IX. Description of an improved discharging electrometer. Read before the Royal Society of Copenhagen

A.W. Von Hauch

To cite this article: A.W. Von Hauch (1799) IX. Description of an improved discharging electrometer. Read before the Royal Society of Copenhagen , Philosophical Magazine Series 1, 4:15, 267-275, DOI: 10.1080/14786449908677071

To link to this article: http://dx.doi.org/10.1080/14786449908677071

Published online: 18 May 2009.

Submit your article to this journal

Article views: 2

View related articles

Mois, a people who inhabit the mountains to the weft, and who often make incurfions into their territories, the Cochinefe general marched with an amy towards the mountains; but as he was not able to get at the enemy, on account of their inacceffible fituation, he ordered two prifoners he had taken to be put to death, and their fiefh to be dewoured by his foldiers.

In the year 1977, being on board an Englifh hip of war in Turon harbour, in order to return from Cochin-china to Europe, a party arrived there who had joined a powerful rebel named Nbae. ${ }^{\circ}$ This leader and his party had taken fome of the king's confidential friends, and one in particular who had formerly done him a great deal of injury. The latter they put to death; and in order to gratify their revenge, they tore out his liver and ate it. The Cochin-chinefe, in general, when violently incenfed againft any one, are accuftomed to exprefs a wifh that they may be able to devour his liver or his flefh.
IX. Defcription of an improved Difcbarging Electrometer. Read before the Royal Society of Copenbagen. By A.W. Von Haucr, Mar/bal of the Court, ©ec. to bis Danif/b Majefly*
No branch of natural philofophy can boaft of having attracted fo much attention as the doctrine of electricity; and indeed there are few which feem more worthy of inveftigation. When we confider the diffinguifhed part which electricity apparently performs in the grand operations of nature ; the aftonifhing, and, on the firft view, fo incxplicable effects produced by this power of nature fo different from thofe of any other, and its-fecret and concealed mode of antion, which the mol acute obfervers have not hitherto been able to penetrate, it will not feem-furprifing that both

[^0]the learned and the unlearned fhould, with unabated zeal, have employed their attention on this phenomenon, as important to fpeculative philofophy as it is by its influence in fociety. Without this inceffant attention our knowledge would not have made fuch rapid progrefs as it has done in the laft forty years; and there might have been little difference between Otto von Guerick's balls of fulphur, or Haufen's glafs globes, which were feventy years later, and the electric machine now in the Teylerian Mufeum at Haerlem. The former were fearcely fufficient to attract the lighteft bodies, whereas the latter approaches near to nature in its ftrength, in its awful and wonderful effects; and feems to favour the poffibility of the idea, that there are natural powers capable of impelling heavy bodies with prodigious force; and which, conducted by the hand of man, may, fome centuries hence, banifh the ufe of gunpowder, as the latter, a few centuries ago, banifhed bows and arrows.

Franklin conveyed electricity from the atmofphere, loaded a battery with it, and directed its mighty power with the fame cafe as that weak power excited by an clectric machine. On account of the above-mentioned poffibility of exhibiting the electric power in a certain degree and of a certain frength, it was found more and more neceffary to have inftruments proper for afcertaining thefe, and by which it might be determined with precifion when and how a required effect could be produced.

Though thefe inftruments have undergone many variations and improvements, and though there is an effential difference between Stephen Gray's or Du Fay's threads and the clectrometers of Achard and Brooks *, they are all to be confidered rather as announcers of electricity than as accurate gauges or meafures, as they are all incapable of fhewing its intenfity, Another inftrument, hitherto equally imper-

[^1]cet, though no lefs important in electric experiments, is a difcharging electrometer; for, as it is believed that the laws of electricity can be defined with mathematical certainty *, it muft be of importance to be able to employ, with the fame certainty, the electric power which has been excited; and every inftrument tending to promote this object, though ftill imperfect, muft be of fome utility, and be not unacceptable to thofe fond of electrical experiments. All the difcharging electrometers hitherto known, perform their effect either by fpontaneoufly difcharging, as that of Lane, or as Henley's general difcharger, \&c. and in this cafe are affected by the greater or lefs conducting property of the air, which muf neceffarily be changed on each change of the atmofphere, and therefore mult render the inftrument very imperfect and incorrect; or the effect is produced by introducing a conducting body between two electric atmofpheres, and by thefe means uniting them. But as this muft depend on the greater or lefs dexterity of the perfon who performs the experiment to determine the proper moment for difcharging, and as another electrometer is at the fame time neceffars, this method of difcharging is as uncertain as the firft.

