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1. Introduction

Clustering analysis is one of the important tasks 
in the data mining field [16][3], it is the process 
of categorizing objects into groups (clusters) 
based on their similarities [17][3]. There are 
two main clustering techniques, the supervised 
and the unsupervised. The supervised clustering 
techniques require human interaction, while the 
unsupervised clustering techniques do not. The 
latter ones are popular and are used in organizing 
unlabeled data objects into clusters so that the 
objects belonging to the same clusterhave more 
similarities [12]. Therefore, the term clustering 
techniques, mostly refers to the unsupervised 
ones, which can be classified as hard (crisp)
clustering and soft (fuzzy) clusteringones. In hard 
clustering, the clusters have well defined and clear 
boundaries. An object belongs or does not belong 
to a cluster. On the other hand, in soft clustering 
techniques, the object can belong to more than one 
cluster with partial membership degrees [9][22]. 
The Fuzzy C-Means (FCM) is the most popular 
fuzzy unsupervised clustering algorithm. It was 
introduced by Dunn[11] and was modified by 
Bezdek [7].

Research on clustering algorithms focuses on 
improving systems based on the FCM such as 
Hongbin Dong et al. in [10]. They have proposed 
a fuzzy clustering method based on evolutionary 
programming (EPFCM) to improve the FCM 
algorithm. They encoded the cluster centers as a 
sequence of real numbers, and they defined the 
cluster validity indices as a function of the number 
of the cluster centers. Using the evolutionary 

algorithm, they searched for the optimum of the 
validity indices and the best result of clustering. S. 
Ganapathy et al. in [12] proposed a Novel Weighted 
FCM clustering method based on the Immune 
Genetic Algorithm (IGA-NWFCM) which solves 
the high dimensional multi-class problems and 
increases the chance of obtaining the optimal 
value. by applying the immune genetic algorithm. 
Their proposed system was tested with KDD99 
cup data set and reached better classification 
accuracy. J. Yao et al. in [26] proposed an entropy-
based fuzzy clustering method that automatically 
identifies the number and the initial locations 
of the cluster centers.  It determined the first 
cluster center as the data point with minimum 
entropy after calculating the entropy at each 
data point. Then it removed all the data points 
having similarity larger than a threshold. To 
generalize the FCM, Y. Guo and A. Sengur in [13] 
introduced a neutrosophic clustering algorithm. 
They developed Neutrosophic C-Means (NCM) 
algorithm using neutrosophic logic. They used 
the three neutrosophic components T, I, and F for 
dealing with uncertain data. The three functions T, 
I, F are used to find the determinant, ambiguous, 
and outlier clusters, respectively. Then, they 
constructed a new objective function. However, 
their function is complex and time-consuming 
for more than three clustersand in order to 
simplify it, they considered only the two closest 
determinant clusters of each point. Moreover, 
their algorithm depends on parameters such as the 
number of classes C, the degree of fuzziness m, a 
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new parameter δ  to control the number of objects 
considered as outliers, ε  termination criterion 
between 0 and 1, and three weight factors. They 
also added an additional constraint: for each point 

=1
= 1

c

j
Tj I F+ +∑

Then, Guo et al. in [1] extended his work in an 
attempt to generalize the kernel FCM (KFCM), 
by adding the kernel function to the algorithm.

This paper uses neutrosophic logic instead of 
the fuzzy logic as a generalization of the Fuzzy 
C-Means algorithm. In the proposed system, each 
object belongs to the clusters by the neutrosophic 
three membership values. These values represent 
the degree of truth, the degree of indeterminacy, 
and the degree of falsity. While in the FCM, only 
the degree of truth is used. Unlike the NCM in 
[13], the proposed system (NNCMs) does not 
change the FCM objective function. However, it 
makes good use of the indeterminacy term in the 
neutrosophic logic. The proposed system depends 
on two parameters only: the number of classes C, 
and the degree of fuzziness m, which is any real 
number greater than one. Moreover, the NNCMs 
does not add any restrictions or constraints on the 
membership functions.

The proposed system was applied to six real-world 
datasets Iris, Wine, Wisconsin Diagnostic Breast 
Cancer (WDBC), Seeds, Pima, and Statlog(Heart). 
The comparison between the FCM and the 
NNCMs shows that the later performs better 
for the six real-world datasets. Guo in [13] has 
applied his NCM on only the Iris dataset and 
incomparison between the NCM and the NNCMs, 
the proposed NNCMs shows better results.

