 =" s } S ¢ )}
and v, = 8in 0 cot’ 30

we have, by equation (17), for », and v,

sin 6 (% { sin 8 889 (5:100) } - i’i—‘o{; =0,

Hence ‘—1'—% +u, = cot 8 ——° +14, (s* cosec® 8 — -~ cot? 6),

* ¢f. Lord Raylcigh ¢ On the Infinitesimal Bending of Surfaces of Rovolution,”
Proceedings,” Vol. X111,
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also %’ = u, cot 0+ Lsu, sec’ 18 cot 6 = u, (s+cos #) cosec 6 ;

and C;OZ +v, = cot 0 dv" + v, (s* cosec? 8 —cot?0),
also % = v, cot 06— sv, cosec’ 30 tan 30 = v, (cos 0 —s) cosec §;
thus dd;‘zo +cot @ 3’;0

= u, [ —1—cot® 845" cosec? 6+ 2 cot? 6 +2s cot 6 cosec 8],
and ‘5—:} +cot 6 Z%f'

=9, [—l—cot2 6 +5? cosec? 8+ 2 cot* § — 25 cot 8 cosec 0],
coinciding with (14).
‘We can hence deduce the general solutions for y,, ¥,

6. Let y, = yu,

d*u 25 cos 8
@ Uy _Q - 20 —
Then y { i +cot 6 —2 + [2 (14 &) cosec? 0 ey :| uo}

@y o duy dy -
+ 2, d02+2 20 20 +cot6d6 u, = Y,

%’ and multiplying by u, we have

(3100_/)+ -— (QSmey uo) J Y, u,

Writing y for

,u2

sin 6 df
Put cos 6 = u, then this is

d 9 3 ’
d71 (u;8in0y) ==Y, u,
80 that u¢ 8in 60y = [ ¥, u, 8in 6 df+ B,

Hence integrating,

3 [ do 1 .
N=t% [A1+B‘ju§sin0+j{u§sin6 ]’ of uosmﬂde} dﬂ] (9).

In like manner, writing y, = zv,, we find

[ dé
Yg = 7, [Ag‘l‘Bz L}z Py + I 7 SIHﬂJY’ v, 810 0 d6 } do] .(20).

In these solutions 4,, 4,, By, B; are arbitrary constants.
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Now to find the integrals
fu;tcosec8df, [ v;*coseodds,
put log tan 30 = 2,
then fcot*16 cosec®0df = — [ cosec* 6 cot™ 10 d (cos 6)
= [e** cosh* zd (tanh z)
= [e % cosh’s dv

= TI (2e-m+e-z (..1)a+e—a(a-l)-) dz

2 1 1
= —1cot® 1 -— —_— 31 — ,‘10] ............... .
poot 30 [ 2 + = oot Jo+ L tan’} (21)
In like manner
tan® 16 cosec® 0 df = 3 tan¥ 16 [—2— + L pon 30+ L ot l9]
2 ¢ T Lls s+l 7T e—1 3

Thus
. , . . 2 1 1
y, = A,sin 0 tan' 10+ B, sin 6 cot’ 10 [: + —p col'}o+ 5 tan' %a]
+ sin @ tan’ 16 [ {cosec® 6 cot™ 40 [ (¥, sin® 0 tan* §6) d6} d0 ... (22),"

9y = A, sin O cot’ 10+ B, sin 0 tan® 10 [—2- + —i—tau’ %6-}- —l— cot? -}6]

+8in 0 cot’ 46 [ {cosec® 8 tan™ 16 [ (¥, sin’ 8 cot' 36) dﬂ} ds......(23).
This is the complete solution of the system of differential
equations (14) in the general case.
7. When s =0, or s = 1, we get failing cases.
(i.) When s = 0, tho equations for y,, y; aro

T 4 eot0 W 4 (2—cosect )y, = ¥,

Eyy +cot 0‘—ll- + (2—cosec®8) Y, - (@4
de* B=5
and sin @ is a particular integral when Y,, ¥, ave zero.
"Thus, procecding as before, we obtain
y, = 8in 0 [ 4,+ B; [ cosec® 046+ [ {cosec’ 8 [ ¥, sin’ 0d0}de ],

and a similar expression for y,,
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Hence
y,=4,sin0+ B, (cot 8 —sinBlog tan 30) + sinb [ { cosec®0 | ¥, sin*6d6 } dﬂ}
yy=A;5in0 + B, (cot 0 —sinblog tan 16) + sin 6 { cosec® 0| ¥,sin’010} d0
............... (25).

In this case we could find u, v immediately from (12), putting

YA

—— =0 on account of the symmetry.
Jp
Thus, or by (25), we obtain

% = A, 8in 04 B, (cot 8 —sin 0 log tan 10)
+8in 6 j {coscc" 0! —gin® @ (X'+-§aa—7;) do } do

v = A;8in 0+ B, (cot 0—sin 0 log tan 16)
+sin Oj {coscc® 0 I —sin’ 0 Y'd0} 6

..(26).