I have endeavoured, therefore, to conftruct an inftrument to fupply this deficiency ; and I hope it will not be found unworthy of attention. It is an electrometer which, though founded on the fame principles as that of Brooks, that is, on comparing the effect of the repulfive power of electricity between two bodies of a given fize with the known weight requifite to produce that effect, has, in my opinion, fome improvements which are wanting in the other; for the ftate of the barometer has no influence upon this electrometer, as it has on that of Brooks; nor does friction, which is far from being unimportant, here take place. But as this in-

[^2]frument is intended to be ufed as a difcharging electrometer, and mult be examined as fuch, no comparifon can properly be made between it and any of the other electrometers hitherto employed.

Plate VI contains a reprefentation of the electrometer, and the different parts of which it conffits. OP is a board of dry mahogany, twelve inches in length and four in breadth, which ferves as a ftand for the inftrument. In this board are fattened two mafly glafs pillars; M and N, which Gupport the two brafs capes or rings GG; with the two forks of tempered feel KK fcrewed into them. The two rings GG are well covered with varnifh.

In the ring G is faftened a brafs rod, which terminates in a ball E of the fame metal, and an inch in diameter. The length of the rod and ball together is four inches and x half.

A very delicate beam, $A B$, the armis of which are of unequal length, moves on a fharp triangular axis (a knife edge) of well tempered fteel on the fork K of the pillar M . It is feventeen inches in length, and fo confructed that the fhort arm forms a third and the long ore two-thirds of the whole bean. The flort arm of brafs fannifled with the ball. \mathbf{B}, exactly of the fame fize as the ball E , is divided into fortyfive parts equivalent to grains. The long arm A is of glals covered with copal varwifh, and ends in an ivory ball A, into which is fitted an ivory hook R , deftined to fupport the ivory fcale H. In order to render the infulation more completes, this fcale is fufpended by three hairs.

A very delicate beam, CD, eleven inches in length; moves on an axis, like the former, on the pillar N , though not here fhewn. This beam is proportioned in the fame manner, one arm being a third and the other two-thirds of the whole length. The long arm of brafs is furnifhed at the end with a ball D, and divided into thirty parts correfponding to grains. The fhort arm of glafs terminates in a long roundifh plate C , covered with copal varnilh. The fieel

Rorks are fhewn by the fections of the two brafs caps FF, as are alfo the two knife edges LL. By thefe caps the efcape of the electric matter is partly prevented.

A brafs ring Q, capable of being moved along the fhort arm of the upper beam AB, fhews, by means of marks determined by trial and cut out on the beam, the number of grains which muft be placed in the fmall fcale to reftore the equilibrium of the beam at each diftance of the ring Q from the point of fufpenfion.

On the long arm CD of the lower beam there is allo a moveable ring S, which, like the ring Q, flews in grains, by its diftance from the point of fufpenfion, the power requifte to overcome the preponderance of LD in regard to LC.