The next two sections 2 and 3 present a brief 
introduction on theNeutrosophic Logic and the 
Fuzzy C-Means. In section 4, the proposed new 
Neutrosophic C-Means (NNCMs) is introduced 
and the different phases of the proposed NNCMs 
are presented. Then, section 5 presents a 
numerical example of the NNCMs system. Next 
section 6 shows theexperimental results obtained 
and comparisons with previous systems. Also 
a detailed discussion is introduced. At the end, 
section 7 concludes the results obtained and 
discusses some ideas for future work.

2. Neutrosophic Logic

Neutrosophy is considered a new philosophy, 
which treats the neutralities in data, as well as their 
interactions with various fields [25]. For every 
notion or idea<A>, the theory of neutralities 
considers its opposite or negation <Anti A> as 
well as a spectrum of neutralities <Neut A> which 
allows us to study the origin of neutralities for any 
phenomena or idea. Now, the terms <Neut–A> 
and <Anti–A>are used to form the term <Non–
A>[25]. According to this theory and as a state 
of equilibrium every thought <A> tends to be 
neutralized and balanced by both < Anti–A> and 
<Non–A> ideas [25]. Neutrosophic logic (NL) 
was developed to represent mathematical models 
which can deal with uncertainty, vagueness, 
ambiguity, imprecision just like fuzzy logic. 
In addition to that, it can treat incompleteness, 
inconsistency, redundancy, and contradictions in 
data [21].

In all neutrosophic subjects, such 
asneutrosophy,neutrosophic logic, neutrosophic 
sets, neutrosophic probability, and neutrosophic 
statistics, there are three values T, I, and F to 
represent the truth, indeterminacy, and falsehood, 
respectively. These neutrosophic components T, I, 
and F, whether standard or non-standard are real 
subsets of ] 0,1 [− + , where ] 0,1 [− +

 is the non-
standard unit interval [4][18].

Theoretically using the non-standard unit interval
] 0,1 [− +  for  T, I and F  is important. However, 
in real-world applications, it is difficult to use 
this non-standard unit interval. Therefore in 
applications, the non-standard unit interval is 
replaced by the standard real interval [0,1][4].

As in all soft computing subjects, the NL is very 
close to human thinking. That is the knowledge 
that comes from human observation is mostly 
characterized by imprecise data, as a result of 
the imprecision of humans [4]. Therefore, NL is 
perfect in treating problems that have imprecision, 
uncertainty, partial truth, incompleteness, or 
inconsistency in data.

The fundamental concepts of neutrosophic 
set, were introduced by Smarandache in [21]
[20]. Salama et al. in [2][14][15][19], provide 
a foundation for mathematically treating the 
neutrosophic phenomena which exist pervasively 
in our real world and for building new branches 
of neutrosophic mathematics.
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To formally define the neutrosophic set [25], 
let X be a space of points (objects), with a 
generic element x in X. A neutrosophic set  A 
in X is characterized by AT , AI  and AF truth, 
indeterminacy, falsity membership functions. 
These are real standard or non-standard subsets 
of ] 0,1 [− +

 with no restriction on their sum

T I FA A A, , :X → − +] 0,1 [ , and 

0 ( ) ( ) ( ) 3 .A A AsupT x supI x supF x− +≤ + + ≤

NL has many applications in different computer 
science areas. S. H. Basha et al. in [5] built a 
neutrosophic rule-based classification system 
which generalizes the fuzzy rule-based 
classification system. NL was used as a tool for 
representing different forms of knowledge. They 
extracted the three neutrosophic membership 
functions from the definition of the fuzzy 
trapezoidal membership function. The three 
neutrosophic membership functions were used 
to generate the “if-then” rules which, in turn, 
were used for classification. They applied their 
neutrosophic rule based system on three data sets; 
Iris, Wine, and Wdbc. Their system achieved 
more accurate classification rate reached 94.7% 
on average against 89.5% in the corresponding 
fuzzy one.

A hybrid classification system based on 
neutrosophic logic and genetic algorithm [6], 
extended their work. The genetic algorithm is 
used for refining the “if-then rules” by applying 
Michigan approach in order to get the optimal 
rules. On the same three data sets, the hybrid 
system applied and achieved a more accurate 
classification rate reached 98.39% in average 
against 94.78% in the neutrosophic rule-based 
classification system.