(ii.) When's =1, we write p for cos 6, and the equations bocomo
4 [ —ut %] 2 ‘(1__1_1'_!5_)._
& [a-mm e (1- 1) = 7,
4 —p c_l!/_@] —l=py o
dp [(1 w) dp +2y, (1 l—,u") =1,
An integral of the first is
9 =1—p=1—cos0 = 2sin’* 0, when ¥, =0,
50 y3=14u =14cosd =2cos’ 10, when ¥, = 0.
Hence the complete primitives
y, = 2 sin? 10 [ 4]+ B | cosec 6 cosec* §0d0]
+2sin* 0 [ {cosec O cosec* 10 | ¥, sin 6 sin’ 3010} 40,
¥y = 2 cos’ 160 [ 47+ I; [ cosec 0 soct 1646 ]
+2 cos? 20 [ {coscc B sect 30 [ ¥y sin 0 cos? 30 d0} do.
Obscrving that

2—cos ()
cosce 0 cosec* 1040 = log tan 30— = —-"-
j g g tam 5 (1—cos 6)”
. 24-cos)
cosce Osect L0 dl = log tan §0+ =50
,[ sec 0 sec 10 ¢ 0g tan 30+ (L 4cos 0)*

VOL. XX.—NO. 349. bt
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we see that these may be written

. —cos @
1 = 4,(1—cos 8)+B, [2 sin’ 26 log tan 30— i_zzz 0]

+2sin?10 j'{cosec 0 cosec* 16 [ ¥, sin 0 sin® 36 d6}d0.........(28),

2+4cos 07

2= 43 (1+c00)+ B, [ 2 cos’ §0 log tan 30+ T2

+2cos’ 46 [ {cosec O sec* 10 ¥, sin 6 cos® 300} df ......... (29).

By equations (22) and (23), (25), and (28) and (29), we have y,, ¥,
in all cases; u and v are then to be found from

w=4+y), v=3%@G—n),
and w is given by equation (10).

To satisfy the boundary conditions, we shall require to know o,, 7, w.
These are to be calculated from the values found for u, », w by means
of equations (6).

On substituting in the boundary conditions (4), we shall be able to
determine the arbitrary constants.

8. We proceed to consider some examples.

Ezample I.—A spherical bowl, bounded by the horizontal plane
0 = «q, is acted on by a normal pressure on its middle-surface every-
where proportional to the depth below the bounding plane, and is
supported by forces applied to the edge in the directions of the tan-
gents to the meridians on the middle-surface: it is required to find
the displacement.

This is the case of a bow] filled with liquid, since the state of strain
in an element of the bowl, produced by surface tractions applied to its
carved surface, is the same as when corresponding bodily forces are
applied to its middle-surface.*

In this problem
X=0, Y=0, Z = C, (cos §~—cos u),
where C, = gp'a®/2nh
in the case of a fluid of density p’.

* The method by which M. Boussinesq has proved this result for plates holds
equally for thin shells, see Liouville's Journal de Math., 1871.
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Since all the conditions are symmetrical with respect to the axis,
v is zero, and « and w are independent of ¢, and the proper solution
is (25). Hence, observing that

{ {cosec® 6 [sin®*6 d6} d6 = } cosec® 9 —log sin 6,
we find
u = A’sin 0+ B (cot 0 —sin 0 log tan16) + 4C, (cosec§—sin @ logsin 6).

To make this finite when = 0, we must take

6B'+C, =0;
thus we have for the tangential displacement
u = A’sin 0+3C, [ tan 0—sin 6 log (1 +cos 6) |.........(30).

By (10) we find for the radial displacement
w= —A4"cos 6+ 3C, [cos Olog (1+cos 0)—1+3 cos 6]

+3 210 O’ (cos—cosa) ......(31).
Hence
ao, = }3 C (cos @ —cosa) — 40, + 75C, cos 0+ ‘0’1;1‘:;:» 00
=1 .,;:fn C, (cos 6—cos a) +;C, (2+cols-fl$g;cos 0)
So asy= 3 33"*" C, (cos 6—cos a) — 0, (2+°°1‘ i)c(:szm")
Honce a(o+™=%s,) =2 "0, (2+°°;:lf)ls:°°“ WD .(32)

when 6 = a.

Seeing that o vanishes identically, the second of the boundary con-
ditions (4) is satisfied identically, and the first gives for the edge-
traction that must be applied to the bowl

A= 2nh 4m 1 m+n, (2+cosa)(l—cosa)

m+n 12a 2m l+cosa
4nh (2+cos a)(l—cosa)
12a 14+cosa ’
d this i 1t (2+cosa)(1—cosa) )
and this is A =}gpa T+cosa ...(33)

in case the bowl is subject to fluid pressure.
H 2
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It is easy to verify that the resultant upwards traction is equal to
the weight of the liquid, for this resultant is

‘o (2+cos a)(1 —cos a)
l4cosa

Ygr'a (2ma sin a) sin «,

or 1gp'ma® (2+cos a)(1 —cos a)?,
which is right.