The power neceffary for this purpofe will be found if the fhell H , which weighs exactly fourteen grains, be fuffered to fink down on the glafs plate C, and the ring S be puthed forwards till both the arms of the beam are in equilibriumThe part of the beam on which the ting S tras moved is divided into fourteen parts, fo that o marks the place where the ring S mult ftand when the beam, in its frec flate, is in equilibrium; and 14 ftands at the place where the ring S again reftores a perfect equilibritm when the fhell H is laid on the glafs plate C. Each of thefe parts, whish are divided into quarters, indicates a grän. The lower divifions of the fcale will be found with more accuracy if quarters of a grain be put, in fucceffion, into the fhell H (after it has been laid on the plate C), and the ring S be moved between each quarter of a grain until the perfect equilibrium be reftored. This place on the beam is thien to be marked, and you may continue in this manner until the 30th part of a grain be given. Both feales, for the fake of dittinctnels, are divided only fo low as quarters of a grain ; though the inftrament is fo delicate, and muft abfolutely be fo, that 1 -20th of a grain is fufficient to deftroy the equilibrium.

The two glafs pillars M autd N_{y} together with the fteel
forks affixed to them, are fo fitted into the ftand that both the bieams lie parallel to each other as well as to the rod GE. In this pofition of the beams $A B$, the balls B and E are jufe in contact. The fmalleft glafs pillar N is of fuch a height that the ball of the beam CD flands at the diffance of exactly four lines from the ring G, and cannot move without touching the latter. The fmall fhell H is fufpended in fuch: a manmer that there is a diftance of exactly two lines between it and the fhell C . In each of the brafs rings GG is a fmall hole, that the inftrument may be connected with the two fides of an electric jar. I is a brafs wire, with a hollow bit of ivory a deftined to fupport the beam $\mathrm{CD}_{\text {, }}$ which is neceffarily preponderant at \bar{D}, in order to prevent ofcillation between the difcharges to be examined by the inftrument.

It may be readily comprehended that, when the beam $A B$ has moved, A muft pafs over twice the fpace that B does; and that, in the beamy $C D$, the cafe is the fame in regard to C and D . If AB therefore be connected with the external fide, and CD with the internal fide of a battery, but in fuch a manner that the inftrument is at a fufficient diftance beyond the electric atmofphere; and if the battery be charged, the repulfive effect of the electric power will oblige the ball B to feparate from the ball E ; the fhell H muft therefore naturally fink down with double velocity, fo that when the ball B rifes a line, the thell H muft fink two: when it reaches this depth it will touch the fhell C , and the latter, by the power excited in it, will be obliged to fink, by which D mult naturally again afcend in a double proportion to the finking of C ; fo that when C has fallen two lines, D muft have afcended four, and D that moment touches the ring by which the two fides of the battery are comected with each other, and difcharges the battery.

But, as the attractive electric power between unlike atmofpheres, under like circumftances, is at leaft as ftrong as its repulfive power between like atmofpheres, it would thence fallow that the electric power, inftead of repelling the ball B
from the ball E would rather attract D, and, by its contact with G, promote the difcharging; by which the inftrument would fail of its object, and be fubjected to the temperature of the atmofphere like all other electrometers; and befides this, the electric power could no longer be determined by weight. To obviate this inconvenience, the inftrument, in all electrical experiments, mult be applied in fuch a manner that the power with which the ball D is attracted by $A B$ may exceed in ftrength the power required to repel the ball B from the ball E . For this purpofe the ring S muft always be removed two divifions farther on $C D$, towards D, than the ring Q is fhifted on $A B$ towards B. If, for example, an electric force were required equal to eight grains, according to this electrometer, the ring Q muft be removed to the place where 8 ftands, and the ring S to the place marked io. The repulfive power will then naturally repel the balls B and E before G is in a condition to attract the ball D, as a power of two grains would be neceffary for this purpofe, befides that of the eight already in action. The fhell H , with its weight of fourteen grains, will eafily overcome the preponderance of LD over LC, as it amounts only to ten grains, and therefore nothing exitts that can impede the difcharging.

When the ring S, according to the required power, is removed fo far towards D that the fhell H is not able by its weight to deftroy the preponderance of LD in regard to LC, the active power of the fhell H mult be fo far increafed by the addition of weights that it can act, with a preponderance of four grains, on the plate C. If, for example, an electric power of fourteen grains be required, the ring S muft be removed to 16 , by which LD refts upon a, with a preponderance of fixteen grains in regard to LC. Now to make H act on the plate C with a preponderance of four grains, it muft be increafed to twenty grains, that is, fix grains weight more muft be added, as it weighs only fourteen; which fix grains are again laid upon LB; and therefore the ring Q is fhifted to 20, as the Vol. IV.
ftrength of the repulfive power is pointed out by fourteen grains.