3. Fuzzy C-Means

When Zadeh introduced fuzzy set theory and logic 
to handle imprecise, fuzzy, and vague information 
[27], many applications in different areas such as 
control systems have been developed. Another 
important application was to use fuzzy logic in 
clustering problems to deal with these types of 
uncertainties [8]. Fuzzy clustering algorithms 
assign each object a degree of belongingness to 
clusters calculated by its degrees of membership 
[8][12].

Fuzzy C-Means (FCM) clustering algorithm 
extends the fuzzy clustering method. It is 

simple and the most used among the fuzzy 
clustering approaches [8].Given object vectors, 

1= ,..., nX x x , number of clusters, c,where
2 c n≤ ≤ , the degree of fuzziness, m ≥1, the 
FCM algorithm determines the degree of the 
clusters` overlapping, and termination constant, 
e (maximum iteration number for example). The 
FCM algorithm consists of the following steps [8]:

Step 1: Randomly initialize the partition matrix U 
which is a matrix of degrees of membership for 
every object jx , j=1,...,n in every cluster i, where 
i=1,...,c, ijµ  represents the value of the degree of 
membership of thj vector in cluster i.

Initializing U with two constrains:

=1
= 1, > 0.

c

ij
i

jµ ∀∑
                                         

(1)

=1
0 , > 0.

n

ij
j

n iµ≤ ≤ ∀∑
                         

(2)

Step 2: Find the initial cluster centers using 
membership values of the initial partition matrix 
as inputs. The cluster center vector for cluster i 
obtained in ( )tht  iteration is

( ) ( ) ( )

=1 =1
= ( ( )) / ( ) ; = 1,2,...,

n n
t t t m

i ij ij
j j

v i cµ µ ∀∑ ∑
            

(3)

Step 3: Loop on t to minimize the objective 
function J, where:

2

=1 =1
= ( ) ( , ).

c n
m

ij j i
i j

J d x vµ∑∑
               

(4)

where 2 ( , )j id x v  is a measure of the distance 
between thj  object and thi  cluster center which 
may be Euclidean Distance,Maximum Distance, 
or Minkowski Distance.

Step 3.1. Calculate membership values of each 
input object j in cluster i, ( )t

ijµ  , 
12

( 1) 1
( )

( 1)
1

( , )
=

( , )

t mc
j it

ij t
k j k

d x v
d x v

µ

−

− −

−
=

 
     
   

∑
           

(5)

where jx  is a vector of the input object and ( 1)t
iv −  

are cluster centers from ( 1)tht − iteration.

Step 3.2. Calculate the cluster center, t
iv , of each 

cluster i at iteration t using the cluster center 
function in (3). The inputs are the input object 
matrix, jx , and the membership values of iteration 
t are ( )t

ijµ .
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Step 3.3. Stop when the termination condition is 
satisfied, Otherwise go to Step 2. 

4. Generalization of Fuzzy C-Means 
based on Neutrosophic Logic

The proposed new Neutrosophic C-Means 
(NNCMs) algorithm is shown in Figure 1. It 
generalizes the FCM using the NL. In which the 
membership values of the object are represented 
by three components the Truth, the Intermediancy, 
and the Falsity degrees T, I, and F. And they 
represent the degree of belongingness of an object 
to a cluster.

Figure 1. New Neutrosophic C-Means Clustering 
System

In the FCM, the objects may belong to more than 
one cluster with different membership values that 
determine their degrees of belongingness. The 
NNCMs clustering system adds more information. 
It can determine if an object layes in the boundary 
area between two clusters. Using the NL, the 
NNCMs system can determine if the clusters are 
intersected or not. The proposed system was able 
to find out that, the IRIS data set, can be divided 
in only two clusters, instead on three,  as one 
cluster falls in another cluster which was also 
noticed in [26]. The system was also able to find 
out the intersected clusters and the overlapped 
centers. The NNCMs does that without knowing, 
previously, any information about the data 
sets. In addition, the FCM randomly initializes 
the partition matrix with two constraints as in 
equations (1) and (2). However, in the NNCMs 
system, there is no need to this constrains.