The terms in A’ represent a rigid-body displacement. The rim to
which the supporting force is applied may be supposed to suffor no
tangential displacement ;. in this case « vanishes when 8 = a, and we
determine A’ by the cquation

;8
A'sina = %a, [sin a log (1+cos a) —tan %a] ;
and the digplacemonts at any point are
— gr'a
0= Tgﬂh { [log (1 +cosa)—} scc® 1a] sin 6
- [smGlog (1 4+cos 6) —tan 10]} ...... (34)

along the mcridian, and

w = ﬂ; = {—[log (1+cos a)—%sec’ }a | cos §
+ [cosflog (1+cos ) —1+3cos 0]}

T PO g Gcon a) errrrrernns (35)

m—n 8uh
along tho normal.

Tn the particular caso of a hemisphere supported by a uniformly
stretched vertical membrance in the form of a cylinder, we find that
tho verlical displacement of tho lowest point is

gb’a’ [—g log 2—3 (m+a) /(m—n)] [4uh,
and the fension of the membranc is
Agp'a’.
Ieample II—A bowl supported in the same way as before is
deflected by its own weight.
In this problem
X =—2¢phsinb, Y=0, Z=2phcosh,

X'+4 <= =—3gpla*sin §/2nh = —3$gpa’ sin 8/,
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Writing this —4 0, sin 6, for shortness, we have, just as before,
u= A'sinf+20;[tan}6-log (1 +cos6) ]
w=— A cos8+3} C, [ cos f log (1 +cos 6) —} +cos 6]

voer (36)

+3— mtn gpo; cos 6
3m—n n

whero the last term comes from the Z’ term in equation (10).

_ 1 m+n qpa (/, (24cos 0)(1—cos 0)
Hence aoy =14 5 cos 0+ T3 o030

m+n Qf‘_‘i s 60— C’ (2 +cos 0)(1—cos 0)
3m—n = 1+cosd

uoy =} o-

Thus

m—n _\_ ,m+ng___ C, m+4n (24 cos 0)(1—cos 0)
a,(a'l+ a,) * o9m n 0+ 33 12 2m 1+4cos0

Now the boundary condition gives for the edge-traction

2m m—mn
m-}-n( L 2m a',)

(2+cos a)(1—cos (()
14cosa

or A=2gpal/(14cosa).....cccoovuninnnnnnn(37).

A =4nh

= gpah cos u+tgpak when 0 = «,

The resultant upwards traction is

2qpal
14cosa

27 ¢ 8in’ «
= 2h.2ma* (1 —cos «) gp
= weight of shell, as it should e,
Lzample IIL—If we change the sign of g4, the above aualysis

applies to the case of a hemispherical bowl, resting with its vertes
upwards on a smooth horizontal planc.

We have to put v =0 when 6 = 37 ; thus
A = ga’p/2n,



102 Mr. J. Brill on a Method of Transformation  [Dec. 18,

and the displacements are

_ _gd’p a’p
w____-27c0s0—$2n—[c05010g(1+cos0)—1+%cos€]
_ga’p mtn ..(38).
4dn 3m_ncos0 (38)

atp . o’ .
= 9%951n 0—"—72—’;[ta.n 16—sin 6 log (1+cos 6) ] J
Hence, if 2% be the thickness, the deflection at the vertex is

[++l0g 2+ (m+n)/(Bm—n) ] W/Brnh...............(39),
where W is the weight of the bowl.

A Method of Transformation with the aid of Congruences of a
Porticular Type. By J. Briun, M.A,

(Read Dee. 13¢th, 1888.]

1. Suppose that we have a family (A) of surfaces. The orthogonal
trajectories of this family will form a congruence (a) of curves. On
one of the surfaces belonging to the family (A) draw a family of
lines. The curves of the congruence (a) that meet each of these
lines will form a surface; and the curves of the congraence (a) that
meet all of these lines will form a family (B) of surfaces, which is
such that the members of it intersect orthogonally the members of
the family (A). The curves of intersection of the members of the
family (A) with those of the family (B) will form a congruence (c).
This congraence will possess the property that it is possible to draw
within it* two families of surfaces, viz. the families (A) and (B),
such that the members of the one intersect the members of the other
orthogonally. Further, since the family of lines drawn on the selected
surface of the family (A) are altogether arbitrary, it is evident that
they may be chosen so that at least one other selected property may
belong to the congruence. It is,-however, conceivable that cases may

* By this expression it is intended that each surface is the locus of some singly
infinite series of the curves of the congruence in question.