If an electric power of twenty-five grains be required, the ring S muft be removed to 27 , and the weight of feventeen grains be put into the fhell H in order to produce a preponderance of four grains in regard to S. Thefe feventeen grains are added to the required power of twenty-five grains, and the ring \mathbf{Q} is pufhed to $42,8 c$. In this manner the repulfive power always acts before the attractive power can.

It may be readily perceived that the faults and inconveniences common to all the electrometers hitherto employed, and which have been already mentioned, cannot take place here; becaufe the difcharging is performed by immediate connection between the pofitive and negative electricity in the inftrument itfelf, without any external means being employed.

One of the moft effential advantages of this inftrument is, the certainty with which the fame refult may be expected when the experment is repeated. For the fame degree of electric power, whatever be the temperature of the atmoiphere, will always be neceffary to commence the feparation of the two balls B and E from each other, the quantity of coated glafs and the diftance of the ring Q from the axis L being the fame.

Another no lefs important advantage of this inftrument is, that in an experiment where the fame electric power, often repeated, is neceffary to afcertain the refult with accuracy; fuch, for example, as the charging a battery through acids, water, $\& c$. ; the fame degree of preeaution is not neecffary as is indifpenfibly fo in any other electrometer, as the perfon who puts the machine in motion has nothing to do but to count how often the electrometer difeharges itfelf; and the inftroment may be inclofed in a glafs cafe, or prevented in any other manner from external contact, or any other circumftances which might render the experiment uncertain.

I flater myfelf that the fimplicity of the conftruction of this inftrument, the facility with which it may be made at a very frall expence, and the certainty that two intruments, prepared according to the fame feale, with a like quantity of coated glafs, muft exactly correfpond with each other ; but, above all, that the certainty and accuracy by which experiments may be made with it, and by thefe means be accurately defcribed, are advantages which will not be found united in any of the electrometers hitherto invented.

X. Obfervations on tbe Tones preduced by an Organ-pipe in different Kinds of Gas. By C.F.F. Chladni";

A In, it is well known, is the moft common conductor of found; but it can become a fonorous body alfo. The latter is the cafe in regard to a pipe, as the pipe itfelf does not emit found, but the column of air included in it, and which, being feparated from the reft of the atmofphere, is obliged, by blowing, to vibrate in fuch a manner that it contracts and expands longitudinally in varions ways; and thefe ribrations are then conducted to a diftance by the furrounding air. It is not neceffary that I fhould here farther explain the different kinds of vibration of which the air in a pipe is fufecptible. Thofe who are defrous of information on this fubject may confult Daniel Bemoulli's papers in the Memoirs of the Academy of Paris for 1762 ; thofe of Lambert, in the Memoirs of the Academy of Bertin for 1775 ; and of Euler, in the Sixteenth Volume of the New Tranfactions of the Imperial Academy of Deteriburgh.

The conducting of found through the air, and the vibrations of air in a pipe, depend on the fame laws. This will readily appear from the following obfervation, befides others, that the velocity of the vibrations, under like circumitances,

[^3]
[^0]: * From the Tranfactions of the Royal Society of Cotenogern.

[^1]: - A defcription of thefe Electrometers may be feen in Adams's and Cavallo's Treatifes of Electricity, and in other works of the like kind. Wisito

[^2]: *See Lord Stanhope's Principles of Electricity, $3^{\text {d, }} 4^{\text {th }}$, and $5^{\text {th }}$ parss; and Coulomb's defcription of an inftrument by which it is proved that the effect of the electric matter is in the inverfe ratio of the fquare of the dif-

[^3]: * From Voig's Mogazin für den nouefien zuftand der Nutwrkurde, Tulil. part 3.