The NNCMs seven phases, Figure 1: Extracting 
Information phase, Initialization phase to initialize 
the partition matrix and the clusters’ centers, 
Updating phase to update the neutrosophic 
membership values and clusters’ centers, 
Clustering objects Phase, and Accuracy phase. 
These seven phases are described in detail in the 
rest of this section.

4.1 Extract Information phase 

In this phase, we extract some important features 
from the data set, such as number of attributes, 
number of objects, the minimum and the 
maximum value for each attribute, and we extract 
the exact clusters as well.

4.2 Initialize the partition matrix phase 

Randomly we initialize the neutrosophic partition 
matrix U; i.e the vectors ijµ  ,the degrees of 
membership of object j to cluster i.

1,1 2,1 ,1

1,2 2,2 ,2

1, 2, ,

.....

.....
= ..... ..... ..... .....

.....

c

c

n n c n

U

µ µ µ
µ µ µ

µ µ µ

 
 
 
 
 
 
    

where , , , ,= , ,i j i j i j i jT I Fµ   
represent the degrees of belongingness, 
indeterminacy, and not-belongingness 
respectively. They are real subsets of ] 0,1 [− +

with no restriction on their sum. i.e. unlike the 
FCM there is no need to add any constraints.

4.3 Initialize cluster centers phase

In this phase, we use Initialized neutrosophic 
partition matrix U and equation (3) to initialize 
the center value of each cluster.

4.4 Update the neutrosophic membership 
values phase 

Using the initialized neutrosophic partition 
matrix U, in the 

( )tht  iteration we calculate the 
new neutrosophic membership values using the 
cluster centers calculated at iteration ( 1)tht − . 
In the NNCMs at iteration 

tht , the neutrosophic 
membership values have three components and 
are calculated by:

12
( 1) 1

( )
, ( 1)

1

( , )
=

( , )

t mc
j it

i j t
k j k

d x v
T

d x v

−

− −

−
=

 
     
   

∑
               

(6)

                                 , = 1,..., , = 1,..., .i c j n
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Table 1. Details of each iteration

T U V Cluster Accuracy
t=1

[0.516, 0.130, 0.934]    [0.483, 0.121, 1.0]
[0.386, 0.074, 1.0]        [0.613, 0.118, 0.630]
[0.368, 0.140, 1.0]        [0.631, 0.240, 0.582]
[0.747, 0.667, 0.337]    [0.252, 0.225, 1.0]
[0.163, 0.327, 1.0]        [0.836, 0.594, 0.194]
[0.124, 0.676, 1.0]        [0.875, 0.096, 0.142]
[0.927, 0.112, 0.078]    [0.072, 0.697, 1.0]
[0.665, 0.637, 0.501]    [0.334, 0.319, 1.0]
[0.451, 0.099, 1.0]        [0.548, 0.120, 0.821]
[0.586, 0.109, 0.705]    [0.413, 0.077, 1.0]

 
 
 
 
 
 
 
 
 
 

2.861           3.573

3.380            4.902

 
  

A: [9, 6, 5, 3, 2]
B: [10, 8, 7, 4, 1]

Number of correct 
clustered objects is: 6
Accuracy is: 60.0%

t=2
[0.473, 0.200, 1.0]      [0.526, 0.223, 0.900]
[0.325, 0.121, 1.0]      [0.674, 0.252, 0.481]
[0.290, 0.219, 1.0]      [0.709, 0.536, 0.408]
[0.752, 0.973, 0.329]  [0.247, 0.338, 1.0]
[0.108, 0.557, 1.0]      [0.891, 0.218, 0.121]
[0.312, 0.403, 1.0]      [0.687, 0.183, 0.455]
[0.990, 0.011, 0.009]   [0.009, 0.833, 1.0]
[0.788, 0.620, 0.267]   [0.211, 0.431, 1.0]
[0.492, 0.194, 1.0]       [0.507, 0.199, 0.971]
[0.650, 0.222, 0.537]   [0.349, 0.119, 1.0]

 
 
 
 
 
 
 
 
 
 

2.524            3.404

3.652            4.969

 
  

A: [9, 6, 5, 3, 2, 1] 
B: [10, 8, 7, 4]

Number of correct 
clustered objects is: 7
Accuracy is: 70.0%

t=3
[0.399, 0.312, 1.0]      [0.600, 0.468, 0.666]
[0.244, 0.198, 1.0]      [0.755, 0.612, 0.323]
[0.185, 0.340, 1.0]      [0.814, 0.668, 0.227]
[0.737, 0.642, 0.355]    [0.262, 0.552, 1.0]
[0.131, 0.911, 1.0]      [0.868, 0.166, 0.151]
[0.473, 0.285, 1.0]      [0.526, 0.256, 0.898]
[0.993, 0.006, 0.006]    [0.006, 0.939, 1.0]
[0.899, 0.193, 0.111]      [0.100, 0.577, 1.0]
[0.566, 0.396, 0.766]      [0.433, 0.303, 1.0]
[0.728, 0.492, 0.372]      [0.271, 0.183, 1.0]

 
 
 
 
 
 
 
 
 
 

2.074            3.294
3.948         4.980

 
  

A: [6, 5, 3, 2, 1] 
B: [10, 9, 8, 7, 4]

Number of correct 
clustered objects is: 8
Accuracy is: 80.0%

t=4
[0.313, 0.452, 1.0]        [0.686, 0.989, 0.456]
[0.166, 0.305, 1.0]        [0.833, 0.653, 0.199]
[0.089, 0.503, 1.0]        [0.910, 0.195, 0.098]
[0.704, 0.493, 0.418]     [0.295, 0.847, 1.0]
[0.232, 0.705, 1.0]        [0.767, 0.213, 0.302]
[0.591, 0.217, 0.691]     [0.408, 0.314, 1.0]
[0.960, 0.0317, 0.040]     [0.039, 0.777, 1.0]
[0.966, 0.0479, 0.034]     [0.033, 0.722, 1.0]
[0.655, 0.781, 0.524]       [0.344, 0.410, 1.0]
[0.799, 0.960, 0.250]       [0.200, 0.261, 1.0]

 
 
 
 
 
 
 
 
 
 

1.632          3.267

4.187           4.928

 
  

A: [5, 3, 2, 1] 
B: [10, 9, 8, 7, 6, 4]

Number of correct 
clustered objects is: 9 
Accuracy is: 90.0%

t=5
[0.241, 0.584, 1.0]      [0.758, 0.543, 0.317]
[0.115, 0.418, 1.0]      [0.884, 0.310, 0.130]
[0.032, 0.669, 1.0]      [0.967, 0.050, 0.033]
[0.672, 0.430, 0.486]    [0.327, 0.884, 1.0]
[0.349, 0.505, 1.0]      [0.650, 0.272, 0.538]
[0.667, 0.177, 0.497]     [0.332, 0.357, 1.0]
[0.931, 0.051, 0.073]     [0.068, 0.698, 1.0]
[0.990, 0.011, 0.009]      [0.009, 0.827, 1.0]
[0.732, 0.753, 0.365]      [0.267, 0.485, 1.0]
[0.845, 0.559, 0.183]      [0.154, 0.327, 1.0]

 
 
 
 
 
 
 
 
 
 

1.325          3.290

4.319          4.847

 
  

A: [5, 3, 2, 1] 
B: [10, 9, 8, 7, 6, 4]

Number of correct 
clustered objects is: 9
Accuracy is: 90.0%
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Step 1: Randomly the neutrosophic partition 
matrix U is initialized:

[0.733, 0.884, 0.536] [0.267, 0.116, 0.711]
[0.244, 0.564, 0.597] [0.864, 0.436, 0.403]
[0.246, 0.894, 0.805] [0.838, 0.172, 0.257]
[0.527, 0.709, 0.24] [0.473, 0.435, 0.76]
[0.55, 0.162, 0.883] [0.517, 0.838, 0.117]

= [0.212, 0.41U 2, 0.256] [0.788, 0.618, 0.828]
[0.384, 0.596, 0.658] [0.616, 0.5, 0.424]
[0.041, 0.468, 0.405] [0.959, 0.532, 0.688]
[0.297, 0.52, 0.094] [0.703, 0.48, 0.924]
[0.759, 0.075, 0.953] [0.363, 0.924, 0.047]

 
 
 
 
 
 
 
 
 




 







Step 2: Initializing the cluster centers using the 
partition matrix U and equation (3):

3.164 4.870
=

3.028 3.807
V  

 
   

Step 3: Looping until the stability of the clusters. 
Table 1 shows the iterations.

6. Experimental results

All the experiments are performed using Intel(R)_
Core(TM)2_Duo_CPU_T6400_@_200GHz, 
2.00GHz Frequency, 300GBRam, 250GB Hard 
Drive, and Windows 8. And all the algorithms are 
self-coded using java.

6.1 Datasets

Since we have limited accessibility to private 
datasets, all tests are done on public datasets.The 
performance of the proposed new Neutrosophic 
C-Means (NNCMs) clustering system is studied 
using the six famous real-world databases Iris, 
Wine, Wdbc, Seeds, Pima, and Statlog(Heart),from 
the UCI Machine Learning Repository website. 
We have chosen these data sets because of their 
different characteristics. Table 2 presents some 
details about these databases.

Table 2. Details Of Six UCI Datasets

DataSet Name Number  
Of  

Sampling

Number 
Of  

Features

Number  
Of  

Clusters

Iris      150 4 3
Wine      178 13 3
Wdbc      569 32 2
Seeds      210 7 3
Pima      768 8 2
Statlog(Heart) 270 13 2
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(8)

                                 , = 1,..., , = 1,..., .i c j n
In order to calculate the distance between any 
object and the center of a cluster, we may use any 
distance metric or similarity measure. Here, we 
have used the Euclidean metric.

4.5 Update cluster centers phase 

In this phase we calculate the cluster centers 
at iteration t using the updated neutrosophic 
membership values, ( )t

ijµ , and equation (3).

4.6 Clustering objects phase

At the end of each iteration, here, we determine 
the cluster to which the object belongs by using 
the neutrosophic membership values.

4.7 Accuracy phase

In this phase, we compare the suggested clusters’ 
objects, obtained from “Clustering objects” phase, 
with the exact clusters’ objects using a set of the 
testing data. Then, we compute the confusion 
matrix; a matrix that is used to describe the 
performance of a clustering algorithm. Then,we 
calculate the total accuracy, precision, recall, and 
specificity for each class.

5. Numerical Example

Here, we explain a simple numeric example 
to illustrate the steps of the NNCMs system. 
If we have ten objects with two attributes 
categorized in two clusters A and B as following:

{< 0.2, 5, >, < 0.5, 2, >, < 1, 3, >, < 2.5, 6, >,

< 3.2, 3, >, < 3.3, 4, >, < 3.5, 5, >, < 4.5, 5, >,

< 6, 3, >, < 6.2, 6, >}

A A A A

A B B B

B B
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6.2 Assessment methods 

Accuracy is famous and commonly used measure 
in classification and clustering where, 

Accuracy =
 

TP TN
TP TN FP FN

+
+ + +

, where:

Actual Result
In Cluster Not In 

Cluster

Predicted 
Result

In 
Cluster

TP (true 
positive)

FP (false 
positive)

Not In 
Cluster

FN (false 
negative) 

TN (true 
negative)

With the imbalanced data, the accuracy measure 
is not enough. The Precision, Sensitivity, and 
Specificity are the most used where, the Precision=
TP

TP FP+
, the Sensitivity(or recall)=

TP
TP FN+ , 

and the Specifcity=
TN

TN FP+
[24].

6.3 Evaluation results and discussion

The proposed NNCMs clustering system 
generalizes the FCM clustering system and 
gives better and more accurate results. Figure 
2 shows the comparison of the total accuracy 
in both NNCMs and FCM for the datasets. As 
shown in this comparison, the proposed system 
gives more detailed information about the 
data and the clusters. This is a result of using 
the indeterminacy. It helps in getting more 
accurate results and gives more details about the 
clusters and the data. For example, the object
< 7.0,3.2,4.7,1.4, >Iris versicolorin−  in the 
Iris data set is wrongley categorized in both FCM 
and NNCMs. However the NNCMs explains the 
reason behind that. The NNCMs shows that the 
two clusters are interleaved. The FCM categorizes 
this object with degrees 0.1776, 0.3992, and 
0.4231 to clusters 1, 2, and 3, respectively. i.e. 

it belongs to cluster 3, which is incorrect and 
the FCM was not able to explain why. However, 
the NNCMs calculates the [T, I, F] degrees as 
[0.0446,0.1345,1.0], [0.4544,0.7296,0.0981] ,
[0.5009,0.6618,0.0890] in clusters 1, 2, and 3 
respectively. Since the F degree of belongingness 
to cluster 1 is equal to 1.0, we conclude that it 
does not belong to cluster one. And the truth and 
indeterminacy degrees of this object are close. 
Looking at other objects with the same case, we 
found out that clusters 2 and 3 should be unified 
in one cluster, a fact that was found before in [26].

 
Figure 2. Accuracy of Clustering for the six real-

world databases in NNCMs and FCM

Tables 3, 4, 5, 6, 7, and 8 show the actual cluster 
labels and the achieved clusters for thedatasets in 
both NNCMs and the corresponding FCM.

A comparison of the Precision, Sensitivity, and 
Specificity for each class of the datasets in both 
the NNCMs and the FCM clustering systems is 
shown in Figures 4, 6, 8, 10, 12, and 14. Since 
the NNCMs uses the truth, indeterminacy, and 
falsity degrees, the time rate of clustering in 
the NNCMs is generally higher compared to 
the FCM. In worest cases, the NNCMs uses 7 
seconds while the FCM uses 5 seconds. Which is 
a reasonable price for obtaining more accurate and 
better details of the  data. In order to evaluate our 
results we use the Principal Component Analysis 
(PCA) technique [23] as a visualization of high-
dimensional datasets to draw the six datasets in 
two dimension-spaces.

Table 3. Comparison between results of NNCMs, NCM, and FCM for Iris Dataset

Clusters in NNCMs Clusters in NCM Clusters in FCM

------ --------- --------- ------- --------- --------- -------- --------- ---------

setosa versicolor virginica setosa versicolor virginica setosa versicolor virginica

A c t u a l 
c l u s t e r 
label

Setose 50 0  0 50 0 0 50 0 0

Versicolor 0 44 6 0 47 8 0 47 3

Virginica 0 2 48 0 2 37 0 11 39
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Figure 4. The second and third classes are so close. 
Yet, the data set describes them as twoclasses. As 
a result, the NNCMs gets precision 95% for the 
Versicolour and 88% for the Virginica. However, 
if they were combined the NNCMs system would 
have reached 99%. The FCM, for the second and 
third classes, reaches a precision of only 81% for 
the Versicolourand 92% for the Virginica, which 
are less than the NNCMs result.

Figure 3. Iris Dataset

Figure 4. Precision, Sensitivity, and Specificity for 
the Iris Dataset

As shown in Table 3, all the clustering algorithms 
achieve 100% for the Setosa class, which isnatural 
as explained eailer. The NNCMs system proved 
to be more accurate, it misclassified only 8 object 
while  Guo-NCM [13] misclassified 10 objects.

Table 4. Comparison on Wine DataSet

Clusters in NNCMs Clusters in FCM

C 1 C 2 C 3 C 1 C 2 C 3

Actual 
cluster 
label

C 1 50 0  9 45 0 14

C 2 4 49 18 1 50 20

C 3 1 16 31 0 21 27

Table 5. Comparison on Wdbc DataSet

Clusters in 
NNCMs

Clusters in FCM

- - - - - -
---

- - - - - -
---

--------- ---------

Class M Class B Class M Class B

Actual 
cluster 

Class M 175 37 130 82

Class B 8 349 1 356

Table 6. Comparison on Seeds DataSet

Clusters in NNCMs Clusters in FCM

----- ----- ------ ------ ---- ------

C 1 C 2 C 3 C 1 C 2 C 3

Actual 
cluster 
label

C 1 95 3 8 59 2 9

C 2 6 64 0 10 60 0

C 3 2 0 68 2 0 68

Table 7. Comparison on  Pima DataSet

Clusters in 
NNCMs

Clusters in FCM

------ ------ ------- -------

C 0 C 1 C 0 C 1
Actual 
cluster 
label

C 0 405 95 404 96
C 1 165 103 166 102

Table 8. Comparison on Statlog (Heart) DataSet

Clusters in 
NNCMs

Clusters in FCM

------- - - - - - -
---

------- -------

C 1 C 2 C 1 C 2

Actual 
cluster 
label

C 1 105 45 98 52
C 2 36 84 58 62

6.3.1  Iris Dataset

As shown in Figure 3, the Iris dataset contains 
three classes Setosa, Versicolour, and Virginica. 
The Setosa is completely separated from the other 
two. Therefore, the Precision, Sensitivity, and 
Specificity measures of the Setosa class are 100 %, 
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6.3.2  Wine Dataset

As shown in Figure 5, the Wine dataset contains 
three classes C1, C2, and C3, which are not 
completely separated. Most objects of C1 are 
separated from the other two classes. But some 
objects in C2 and C3 lie near the centers of C2 
and C3, as these two classes are overlapped and 
their centers are very close. Therefore, using the 
indeterminacy term, here, gives better results.
And since the data set treats C2 and C3 as two 
different classes, the NNCMs reaches precision 
of 75.3% for C2 and 53.4% for C3, compared to 
70.4% for C2 and 44.2% for C3 in the FCM. That 
is overall the NNCMs is more accurate than the 
FCM, Figure 6.

Figure 5. Wine Dataset

Figure 6. Precision, Sensitivity, and Specificity for 
Wine Dataset

6.3.3  Wdbc Dataset

As shown in Figure 7, Wdbc dataset contains two 
classes class M, and class B, where class B is a 

subset of class M. Also, using the intermediary 
term, here, gives better results. Since the data set 
treats them as two different ones, actually there 
are objects that belong to both classes and also 
nearby the center of each class, It is difficult to 
determine the class of these objects correctly. The 
NNCMs determined the class successfully for 
objects in the class B that are far from the center. 
As shown in Figure 8, the NNCMs reachesa 
precision 95.6% for class M and 90.4% for class 
B. However, the FCM reaches a precision of 
99.2% for class M and 81.2% for class B. The 
FCM considers most of the data belongs to class 
M, therefore, it gets a higher precision for M but 
a much worse precision for B. The NNCMs is 
more robust, it gives a better accuracy, reaching 
92.09% against 85.41% in FCM.

Figure 7. Wdbc Dataset

Figure 8. Precision, Sensitivity, and Specificity for 
Wdbc Dataset
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Figure 11. Pima Dataset

Figure 12. Precision, Sensitivity, and Specificity for 
Pima Dataset

6.3.6  Statlog(Heart) Dataset

As shown in Figure 13, Statlog(Heart) dataset 
contains two classes C1, and C2, where these 
classes are overlapped. They are very difficult 
to identify from each other. The data set treats 
them as two different classes. As shown in 
Figure 14, the NNCMs reaches a precision of 
74.4% for C1 and 65.1% for C2, compared 
to 62.8% for C1 and 54.3% C2 in FCM.

Figure 13. Statlog(Heart) Dataset

6.3.4  Seeds Dataset

As shown in Figure 9, the Seeds dataset contains 
three classes C1, C2, and C3, where C1 and C2 
are intersected, just like C1 and C3. As shown in 
Figure 10, that results in getting higher values for 
the Precision, Sensitivity, and Specifity for C2 and 
C3 in both NNCMs and FCM. However, NNCMs 
is better as its accuracy reaches 90.95% against 
89.04% in FCM.

Figure 9. Seeds Dataset

6.3.5  Pima Dataset

As shown in Figure 11. Pima dataset contains 
two classes C0, and C1, where the two classes are 
interleaved and may have overlapped centers. It 
is difficult to identify them separately. Therefore, 
using the indeterminacy term, here, gives better 
results. Since the data set treats them as two 
different classes. As shown in Figure 12, the 
NNCMs reaches a precision of 71.0% for C0 
and 52.0% for C1 compared to 70.8% for C0 and 
51.5% C1 in FCM.

Figure 10. Precision, Sensitivity, and Specificity for 
Seeds Datasets
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Figure 14. Precision, Sensitivity, and Specificity for 
Statlog(Heart)

7. Conclusions and Future Work

The proposed Neutrosophic C-Means (NNCMs) 
Clustering system generalizes the Fuzzy C-Means 
(FCM) Clustering system. It introduces a 
clustering system based on the neutrosophic logic 
(NL), inwhich, three degrees of membership are 
used to describe the belongingness of an object to 
a class. The NNCMs performs better clustering 
than both the FCM and the neutrosophic C-means 
(NCM). Even in hard cases, in which the data sets 
are overlapped and should be unified, as suggested 
by former researcher, and the FCM gives higher 
values according to the measures used. Yet, the 
NNCMs gives more details about the clusters and 
its overall performance is better. This is a natural 
result of using the intermediancy term used in NL.

In the future work, to increase the convergence 
speed, we aim to build a hybrid system between the 
NNCMs and one of the evolutionary techniques. 
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